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INTRODUCTION 

The language BCPL1 (Basic CPL) was originally de-
veloped as a compiler writing tool and as its name 
suggests it is closely related to CPL2,3 (Combined 
Programming Language) which was jointly developed 
at Cambridge and London Universities. BCPL adopted 
much of the syntactic richness of CPL and strived for 
the same high standard of linguistic elegance; however, 
in order to achieve the efficiency necessary for system 
programming its scale and complexity is far less than 
that of CPL. The most significant simplification is 
that BCPL has only one data type—the binary bit 
pattern—and this feature alone gives BCPL a char-
acteristic flavour which is very different of that of CPL 
and most other current programming languages. 

BCPL has proved itself to be a very useful compiler 
writing tool and it also has many qualities which make 
it highly suitable for other system programming appli-
cations. 

We will first outline the general structure of BCPL 
and later discuss how well it is suited to applications 
in the fields of compiler writing and system program-
ming. 

The language 

BCPL has a simple underlying semantic structure 
which is built around an idealised object machine. 
This method of design was chosen in order to make 
BCPL easy to define accurately and to facilitate ma-
chine independence which is one of the fundamental 
aims of the language. 

* The work was started while the author was employed by 
Massachusetts Institute of Technology. I t was supported, in 
part, by Project MAC, an M.I.T. research program sponsored 
by the Advanced Research Projects Agency, Department of 
Defense, under Office of Naval Research Contract Number 
Nonr-1102(01). 

The most important feature of the object machine 
is its store and this is represented diagrammatically in 
Figure 1. It consists of a set of numbered boxes (or 
storage cells) arranged so that the numbers labelling 
adjacent cells differ by one. As will be seen later, this 
property is important. 

Each storage cell holds a binary bit pattern called 
an Rvalue (or Right hand value). All storage cells are 
of the same size and the length of Rvalues is a constant 
of the implementation which is usually between 24 and 
36 bits. An Rvalue is the only kind of object which can 
be manipulated directly in BCPL and the value of 
every variable and expression in the language will 
always be an Rvalue. 

Rvalues are used by the programmer to model ab-
stract objects of many different kinds such as truth 
values, strings and functions, and there are a large 
number of basic operations on Rvalues which have 
been provided in order to help the programmer model 
the transformation of his abstract objects. In particular, 
there are the usual arithmetic operations which operate 
on Rvalues in such a way that they closely model 
integers. One can either think of these operations a* 
ones which interpret their operands as integers, per-
form the integer arithmetic and convert the result 
back into the Rvalue form, alternatively one may 
think of them as operations which work directly on bit 
patterns and just happen to be useful for representing 
integers. This latter approach is closer to the BCPL 

n n+1 n+2 n+U 

Figure 1—The machine's store 
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philosophy. Although the BCPL programmer has direct 
access to the bits of an Rvalue, the details of the binary 
representation used to represent integers are not de-
fined and he would lose machine independence if he 
performed non numerical operations on Rvalues he 
knows to represent integers. 

An operation of fundamental importance in the ob-
ject machine is that of Indirection. This operation has 
one operand which is interpreted as an integer and it 
locates the storage cell which is labelled by this integer. 
This operation is assumed to be efficient and, as will 
be seen later, the programmer may invoke it from with-
in BCPL using the rv operator. 

Variables and manifest constants 

A variable in BCPL is defined to be a name which has 
been associated with a storage cell. It has a value 
which is the Rvalue contained in the cell and it is 
called a variable since this Rvalue may be changed by 
an assignment command during execution. Almost all 
forms of definition in BCPL introduce variables. The 
only exception is the manifest declaration which is used 
to introduce manifest constants. 

A manifest constant is the direct association of a 
name with an Rvalue; this association takes place at 
compile time and remains constant throughout execu-
tion. There are many situations where manifest con-
stants can be used to improve readability with no loss 
of runtime efficiency. 

Lvalues and modes of evaluation 

As previously stated each storage cell is labelled by 
an integer; this integer is called the Lvalue (or Left 
hand value) of the cell. Since a variable is associated 
with a storage cell, it must also be associated with an 
Lvalue and one can usefully represent a variable dia-
grammatically as in Figure 2. 

Within the machine an Lvalue is represented by a 
binary bit pattern of the same size as an Rvalue and so 
an Rvalue can represent an Lvalue directly. The 

Storage cell 

process of finding the Lvalue or Rvalue of a variable is 
called Lmode or Rmode evaluation respectively. The 
idea of mode of evaluation is useful since it applies to 
expressions m general and can be used to clariiy the 
semantics of the assignment command and other 
features in the language. 

Simple assignment 

The syntactic form of a simple assignment command 
is: 

El := E2 

where E l and E2 are expressions. Loosely, the meaning 
of the assignment is to evaluate E2 and store its value 
in the storage cell referred to by E l . It is clear that the 
expressions E l and E2 are evaluated in different ways 
and hence there is the classification into the two modes 
of evaluation. The left hand expression E l is evaluated 
in Lmode to yield the Lvalue of some storage cell and 
the right hand side E2 is evaluated in Rmode to yield 
an Rvalue; the contents of the storage cell is then 
replaced by the Rvalue. This process is shown dia-
grammatically in Figure 3. The only expressions which 
may meaningfully appear on the left hand side of an 
assignment are those which are associated with storage 
cells, and they are called Ltype expressions. 

The terms Lvalue and Rvalue derive from considera-
tion of the assignment command and were first used by 
Strachey in the CPL reference manual. 

The Iv operator 

As previously stated an Lvalue is represented by a 
binary bit pattern which is the same size as an Rvalue. 
The Iv expression provides the facility of accessing the 

E1 E2 

Lmode 
evaluation 
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Rmode 
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The Rvalue 
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Figure 2—The form of a variable 3—The process of assignment 
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Lvalue of a storage cell and, as will be seen, this ability 
is very useful. 

The syntactic form of an Iv expression is: 

Iv E 

where E is an Ltype expression. The evaluation process 
is shown in Figure 4. The operand is evaluated in 
Lmode to yield an Lvalue and the result is a bit pattern 
identical to this Lvalue. The Iv operator is exceptional 
in that it is the only expression operator to invoke 
Lmode evaluation, and indeed in all other contexts, 
except the left hand side of the assignment, expressions 
are evaluated in Rmode. 

The rv operator 

The rv operator is important in BCPL since it 
provides the underlying mechanism for manipulating 
vectors and data structures; its operation is one of 
taking the contents (or Rvalue) of a storage cell whose 
address (or Lvalue) is given. 

The syntactic form of an rv expression is as follows: 

rv E 

Rmode 
evaluation 

Identical 
bit patterns 

Rvalue Lvalue 

Figure 5—The evaluation of an RV expression 

appear on the left hand side of an assignment command, 
as in: 

rv E rv p := t 

and its process of evaluation is shown diagrammatically 
in Figure 5. The operand is evaluated in Rmode and 
then the storage cell whose Lvalue is the identical bit 
pattern is found. If the rv expression is being evaluated 
in Rmode, then the contents of the cell is the result; 
however, it is also meaningful to evaluate it in Lmode, 
in which case the Lvalue of the cell is the result. An 
rv expression is thus an Ltype expression and so may 

and one can deduce that this command will update the 
storage cell pointed to by p with the Rvalue of t. 

Data structures 

The considerable power and usefulness of the rv 
operator can be seen by considering Figure 6. This 
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Figure 4—The evaluation of an LV expression Figure 6—An intrepretation of V + 3 
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diagram shows a possible interpretation of the expres-
sion V + 3. Some adjacent storage cells are shown and 
the left most one has an Lvalue which is the same bit 
natterii as the Rvalue of V. One will recall that an 
Lvalue is really an integer and that Lvalues of adj acent 
cells differ by one, and thus the Rvalue of V + 3 is 
the same bit pattern as the Lvalue of the rightmost 
box shown in the diagram. If the operator rv is applied 
t o F + 3, then the contents of that cell will be accessed. 
Thus the expression: 

rv (V + i) 

Xpart 

The c e l l referred 
to by Xpsrt^Y 

& 

Figure 7—An interpretation of X part j V 

acts very like a vector application, since, as i varies 
from zero to three, the expression refers to the different 
elements of the set of four cells pointed to by V. V can 
be thought of as the vector and i as the integer sub-
script. 

Since this facility is so useful, the following syntactic 
sugaring is provided: 

E l I E2 is equivalent to rv (El + E2) 

and a simple example of its use is the following com-
mand: 

V j ( i + 1) : = V | i + 2 

One can see how the rv operation can be used in 
data structures by considering the following: 

V | 3 = rv (V + 3) by definition 

= rv (3 + V) since + is commutative 

- 3 j V 

Thus V | 3 and 3 | V ares emantically equivalent; 
however, it is useful to attach different interpretations 
to them. We have already seen an interpretation of 
V | 3 so let us consider the other expression. If we 
rewrite 3 { Vas Xpart j V where Xpart has value 3, 
we can now7 conveniently think of this expression as a 
selector (Xpart) applied to a structure (V). This 
interpretation is shown in Figure 7. 

By letting the elements of structures themselves be 
structures it is possible to construct compound data 
structures of arbitrary complexity. Figure 8 shows a 
structure composed of integers and pointers. 

Data types 

The unusual way in which BCPL treats data types 
is fundamental to its design and thus some discussion 

Figure 8—A structure of integers and pointers 

of types is in order here. It is useful to introduce two 
classes: 

a. Conceptual types 
b. Internal types 

The Conceptual type of an expression is the kind of 
abstract object the programmer had in mind when he 
wrote the expression. It might be, for instance, a time 
in milliseconds, a weight in grams, a function to trans-
form feet per second to miles per hour, or it might be a 
data structure representing a parse tree. It is, of course, 
impossible to enumerate all the possible conceptual 
types and it is equally impossible to provide for all of 
them individually within a programming language. 
The usual practice when designing a language is to 
select from the conceptual types a few basic ones and 
provide a suitable internal representation together with 
enough basic operations. The term Internal type refers 
to any one of these basic types and the intention is 
that all the conceptual types can be modelled effectively 
using the internal types. A few of the internal types 
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provided in a typical language, such as CPL, are listed 
below: 

real 

integer 

label 

integer function 

(real, Boolean) vector 

Much of the flavour of BCPL is the result of the 
conscious design decision to provide only one internal 
type, namely: the binary bit pattern (or Rvalue). In 
order to allow the programmer to model any conceptual 
type many useful primitive operations have been pro-
vided. For instance, the ordinary arithmetic operators 
+ , —, * and / have been defined for Rvalues in such 
a way as to model the integer operations directly. The 
six standard relational operators have been defined and 
a complete set of bit manipulating operations provided. 
In addition, there are some stranger bit pattern opera-
tions which provide ways of representing functions, 
labels and, as we have already seen, vectors and 
structures. All these operations are uniformly efficient 
and can usually be translated into one or two machine 
instructions. 

The most important effects of designing a language 
in this way can be summarized as follows: 

1. There is no need for type declarations in the 
language, since the type of every variable is 
already known. This helps to make programs 
concise and also simplifies such linguistic prob-
lems as the handling of actual parameters and 
separate compilation. 

2. It gives the language nearly the same power as 
one with dynamically varying types (e.g., PAL4) 
and yet retains the efficiency of a language 
(like FORTRAN5) with manifest types; for, 
although the internal type of an expression is 
always known by the compiler, its conceptual 
type can never be. For instance it may depend 
on the values of variables within the expression, 
as in the vector application V J, i, since the 
elements of a vector are not necessarily of the 
same conceptual type. One should note that in 
languages (such as ALGOL6 and CPL) where 
the elements of vectors must all have the same 
type, one needs some other linguistic device in 
order to handle dynamically varying data 
structures. 

3. Since there is only one internal type there can 
be no automatic type checking and it is possible 

to write nonsensical programs which the com-
piler will translate without complaint. This 
slight disadvantage is easily outweighed by the 
simplicity, power and efficiency that this treat-
ment of types makes possible. 

Syntactic features of BCPL 

One of the design criteria of BCPL was that it should 
be a useful system programming tool and it was felt 
that high readability was of extreme importance. 
The readability of a program largely depends on the 
skill and style of the programmer; however, his task 
is greatly simplified if he is using a language with a 
rich set of expressive but concise constructions and if 
all the little syntactic details have been well thought out. 

The syntax of BCPL is based on the syntax of CPL 
and, although the underlying semantics of the two 
languages are very different, they look superficially 
alike. 

One of the most important requirements necessary 
before one can obtain a reasonable degree of readability 
is an adequate character set which contains both capital 
and small letters. A comparison has been made between 
two hardware versions of the same large BCPL pro-
gram, one using nearly the full ASCII character set 
and the other using the same set without any small 
letters. Although there is no accurate measure of 
readability, it was agreed by all who made the compari-
son that the difference between the two versions was 
very significant. The lengthening of identifiers to avoid 
clash of names, and the fact that system words and 
identifiers were no longer distinct both increased the 
difficulty of reading the program. There are satis-
factory implementations of BCPL using a restricted 
character set, but such a set should only be used where 
absolutely necessary. 

BCPL follows CPL in the selection of commands. 
There are the three basic commands: assignments, 
routine commands and jumps, and there is the large 
variety of syntactic constructions to control the flow 
of control within an algorithm; some example forms are 
given below: 

test E then C or C 

ifEdoC 

unless E do C 

until E do C 

while E do C 

C repeatuntil E 

C repeatwhile E 
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C repeat 

for Name = E to E do C 

where E denotes any expression and C any command. 
A very useful pair of additional commands are 

a. break which causes a jump out of the smallest 
enclosing loop command, and 

b. return which causes a return from the current 
routine. 

One of the most noticeable ways in which this large 
selection of constructions improves readability is by 
the considerable reduction in the need for labels and 
goto commands. For instance, the BCPL compiler 
itself consists of 88 pages of BCPL program and con-
tains only 29 labels which is about one label per three 
pages of program. It is interesting to see how experi-
enced FORTRAN programmers fill their first few 
BCPL programs with labels and how their program-
ming style improves as they gain facility. 

The BCPL syntax for declarations and definitions 
is far simpler than the corresponding syntax in CPL; 
this is mainly due to the elimination of types from the 
language, and the lower emphasis placed on declara-
tions in BCPL. 

The purpose of a declaration in BCPL is threefold: 

a. To introduce a name and specify its scope. 
b. To specify its extent. 
c. To specify its initial value. 

The scope of a name is the textual region of program 
in which it may be used to refer to the same data item; 
this region is usually a block or the body of a function 
or routine, and it depends on the way in which the 
name was declared. The extent of a variable is the time 
through which it exists and is associated with a storage 
cell. Throughout the extent of a variable, its Lvalue 
remains constant and its Rvalue is only changed by 
assignment. Most forms of declaration initialfi* the 
variables they define, as in: 

let f (t) = 2*t + 3 

let x = 36 + f (4) 

In this example, the variable f is initialized to a value 
which represents the function defined, and x is initial-
ized to 47. 

In BCPL, variables may be divided into two classes: 

1. Static variables 
The extent of a static variable is the entire 
execution time of the program; the storage cell 

is allocated prior to execution and continues to 
exist until execution is complete. 

2. Dynamic variables 
A r K m a m m -irariaKio i s nna wTiriao o v t a n t «+E>r,t« 

when its declaration is executed and continues 
until execution leaves the scope of the variable. 
Dynamic variables are particularly useful when 
using recursive functions and routines. The 
kind of variable declared depends on the form 
of declaration used; out of the nine methods of 
declaring names in BCPL, five declare static 
variables, three produce dynamic variables and 
the remaining one declares manifest constants. 

Function and routine calls 

In BCPL as in CPL, there is a rigorous distinction 
between expressions and commands which shows itself 
in the syntax of the language; it also causes the seman-
tic separation of functions from routines. In many 
respects functions and routines are rather similar; 
however, a function application is a kind of expression 
and yields a result, whereas a routine call is a kind of 
command and does not. 

The syntactic form of both function applications 
and routine calls is as follows: 

Ei(E2, E3 , En) 

where E l to En all denote expressions. The expressions 
E2 to En are called actual parameters. The evaluation 
process is as follows: 

1. All the expressions El to En are evaluated in 
Rmode to yield Rvalues. 

2. A set of n-1 adjacent new storage cells are found 
and the values of E2 and En are stored in them. 

3. The function or routine corresponding to the 
value of E l is found and the formal parameters 
are associated with the cells containing the 
arguments. This association is performed from 
left to right and there is no need for the number 
of actual parameters to equal the number of 
formals. 

4. The body of the function or routine is then 
executed in the new environment. 

5. When the body has been completely evaluated, 
execution returns to the call. For a routine call 
there is no result and execution is now complete; 
however, for a function application there is a 
result which is the Rvalue of the function body. 

All functions and routines in BCPL are automati-
cally recursive and so, for instance, one can call a 
function while an activation of that function is alreadv 
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in existence. In order to allow for recursion and yet 
maintain very high execution efficiency, the restriction 
has been imposed that all free variables of both func-
tions and routines must be static. Randell and Russell7 

give a good description of the kind of mechanism 
normally required for recursive calls in ALGOL; 
however, with this restriction, a recursive call in BCPL 
can be very efficient. 

The mobility of the BCPL Compiler 

A program is machine independent if it can be trans-
ferred from one machine to another without change. 
Complete machine independence is rarely achieved; 
however, it is a goal well worth striving for. For large 
systems, mobility is often a more useful measure than 
machine independence. Mobility is a measure of how 
easy it is to transfer a system from one machine to 
another; it differs from machine independence because 
the program often requires some redesign and repro-
gramming. For example, when moving a compiler from 
one machine to another it is necessary to rewrite the 
code generator and usually part of the lexical analyzer. 
Writing a compiler in a machine independent language 
is an important factor in obtaining mobility but it does 
not ensure it; it is at least as important to design the 
overall structure of the compiler with mobility in mind. 
The BCPL compiler has been designed with this aim 
and has been transferred successfully to seven other 
machines without much difficulty. 

BCPL is a simple language to compile and it has a 
straightforward compiler written in BCPL. The com-
piler is easy to follow and it produces fairly good object 
code at an acceptably fast speed. Its general structure 
is shown in Figure 9. The rectangular boxes represent 
the different logical parts of the compiler and the round 
boxes the various intermediate forms the BCPL pro-
gram takes while it is being compiled. These interme-

diate forms will be briefly sketched by considering the 
transformations of the program shown in Figure 10. 

The input form of the program is first transformed 
into an internal tree structure called the Applicative 
Expression Tree (AE Tree); this is done by the syntax 
analyzer which is composed of a set of machine inde-
pendent parsing functions (SYN) and a lexical analyzer 
routine (PP). The AE tree structure for our example 
program is shown in Figure 11. 

The AE tree is then translated by Trans into an 
intermediate object code called OCODE. OCODE was 
specially designed for BCPL and it is a simple language 
whose statements cause basic transformations on an 
imaginary stack machine; it was designed to be as 
machine independent as is practical to keep the changes 
to Trans to a minimum when the compiler is moved to 
a new machine. 

The Code generator translates OCODE statements 
into the machine code of the object machine. The imple-
mentor is free to choose between relocatable binary 
and assembly language, and it is usually found that the 
ability to generate both is very valuable, 

$( 2££ x = o 

i f X M 2 d o x := x + 2 

f inish $) 

Figure 10—An example BCPL program 

Figure 9—The structure of the BCPL compiler Figure 11—The AE tree form of Figure 10 
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In order to transfer BCPL to a new machine, one 
must choose a suitable strategy and this usually depends 
on the locality of the machines, their basic compati-
bility and the facilities available on the recipient 
machine. The basic process is to write both a code 
generator for the new machine and a suitable machine 
code interface with the new operating system; one then 
modifies and corrects the few machine dependencies 
in the syntax analyser and Trans, and finally compiles 
the new compiler using the new code generator. The 
process is complicated by the fact that the work cannot 
be carried out entirely on one machine. In practice, 
the more work that can be done on the donor machine 
the better; however, one often has no direct access to 
that machine and a different strategy must be applied. 
In this situation it is usually better to implement a 
temporary code generator for the recipient machine in 
some standard language such as FORTRAN or SNO-
BOL8 and then use it to compile the OCODE files of 
the syntax analyzer and translation phase of the com-
piler. One can then construct a temporary BCPL 
compiler on the new machine and use it to compile 
itself. The compiler can then be polished to fit well in 
its new operating environment. 

The cost of transferring BCPL depends largely on 
the computing facilities available, and one can expect 
it to be between one and five man months. 

The use of BCPL for compiler writing 

There are many reasons why BCPL is suitable for 
compiler writing and probably one of the most impor-
tant of these is the ease of programming in the language. 
This together with its inherently high readability com-
bine to make BCPL a very flexible language. The 
richness and variety of useful commands are valuable 
and the built in recursion is almost essential. In order 
to see how well these features may be used together we 
will consider a short excerpt from the BCPL compiler. 
Figure 12 shows the overall structure of the main part 
of translation phase. The directive get 'HEAD2' causes 
the compiler to insert a file of BCPL text and compile 
it with what follows. This insertion facility is very 
useful when co-ordinating many separate parts of a large 
program. This example shows how the switchon com-
mand may be used with manifest constants to good 
effect. It is executed by evaluating the controlling 
expression HI j x and then jumping to the case corre-
sponding to the value found. The expression appearing 
in the case labels are manifest constants and denote the 
possible AE tree operators that Trans must deal with 
(the constants LET, TEST and REPEAT are declared 
in the inserted file HEAD2. If the value of HI j x 
does not corresDond to anv case then execution con-

get •HEADa* 

let Trans (x) b£ 

$(1 switchon Hljx into 

$( default: return 

case LET: 

case T3ST: 

case BEPSAT: 

$)1 
Figure 12—The structure of Trans 

tinues at the default label. Since all the case constants 
are known by the compiler it is possible to implement 
the switch very efficiently, even constructing a hash 
table if this method of switching is appropriate. This 
combination of manifest constants and switchon com-
mands is very effective and it has been used frequently 
in the BCPL compiler. 

Recursion is also very useful in many compiling 
situations particularly in parts concerned with the 
creation and analysis of tree structures. Figure 13 is 
a detailed excerpt, again taken from Trans, and it 
provides an example of a typical use of recursion. The 
section of program shown is used to translate the AE 
tree form of a test command into OCODE. The variable 
x is the formal parameter of Trans and it points to a 

case TEST: $( l e t L, M = Nextparam(), Nextpara*n() 

Jumpcond(H2|x, false, L) 

Trans(H3ix) 

Comp,jump(M) 

Complab(L) 

Trans (HUJ,x) 

Coraplab(M) 

return $ 

Figure 13—A detail from the body of Trans 
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TEST node. The form of this node is shown in Figure 
14; the pointers to E, CI and C2 represent the branches 
to nodes for the Boolean expression and two alternative 
commands of the test command. These components can 
be accessed by the expressions H2 j x, H3 J, x, and 
H4 I x, respectively. To execute a test command, first 
the Boolean expression is evaluated and then, if the 
result is true, the first alternative is executed, alterna-
tively the second. The general form of the object code 
is as follows: 

1. Code to evaluate E. 
2. Code to jump to label L if the result is false. 
3. Code corresponding to the translation of Cl . 
4. An unconditional jump around the code for C2. 
5. A directive to set label L. 
6. Code for C2. 
7. A directive to set the label used in step 4. 

As can be seen the program to generate this code is 
very straightforward. First, two local variables L and 
M are declared for the two labels. The call for Jump-
cond then compiles the code for steps 1 and 2. Its first 
argument is the Boolean expression of the test command 
and the other arguments specify the kind of conditional 
jump required and the label to jump to. The next 
statement is a call for Trans which will compile the 
first alternative Cl. This is an example of the recursive 
use of Trans. The calls for Compjump and Complab 
generate code corresponding to steps 4 and 5, and then 
there is a second recursive call for Trans to translate 
C2. Finally, a directive to set label M is compiled and 
then, since the test command has now been completely 
translated, a return is made to the current call of Trans. 

One should note how convenient it is not to have to 
declare the types of the variables such as x, L and M, 
and one should also note how well the use of manifest 
constants, switchon commands, recursion and simple 
data structures combine to produce a very effective and 
readable means of writing this part of the compiler. 
Although there is considerable variance in the style of 
programming used in the different parts of the compiler, 

TEST 

\ 

N 

V 

Figure 14—The AE tree form of a test command 

the facilities and syntactic qualities of BCPL have 
made it possible to achieve this high standard of sim-
plicity and readability throughout. 

The way in which BCPL treats data types allows the 
programmer great freedom to organize his symbol 
tables, property lists, tree structures and stacks in the 
most suitable fashion for his particular application. 
Admittedly BCPL only provides the basic operations 
and the compiler writer must write his own system, 
but this is easy to do and he does not suffer the disad-
vantage of having to use a system in which inappro-
priate design decisions have already been made. The 
philosophy of BCPL is not one of a tyrant who thinks 
he knows best and lays down the law on what is and 
what is not allowed; rather, BCPL acts more as a 
servant offering all his services to the best of his ability 
without complaint even when confronted with appar-
ent nonsense. The programmer is always assumed to 
know what he is doing and he is not hemmed in by 
petty restrictions. Machine code programmers tend 
to like the way in which BCPL combines the advantages 
of a high level language with the power to do address 
arithmetic and to be able to manipulate binary bit 
patterns without invoking a great weight of expensive 
machinery. 

When planning and writing a compiler in a com-
mercial environment one must make a compromise 
between the quality of the product and its cost. The 
quality of a compiler is affected by many factors such 
as its size, its compile speed, the efficiency of the object 
code produced, the usefulness of the error diagnostics, 
the accuracy and quality of its documentation, its 
maintainability and in some cases its flexibility and 
mobility. Only the first two of these are directly im-
proved by writing the compiler in a more efficient 
language, while the others tend to suffer because the 
compiler is harder to write. Although efficiency is 
important in a compiler writing language, this consid-
eration should not totally dominate its design. The 
author believes that the compromise in the design of 
BCPL between efficiency and linguistic effectiveness 
is near optimal for compilers of medium to large scale 
languages especially if flexibility is required. 
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APPENDIX 

The syntax given below is Bachus Naur Form with the 
following extensions: 

1. For improved readability, the syntactic cate-
gories for expressions, commands and definitions 
(namely E, C and D) are not surrounded by 
meta linguistic brackets. 

2. The symbols { and } are used to indicate 
repetition, for example: 

B { , E } o means 

E | E, E | E, E, E | . . . etc 

This syntax is ambiguous and is simply intended to 
list all the syntactic contructions available. 

The canonical syntax of BCPL 

E :: = {name) | (stringconst) | (charconst) j 
{number} | true | false | (E) | valof (block > j 

Zt>E|rt>E|E(<Elist» | E() | E(diadicop)E| 
(monadic op) E | E —> E, E | 
table (constant) {, (constant) } " 

(diadic op) :: = .[ | * I / j rem j + j — j 
= I 5̂  | Is I gr I le | ge | 
Ishift | rshift \ A | V | = | ^ 

(monadic op) :: = + | — J not 

(Elist) : : = E {,E}» 

(constant) :: = E 

C :: = <E list) : = (E list) | E((E list)) | E() | 
goto E | (name) : C | if E do C | unless E do C | 
while E do C | until E do C | C repeat \ 
C repeatuntil E | C repeatwhile E | 
test E then C or C | break \ return j finish j 
resultis E j for (name) = E to E do C j 
switchon E onto (block) | case (constant) : C j 
default : C j (block) | (empty) 

D :: = (name) ((FPL » = E | (name) ((FPL)) be C | 
(name list) = (E list) 
(name) = vec (constant) 

(FPL) :: = (name list) j (empty) 

(name list) :: = (name) {, (name) }" 

(block) :: = $( (block body) $) 

(block body) : : = C{;C}o| 
(declaration) }' " {; C}" 

(declaration) :: = let D {and D } " | static (decl body) j 
manifest (decl body) j 
global (decl body) 

(decl body) :: = $( <C def) {; (C def)H$) 

(C def) :: = (name) : (constant) | 
(name) = (constant) 

(program) :: = (block body) 


