
Metaprogramming & Reflection

Pascal Costanza

Thursday, 28 October 2010

Example: Handling scarce resources.

try {
 FileInputStream in = new FileInputStream(filename);
 doSomething(in);
} finally {
 in.close();
}

Thursday, 28 October 2010

Example: Handling scarce resources.

FileInputStream in;
try {
 in = new FileInputStream(filename);
 doSomething(in);
} finally {
 in.close();
}

Thursday, 28 October 2010

Example: Handling scarce resources.

FileInputStream in;
try {
 in = new FileInputStream(filename);
 doSomething(in);
} finally {
 in.close();
}

(let (in)
 (unwind-protect
 (progn
 (setf in (open filename))
 (do-something in))
 (close in)))

Thursday, 28 October 2010

Example: Handling scarce resources.

FileInputStream in;
try {
 in = new FileInputStream(filename);
 doSomething(in);
} finally {
 in.close();
}
 (with-open-file (in filename)
 (do-something in))

(let (in)
 (unwind-protect
 (progn
 (setf in (open filename))
 (do-something in))
 (close in)))

Thursday, 28 October 2010

Example: Handling scarce resources.

FileInputStream in;
try {
 in = new FileInputStream(filename);
 doSomething(in);
} finally {
 in.close();
}
 (with-open-file (in filename)
 (do-something in))

 (defmacro with-open-file ((var filename) &body body)
 `(let (,var)
 (unwind-protect
 (progn (setf ,var (open ,filename))
 ,@body)
 (close ,var))))

(let (in)
 (unwind-protect
 (progn
 (setf in (open filename))
 (do-something in))
 (close in)))

Thursday, 28 October 2010

Why is metaprogramming important?

• Productivity!!!

• object-relational mappings

• higher-order functions

• map/reduce

• program transformations

• domain-specific languages

• etc., etc.

Thursday, 28 October 2010

Why is metaprogramming important?

• Productivity!!!

• Don’t write programs yourself,
but make your computer write programs for you!

Thursday, 28 October 2010

What is metaprogramming?

• Every program has a domain.

• For example, a financial application is about
bank accounts, money, transfers, etc.

• A program with other programs as its domain is a meta-program.

• Interpreters, debuggers, profilers, code coverage tools,
compilers, program generators, etc.

• A program with itself as (part of) its domain is a reflective program.

Thursday, 28 October 2010

Forms of metaprogramming.

Lisp Java

compile-time
load-time

macros
read macros

annotation processing
bytecode transformation

runtime higher-order functions
metaobject protocols

inner classes
dynamic proxies

Thursday, 28 October 2010

Example: Hibernate with XML.

• public class Person {

 private Long id; // primary key in database
 protected String name;

 public Long getId() {return id;}
 public void setId(Long id) {this.id = id;}

 public String getName() {return name;}
 public void setName(String name) {this.name = name;}

}

Thursday, 28 October 2010

Example: Hibernate with XML.

• <?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class name="Person" table="Person" schema="PUBLIC">

 <id name="id" column="PERSON_ID">

 <generator class="increment"/>

 </id>

 <property name="name" column="NAME" />

 </class>
</hibernate-mapping>

Thursday, 28 October 2010

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd
http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd

Example: Hibernate with Annotations.

• @Entity @Table(name=”Person”)
public class Person {

 private Long id; // primary key in database
 protected String name;

 @Id @Column(name=”PERSON_ID”)
 @GenerateValue(strategy = GenerationType.AUTO)
 public Long getId() {return id;}
 public void setId(Long id) {this.id = id;}

 public String getName() {return name;}
 public void setName(String name) {this.name = name;}

}

Thursday, 28 October 2010

Important Concepts.

• Introspection: The ability to inspect a program.

• Intercession: The ability to change a program’s behavior.

• Reflective tower (more about that later).

Thursday, 28 October 2010

Example: Map/Reduce.

• Mapping:
Take a piece of code and apply it to each element of a collection of data.

• Traditionally: Important form of iterating over data.

• Reduce:
Take a collection of data and turn it into one result.

• also known as “fold”

• Map/Reduce

• Easy to parallelize, for example used at Google.

Thursday, 28 October 2010

Example: Mapping.

class Mapper<T1, T2> {
 interface Fun<T1, T2> { public T2 call(T1 x); }

 public Vector<T2> map(Fun<T1, T2> f, Vector<T1> input) {
 Vector<T2> result = new Vector<T2>();
 for (T1 element: input) result.add(f.call(element));
 return result;
 }
 public static void main(String[] args) {
 Vector<Integer> input = new Vector<Integer>();
 input.add(1); input.add(2); input.add(3);
 System.out.println(new Mapper<Integer, Integer>().map(
 new Fun<Integer, Integer>() { public Integer call(Integer x) {return x+1;} },
 input));
 }
}

Thursday, 28 October 2010

Example: Mapping.

(defun mapper (f list)
 (if (null list) ‘()
 (cons (funcall f (car list)) (mapper f (cdr list)))))

(defun test ()
 (mapper (lambda (x) (+ x 1)) (list 1 2 3)))

Thursday, 28 October 2010

Example: Sorting.

• public static void main(String[] args) {
 java.util.Arrays.sort(args);
 print(args);
}

Thursday, 28 October 2010

Example: Sorting.

• public static void main(String[] args) {
 java.util.Arrays.sort(args);
 print(args);
}

• public static void main(String[] args) {
 java.util.Array.sort(args,
 new Comparator<String> () {
 public int compare(String s1, String s2) {
 return s1.compareToIgnoreCase(s2);
 }
 }
);
 print(args);
}

Thursday, 28 October 2010

Example: Sorting.

• (defun test (strings)
 (print (sort strings #‘string<=)))

Thursday, 28 October 2010

Example: Sorting.

• (defun test (strings)
 (print (sort strings #‘string<=)))

• (defun test (strings)
 (print (sort strings #‘string-lessp)))

Thursday, 28 October 2010

Observation: Program representation matters!

• In the Java examples, we have to define interfaces and classes,
and have to create objects to represent computations (“pieces of code”).

• Additional complexity because of static typing,
but that’s a secondary issues.

• In the Lisp examples, lambda is a “direct” representation of computations.

• Better representations of programs make metaprogramming easier.

Thursday, 28 October 2010

Necessary Ingredients.

• Good representation of programs
+ machine code?
+ bytecode
+ strings?
+ tokens?
+ ASTs
+ s-expressions
+ closures

• Decisions about phases
+ compile-time
+ load-time
+ run-time

Thursday, 28 October 2010

Bytecode.

• System.out.println(i);

• getstatic java/lang/System.out:Ljava/io/PrintStream
iload 1
invokevirtual java/io/PrintStream.println:(I)V

• Note: symbolic information matters!

Thursday, 28 October 2010

break

Thursday, 28 October 2010

Reflection in Python (1).

class Person:

 def display(self):

 print self.name

p = Person()
p.name = “Bill Gates”

p.display() => Bill Gates

p.__dict__ => {'name': 'Bill Gates'}

p.__class__ => <class __main__.Person at 0x9bcc0>

p.__class__.__dict__ => {'__module__': '__main__',
 'display': <function f at 0x978f0>,
 '__doc__': None}

Thursday, 28 October 2010

Reflection in Python (2).

x = 42
eval(”x + x”) => 84

def f():

 x = 2

 print eval(”x + x”)

f() => 4

x => 42

Thursday, 28 October 2010

An example: Aspect-Oriented Programming.

class c:
 def foo(self):

 print "foo"

def adv(self, *args, **keyw):
 print "before"
 return self.__proceed(*args,**keyw)

wrap_around(c.foo, adv)

c().foo() => before
 foo

(A Light-weight Approach to Aspect-Oriented Programming in Python,
Antii Kervinen, http://www.cs.tut.fi/~ask/aspects/index.shtml)

Thursday, 28 October 2010

http://www.cs.tut.fi/~ask/aspects/aspects.html
http://www.cs.tut.fi/~ask/aspects/aspects.html

Reflection in “Early” Lisp (1).

(define display-person
 (lambda (self)
 (print (get self ‘name))))

(define p ‘(name “Bill Gates”))

(display-person p) => Bill Gates

p => (name “Bill Gates”)

(symbol-plist ‘display-person) => (... expr (lambda (self) ...) ...)

Thursday, 28 October 2010

Reflection in “Early” Lisp (2).

(define x 42)
(eval ‘(+ x x)) => 84

(define f
 (lambda ()
 (let ((x 2))
 (print (eval ‘(+ x x))))))

(f) => 4

x => 42

Thursday, 28 October 2010

An early example: The PILOT system.

“There are two ways a user can modify programs in this subjective model of
programming: he can modify the interface between procedures, or he can
modify the procedure itself. [...] Modifying the interface is called advising.
Modifying a procedure itself is called editing. [...]
Advising consists of inserting new procedures at any or all of the entry or exit
points to a particular procedure (or class of procedures). [...]
The principal advantage of advising is that the user need not be concerned
about the details of the actual changes in his program, nor the internal
representation of advice. He can treat the procedure to be advised as a unit, a
single block, and make changes to it without concern for the particulars of
this block. This may be contrasted with editing in which the programer must
be cognizant of the internal structure of the procedure.”

(PILOT: A Step Toward Man-Computer Symbiosis,
Warren Teitelman, 1966)

Thursday, 28 October 2010

An early example: The PILOT system.

“The user can affect the flow of control - from advice to procedure to advice -
by returning a non-NIL value from a piece of advice. [...] [For example], the
user can indicate that the original procedure is to be bypassed entirely.
[...] one can specify advice for any recursive set of functions. For example, to
determine whether or not the procedure in question has called itself more
than twice, one need merely search the HISTORY list. [...] The HISTORY list is
a globally available variable which contains information regarding
computation in progress.”

(PILOT: A Step Toward Man-Computer Symbiosis,
Warren Teitelman, 1966)

Thursday, 28 October 2010

An early example: The PILOT system.

• The basic ingredients of metaprogramming are already there.

• Introspection:
The HISTORY list can be inspected.

• Intercession:
Advice can return non-NIL values to influence the meta-level behavior.

• Secondary ingredient:

• “Obliviousness:”
If you want to change a program’s behavior,
you can either change the program or change its interpreter.

Thursday, 28 October 2010

Why Lisp?

“LISP differs from most programming languages in three important ways. The
first way is in the nature of the data. In the LISP language, all data are in the
form of symbolic expressions usually referred to as S-expressions, of
indefinite length, and which have a branching tree-type of structure, so that
significant subexpressions can be readily isolated. [...] The second distinction
is that the LISP language is the source language itself which specifies in what
way the S-expressions are to be processed. Third, LISP can interpret and
execute programs written in the form of S-expressions. Thus, like machine
language, and unlike most other higher level languages, it can be used to
generate programs for further execution.”

(LISP 1.5 Programmer's Manual,1962)

Thursday, 28 October 2010

Programs = Data.

• (+ 3 4) is a program.

• (quote (+ 3 4)) is a list with three elements.

• Typically abbreviated as ‘(+ 3 4).

• So (+ 3 4) <=> (eval ‘(+ 3 4)).

Thursday, 28 October 2010

Metacircular Interpreter.

• (defun eval (form)
 (cond ((symbolp form) (lookup form))
 ((atom form) form)
 ((consp form)
 (let ((head (first form)))
 (cond ((eq head ‘quote) (second form))
 ((eq head ‘atom) (atom (eval (second form))))
 ((eq head ‘eq) (eq (eval (second form)) (eval (third form))))
 ((eq head ‘car) (car (eval (second form))))
 ((eq head ‘cdr) (cdr (eval (second form))))
 ((eq head ‘cond) (eval-cond (rest form)))
 ((eq head ‘lambda) (eval-lambda (rest form)))
 (t (let ((values (mapcar #‘eval form)))
 (apply (first values) (rest values)))))))))

Thursday, 28 October 2010

Metacircular Interpreter.

Interpreter (eval ‘(+ x 1))

 (let ((x 41))
Base program (eval ‘(+ x 1)))

Thursday, 28 October 2010

Functions that don’t evaluate their arguments.

(define f (lambda (x) x))
(f (+ 2 2)) => 4

(define f (nlambda (x) x))
(f (+ 2 2)) => ((+ 2 2))

(define f (nlambda (x) (eval (first x))))
(f (+ 2 2)) => 4

Thursday, 28 October 2010

Example: if statement in terms of cond.

(define if (nlambda (args)
 (cond ((eval (first args)) (eval (second args)))
 (t (eval (third args))))))

(let ((test 42))
 (if (number? test) ‘yes ‘no)) => yes

Thursday, 28 October 2010

Problem: Dynamic Scoping.

(define if (nlambda (args)
 (cond ((eval (first args)) (eval (second args)))
 (t (eval (third args))))))

(let ((test 42))
 (if (number? test) ‘yes ‘no)) => yes

(let ((args 42))
 (if (number? args) ‘yes ‘no)) => no

Thursday, 28 October 2010

Environments.

(define if (nlambda (args env)
 (cond ((eval (first args) env) (eval (second args) env))
 (t (eval (third args) env)))))

Thursday, 28 October 2010

Macros.

(define if (nlambda (args env)
 (cond ((eval (first args) env) (eval (second args) env))
 (t (eval (third args) env)))))

(defmacro if (args)
 `(cond (,(first args) ,(second args))
 (t ,(third args))))

Thursday, 28 October 2010

And now for something completely different!

• (let ((a 1) (b 2) (c 3) (d 4))
 (list a b c d))

=> (1 2 3 4) ; everything is evaluated

• (let ((a 1) (b 2) (c 3) (d 4))
 (list ‘a b c d))

=> (A 2 3 4) ; not everything is evaluated

Thursday, 28 October 2010

Constructing lists.

• (let ((a 1) (b 2) (c 3) (d 4))
 (list ‘a ‘b ‘c d))

=> (A B C 4) ; very little is evaluated

• Here is a more concise way to write this:

(let ((a 1) (b 2) (c 3) (d 4))
 `(a b c ,d))

=> (A B C 4) ; very little is evaluated

Thursday, 28 October 2010

Backquote.

• `(a b c ,d) uses backquote

• ‘(a b c d) uses quote

• backquote allows evaluating parts of an expression
explicitly marked with a comma

• you can’t do this with quote

Thursday, 28 October 2010

Backquote.

• `(a b c) <=> ‘(a b c)

• `(a ,b c ,d) <=> (list ‘a b ‘c d)

• (let ((b 2)) `(a (,b c))) => (A (2 C))

• (let ((a 1) (b 2) (c 3))
 `(a b ,c (‘,(+ a b c)) (+ a b) ‘c ‘((,a ,b))))

=> (A B 3 (‘6) (+ A B) ‘C ‘((1 2)))

Thursday, 28 October 2010

More backquote.

• (let ((list ‘(1 2 3)))
 `(a b ,@list c d))

=> (a b 1 2 3 c d)

• ,@ (comma-at) splices into the surrounding list
(so there must be a surrounding list!)

Thursday, 28 October 2010

break

Thursday, 28 October 2010

Macros.

• This is code: (+ 1 2 3)

• This is data: ‘(+ 1 2 3)

• Macros are like functions,
but they take code as arguments and return new code.

Thursday, 28 October 2010

Macro example.

• (defun while-fun (predicate thunk)
 (when (funcall predicate)
 (funcall thunk)
 (while-fun predicate thunk)))

• (defmacro while (expression &body body)
 (list ‘while-fun (list ‘lambda ‘() expression)
 (list* ‘lambda ‘() body)))

Thursday, 28 October 2010

Macro example.

• (defun qsort (vector low high)
 (let* ((left low)
 (right high)
 (pivot ...))
 ...
 (while (< (svref vector left) pivot)
 (incf left))
 ...))

Thursday, 28 October 2010

Macro example.

• (funcall (macro-function ‘while)
 ‘(while (< (svref vector left) pivot)
 (incf left))
 environment)

=> (while-fun
 (lambda ()
 (< (svref vector left) pivot))
 (lambda () (incf left)))

Thursday, 28 October 2010

Macro example.

• (defun qsort (vector low high)
 (let* (...)
 ...
 (while-fun
 (lambda ()
 (< (svref vector left) pivot))
 (lambda () (incf left)))
 ...))

Thursday, 28 October 2010

Macros + backquote.

• This looks ugly:

(defmacro while (expression &body body)
 (list ‘while-fun (list ‘lambda ‘() expression)
 (list* ‘lambda ‘() body)))

• You can also write that:

(defmacro while (expression &body body)
 `(while-fun (lambda () ,expression)
 (lambda () ,@body)))

Thursday, 28 October 2010

Why macros?

• Use macros for syntactic abstractions.

• Question: Why not just say this?

(while (lambda () (< (svref vector left) pivot))
 (lambda () (incf left)))

Thursday, 28 October 2010

Syntactic abstractions.

• The while function leaks: You need to know details about its implementation!

• That is, the fact that it uses closures.

Thursday, 28 October 2010

Alternative implementations of while.

• (defmacro while (expression &body body)
 `(do () ((not ,expression)) ,@body))

• (defmacro while (expression &body body)
 `(tagbody
 10 (unless ,expression (go 20))
 ,@body
 (go 10)
 20))

Thursday, 28 October 2010

Example: Mapping.

(defun mapper (f list)
 (if (null list) ‘()
 (cons (funcall f (car list)) (mapper f (cdr list)))))

(defun test ()
 (mapper (lambda (x) (+ x 1)) (list 1 2 3)))

Thursday, 28 October 2010

Example: Mapping.

(defun mapper (f list)
 (if (null list) ‘()
 (cons (funcall f (car list)) (mapper f (cdr list)))))

(defun test ()
 (mapper (lambda (x) (+ x 1)) (list 1 2 3)))

(defmacro mapping ((x list) &body body)
 `(mapper (lambda (,x) ,@body) ,list))

(defun test2 ()
 (mapping (x (list 1 2 3))
 (+ x 1)))

Thursday, 28 October 2010

Example: Mapping.

(defmacro mapping ((x list) &body body)
 (with-gensyms (result current)
 `(prog* ((,result (copy-list ,list))
 (,current ,result))

 10 (when (null ,current) (go 20))

 (setf (car ,current) (let ((,x (car ,current))) ,@body))
 (setf ,current (cdr ,current))
 (go 10)

 20 (return ,result))))

(defun test2 ()
 (mapping (x (list 1 2 3))
 (+ x 1)))

Thursday, 28 October 2010

Abstractions.

• Syntactic abstractions hide implementation details,
just like functional abstractions.

• Hiding implementation details allows you to change your mind later on,
and allows the users to think purely in terms of what they care about.

Thursday, 28 October 2010

Abstractions.

• (while-fun (lambda () (< (svref ...) pivot))
 (lambda () (incf left)))

vs.

• (while (< (svref ...) pivot)
 (incf left))

Thursday, 28 October 2010

Introduction of macros.

“In LISP 1.5 special forms are used for three logically separate purposes:
a) to reach the alist, b) to allow functions to have an indefinite number of
arguments, and c) to keep arguments from being evaluated.
New LISP interpreters can easily satisfy need (a) by making the alist a
SPECIAL-type or APVAL-type entity. Uses (b) and (c) can be replaced by
incorporating a MACRO instruction expander in define. I am proposing such
an expander.
1. The property list of a macro will have the indicator MACRO followed by a
function of one argument, a form beginning with the macro’s name, and
whose value will replace the original form in all function definitions.”

(MACRO Definitions for LISP, Timothy P. Hart, 1963)

Thursday, 28 October 2010

Early forms of macros.

“A macro definition of our DESCRIBE special form might look like this:

(DEFUN DESCRIBE MACRO (X)
 (LIST 'PRINC
 (LIST 'LOOKUP-DOCUMENTATION
 (LIST 'QUOTE (CADR X)))))

[...] MACLISP and LISPMACHINE Lisp [...] allows the following alternate
syntax for DESCRIBE's definition as a macro:

(DEFUN DESCRIBE MACRO (X)
 `(PRINC (LOOKUP-DOCUMENTATION ',(CADR X))))”

(Special Forms in Lisp, Kent Pitman, 1980)

Thursday, 28 October 2010

Quasiquotation.

“[...] nothing resembles today's Lisp quasiquotation as closely as the notation
in McDermott and Sussman's Conniver language.”

(Quasiquotation in Lisp, Alan Bawden, 1999)

• Alan Bawden refers here to the Conniver reference manual from 1972.

Thursday, 28 October 2010

Common Lisp vs. Scheme.

• For Common Lisp, the story ends here (almost):
- Macro expanders are arbitrary Lisp functions.
- Backquote/quasiquote is used to construct new forms.
- There is limited support for destructuring and environment access.

• In Scheme, research has continued:
- Macro hygiene: Avoid name clashes, similar to dynamic scoping problems.
- Destructuring forms: syntax-rules / syntax-case.

Thursday, 28 October 2010

Intermission.

• What we have seen so far:

• Early approaches for ad-hoc reflection.

• Macros as the compile-time substrate of reflection.

• Next: More principled approaches to reflection.

Thursday, 28 October 2010

“Early” Lisps.

Interpreter (eval ...)

Program (nlambda (args) ... (eval ...) ...)

Thursday, 28 October 2010

3-Lisp.

Interpreter (nlambda (args) ...)

Program (... (nlambda (args) ...) ...)

Thursday, 28 October 2010

3-Lisp.

Interpreter 2 (nlambda (args) ...)

Interpreter 1 (nlambda (args) ... (nlambda (args) ...) ...)

Program (... (nlambda (args) ...) ...)

Thursday, 28 October 2010

3-Lisp.

Interpreter 3

Interpreter 2 (nlambda (args) ...)

Interpreter 1 (nlambda (args) ... (nlambda (args) ...) ...)

Program (... (nlambda (args) ...) ...)

Thursday, 28 October 2010

Reflective Tower.

Interpreter n

Interpreter 3

Interpreter 2 (nlambda (args) ...)

Interpreter 1 (nlambda (args) ... (nlambda (args) ...) ...)

Program (... (nlambda (args) ...) ...)

Thursday, 28 October 2010

Implementation of 3-Lisp.

“The key observation is that the activity at most levels - in fact at all but a
finite number of the lowest levels - will be monotonous: [...] From some finite
level k all the way to the “top”, in other words, the tower will just consist of
the processor processing the processor. [...] Call a processing level boring if
the only expressions that are processed at that level [...] are kernel
expressions. [...] Just as a correct implementation of recursion is not required
to terminate when a procedure recurses indefinitely, a correct implementation
of a procedurally reflective system need terminate only on computations
having a finite degree of introspection. Tractable reflective programs, in other
words, are those with a finite degree of introspection.”

(The Implementation of Procedurally Reflective Languages,
Jim des Rivières, Brian C. Smith, 1984)

Thursday, 28 October 2010

Meanwhile...

• Alan Kay: “Everything is an object.”

• If that’s the case, then so are classes, methods, fields, stacks, ...

Thursday, 28 October 2010

Really everything is an object!

Thursday, 28 October 2010

Smalltalk.

WindowPerson

Object

Thursday, 28 October 2010

The Metalevel in Smalltalk.

WindowClass

WindowPerson

PersonClass

Object

ObjectClass

Thursday, 28 October 2010

The Metalevel in Smalltalk.

WindowClass

WindowPerson

PersonClass

Object

ObjectClass

MetaClass

Thursday, 28 October 2010

break

Thursday, 28 October 2010

“Tower” issues in program transformation.

• public class C {

 public B b = new B();

 public void doSomething() {
 b.manipulate();
 }

}

Thursday, 28 October 2010

Add a counter for accesses of b.

• public class C {

 public B b = new B();
 private int b_counter = 0;

 public void doSomething() {
 b_counter++;
 b.manipulate();
 }

}

Thursday, 28 October 2010

Another transformation: Adding getters & setters.

• public class C {

 private B b = new B();

 public B getB() {return this.b;}
 public void setB(B _b) {this.b = _b;}

 public void doSomething() {
 getB().manipulate();
 }

}

Thursday, 28 October 2010

Both transformations combined...

• public class C {
 private B b = new B();
 private int b_counter = 0;

 public B getB() {
 b_counter++;
 return this.b;
 }
 public void setB(B _b) {this.b = _b;}

 public void doSomething() {
 b_counter++;
 getB().manipulate();
 }
}

Thursday, 28 October 2010

Both transformations combined...

• public class C {
 private B b = new B();
 private int b_counter = 0;

 public B getB() {
 b_counter++;
 return this.b;
 }
 public void setB(B _b) {this.b = _b;}

 public void doSomething() {
 b_counter++;
 getB().manipulate();
 }
}

This insert depends on
ordering of transformations!

Thursday, 28 October 2010

Both transformations combined...

• public class C {
 private B b = new B();
 private int b_counter = 0;

 public B getB() {
 b_counter++;
 return this.b;
 }
 public void setB(B _b) {this.b = _b;}

 public void doSomething() {
 b_counter++;
 getB().manipulate();
 }
}

This insert depends on
ordering of transformations!

Should we add a read
counter here as well?

Thursday, 28 October 2010

Solution: Define an ordering of transformations.

Thursday, 28 October 2010

From 3-Lisp to Metaobject Protocols .

• 3-Lisp has a layered design in which the levels can interact.

• Class hierarchies are layered designs in which the levels can interact.

• Can this be combined?

Thursday, 28 October 2010

What is an object?

“An object has state, behavior, and identity.”

(Object-oriented Analysis and Design with Applications, Grady Booch, 1991)

Thursday, 28 October 2010

obj

State

Thursday, 28 October 2010

(slot-value obj ‘x)

(slot-value obj ‘y)

(slot-value obj ‘z)

obj

State

Thursday, 28 October 2010

(slot-value obj ‘x)

(slot-value obj ‘y)

(slot-value obj ‘z)

(aref obj 0)

(aref obj 1)

(aref obj 2)

obj

State

Thursday, 28 October 2010

How to map slots?

(defclass point ()
 (x y))

(defclass point-3d (point)
 (z))

x? y?
z?

Thursday, 28 October 2010

How to map slots?

1. compute class precedence list

2. compute slots

3. determine slot locations

Thursday, 28 October 2010

How to map slots?

1. (compute-class-precedence-list ...)

2. (compute-slots ...)

3. (slot-definition-location ...)

Thursday, 28 October 2010

The CLOS Metaobject Protocol.

• Make compute-class-precedence-list, compute-slots, etc., generic functions!

• Allow changes to the CLOS object model!

• Question: How to distinguish between standard and non-standard behavior?

• [CLOS = Common Lisp Object System.]

Thursday, 28 October 2010

Hierarchy for metaobject classes.

t

standard-object

class slot-definition generic-function method

Thursday, 28 October 2010

Hierarchy for metaobject classes.

t

standard-object

class slot-definition generic-function method

 standard-class

Thursday, 28 October 2010

Hierarchy for metaobject classes.

t

standard-object

class slot-definition generic-function method

 standard-class standard-generic-function

Thursday, 28 October 2010

Hierarchy for metaobject classes.

t

standard-object

class slot-definition generic-function method

 standard-class standard-generic-function ...

Thursday, 28 October 2010

Class metaobject classes.

(defclass persistent-class (standard-class)
 ((database-connection ...)))

(defclass person ()
 ((name ...)
 (address ...))
 (:metaclass persistent-class))

Thursday, 28 October 2010

The Instance Structure Protocol.

(defmethod person-name ((object person))
 (slot-value object ‘name))

(defun slot-value (object slot)
 (slot-value-using-class
 (class-of object) object slot))

(defmethod slot-value-using-class
 ((class standard-class) object slot)
 (aref ...))

Thursday, 28 October 2010

The Instance Structure Protocol.

(defmethod slot-value-using-class
 ((class persistent-class) object slot)
 (fetch-slot-from-database ...))

Thursday, 28 October 2010

Separation between base and meta level.

• In 3-Lisp, nlambda performs an explicit shift to the meta-level.

• In CLOS, class-of performs an explicit shift to the meta-level.

Thursday, 28 October 2010

Limitations.

• Macros are not first-class entities at runtime.

• The CLOS MOP does not provide interception of argument evaluation.

• Note: Whenever an approach is simplified, expressive power might get lost!

• Motivation: Efficiency!

(The Theory of Fexprs is Trivial,
Mitchell Wand, 1998)

Thursday, 28 October 2010

Limitations of reflective systems.

“Reflective systems are intended to be open enough to allow the user to
extend and modify them easily. In this paper we show that the openness and
extensibility of a reflective system depends to a great degree on the choice of
its underlying representations. Giving the language the necessary expressive
power requires forethought in the design stage of the kinds of extensions the
user might wish to make.”

(A Reflective System is as Extensible as its Internal Representations:
An Illustration, John W. Simmons II, Daniel P. Friedman, 1992)

• See also the notion of open implementations.

Thursday, 28 October 2010

“Modern” Forms of Metaprogramming & Reflection

• XML + hand-written evaluators

• Annotations in Java and C#: syntactic abstractions

• Java’s ClassLoader architecture

• Java Dynamic Proxy Classes

• Template metaprogamming

• Program transformation frameworks

• ...

Thursday, 28 October 2010

Task

• Pick a language of your choice.

• Describe its facilities for metaprogramming & reflection.

+ When can you do metaprogramming?
 (compile-time, load-time, runtime?)

+ What can you do? (introspection, intercession)

+ How are programs represented? (bytecode, data structures, closures, etc.)

+ How can you achieve what you want?
 What are typical examples and actual uses?

+ Bonus: Is there a tower? How are “tower issues” dealt with?

Thursday, 28 October 2010

Next lesson.

• Advanced Lisp metaprogramming.
+ Generic functions.
+ CLOS, CLOS MOP.

• Advanced Java metaprogramming.
+ Annotation processing.
+ Class loading.
+ Dynamic proxies.

Thursday, 28 October 2010

End of presentation.

Thursday, 28 October 2010

References: “Early” Lisp

• John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,
Michael I. Levin. Lisp 1.5 Programmer's Manual. MIT Press, Cambridge,
Massachusetts, 1962.
http://community.computerhistory.org/scc/projects/LISP/book/LISP
%201.5%20Programmers%20Manual.pdf

• Warren Teitelman, PILOT: A Step Toward Man-Computer Symbiosis. PhD
Thesis. MIT-AI-TR-221, MIT, September 1966.
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-032.pdf

Thursday, 28 October 2010

http://community.computerhistory.org/scc/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf
http://community.computerhistory.org/scc/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf
http://community.computerhistory.org/scc/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf
http://community.computerhistory.org/scc/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-032.pdf
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-032.pdf

References: 3-Lisp / Procedural Reflection

• Jim des Rivieres, Control-related meta-level facilities in LISP. In P. Maes and
D. Nardi, editors, Meta-Level Archtitectures and Reflection, North-Holland,
1988.

• Jim des Rivières and Brian Cantwell Smith. "The implementation of
procedurally reflective languages". 1984 ACM Symposium on LISP and
functional programming. August 1984.

• John Wiseman Simmons II and Daniel P. Friedman. "A Reflective System is as
Extensible as its Internal Representations: An Illustration". Computer Science
Department, Indiana University. October 1992.

• See http://library.readscheme.org/page11.html for the latter two and more
references.

Thursday, 28 October 2010

http://library.readscheme.org/page11.html
http://library.readscheme.org/page11.html

References: CLOS MOP

• Andreas Paepcke. User-level language crafting - introducing the CLOS
metaobject protocol. In Andreas Paepcke, editor, Object-Oriented
Programming: The CLOS Perspective. MIT Press, 1993.
http://www-db.stanford.edu/~paepcke/shared-documents/mopintro.ps

• Gregor Kiczales, Jim des Rivieres, Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

Thursday, 28 October 2010

http://www-db.stanford.edu/~paepcke/shared-documents/mopintro.ps
http://www-db.stanford.edu/~paepcke/shared-documents/mopintro.ps

