
Common Lisp & Scheme

a comparison

Goals of this Talk

• improve your Common Lisp reading abilities

• understand different “philosophies”

• focus on “incompatible” concepts

Overview

• basic misconceptions

• truth and falsity

• local definitions

• Lisp-1 vs. Lisp-2

• lambda list keywords

• packages, symbols & macros

Overview

• continuations

• dynamic scoping

• iteration vs. recursion

• generalized references

• type system

• execution times

Basic Misconceptions

• Common Lisp is not dynamically scoped!

• Scheme is not a cleaned-up version of all Lisps!

• Especially, Common Lisp is the newer dialect!

• Steele, Gabriel, “The Evolution of Lisp”,
www.dreamsongs.com/Essays.html

http://www.dreamsongs.com/Essays.html
http://www.dreamsongs.com/Essays.html

History

• 1975: “Scheme - An Interpreter for Extended Lambda Calculus”
(Sussman, Steele)

• 1976-1980: ‘Lambda Papers’ (Sussman, Steele)

• “No amount of language design can force a programmer to write clear
programs. [...] The emphasis should not be on eliminating ‘bad’ language
constructs, but on discovering or inventing helpful ones.”

History

• 1978: “The Revised Report on Scheme - A Dialect of Lisp” (Steele, Sussman)

• “It differs from most current dialects of LISP in that it closes all lambda-
expressions in the environment of their definition [...], rather than in the
execution environment [..., and in] that tail-recursions execute without net
growth of the interpreter stack.”

History

• 1982: “An Overview of Common LISP” (Steele et al.)

• 1984: “Common Lisp the Language” (CLtL, Steele et al.)

CL’s First Goals

• Commonality among Lisp dialects

• Portability for “a broad class of machines”

• Consistency across interpreter & compiler

• Expressiveness based on experience

• Compatibility with previous Lisp dialects

• Efficiency: Possibility to build optimizing compilers

• Stability: Only “slow” changes to the language

CL’s First Non-Goals

• Graphics

• Multiprocessing

• Object-oriented programming

History

• 1985: “The Revised Revised Report on Scheme or,
 An Uncommon Lisp” (Clinger et al.)

• “Scheme shares with Common Lisp the goal of a core language common
to several implementations. Scheme differs from Common Lisp in its
emphasis upon simplicity and function over compatibility with older
dialects of Lisp.”

History

• 1986: “Revised3 Report on the Algorithmic Language Scheme”
(Rees, Clinger et al.)

History

• In 1986, ANSI CL standardization started.

• “a more formal mechanism was needed for managing changes to the
language”

• Substantial changes: loop macro, a pretty printer interface, CLOS,
conditions

History

• 1989: “Common Lisp the Language, 2nd Edition”
(CLtL2, Steele et al.)

• “There are now many implementations of Common Lisp [...]. What is more,
all the goals [...] have been achieved, most notably that of portability.
Moving large bodies of Lisp code from one computer to another is now
routine.”

History

• 1991: “Revised4 Report on the Algorithmic Language Scheme”
(Clinger, Rees, et al.)

• “Programming Languages should be designed not by piling feature on top
of feature, but by removing the weaknesses that make additional features
appear necessary.”

Further History

• IEEE Scheme (1990)

• ANSI Common Lisp (1994/5)

• ISO ISLISP (1997, mostly a CL subset)

• R5RS (1998, macros now officially supported)

• R6RS in preparation

Scheme Philosophy

• Scheme is a single-paradigm language

• “everything is a lambda expression”

• supports mostly functional programming

• side effects should be marked with a bang!

CL Philosophy

• CL integrates OOP, FP and IP (imperative)

• IP: Assignment, iteration, go.

• FP: Lexical closures, first-class functions.

• IP & FP: Many functions come both with and without side effects:

• cons & push, adjoin & pushnew,
remove & delete, reverse & nreverse, etc.

CL Philosophy: OOP

• multiple inheritance

• class & instance variables, initialization & reinitialization

• objects can change their classes at runtime

• classes can change their definitions at runtime

• multi-methods, specialized on classes or single objects

• (user-defined) method combinations

• all important aspects can be configured via the CLOS MOP

CL Philosophy

• Not just a pile of stuff, but all well integrated:

• All operations are invoked the same way
(functions, methods, accessors, macros, etc.)

• Operations can silently change their implementation.

• Everything is an instance of some class
and may have methods specialized on it.

Truth and Falsity

• Scheme: #t and every non-#f value vs. #f

• predicates end in “?”

• Common Lisp: t and every non-nil value vs. nil

• predicates usually end in “p” or “-p”

Truth and Falsity

• CL: (cdr (assoc key alist))

• Scheme: (let ((val (assv key alist)))
 (cond ((not (null? val)) (cdr val))
 (else nil)))

• “Ballad Dedicated to the Growth of Programs”
(Google for it!)

Local Definitions

• Scheme: (define (f x)
 (define (g y) (+ x y)) ;; local!
 (g x))

• CL: (defun f (x)
 (defun g (y) (+ x y)) ;; not local!!!
 (g x))

• So in CL, use let, let*, flet, labels, etc.

Lisp-1 vs. Lisp-2

• In CL, functions and values have different namespaces. In a form,

• car position corresponds to function space

• cdr positions correspond to value space

• So you can say (flet ((fun (x) (1+ x)))
 (let ((fun 42))
 (fun fun)))

Lisp-1 vs. Lisp-2

• In Scheme, all positions in a form are evaluated the same.
You can say (((f x) y) z)

• This means: Functions are always lambda expressions that may (or may not)
be bound to “normal” variables.

Lisp-1 vs. Lisp-2

• Note: Functions are still first class in CL!

• look up function objects with:
(function f) or #’f

• call functional values as:
(funcall f 42) or (apply f (list 42))

But why Lisp-2?!?

• Reduced number of accidental name captures.

• Makes defmacro work more reliably.

• One major difference between Scheme & CL:

• Either: Lisp-1 is good, macros are a problem.

• Or: Macros are good, Lisp-1 is a problem.

CL: Lambda Keywords

• CL: (defun f (x &optional y &key test)
 ...)

• Scheme: (define (f . rest)
 ...)

CL: Lambda Keywords

• &rest, &body: rest parameters

• &optional: optional parameters

• &key, &allow-other-keys: keyword parameters

• &environment picks out the lexical environment

• &aux local variables

• &whole the whole form

CL: Keyword Parameters

• (defun find (item list &key (test #’eql) (key #’identity))
 ...)

• (find “Pascal” *list-of-persons*
 :key #’person-name
 :test #’string=)

Evaluation Orders

• In Scheme, (+ i j k) may be evaluated in any order!

• this is specified!

• so never say: (+ i (set! i (+ i 1))) !!!

• In CL, things are evaluated mostly left to right.

• specified in all useful cases

• so (+ i (setf i (+ i 1))) is well-defined.

CL: L2R Rule + Keywords

• (defun withdraw (...)
 ...)

...
 (flet ((withdraw (&rest args
 &key amount
 &allow-other-keys)
 (if (> amount 100000)
 (apply #’withdraw
 :amount 100000 args)
 (apply #’withdraw args))))
 ...)
...

CL: Packages

• Packages and modules are different concepts.

• (Java screwed this up, again: In Java, packages are modules...)

• Packages are containers for symbols.

• Symbols can be internal, external or inherited.

• So we don’t export functions etc., but symbols!

Packages: How it Works

• When source code is parsed, all (!) languages have to do the following:

• a string “var” is converted to a symbol ‘var

• later on, ‘var is mapped to some value

• CL packages map strings to symbols.

• Modules usually map symbols to values.

Packages: How it Works

• (in-package “BANK”)
(export ‘withdraw)
(defun withdraw (x) ...)

• Allows other packages to say:
(bank:withdraw 500) ;; or
(use-package “BANK”)
(withdraw 500)

Packages: Why?

• No more name clashes! Once and for all!!!

• Basic issue in almost all name clash problems:
How to reconstruct the origin of a name?

• In CL: Don’t lose the origin!
The same symbol always names the same concept!

• In other words: symbols have identity, while in other languages, names don’t.

CL: Symbols & Macros

• Symbols can be generated at runtime.

• Symbols can be “uninterned” (in no package).

• (defmacro swap (v1 v2)
 (let ((temp (make-symbol “TEMP”)))
 `(let ((,temp ,v1)) ;; no name clashes here!!!
 (setf ,v2 ,v1)
 (setf ,v1 ,temp))))

Continuations

• Short version:

• Scheme has full continuations.

• CL only has one-shot escaping continuations.

CL: Dynamic Scoping

• In CL, all global variables are dynamically scoped (”special variables”).

• (Note: not the functions!)

• Dynamic scope: global scope + dynamic extent

• Scheme: Implement it yourself!

• hard to get right for multiple threads.

CL: Special Variables

• (defvar *class-table*)

• (defvar *class-table* (make-hash-table))
-> only assign if doesn’t already exist.

• (defparameter *number-of-runs* 20000)
-> always assign

Iteration vs. Recursion

• Scheme: Proper tail recursion.

• CL: No requirements, but usually optional tail recursion elimination.

• Scheme: do, named let

• CL: do, do*, dolist, dotimes, loop

CL: setf

• ...or “generalized references”

• like “:=” or “=” in Algol-style languages,
with arbitrary left-hand sides

• (setf (some-form ...) (some-value ...))

• predefined acceptable forms for left-hand sides

• + framework for user-defined forms

CL: setf

• (defun make-cell (value) (vector value))

(defun cell-value (cell) (svref cell 0))

(defun (setf cell-value) (value cell)
 (setf (svref cell 0) value))

• (setf (cell-value some-cell) 42)

• macros, etc., also supported

CL: Type System

• CL allows declaration of types

• (defun add (x y)
 (declare (integer x y))
 (+ x y))

• CL implementations are not required to recognize them.

• Especially: They must be compatible with dynamic type checking!

CL: Type System

• Usually, CL implementations take type declarations as a promise for code
optimization.

• SBCL and CMUCL do type inferencing and yield useful warnings and even
better optimizations.

CL: Execution Times

• CL has well-defined notions of different execution times:

• read time, compile time, macro expansion time, load time and run time

• code can be executed at each of those

• also reader macros, compiler macros & “plain” macros,
but no load-time or run-time macros

Finally

• CL defines a large number of predefined data structures and operations.

• CLOS, structures, conditions, numerical tower, extensible characters,
optionally typed arrays, multidimensional arrays, hash tables, filenames,
streams, printer, reader

• Apart from these differences, Scheme and Common Lisp are almost the
same. ;)

Greenspun’s Tenth Rule

• “Any sufficiently complicated C or Fortran program contains an ad-hoc,
informally-specified bug-ridden slow implementation of half of Common
Lisp.”

• ...probably also true for any sufficiently complicated Scheme program... ;)

Important Literature

• Peter Norvig, Paradigms of Artificial Intelligence Programming (PAIP)
- CL’s SICP

• Paul Graham, On Lisp - the book about macros
(out of print, but see www.paulgraham.com)

• Peter Seibel, Practical Common Lisp, 4/2005,
www.gigamonkeys.com/book/

http://www.paulgraham.com
http://www.paulgraham.com
http://www.gigamonkeys.com/book/
http://www.gigamonkeys.com/book/

Important Literature

• Guy Steele, Common Lisp The Language,
2nd Edition (CLtL2 - pre-ANSI!)

• HyperSpec, (ANSI standard), Google for it!

• My highly opinionated guide, p-cos.net/lisp/guide.html

• ISLISP: www.islisp.info

http://www.pascalcostanza.de/lisp/guide.html
http://www.pascalcostanza.de/lisp/guide.html
http://www.islisp.info
http://www.islisp.info

