
Vrije Universiteit Brussel - Faculty of Science and Bio-Engineering Sciences - Computer Science Department - Pleinlaan 2 - 1050 Brussels - Belgium

dr. Dirk Deridder
Dirk.Deridder@vub.ac.be

http://soft.vub.ac.be/

Structuur van Computerprogramma’s 2

mailto:Dirk.Deridder@vub.ac.be
mailto:Dirk.Deridder@vub.ac.be

Structuur van Computerprogramma’s 2

Chapter 3 - User Defined Types

It is advisable to study
book chapters 1-3 upfront

User Defined Types

Overview of Concepts
• Abstract Data Type (ADT)

• Public interface, private implementation, access specifiers

• Abstraction, Encapsulation

• Data member declarations, function member declarations

• Function member definitions

• Classes, class objects, Target class object, message sending, methods

• Function member overloading, operator overloading

• Constructors (ctor), Copy Constructors (cctor), Destructors, Object finalization, Operators

• Default ctor, default cctor, default assignment operator

• Memberwise initialization, member list initialization

• Inline member function definition, Member functions with default parameters, User-defined conversions

• Forbidding operations

• Member objects, Member references, Static members, Friends

• Class object life-cycle

• Nested classes

• Enumeration Types, Overriding enumerated type values, typedef,

4

Abstract Data Types (ADT’s) (1)

5

• enables the definition of new types of data objects with an associated set
of special-purpose operations

• have a public interface specifying the available operations on the type

• have a private implementation that describes

• data : how is information for an object of the ADT represented

• behaviour : how are operations provided by the ADT implemented

Pu
bl

ic
In

te
rf

ac
e

Private
Implementation

(data+behaviour)

Abstract Data Type
(Definition)

create()
push()
pop()
top()
empty()

Private
Implementation
using an Array

Stack_ADT (Definition)

Stack_ADT my_stack_1; ... Stack_ADT my_stack_n;

Stack_ADT
instances

1
2
3

my_stack_1
‘h’
‘e’
‘y’

my_stack_n

Abstract Data Types (ADT’s) (2)

• Abstraction: ADT’s can be used as if they were built-in types, ignoring the possibly
complex implementation by using a simpler interface

• Encapsulation: ADT’s shield users from internal implementation changes as long as
their interface remains the same

6

Advantages (similar to functional abstraction):

create()
push()
pop()
top()
empty()

Private
Implementation

using ...

Stack_ADT (Definition)

The user of the public interface

doesn’t need to know about

the internal implementation

2 1 3

Private Implementation using a Linked List

1 2 3

Private Implementation using an Array

ADT’s versus Functions? (remember ...)

function f.
.
.

...
x1

xn
f(x1, ... , xn)

formal parameters

actual parameters

return value

return type

function body

• Basic means for modularising an
 implementation

• Structured programming

• Reuse instead of code duplication

• Decrease code size and eliminate potential
duplication of errors: easier to maintain!

What about?

•Encapsulation

•Public interface

•Private implementation

•Abstraction

Which mechanism(s) do you already know that help in realising these characteristics of ADT’s?

Classes are C++ ADT’s
• The interface is provided by public function member declarations

• The implementation is provided by

• private data member declarations

• function member definitions

8

class NameOfClass {
 public:
 MemberDeclarations
 private:
 MemberDeclarations
};

start of scope

access specifiers, by
default everything is

private (+)
the definitions are
defined outside the

class (x)

what happens if you forget this semicolon?
../src/demo8.cpp:240: error:
 new types may not be defined in a return type
../src/demo8.cpp:240: note:
 (perhaps a semicolon is missing after the definition of 'Stack')
../src/demo8.cpp:240: error:
 two or more data types in declaration of 'main'

class keyword

Class Declaration, Class Objects, Data/Function Members

9

#ifndef RATIONAL_H
#define RATIONAL_H

class Rational { // defines a scope called Rational
public:
	 // public interface to be supplied
private:
	 // implementation part
	 int num_;
	 int denom_; // must not be 0!
};

#endif

Rational r; // just another object definition

2 3 Rational

int
num_

int
denom_

2
3
_

This declaration of the

class goes into a

header file

Similar to using built-in
types

private implementation part
(data member declarations,

member function declarations, ...)

a class object
(a.k.a. instance)

Member Function Declarations

10

#ifndef RATIONAL_H
#define RATIONAL_H

class Rational {
public:
	 Rational multiply(Rational r);
	 Rational add(Rational r);
private:
	 int num_;
	 int denom_; // denom_ != 0
};

#endif

#include "rational.h"

int main() {
	 Rational r, r1, r2;
	 r = r1.multiply(r2);
}

Calling a member function: specify the target class object

public interface
(member function declarations)

similar to using built-in types

The actual definition of the

member functions goes into a

separate .cpp file or inline

the ‘.’ calls the multiply function
in the context of the r1 object

(message send)

Rational r1;
Rational r2;

r1.add(r2);
r1.add(3.3);
...
r1.add(5);
r1.add(“8/3”);

Member Functions may be overloaded

11

class Rational {
public:
	 Rational multiply(Rational r);
	 Rational add(Rational r);
	 Rational add(double d);

private:
	 int num_;
	 int denom_; // denom_ != 0
};

Both will have a different
implementation

(shielded from users)

Koenig Lookup will be used to
find best match (no magic !)

If you want your newly defined
data type to interact with other

datatypes then you should
specify different function

versions

The list of overloaded

functions can become

large (cf. iostream)

Initializing a Class Object with Constructors (ctor)

12

class Rational {
public:
	 Rational(int num, int denom);
	 Rational multiply(Rational r);
	 Rational add(Rational r);
private:
	 int num_;
	 int denom_; // denom_ != 0
};

Rational r(2, 3); // initialize r using Rational::Rational(2,3)

Constructors are more flexible than “just” giving an initial value

a constructor has the same
name as the class(type), no

return type is specified!

You are building your own type so you should specify how new objects
(values) of this type are created: Constructors (a.k.a. ctor)

A class acts like a namespace, so we use the scope resolution operator to uniquely
identify the functions (name can be reused in a different namespace)

Overloading Constructors

13

class Rational {
public:
	 Rational(int num, int denom);
	 Rational(int num);
	 Rational();
	 Rational(const Rational& r);
	
	 Rational multiply(Rational r);
	 Rational add(Rational r);
private:
	 int num_;
	 int denom_; // denom_ != 0
};

Rational r1; // calls Rational::Rational();
Rational r2(r1); // calls Rational::Rational(const Rational&);
Rational r3(5); // calls Rational::Rational(int);
Rational r4(5,4);// calls Rational::Rational(int, int);

Calling the constructor is
like calling a member

function, so can we write:
Rational r1();

?

initialize to num/denom

initialize to num/1

default ctor ; initialize to 0/

initialize to a copy of r
a.k.a copy constructor

The Default Constructor

14

../main.cpp: In function 'int main()':

../main.cpp:16: error: no matching function for call to 'Rational::Rational()'

../rationaltest.h:14: note: candidates are: Rational::Rational(int, int)

../rationaltest.h:11: note: Rational::Rational(const Rational&)
make: *** [main.o] Error 1

class Rational {
private:
	 int num_;
	 int denom_;
};

What happens if we

don’t provide a

constructor?

class Rational {
public:
	 Rational(int num, int denom);
	 Rational(const Rational& r);
private:
	 int num_;
	 int denom_;
};

Rational r;

What happens if we

provide constructors

except a default one?

Once you declare constructors, the compiler will
assume that these are the only valid initialization

options (error)

The compiler will not initialize data members of
built-in types, but will call constructors for data

members of class types

The Copy Constructor (cctor) Revisited

15

class Rational {
public:
	 Rational(int num, int denom);
private:
	 int num_;
	 int denom_;
};

int f(Rational r) {
...}

Rational x;
f(x);

A cctor is used for passing class objects by value

A default cctor is provided by the compiler if you do not explicitly define one. This does
a memberwise initialization of each data member from the source to the target.

If a data member is of a user-defined type, its cctor will be called.

Calling this function results
in passing r by value, so its
value will be copied to the
function call frame. This
copying is done by a copy
constructor

Performance matters! cctor’s get called a lot!

What happens if yo
u

call fu
nction f?

Member Function Definitions

16

#include	"rational.h"

// a/b * c/d = (a*c)/(b*d)
Rational
Rational::multiply(Rational r) {
	 int num(num_ * r.num_);
	 int denom(denom_ * r.denom_);

	 return Rational(num, denom);
}

// a/b + c/d = (a*d + c*b)/(b*d)
Rational
Rational::add(Rational r) {
	 int num = num_ * r.denom_ + r.num_ * denom_;
	 int denom = denom_ * r.denom_;

	 return Rational(num, denom);
}

These definitions go

into a .cpp file

Define multiply in the scope of
Rational with the scope resolution
operator (avoids ambiguous names)

num_ and denum_ are
private to the outside
world, but accessible from
within the class
implementation

value constructor !

Constructor Definition	

17

Rational::Rational(int num, int denom) : num_(num), denom_(denom) {

	 if (denom == 0)
	 	 abort();
}

Rational::Rational(int num, int denom) {
	 num_ = num;
	 denom_ = denom;
	 if (denom == 0)
	 	 abort();
}

Alternative definition not using the member initialization list:

Use a member initialization list in your ctor definition to
initialize data members directly

What about

efficiency?

member initialization list after ‘:’

constrain initialization of denominator to non-zero values,
simply terminate the program if not satisfied (not clean !)

remember: no return type !

Member Initialization and Constructors

18

Data members are initialized before the ctor body is executed:

1. If no member initialization is specified in the ctor definition then initialize
the members using the member type’s default ctor.
Generate a compile error if the member type is a user-defined type (not
primitive) and has no default ctor defined.
(note that primitive types do not have a default ctor)

2. Execute the body of the constructor

To initialize the “whole”, first initialize the
parts, then do additional work, if any.

 abort() versus exit() (FYI)?

19

Check the

ANSI/ISO/IEC 14882

standard p. 342

Short (incomplete)
Explanation:

abort() immediately
terminates the program

(e.g. no destructors called,
no additional

housekeeping functions
called).

exit() terminates the
program but allows you to

specify a ‘clean’ way to
terminate the program
using the atexit()

function (also destructors
are called)

Use
exception handling

instead (later)

Inline Member Function Definition

20

#ifndef RATIONAL_H
#define RATIONAL_H
class Rational {
public:
	 // interface
	 Rational(int num, int denom) :
	 	 num_(num), denom_(denom) {
	 	 if (denom == 0)
	 	 	 abort();
	 }

	 Rational multiply(Rational r) {
	 	 return Rational(num_ * r.num_, denom_ * r.denom_);
	 }

	 Rational add(Rational r) {
	 	 return Rational(num_ * r.denom_ + r.num_ * denom_, denom_ * r.denom_);
	 }

private:
	 // implementation part
	 int num_;
	 int denom_; // denom_ != 0
};
#endif

No inline
 keyword

needed, simply define it

within the class s
cope

Other option is to

define the function

outside the class s
cope

(similar to standard

definitions) using the

inline
 keyword (in the

header file !)

Member Functions with Default Parameters

21

#ifndef RATIONAL_H
#define RATIONAL_H

class Rational {
public:
	 Rational(int num = 0, int denom = 1);

	 Rational multiply(Rational r);
	 Rational add(Rational r);

private:
	 int num_;
	 int denom_; // denom_ != 0
};

#endif

Using default parameters
saves 2 overloaded ctor

functions namely:
Rational(int num);

and
Rational();

What’s a fr
ee benefit of

using default parameters

here?

class Rational {
public:
...
operator double() { return double(num_)/denom_; }
..
};
Rational r(1, 3);

std::cout << r;

b) Define specific conversion member functions

class NameOfClass { ...
 operator TypeName();
};

User-Defined Conversions

22

Rational r;
r.multiply(2); // Rational tmp(2,1); r.multiply(tmp);

a) Use ctor’s as conversion functions:

Why are specific

conversion functions

needed?

C++ provides automatic conversion of built-in types (not for classes)

To prevent the

compiler using a cto
r

for this purpose, prefix

the ctor with the

explic
it keyword

operator<<(ostream&,Rational) is not
defined, but it will print 0.333 because of
the conversion function:
 double tmp(r.operator double());
 operator<<(cout,tmp);

int int
double

double

Operator Overloading

23

#ifndef RATIONAL_H
#define RATIONAL_H
class Rational {
public:
	 Rational(int num = 0, int denom = 1);
	 Rational operator+(Rational r) { return add(r); }
	 Rational operator*(Rational r) { return multiply(r); }
	 Rational multiply(Rational r);
	 Rational add(Rational r);

private:
	 int num_;
	 int denom_;
};
#endif

Rational r1(1, 2);
Rational r2(3, 4);
Rational r3(5, 6);

r1+r2*r3;
Operator precedence

still holds !

r1.add(r2.multiply(r3));

Take care of the arity of the operators !
(one parameter less than with normal operator

function since the target object is known)

Overloading by Non-member Functions

24

Rational r;
r+2;
2+r;

Problem:

Solution: Overload the operator as an ordinary function (see earlier)

First operand is class object so operator member
functions are considered for resolving the call:
 Rational tmp(2); r.operator+(tmp);

Compile error ! First operand is no class object so
set of candidate functions is not extended:
 no function operator+(int, Rational)

inline Rational operator+(Rational r1, Rational r2) {
	 return r1.add(r2);
}

Note: defined outside the class !
Otherwise it is considered as a member function.

2+r; // Rational tmp(2); operator+(tmp, r);
As a result the normal conversion strategy works:

operator+(int, int) and operator+(Rational, Rational)
are now considered for resolving the call

Operators that can be overloaded

25

[]
*
->*
!=
/=
->

()
new
<<
&
%=
^=

++
delete
>>
^
+=

--
delete []
<
|
-=

~
new []
<=
&&
<<=

!
/
>
||
>>=

-
%
>=
=
&=

+
,
==
*=
|=

Remarks:

• =, [], () and -> (member selection) must be defined as non-static
member functions to ensure that the first argument is an lvalue.

• can only be overloaded in the case that there is at least one operand of a
user-defined type

• there are few restrictions on the semantics of the overloaded definition

• e.g., normally ++a is the same as a += 1 but this need not be true for a
user-defined operator

Overloading the Assignment Operator =

26

#include <math.h>

class Rational {
public:
 Rational(int num = 0, int denom = 1);
...
 Rational& operator=(double d) {
 int units(rint(d)); // rint(double) rounds to nearest int
 int hundreds(rint((d - units) * 100));
 num_ = units * 100 + hundreds;
 denom_ = 100;
 return *this;
 }

private:
...
};

Rational r;
r = 1.3; // sets r to 130/100

*this is a reference to the target object. It is returned
here to conform to the standard semantics of

assignments (see earlier). More about *this later...

The Default Assignment Operator

27

Rational r1(1, 2);
Rational r2;
r2 = r1 * 3; // r2 = 3/2

• For a class C, a default assignment operator
C& operator=(const C&)
is always available, even if it was not defined.

• The default assignment operator performs a member-wise
assignment of the second operand to the first operand (bitwise copy).

• During the memberwise assignment: if a data member is of a type that has
a user-defined assignment operator, then that one will be used instead of
the bitwise copy

What’s the difference

with a copy

constructor?

Overloading the ++ and -- Operators

28

class Rational {
public:
	 ...
	 Rational operator++() { // prefix version, e.g. ++r
	 	 Rational r(num_+denom_, denom_); // ++(3/5) = 3/5 + 5/5
 	 	 num_ += denom_; // update internal state
	 	 return r; // return the incremented r
	 }

	 Rational operator++(int) { // postfix version, e.g. r++
	 	 Rational r(num_, denom_); // remember the original r
	 	 num_ += denom_; // update internal state
	 	 return r; // return the original r
	 }
private:
...
};

Rational r(1, 2);
r1 = ++r; // r1 = r = 3/2
r2 = r++; // r2 = 3/2, r = 4/2

Remember: the parameter list is different from ordinary
functions (one less argument, target object is known)

Forbidding Operators

29

class Server {
public:
	 Server(std::ostream& log, int port);
...

private:
	 std::ostream& log;
	 // we forbid making copies of a Server object by
	 // declaring the copy constructor and assignment
	 // operator to be private (no definition is
	 // needed, nobody can call them)
	 Server(const Server&);
	 Server& operator=(const Server&);
...
};
...
void start_protocol_bad(Server s); // calling it gives error: why?
void start_protocol_ok(Server& s); // ok

Sometimes you want to
disable certain operators
so that no one can use

them on an object
(e.g. cloning a server

object)

copy constructor

assignment operator

Finalizing Objects using Destructors

30

#include <unistd.h> // for close(int)
class File {
public:
	 File(const char* filename);
	 ~File() { // destructor; why no parameters?
	 	 close(fd_); // close file descriptor
	 }
...
private:
 int fd_; // file descriptor corresponding
 // to opened file
...
};

void process_file(const char* name) {
	 File f(name);
... // on return, f is automatically (correctly) destroyed
}

Destructors are automatically
called by the system before the object
is destroyed.
(useful for housekeeping tasks)

class NameOfClass {
 ...
 ~ClassName();
 ...
};

Member Objects

31

class A { // ...
public:
	 A(int i, int j) : x(i), y(j) { }
private:
	 int x; // data member
	 int y; // data member
};

class B { // ...
public:
	 B(int i, A& a) :k(i), m(a) { }
private:
	 int k; // data member
	 A m; // a member object
};
...
A a(4, 5);
B b(2, a);

4 5

a copy is stored in m !

2

What is happening?

4 5

B b(2, a) A a(4, 5)

k m x y

Member References

32

class A { // ...
public:
	 A(int i, int j) : x(i), y(j) { }
private:
	 int x; // data member
	 int y; // data member
};

class C { // ...
public:
	 C(A& a, int i) :r(a), n(i) { }
private:
	 int n; // data member
	 A& r; // not a member object
 // *must* be initialized!
};
...
A a(4, 5);
C c(a, 0);

4 50

What is happening?

C c(a,0) A a(4, 5)

n r x y

Example: The Life-cycle of a Server Class Object

33

#include <fstream>
class Server {
public:
	 Server(const char* logfilename, int port) : log_(logfilename), port_(port) {
	 	 // set up server
	 	 log_ << "server started\n"; // why does this work?
	 }
	 ~Server() { // close down server
	 	 log_ << "server quitting\n"; // why does this work?
	 }
	 void serve() { // handle requests
	 }
	 // ...
private:
	 Server(const Server&);
	 Server& operator=(const Server&);
	 std::ofstream log_;
	 int port_;
};

The Life-cycle of a Class Object

34

1. (allocate memory)

2. Construction using a (possibly default) constructor
function:

i) Construct member objects in the order of their declaration
(which should match the order in the initialization list of the
constructor)

ii) Execute the body of the constructor

3. Provide services via member function calls, or as parameter
to ordinary functions

4. Destruction:

i) Execute code of the destructor body, if there is a destructor

ii) Destroy member objects

5. (deallocate memory)

Friends: Example

35

class Rational {
public:
	 Rational(int num = 0, int denom = 1);
	 Rational multiply(Rational r);
	 Rational add(Rational r);

	 // non-member function operator<< has
	 // access to private members of Rational
	 friend std::ostream& operator<<(std::ostream&, Rational);
private:
	 int num_;
	 int denom_;
};

// definition of operator<<
inline std::ostream& operator<<(std::ostream& os, Rational r) {
	 return os << r.num_ << "/" << r.denom_;
}
...

Rational r(2, 3);
std::cout << r;

What happens?

Giving other classes
access to your private

members

Friends: Another Example

36

class Node {
	 friend class IntStack; // everything is private
	 // but IntStack is a friend so only IntStack
	 // can use Node objects
private: // private is default, this line could be dropped
	 Node(int, Node* next = 0);
	 ~Node();
	 Node* next() { return next_;	}
	 int item;
	 Node* next_;
};

class IntStack { // stack of int
public:
	 IntStack();
	 ~IntStack();
	 IntStack& push(int);
	 int top();
	 bool empty();
private:
	 Node* top_; // pointer to topmost node
};

Nested Classes

37

class IntStack { // stack of integers
public:
	 IntStack();
	 ~IntStack();
	 IntStack& push(int);
	 // ..
private:
	 class Node { // why is this solution better
	 public: // than a non-nested Node class?
	 	 Node(int, Node* next = 0);
	 	 ~Node();
	 	 Node* next();
	 private:
	 	 int item;
	 	 Node* next_;
	 };

	 Node* top_; // pointer to topmost node
};

inline Node* // also illustrates scope (::) operator
IntStack::Node::next() { return next_; }

Static Members: Declaration (point.h)

38

#ifndef POINT_H
#define POINT_H
class Point {
public:
	 Point(int X, int Y) : x(X), y(Y) { ++count; }
	 Point(const Point&p) : x(p.x), y(p.y) { ++count; }
	 ~Point() { --count; }

	 // declaration (and definition) of a static member function
	 static int get_count() { return count;	}
...
private:
	 static int count; // declaration of a static data member
	 int x; // x-coordinate of point
	 int y; // y-coordinate of point
};
#endif

Persistent
class-side

state

Static Members: Definition (point.cpp)

39

#include "point.h"
// definition of static data member
int Point::count(0);

point.cpp should contain the definition of the static member:

#include "point.h"
Point p1(1, 2);
{
	 Point p1(p);
	 p.get_count(); // print 2
}

// no target needed:
Point::get_count(); // print 1

Example:

Implementing Classes

40

class C {
public:
	 C(A& a);
	 A f();
	 static S g();

private:
	 A a;
	 B b;
	 static S s;
};

•class objects:

• have separate data area (data members)

• share code (function members)

•static data members are shared and global

•non-static member functions have
extra target object (lvalue) parameter

Enumeration Types

41

class File {
public:
	 // defines 4 names in scope File
	 enum Mode { READ, WRITE, APPEND };
	 File(const char* filename, Mode mode = READ);
	 ~File();
	 Mode mode() { return mode_; 	 }
private:
	 Mode mode_;
	 // ...
};

finite integral types

File f("book.tex");
if (f.mode()==File::WRITE) {	 // ... }

enum NameOfType { EnumeratorList } ;

Overriding Enumerated Type Values (1)

42

class Http {
public:
	 enum Operation {	GET, HEAD, PUT};
	 enum Status {
	 	 OK = 200,
	 	 CREATED = 201,
	 	 ACCEPTED = 202,
	 	 PARTIAL = 203,
	 	 MOVED = 301,
	 	 FOUND = 302,
	 	 METHOD = 303,
	 	 NO_CHANGE = 304,
	 	 BAD_REQUEST = 400,
	 	 UNAUTHORIZED = 401,
	 	 PAYMENT_REQUIRED = 402,
	 	 FORBIDDEN = 403,
	 	 NOT_FOUND = 404,
	 	 INTERNAL_ERROR = 500,
	 	 NOT_IMPLEMENTED = 501
	 };
\\...
};

Overriding Enumerated Type Values (2)

43

class Http {
public:
	 enum Operation { GET, HEAD, PUT };
	 enum Status {
	 //...
	 };
	 //...
};

std::ostream& operator<<(std::ostream& os, Http::Status status) {
	 switch (status) {
	 case Http::OK:
	 	 os << "OK";
	 	 break;
	 case Http::CREATED:
	 	 os << "CREATED";
	 	 break;
	 case Http::ACCEPTED:
	 	 os << "ACCEPTED";
	 	 break;
	 	 //...
	 }
	 return os;
}

Typedef

44

typedef unsigned int uint;
uint x; // equivalent with unsigned int x;

typedef Sql::Command::iterator IT;

int square(int x) {
	 return x * x;
}

// also for function types:
typedef int UnaryFunction(int);
// UnaryFunction is type int -> int
// f is pointer to function (see later), it is
// initialized to (point to) the ’square’ function
UnaryFunction* f(square);
f(2); // same as square(2)

Defines a short name for a (complex) type expression

typedef Declaration;

