Research Topics in Software Quality

Detecting Mechanical Bugs using Static Analysis:
Abstract Interpretation of Higher-Order Programs
Acknowledgements

These notes combine slides from:

- Matthew Might
 “Control-flow analysis of order k (k-CFA)” at 2009 Summer School on Theory and Practice of Language Implementation.
 “Tutorial: Small-step CFA” NII Shonan Meeting on Higher-Order Program Analysis

Source code from:
- “k-CFA: Determining types and/or control-flow in languages like Python, Java and Scheme”
 http://matt.might.net/articles/implementation-of-kcfa-and-0cfa/
Motivation

Analyses seen so far propagate dataflow facts through a control flow graph.

What about higher-order languages for which there is no static control flow graph at compile-time?

(let ((f (foo 7 g k))
 (h (aref a7 i j)))
 (if (< i k)
 (h 30)
 (f h)))

Doing data flow analysis requires control flow graph!
Determining control flow requires doing data flow analysis!
Continuation-passing style as an intermediate language

CPS: every function \(f \) takes an extra argument \(k \) (= the continuation of \(f \)), representing what should be done with the result \(v \) that the function is calculating. Instead of returning \(v \), \(f \) calls \(k \) on \(v \).

direct style:
\[
(\text{print } (* (+ x y) (- z w)))
\]

CPS style:
\[
(+ x y (\lambda (\text{sum})
(- z w (\lambda (\text{diff})
(* sum diff (\lambda (\text{prod})
(print prod *c*)))))
\]

advantage: all control (e.g., sequencing, conditional branching, try-catch, call/cc, ...) represented uniformly by procedure calls
CPS lambda calculus: concrete syntax

\[\nu \in \text{Var} \text{ is a set of variables} \]

\[\text{lam} \in \text{Lam} ::= (\lambda (\nu_1 \ldots \nu_n) \text{ call}) \]

\[f, \, \alpha \in \text{AExp} ::= \nu \mid \text{lam} \]

\[\text{call} \in \text{Call} ::= (f \, \alpha_1 \ldots \alpha_n) \]

atomic expressions: variable reference or lambda exp always evaluate to a value, cannot cause side effects

complex expressions: may not terminate, may produce side effects

notation for prototypical element

syntactic category
CPS lambda calculus: abstract syntax

all constructs are labeled

;; exp ::= (ref <label> <var>)
;; | (lambda <label> (<var1> ... <varN>) <call>)
;; call ::= (call <label> <exp0> <exp1> ... <expN>)

;; label = integer

(define (var? exp) (symbol? exp))
(define (ref? exp) (and (pair? exp) (eq? (car exp) 'ref)))
(define (ref->var exp) (caddr exp))

(define (lambda? exp) (and (pair? exp) (eq? (car exp) 'lambda)))
(define (lambda->lab exp) (cadr exp))
(define (lambda->formals exp) (caddr exp))
(define (lambda->call exp) (cadddr exp))

(define (call? term) (and (pair? term) (eq? (car term) 'call)))
(define (call->lab call) (cadr call))
(define (call->fun call) (caddr call))
(define (call->args call) (cdddr call))

(define (explode-call call k)
 (k (call->lab call)
 (call->fun call)
 (call->args call)))

accessor for the name of the referenced variable (represented as a 'symbol)

accessors for the label, formal parameters and the body of a lambda expression (a single call exp)

convenience function that deconstructs a list representing a call into its label, function expression and concrete argument expressions
CPS lambda calculus: abstract syntax tree factory

(labels will be taken care off by constructor functions)

(define label-count 1)

(define (new-label)
 (set! label-count (+ 1 label-count))
 label-count)

(define (make-ref var)
 (list 'ref (new-label) var))

(define (make-lambda formals call)
 (list 'lambda (new-label) formals call))

(define (make-call fun args)
 (cons 'call
 (cons (new-label)
 (cons fun
 args))))

(define (make-let var exp call)
 (make-call (make-lambda (list var) call) (list exp)))

(let is equivalent to a lambda application)
CPS lambda calculus: example

(id function takes in CPS an additional continuation argument
invoked on the result of its evaluation

small deviation from formal: no call in body denotes halt?)

```
(define standard-example
  (make-let 'id (make-lambda '(x k) (make-call (make-ref 'k) (list (make-ref 'x))))
    (make-call (make-ref 'id)
      (list (make-lambda '(z) (make-ref 'z))
        (make-lambda '(a)
          (make-call (make-ref 'id)
            (list (make-lambda '(y) (make-ref 'y))
              (make-lambda '(b)
                (make-ref 'b)))))))))
```
Deriving an abstract interpreter from a machine-based concrete one

Concrete semantics

- Convert program \(e \) into initial machine state \(s_0 \)
- Transition from state \(s_n \) to state \(s_{n+1} \)
- Until end state reached (if program terminates)
- Value within end state is result of evaluating \(e \)

Abstract semantics

- Abstract states computing on abstract values
- State transitions can be non-deterministic (multiple successor states)
- Possible infinite state space
- Finite state space to ensure termination

\[s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \rightarrow \ldots \]

\[\hat{s}_0 \rightarrow \hat{s}_1 \rightarrow \hat{s}_2 \rightarrow \hat{s}_3 \rightarrow \hat{s}_4 \rightarrow \hat{s}_3.1 \]
Relation between concrete & abstract
1st attempt: exact simulation...

values computed abstractly are the same as
the abstraction of concrete computation results
Relation between concrete & abstract
1st attempt: exact simulation... fails!

\[p: Y := X+Y; \text{ goto } q \]

State \(\xrightarrow{\text{next}}\) State
\[\alpha \]
\[\alpha(\text{next}(p, [X \rightarrow 1, Y \rightarrow -2])) = \alpha(q, [X \rightarrow 1, Y \rightarrow -1]) = (q, [X \rightarrow +, Y \rightarrow -]) \neq \]

AbState \(\xrightarrow{\text{next}}\) AbState
\[\alpha \]
\[\text{next}(\beta(p, [X \rightarrow 1, Y \rightarrow -2])) = \text{next}(p, [X \rightarrow +, Y \rightarrow -]) = (q, [X \rightarrow +, Y \rightarrow ?]) \]

values computed abstractly are NOT the same as the abstraction of concrete computation results
Relation between concrete & abstract: values computed abstractly can be less precise than abstraction of computation results.

Values computed abstractly conservatively approximate the abstraction of concrete computation results.
Concrete CE machine

1st attempt: CE machine ala SICP-interpreter
concrete state consists of expression and environment in which it is to be evaluated

\[\varsigma \in \Sigma = \text{Call} \times \text{Env} \]

\[\rho \in \text{Env} = \text{Var} \rightarrow \text{Clo} \]

\[\text{clo} \in \text{Clo} = \text{Lam} \times \text{Env} \]

BUT: environments are recursive structure,
implying state space remains infinite even after abstracting
Concrete CES machine: state space

CES-machine: indirect lookup from variables to addresses & from addresses to values
concrete state consists of expression, environment, and store

\[\zeta \in \Sigma = \text{Call} \times \text{Env} \times \text{Store} \]
\[\rho \in \text{Env} = \text{Var} \rightarrow \text{Addr} \]
\[\text{clo} \in \text{Clo} = \text{Lam} \times \text{Env} \]
\[\sigma \in \text{Store} = \text{Addr} \rightarrow \text{Clo} \]
\[a \in \text{Addr} \text{ is an infinite set.} \]
Concrete CES machine: transitions

evaluation of atomic expressions

\[A : \text{AExp} \times \text{Env} \times \text{Store} \rightarrow \text{Clo} \]

\[A(v, \rho, \sigma) = \sigma(\rho(v)) \]

\[A(\text{lam}, \rho, \sigma) = (\text{lam}, \rho) \]

actual state transitions for complex expressions

\[\llbracket (f \ \alpha_1 \ldots \alpha_n) \rrbracket, \rho, \sigma \Rightarrow (\text{call}, \rho'', \sigma'), \text{ where} \]

\[\llbracket (\lambda \ (v_1 \ldots v_n) \ \text{call}) \rrbracket, \rho' = A(f, \rho, \sigma) \]

\[\rho'' = \rho'[v_i \mapsto a_i] \]

\[\sigma' = \sigma[a_i \mapsto A(\alpha_i, \rho, \sigma)] \]

\[a_i = \text{alloc}(v_i, \sigma) \]
1st Abstract CES machine: state space

\[\eta \in \hat{\Sigma} = \text{Call} \times \hat{\text{Env}} \times \hat{\text{Store}} \]
\[\hat{\rho} \in \hat{\text{Env}} = \text{Var} \rightarrow \hat{\text{Addr}} \]
\[\hat{\text{clo}} \in \hat{\text{Clo}} = \text{Lam} \times \hat{\text{Env}} \]
\[\hat{\sigma} \in \hat{\text{Store}} = \hat{\text{Addr}} \rightarrow \mathcal{P}(\hat{\text{Clo}}) \]
\[\hat{a} \in \hat{\text{Addr}} \text{ is a finite set.} \]

SET of values, rather than value! consequence of guaranteeing termination through a finite set of abstract addresses: 1 abstract address represents multiple concrete addresses, have to track all their values

=> non-deterministic lookup, proc application, ...
1st Abstract CES machine: abstraction

component-wise lifting of atomic abstraction function

$$\alpha(call, \rho, \sigma) = (call, \alpha(\rho), \alpha(\sigma))$$

$$\alpha(\rho) = \lambda v. \alpha(\rho(v))$$

$$\alpha(\sigma) = \lambda \hat{a}. \bigsqcup \{ \alpha(\sigma(a)) \}$$

$$\alpha(lam, \rho) = \{(lam, \alpha(\rho))\}$$

evaluation of atomic expressions

$$\hat{A}(v, \hat{\rho}, \hat{\sigma}) = \hat{\sigma}(\hat{\rho}(v))$$

$$\hat{A}(lam, \hat{\rho}, \hat{\sigma}) = \{(lam, \hat{\rho})\}$$
1st Abstract CES machine: transitions

$\left[\left(f \, \alpha_1 \ldots \alpha_n\right)\right], \hat{\rho}, \hat{\sigma} \leadsto \left(\text{call}, \hat{\rho}''', \hat{\sigma}'\right)$, where

$\left(\left(\lambda \, (v_1 \ldots v_n) \, \text{call}\right)\right], \hat{\rho}' \in \hat{A}(f, \hat{\rho}, \hat{\sigma})$

\[\hat{\rho}''' = \hat{\rho}'[v_i \mapsto \hat{a}_i] \]

\[\hat{\sigma}' = \hat{\sigma} \uplus [\hat{a}_i \mapsto \hat{A}(\alpha_i, \hat{\rho}, \hat{\sigma})] \]

\[\hat{a}_i = \text{alloc}(v_i, \hat{\sigma}) \]

eval-to-apply has become non-deterministic (set membership)

store extension has become store join: abstract address in store is (re)used for the binding of a formal parameter to an argument value

which address is allocated for the value of the argument can determine whether the analysis is mono-variant or poly-variant: whether argument values from different invocations of the same function are merged or kept separate!

poly-variant analyses can prevent cross flow between different invocations of the same function:

BUT need a way to distinguish invocations of the same function in different contexts (see previous lecture, e.g., top-of-stack call strings)
Abstract CES machine: transitions

\[((f \, \alpha_1 \ldots \alpha_n) \] \hat{\xi}, \hat{\rho}, \hat{\sigma}, \hat{t} \) \rightsquigarrow (\text{call}, \hat{\rho}''', \hat{\sigma}'', \hat{t}'') \text{, where} \\
\hat{\text{clo}} \in \hat{\mathcal{A}}(f, \hat{\rho}, \hat{\sigma}) \\
\hat{\text{clo}} = ((\lambda (v_1 \ldots v_n) \text{ call}) \] \hat{\rho}' \text{) = } \hat{\text{clo}} \\
\hat{\rho}''' = \hat{\rho}'[v_i \mapsto \hat{a}_i] \\
\hat{\sigma}' = \hat{\sigma} \sqcup [\hat{a}_i \mapsto \hat{\mathcal{A}}(\alpha_i, \hat{\rho}, \hat{\sigma})] \\
\text{Context-sensitivity: } t' = \hat{\text{tick}}(\hat{\text{clo}}, \hat{\xi}) \\
\text{Polyvariance: } \hat{a}_i = \hat{\text{alloc}}(v_i, \hat{t}', \hat{\text{clo}}, \hat{\xi}) \\

\text{states now have an additional abstract time component: each state} \\
\text{transition has to augment the time through a tick function} \\
\text{addresses can represent bindings for variables at a particular time} \\
\text{(i.e., in a particular context denoted by the new arguments)}
Abstract CES machine: state space

\[\xi \in \hat{\Sigma} = \text{Call} \times \hat{\text{Env}} \times \hat{\text{Store}} \times \hat{\text{Time}} \]

\[\hat{\rho} \in \hat{\text{Env}} = \text{Var} \rightarrow \text{Addr} \]

\[\hat{\text{clo}} \in \hat{\text{Clo}} = \text{Lam} \times \hat{\text{Env}} \]

\[\hat{\sigma} \in \hat{\text{Store}} = \hat{\text{Addr}} \rightarrow \mathcal{P} (\hat{\text{Clo}}) \]

\[\hat{a} \in \hat{\text{Addr}} \text{ is a finite set.} \]

\[\hat{t} \in \hat{\text{Time}} \text{ is a finite set.} \]
Abstract CES machine: k-CFA

abstract:
 time is k-most recent call strings

\(\hat{\text{tick}}(\hat{\text{clo}}, (\text{call}, \ldots, \hat{t})) = [\text{call} : \hat{t}]_k \)

addresses represent binding for variable at particular time

\(\hat{\text{alloc}}(v_i, \hat{t}, \hat{\text{clo}}, \hat{\zeta}) = (v_i, \hat{t}) \)
R5RS Implementation: states

by Matthew Might: http://matt.might.net/articles/implementation-of-kcfa-and-0cfa/

;; Abstract state-space.

;; state ::= (<call> <benv> <store> <time>)

(define (make-state call benv store time)
 (list call benv store time))

(define (state->call state) (car state))
(define (state->benv state) (cadr state))
(define (state->store state) (caddr state))
(define (state->time state) (cadddr state))

(define (explode-state state k)
 (k (state->call state)
 (state->benv state)
 (state->store state)
 (state->time state)))
R5RS Implementation: environment

;; benv = alist[var,addr]
;; A binding environment maps variables to addresses.

; benv-lookup : benv var -> addr
(define (benv-lookup benv var)
 (let ((entry (assq var benv)))
 (if entry
 (cadr entry)
 (begin (display "No value for ")
 (display var)
 (display " in ")
 (display benv)
 (newline)
 (error "Couldn't look up variable!")))))

; benv-extend : benv var addr -> benv
(define (benv-extend benv var addr)
 (cond
 ((null? benv) (list (list var addr)))
 ((var<=? var (car (car benv))) (cons (car benv)
 (benv-extend (cdr benv) var addr)))
 ((var<=? (car (car benv)) var) (cons (list var addr)
 benv))
 (else (cons (list var addr) (cdr benv))))

; benv-extend* : benv list[var] list[addr] -> benv
(define (benv-extend* benv vars addrs)
 (if (and (pair? vars) (pair? addrs))
 (benv-extend* (benv-extend benv (car vars) (car addrs))
 (cdr vars)
 (cdr addrs))
 benv))
R5RS Implementation: store

;; store = alist[addr,d]
;; A store (or a heap/memory) maps address to denotable values.

; store-insert : store addr d -> store
(define (store-insert store addr d)
 (if (not (pair? store))
 (list (list addr d))
 (if (equal? (car (car store)) addr)
 (cons (list addr d) (cdr store))
 (cons (car store) (store-insert (cdr store) addr d))))

; store-lookup : store addr -> d
(define (store-lookup store addr)
 (let ((entry (assoc addr store)))
 (if entry (cadr entry) '()))

; store-update : store addr d -> store
(define (store-update store addr value)
 (let ((d (store-lookup store addr)))
 (store-insert store addr (d-join d value))))

; store-update*: store list[addr] list[d] -> store
(define (store-update* store addr\$s values)
 (if (or (not (pair? addr\$s)) (not (pair? values)))
 store
 (store-update* (store-update store (car addr\$s) (car values))
 (cdr addr\$s)
 (cdr values)))))

; store-join : store store -> store
(define (store-join store1 store2)
 (unzip-k store2 (lambda (addr\$s values)
 (store-update* store1 addr\$s values)))))
R5RS Implementation: polyvariance and context-sensitivity

;; bind ::= (binding <var> <time>)
;; A binding is minted each time a variable gets bound to a value.

(define (binding? a)
 (and (pair? a) (eq? (car a) 'binding)))
(define (binding->var binding)
 (cadr binding))

;; time = lab^k
;; In k-CFA, time is a bounded memory of program history.
;; In particular, it is the last k call sites through which
;; the program has traversed.

;; k-CFA parameters

;; Change these to alter the behavior of the analysis.

; k : natural
(define k 1)

; tick : call time -> time
(define (tick call time)
 (take k (cons (call->lab call) time)))

; alloc : time -> var -> addr
(define (alloc time)
 (lambda (var)
 (list 'binding var time)))
R5RS Implementation: transitions

; k-CFA abstract interpreter

atom-eval : benv store -> exp -> d
define (atom-eval benv store)
 (lambda (exp)
 (cond
 ((ref? exp) (store-lookup store (benv-lookup benv (ref->var exp))))
 ((lambda? exp) (list (list 'closure exp benv)))
 (else (display exp) (error "unknown expression type: " exp)))))

next : state -> set[state]
define (next state)
 (explode-state state (lambda (call benv store time)
 (if (not (call? call)) '()
 (let* ((time* (tick call time)))
 (explode-call call (lambda (lab f args)
 (let* ((procs ((atom-eval benv store) f))
 (params (map (atom-eval benv store) args)))
 (map (lambda (proc)
 (cond
 ((closure? proc)
 (let* ((lam (closure->lambda proc))
 (benv* (closure->benv proc)))
 (let* ((formals (lambda->formals lam))
 (call* (lambda->call lam))
 (bindings (map (alloc time*) formals))
 (benv** (benv-extend* benv* formals bindings))
 (store* (store-update* store bindings params)))
 (make-state call* benv** store* time*)))))
 procs))))))))

reached end state
record call site in new time
evaluate proc and args in current env/store
update store with new bindings for formals at current time
non-determinism
R5RS Implementation: state crawling

;; State-space exploration.

; explore : set[state] list[state] -> set[state]
(define (explore seen todo)
 (cond
 ((null? todo)
 seen)
 ((set-member? (car todo) seen)
 (explore seen (cdr todo)))
 (else
 (let ((succs (next (car todo))))
 (explore (cons (car todo) seen)
 (append succs todo))))))

; summarize : set[state] -> store
(define (summarize states)
 (if (not (pair? states))
 '()
 (store-join (state->store (car states))
 (summarize (cdr states))))))

> summary
((binding id (18)) ((closure (lambda 5 (x k) (call 4 (ref 2 k) (ref 3 x))) ()))
 ((binding x (16)) ((closure (lambda 8 (z) (ref 7 z)) ((id (binding id (18)))))))
 ((binding k (16))
 ((closure
 (lambda 15 (a) (call 14 (ref 9 id) (lambda 11 (y) (ref 10 y)) (lambda 13 (b) (ref 12 b))))
 ((id (binding id (18)))))))
 ((binding a (4)) ((closure (lambda 8 (z) (ref 7 z)) ((id (binding id (18)))))))
 ((binding x (14)) ((closure (lambda 11 (y) (ref 10 y)) ((id (binding id (18)))) (a (binding a (4)))))
 ((binding k (14)) ((closure (lambda 13 (b) (ref 12 b)) ((id (binding id (18)))) (a (binding a (4)))))))
 ((binding b (4)) ((closure (lambda 11 (y) (ref 10 y)) ((id (binding id (18)))) (a (binding a (4)))))
 ()))
Results for Example Program

```scheme
(let ((id (lambda (x k) (k x))))
  (id (lambda (z) z)
      (lambda (a) (id (lambda (y) y)
                      (lambda (b) b)))))) 2)
```

2

monovariant summary of set of reachable states, printed as map from variables to lambda expressions that might flow to them

Welcome to DrRacket, version 6.1.1.1--2014-10-21(3b006df/a) [3m].
Language: R5RS; memory limit: 128 MB.

```
((x ((lambda 11 (y) (ref 10 y)) (lambda 8 (z) (ref 7 z))))
 (k
  ((lambda 15 (a) (call 14 (ref 9 id) (lambda 11 (y) (ref 10 y)) (lambda 13 (b) (ref 12 b)))
   (lambda 13 (b) (ref 12 b))))
 (id ((lambda 5 (x k) (call 4 (ref 2 k) (ref 3 x))))
 (b ((lambda 11 (y) (ref 10 y))))
 (a ((lambda 8 (z) (ref 7 z))))))
```

multiple lambda terms flow to k

but no cross-flow between results of different id invocations
Only the tip of the iceberg!

Applications: analysis for JavaScript (Jens), analysis for concurrent Scheme (Quentin), ...

Optimizations: abstract counting, abstract garbage collection, ...

See https://raw.githubusercontent.com/jensnicolay/aac/master/ds/ceske.rkt for educational K-CFA of direct-style Scheme with type lattice

=> abstract machine is written in CPS itself, using an additional continuation component for the abstract states (which, analogous to the problem with closures, has to be store-allocated to guarantee termination) ... however, exposes state transitions to more non-determinism.

(match s
 ((ev (?) symbol? x) ρ σ (cons φ κ) Ξ)
 (let ((v (store-lookup σ (env-lookup ρ x))))
 (set (ko φ v σ κ Ξ))))
 ((ev `(lambda ,x ,es ...) ρ σ (cons φ κ) Ξ)
 (set (ko φ (α (clo (lam x es) ρ)) σ κ Ξ))
 ((ev `(quote ,e) ρ σ (cons φ κ) Ξ)
 (set (ko φ e σ κ Ξ))
 ((ev (and `(if ,e0 ,e1 ,e2) e) ρ σ κ Ξ)
 (let ((τ (ctx e ρ σ))
 (set (ev e0 ρ σ (cons (ifk e1 e2 ρ) τ) (stack-alloc Ξ τ κ))))
 ((ev (and `(letrec ((,x ,e0)) ,es ...) e) ρ σ κ Ξ)
 (let* ((a (alloc x))
 (ρ* (env-bind ρ x a))
 (τ (ctx e ρ σ))
 (set (ev e0 ρ* σ (cons (letk a es ρ* τ) (stack-alloc Ξ τ κ))))
 ((ev (and `(set!, x ,e0) e) ρ σ κ Ξ))