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Samenvatting

De vooruitgang in hardware technologie heeft ertoe geleid dat computers krachtiger,
kleiner, en goedkoper worden. Samen met de technologische vooruitgang in draadloze
netwerken heeft ze aanleiding gegeven tot een nieuwe vorm van gedistribueerde systemen,
de zogenaamde draadloze sensor netwerken (DSN). DSN bestaan uit minuscule toestellen
op batterijen die draadloos communiceren. Deze toestellen zijn goedkoop, uitgerust met
sensoren en actuatoren, en breed inzetbaar. Tot op heden werden DSN reeds gebruikt
voor het inspecteren van zebra’s en het besturen van aircoconditioning systemen. Een
nieuwe trend bestaat erin DSN te gebruiken voor actieve toepassingen waarbij het DSN
moet reageren op de gemeten sensorwaarden. Ondanks deze trend bieden de huidige
programmeermodellen voor DSN niet de nodige abstracties om het ontwikkelen van deze
toepassingen te vergemakkelijken.

Het ontwikkelen van actieve toepassingen houdt normaliter in dat de individuele DSN
toestellen, typisch knopen genoemd, één voor één geprogrammeerd dienen te worden.
Voor elke knoop moet de ontwikkelaar bepalen hoe die interageert met andere knopen in
het netwerk. In deze interacties worden berichten uitgewisseld en verwerkt om de nodige
acties te starten. Deze berichten bevatten meestal sensorwaarden en kunnen bijvoorbeeld
verwerkt worden om een actuator aan te sturen (bvb., een radiator). De huidige pro-
grammeermodellen hebben het versturen van deze berichten wel vergemakkelijkt, maar
de complexiteit van het verwerken van binnenkomende berichten werd door de meesten
genegeerd. Dit deel van de interactie dient typisch gëımplementeerd te worden in een
event handler die aangeroepen wordt bij het ontvangen van elk nieuw bericht. Het is
echter reeds aangetoond dat het gebruik van event handlers in strijd is met verscheidene
software engineering principes zoals samenstelbaarheid en schaalbaarheid. Een event
handler kan niet zomaar samengevoegd worden met een andere om bijkomende berichten
te verwerken. Bovendien wordt een event handler erg complex indien die moet reageren
op een sequentie van verscheidene berichten die op verschillende ogenblikken ontvangen
worden. Dit houdt in dat bijgehouden moet worden welke berichten al dan niet reeds
ontvangen werden. Ad hoc oplossingen voor het verwerken van binnenkomende berichten
zijn foutgevoelig en dienen daarenboven gedupliceerd te worden in de event handlers van
verschillende knopen.

Deze verhandeling introduceert ondersteuning voor het programmeren van interacties
tussen knopen om de hierboven vermelde problemen het hoofd te bieden. We intro-
duceren een domein-specifieke programmeertaal die gebruikt dient te worden bovenop
event-gebaseerde middleware. Deze taal laat toe om de interacties van een knoop met
anderen uit te drukken via declaratieve regels en vermijdt op deze manier de complex-
iteit van event handlers. Daarbovenop introduceren we een macroprogrammeertaal die
toelaat om toepassingen voor DSN in hun geheel te programmeren. Deze taal bevordert
het hergebruik van programmacode binnen en tussen verscheidene toepassingen. Onze
benadering minimaliseert de toevallige complexiteit eigen aan het ontwikkelen van DSN
toepassingen met event-gebaseerde middleware en stelt de ontwikkelaar in staat zich te
focussen op de essentiële complexiteit van de toepassing.
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Abstract

Advances in hardware technology have lead to computing devices becoming
smaller, cheaper and more powerful. Together with the technological advances
in wireless networks, they gave rise to a new form of distributed systems, called
wireless sensor networks (WSNs). WSNs consist of tiny, sensor- and actuator-
equipped, battery-powered devices that communicate wirelessly. Due to the low
cost of these devices, WSNs can be widely deployed. For instance, they have
already been deployed for monitoring zebras and controlling air-conditioning
systems. An emerging breed of applications, called sense-and-react applications,
tasks a WSN not only with sensing, but also with reacting to sensor readings.
However, current programming models for WSNs do not offer appropriate ab-
stractions to deal with the complexity of implementing these applications.

Developing sense-and-react applications typically involves programming in-
dividual WSN devices, often called nodes, one by one. For each node, the de-
veloper has to specify how it interacts with the other nodes in the network. In
these interactions, messages are exchanged and processed to trigger the appro-
priate actions. These messages typically carry sensor data and can, for instance,
be reacted to by controlling an actuator (e.g., a heater). While existing pro-
gramming models have facilitated transmitting messages, most of them have
ignored the difficulties of processing incoming messages. For this part of the
interaction, they force the developer to implement the required logic in an event
handler that will be invoked whenever a new message is received. However,
the use of event handlers has already been shown to violate a range of soft-
ware engineering principles including composability, scalability and separation
of concerns. For instance, an event handler cannot simply be composed with
another one to have it process additional messages. In addition, reacting to a
sequence of time-dispersed messages complicates an event handler as it implies
keeping track of what messages have already been received. Ad-hoc solutions
for processing incoming messages are error-prone and bound to be duplicated
over the event handlers of multiple nodes.

This dissertation introduces language support for programming interactions
among WSN nodes to address the aforementioned problems. Concretely, we
introduce a new domain-specific programming language to be used on top of
event-based WSN middleware. This language enables expressing the interac-
tions of a node with others through declarative rules and thereby avoids the
complexity of event handlers. In addition, we introduce a macroprogramming
language for programming WSN applications as a whole. This language fos-
ters code reuse within and among WSN applications. Our approach minimizes
the accidental complexity inherent to programming WSN applications using
event-based middleware and enables the developer to focus on the application’s
essential complexity instead.
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1
Introduction

Advances in hardware technology have lead to computing devices becoming
smaller, cheaper and more powerful. Together with the technological advances
in wireless networks, they gave rise to a new form of distributed systems, called
wireless sensor networks (WSNs). WSNs consist of tiny, sensor- and actuator-
equipped, programmable devices that communicate wirelessly. These devices,
often called nodes, have highly constrained computing- and communication re-
sources and are typically battery-powered. Even though hardware advances
play an important role in the development of WSN technology, the most impor-
tant factor is the programming model supporting application development [1].
Unlike traditional distributed systems, WSNs have a dynamic nature: at any
time, nodes can fail or get disconnected from the network (i.e., disconnections
are the norm rather than an exception). Due to this dynamic nature, traditional
programming models could not cope with the requirements of WSNs and a new
body of programming models was introduced by the academic community.

Two major approaches can be taken when programming WSN applications.
The first approach consists of programming every individual node by specifying
its interactions with the other nodes. These interactions typically involve send-
ing data around, storing data, or reacting to requests either by actuating, or by
sensing and answering the sensed values. This approach is commonly referred
to as node-centric programming [2]. While node-centric programming models
give the developer fine-grained control over important requirements such as a
node’s power- and bandwidth consumption, they also require the developer to
deal with low-level details.

The second approach allows the programmer to take distance from low-
level details and consists of programming all nodes in the WSN as a whole.
This approach is commonly referred to as network-centric programming [2].
Network-centric programming models either abstract the WSN as a whole or
allow the WSN to be programmed from a macroscopic viewpoint. For instance,
a common abstraction represents a WSN as a virtual database of sensors that
can be queried using an SQL-like language [3], while a common way to allow

1



CHAPTER 1. INTRODUCTION 2

macroscopic programming consists of supporting mobile code [4]. Of course,
using higher level programming models comes at the price of lesser control over
the individual nodes.

To date, WSNs have been used mostly for sense-only applications. Exam-
ples are applications for monitoring habitats [5], zebras [6] and glaciers [7], and
applications for detecting intrusions [8], forest fires [9] and flooding rivers [10].
Only recently, WSN applications became more active. An example is an ap-
plication for controlling heating- and air conditioning systems [11]. Especially
the development of active applications, typically referred to as sense-and-react
applications, remains difficult as this requires a high degree of control over the
individual nodes (e.g., to steer actuators).

The following sections show the problem that appears when programming
sense-and-react WSN applications and how our work tackles this problem. To
conclude the introduction, we present a high-level overview of this dissertation.

1.1 Problem Statement

For developing sense-and-react applications, a developer typically relies on a
node-centric programming model to program node-level code. This node-level
code has to process sensor-data obtained through interactions with other nodes
and based on this processing, reactions have to be triggered (e.g., steering an
actuator). However, contemporary node-centric programming models do not
offer adequate support for programming node interactions.

Node-centric programming models require the developer to program at a low
level of abstraction. For instance, programming an interaction with another
node typically involves encapsulating data in a packet and transmitting this
packet in the node’s one-hop neighborhood. Processing data upon reception,
on the other hand, often involves the use of an event handler in which received
packets have to be parsed and their data has to be extracted. To raise the level
of abstraction, there exist several solutions that complement node-centric pro-
gramming models with additional support for programming interactions. How-
ever, while these solutions facilitate transmitting data, most of them do not help
in processing data upon reception. They still rely on the use of event handlers
for this part of the interaction. Not only do event handlers complicate pro-
gramming interactions among sensor nodes, they also force the programmer to
adopt a programming style that violates several software engineering principles,
including composability, scalability and separation of concerns [12].

To illustrate how event handlers complicate programming interactions among
sensor nodes, we can consider the programming model introduced by event-
based WSN middleware. Such midleware brings the Publish-Subscribe interac-
tion pattern [13] to WSNs and allows sensor nodes to communicate by exchang-
ing events via a decentralized event bus. Nodes can publish events of certain
types, which will then be routed to other nodes that subscribed to these events’
types. Published events are usually only routed to subscribers that are online at
the time of publication. While Publish-Subscribe decouples the communication
between sensor nodes (i.e., the communicating parties don’t have to be fixed
at compile-time), it still requires the processing of received events to be imple-
mented in an event handler. Therein, a developer typically dispatches over the
possible event-types that could be received and selects the appropriate reaction.
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An example is given in Listing 1.1.

1 public void receive(Event ev) {

2 if(ev.getType () == EventTypes.GET_TEMP)

3 publish(new Event(EventTypes.TEMP , getTemperature ()))

4 }

Listing 1.1: A simple event handler

The example shows a simple event handler that reacts to one particular event-
type: when a temperature request is received, the current temperature is mea-
sured and published. Typically, however, the event handler becomes larger and
more complex as more event-types have to be reacted to. Extending an event
handler by composing it with another one typically doesn’t work. Furthermore,
it’s not hard to imagine cases in which it might be desired to react to several
related but time-dispersed events. One example is a sensor node steering heaters
throughout a house. To steer a heater in a particular room, it is required to
combine sensor-reading events published by temperature- and humidity sensors
in the same room. Implementing this behavior further complicates the event
handler. It requires additional bookkeeping to keep track of which events have
already been received, additional matching of related events (i.e., events orig-
inating from sensors in the same room), and additional state management to
make sure no stale events are used for steering the heaters. While in this exam-
ple, events are only related by the room they originate from, more sophisticated
relations require even more sophisticated event handler implementations (e.g.,
specifying a finite state machine that transitions between states upon the re-
ception of events).

Without adequate support for processing received data, developers have to
deal with the requirements mentioned in the above example by designing ad-hoc
solutions that are bound to be duplicated over the event handlers of multiple
nodes. Worse, a sensor node’s application logic would be polluted with the code
for dealing with these requirements. As a consequence, the application logic
becomes difficult to understand, to extend, and to reuse. While this problem
plagues other event-driven architectures as well, existing solutions like complex
event processing do not readily translate to the setting of wireless sensor net-
works as they are not designed for use in distributed systems.

1.2 Proposed Solution

To tackle the aforementioned problem, we propose to introduce additional lan-
guage support for programming interactions among WSN nodes. Concretely,
we propose both a node-centric- and a network-centric programming language.

The node-centric programming language constitutes a building block, to be
used on top of existing event-based WSN middleware. It allows the use of
declarative rules to specify the interactions between sensor nodes. This declar-
ative model addresses the various problems that using an event handler for
programming node interactions brings along. The language reduces the com-
plexity and improves the modifiability and scalability of the application logic
for WSN nodes. Its runtime employs the well-known Rete algorithm for the
evaluation of interaction rules.

The network-centric programming language is a macroprogramming lan-
guage that allows each node’s behavior to be specified in a centralized fashion.
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This language supports macro-definitions and import statements, thereby fos-
tering code reuse when building WSN applications. In addition, it facilitates
developing WSN applications as the interactions between the sensor nodes be-
come clearly visible.

1.3 Document Overview

This dissertation introduces a new domain-specific programming language for
developing wireless sensor network applications from a node-level perspective
and a complementary macroprogramming language that enables development
from a network-level perspective.

Chapter 2 gives a non-exhaustive overview of the state of the art for pro-
gramming wireless sensor networks. Existing solutions are covered by first fo-
cussing on programming models that support the development of traditional,
sense-only WSN applications and afterwards focussing on programming models
that support the development of the more recent, sense-and-react applications.

Our main solution, the node-centric language dubbed CrimeSPOT, is pre-
sented in Chapter 3. All features are explained by incrementally implement-
ing the running example presented in Section 3.1. More details concerning
CrimeSPOT’s prototype implementation can be found in Appendix A and a
preliminary evaluation of its overhead can be found in Appendix B.

In Chapter 4, the focus moves to Macro-CrimeSPOT, our macropro-
gramming language that facilitates programming WSN applications using the
CrimeSPOT language by moving from a node-level perspective to a network-
level perspective. In this chapter, we also revisit the running example and
discuss its final implementation.

To conclude, we validate our solutions through the implementation of illus-
trative example applications in Chapter 5 and discuss our contributions and
future work in Chapter 6.



2
State of the Art

This chapter gives a non-exhaustive overview of the state of the art for program-
ming wireless sensor networks (WSNs). To date, several so-called programming
models have been proposed, which each target different requirements [1, 2]. In
this chapter, we will focus on the typical ones, relevant to the problem at hand.

After introducing programming models for traditional WSNs, the focus moves
to programming models for wireless sensor- and actuator networks (WSANs).
WSANs are WSNs that employ, next to sensors, actuators to control the en-
vironment. As we will discuss, programming WSANs requires more control
over the individual nodes and to this end, the typical programming models for
traditional WSNs are not appropriate.

2.1 Traditional Wireless Sensor Networks

The applications that made wireless sensor networks popular are sense-only ap-
plications in which sensor data is extracted from the network. Typical examples
are applications for environmental monitoring and scientific data gathering [5–7].
Programming models that support the development of these applications ab-
stract the WSN as a single, abstract machine, that can be programmed as such.

The most common abstraction for a WSN is a virtual database of sensors,
from which raw sensor data can be extracted through SQL-like queries. By us-
ing this database abstraction, a developer can easily extract sensor data without
having to worry about how it is actually obtained. However, in some cases, it
is desired to express more advanced queries for which SQL-like languages are
not appropriate. To this end, another type of programming models allows de-
velopers to program queries through more advanced languages (e.g., functional
programming languages). A third typical type of programming models allows a
developer to register event definitions to extract interpreted data from the net-
work. An event definition specifies an event (e.g., an explosion) by listing its
characteristics (i.e., the corresponding measured sensor values). After register-

5
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ing event definitions, the programming model’s runtime will monitor the WSN
and will inform the end-user when the registered events have been detected.

In the following sections, three programming models that are each offering
one of the above functionalities will be discussed in more detail.

2.1.1 Raw Data Extraction

The most straightforward way to extract raw data from a WSN is to make use of
a programming model that offers a database abstraction. Among the models of-
fering this abstraction are TAG [14], Cougar [15], SINA [16] and TinyDB [3].
In this section, we will give a brief overview of TinyDB, which is representative
for this category of programming models.

In TinyDB, the WSN is abstracted as a large sensors table, which has a
row for every WSN node for every moment in time, and a column for each data
item that can be produced by a node. The programmer can issue queries on
this table from a base station, which are then injected in the network. These
queries can be expressed in a language very similar to SQL. Listing 2.1 shows
an example query, modified from [3]. Note that TinyDB supports aggregates
such as AVG, SUM and COUNT, and also allows to define custom aggregates.

1 SELECT AVG(volume), room

2 FROM sensors

3 WHERE floor = 10

4 GROUP BY room

5 SAMPLE PERIOD 30s FOR 10 minutes

Listing 2.1: TinyDB: example query

Assuming that every WSN node provides a room and a floor value, this query
reports the average volume in all rooms on the tenth floor. The query has
a lifetime of ten minutes, in which a new update will be delivered to the base
station every 30 seconds (i.e., the sampling period). In the absence of an explicit
sampling period, TinyDB will automatically decide the sampling according to
the query’s lifetime and the remaining battery level of the nodes involved in the
query’s processing. This is only one of the various optimizations that TinyDB
uses to be as energy-efficient as possible.

Next to queries for pure data collection, TinyDB also supports actuator
queries, which will invoke an external command whenever they are satisfied. As
an example, consider the query, modified from [3], in Listing 2.2.

1 SELECT nodeid , temp

2 FROM sensors

3 WHERE temp > 40

4 OUTPUT ACTION power -on-fan(nodeid)

5 SAMPLE PERIOD 60s

Listing 2.2: TinyDB: an actuator query

This query will verify the in-network temperatures every 60 seconds, and will
invoke the power-on-fan command as soon as a measured temperature exceeded
40 degrees.

As the above examples illustrate, TinyDB allows programmers to express
data extraction applications in a very concise notation. While TAG, Cougar,
and SINA offer similar functionality, SINA extends this functionality with the
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ability to send tasks to sensor nodes. Any task can be expressed in SINA’s
SQTL language and will be executed on the target nodes. Optionally, a task
can also return results to the base station. For instance, a vehicle tracking
algorithm can be implemented in SQTL [16].

2.1.2 Programming a Query

As mentioned earlier, the SQL-like languages offered by the programming mod-
els that employ a database abstraction can be insufficient to express advanced
queries. As an example of an advanced query, consider a query that generates
an output whenever a fire is detected. While a fire can be detected by reading
out temperature sensors and verifying whether the readings exceed a certain
threshold, false positives also have to be filtered out. This can be done, for
instance, by verifying whether the nodes in the immediate neighborhood of the
nodes detecting a high temperature also measure a high temperature. Clearly,
using the database abstraction would require the initiator of the temperature
query to filter the results manually. However, programming models like Regi-
ment [17] allow queries like this to be programmed in their entirety.

Regiment is a functional programming language that is based on the con-
cept of Functional Reactive Programming (FRP). It is designed to compile and
install long-running queries, which can be expressed by manipulations of data
streams. Regiment has two basic concepts: signals and regions. A signal
represents a data stream (i.e., a time-varying value), while a region represents
a collection of multiple signals. For instance, a sensor reading and the result
of a node’s computation are both signals, as they can vary over time. A re-
gion, on the other hand, can represent all measured temperature readings in
a given geographical region. Additionally, multiple signals within a region can
also be aggregated, resulting in a new signal (e.g., the sum of certain measured
temperature readings).

To clarify these concepts, we can consider the example from Listing 2.3
(modified from [17]), which implements the fire detection query discussed above.

1 fun readTemp(node) { sense("temp",node) }

2 fun tempTuple(node) { (node , readTemp(node)) }

3 fun aboveTresh ((node ,temp)) { temp > TEMP_THRESHOLD }

4 fun sumTempRegion(reg) { rfold ((+), 0, reg) }

5
6 possibleAlarms = rfilter(aboveTresh , rmap(tempTuple ,world ));

7 hoods = rmap( fun(n,t) { khood(1,n) }, possibleAlarms );

8 tempHoods = rmap( fun(reg) { rmap(readTemp ,reg) }, hoods);

9 tempSums = rmap(sumTempRegion , tempHoods );

10 BASE <- rfilter( fun(ts) { ts > CLUSTER_TEMP_TRESH }, tempSums );

Listing 2.3: Regiment: example query

Four auxiliary functions are defined for the query (lines 1-4): to read out the
temperature sensor of a particular node (readTemp), to place a node’s identifier
and its measured temperature in a tuple (tempTuple), to verify whether the
temperature in such a tuple is above a certain threshold (aboveTresh), and
to sum all temperatures in a region (sumTempRegion). Note that signals in a
region can be aggregated by using the predefined rfold function together with
a combination function and an initial value (e.g., + and 0 in this case).
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The statements on lines 6 to 10 implement the query. To this end, several
regions are defined. possibleAlarms represents the region consisting of temper-
ature reading tuples that exceed a certain temperature threshold. This region
is obtained by mapping tempTuple over the predefined world region (i.e., the
region containing all nodes in the WSN) and filtering the results. hoods, on
the other hand, represents a nested region; it contains regions with all nodes of
the one-hop neighborhood of the nodes in the possibleAlarms region. These
one-hop neighborhood regions are obtained by mapping the predefined khood

function over the possibleAlarms region. To filter out false positives, the tem-
perature has to be measured on each node of these sub-regions and the results
have to be summed per sub-region (lines 8-9). Finally, fires are detected by veri-
fying whether any of these sums exceed a certain cluster temperature threshold,
and the exceeding sums are sent to the base station (line 10).

Even though the Regiment language is not as concise as the previously
discussed SQL-like languages, it does allow the programmer to program a wide
range of queries.

2.1.3 Interpreted Data Extraction

While in the previously discussed programming models, the developer has to
issue queries for raw sensor data, other programming models allow the devel-
oper to register higher-level events to work with. This notion of event raises
the level of abstraction as it associates semantics with raw sensor data. For in-
stance, it can be specified that an explosion event corresponds to the detection
of a high temperature and an intense light. After registering such event def-
initions, they are interpreted by the programming model’s runtime and allow
to extract higher-level data from the sensor network. Among the program-
ming models that allow to extract interpreted data from a WSN are Semantic
Streams [18] and DSWare [19]. Even though both models are similar and al-
low the definition of events, Semantic Streams requires the end-user to issue
queries over these events, while DSWare notifies the end-user when the regis-
tered events have been detected. In this section, we will give a brief overview
of DSWare.

In DSWare, an event has to be described by a list of sub-events that have
to take place in a given time window and geographical region. A sub-event can
be either a predicate on an observed sensor reading, or another high-level event.
In addition, it can be specified that not all sub-events have to take place for
a detection of the high-level event to occur. This can be specified by a confi-
dence function, which computes the confidence with which the event took place,
and a minimum confidence required for the event to be detected. A confidence
function can be arbitrarily defined and takes as arguments a boolean for every
sub-event. This boolean indicates whether the sub-event took place in the given
time window and geographical region.

As an example, consider the definition of the explosion event shown in Listing
2.4, modified from [1]. Note that event definitions are registered in an SQL
dialect.

1 INSERT INTO EVENT_LIST(explosion , AREA , [0 ,0;200 ,200] , SUBEVENT_SET ,

2 user_base_station , 1 sec ,

3 1 hour)
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4
5 SUBEVENT_SET (

6 SAFETY_TIMEOUT ,

7 (temperature > 60),

8 (light > 200),

9 (compareSound(sound ,explosionSignature ))

10 )

Listing 2.4: DSWare: An Event Definition

Lines 1 and 2 specify that the runtime should monitor for the explosion event
in the specified geographical area and report detections to the base station
with a maximum delay of one second. In addition, line 3 specifies that this
definition remains valid for one hour. Lines 5 to 10 specify the explosion’s sub-
events and the corresponding time window in which they have to take place (i.e.,
SAFETY TIMEOUT). For simplicity, there’s no confidence function, nor minimum
confidence level. An explosion is detected as soon as a high temperature, an
intense light, and a sound whose signature resembles that of an explosion have
been detected. Based on this definition, the WSN is configured by DSWare to
meet the QoS requirements and to be as energy-efficient as possible.

2.1.4 Evaluation

Contemporary programming models for WSNs offer high-level and well-suited
abstractions to support the development of traditional, sense-only WSN ap-
plications. The WSN is abstracted as a single, abstract machine that can be
programmed as such. None of the discussed solutions require a programmer to
worry about how data is obtained from a WSN (e.g., about which nodes have
to communicate to propagate the sensor data to the base station). As such,
traditional WSN applications can be programmed quite straightforwardly.

However, this very high level of abstraction is not always appropriate. For
instance, when building WSANs, a high degree of control is required over the
individual WSN nodes, which is typically not provided by the aforementioned
models. With the exception of SINA, none of the models allow the programmer
to express instructions that should be executed on individual nodes (e.g., to
steer an actuator). A WSAN programmer has no other option than relying on
lower-level and more complex models, which allow the behavior of the individual
nodes to be programmed. In the following section, we will discuss some of these
models.

2.2 Getting More Control over Individual Nodes

Next to traditional, sense-only WSN applications, wireless sensor- and actua-
tor network (WSAN) applications are an emerging trend. Due to technological
advancements, sensor nodes become more powerful and become able to steer
actuators to control their environment. Applications embracing these techno-
logical advancements are often called sense-and-react applications [1]. In these
applications, sensor data processing is typically moved inside the network, which
requires complex node interactions to be programmed.

For developing sense-and-react applications, the aforementioned program-
ming models are not appropriate. A high degree of control over the individual
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sensor nodes is required, which is most often abstracted away in these mod-
els. While developers of sense-and-react applications require control over the
individual nodes to steer actuators, they also require support for programming
the individual nodes’ interactions, which are essential in the setting of sensor
networks. Programming these interactions is one of the most difficult challenges
of WSANs [2].

In this section, we will discuss some representative node-level programming
models, solutions to support the specification of node interactions, and models
that allow the sensor network to be programmed from a macroscopic viewpoint
while still offering control over the individual nodes.

2.2.1 Node-centric Programming

Models for node-centric programming allow individual sensor nodes to be pro-
grammed. As such, the programmer is offered a high degree of control over
a node’s behavior. However, these programming models are quite low-level.
For instance, interactions with other nodes have to be programmed using ex-
plicit and physical addressing. In addition, not all models support reliable radio
connections. As two representative models, this section briefly discusses the pro-
gramming models offered by TinyOS [20] and SunSPOT [21]. In the context
of this thesis, we will focus on how interactions can be programmed.

2.2.1.1 TinyOS

A sensor node running the TinyOS operating system can be programmed using
nesC [22] [1]. nesC is an event-driven programming language derived from C in
which interfaces are one of the most central concepts. An interface lists function
signatures that are either tagged as commands or events. While command
signatures represent operations, event signatures represent the functions that
will be invoked by operations to answer their results (i.e., event handlers). A
nesC application consists of several components that interact by providing or
using these interfaces. While a component that provides an interface implements
its commands, a component that uses an interface implements its event handlers.
Note that a nesC application’s components are statically fixed at compile-time
and cannot be changed at runtime.

To allow node interactions to be programmed, Active Messages [23] provides
a set of interfaces containing basic nesC communication primitives. AMSend

and Receive are the most important interfaces and are shown in Listing 2.5.
Other interfaces allow the low-level configuration of the communication primi-
tives (e.g., by setting the transmission power).

1 interface AMSend {

2 command uint8_t maxPayloadLength ()

3 command void* getPayload(message_t* msg , uint8_t len)

4 command error_t send(am_addr_t addr , message_t* msg , uint8_t len)

5 command error_t cancel(message_t* msg)

6 event void sendDone(message_t* msg , error_t error)

7 }

8 interface Receive {

9 event message_t* receive(message_t* msg , void* payload , uint8_t len)

10 }

Listing 2.5: nesC: Communication Interfaces
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To illustrate the use of nesC and these interfaces, we can consider a component
that broadcasts its temperature reading in its one-hop neighborhood and prints
out the temperature readings it receives. The code for this component, modified
from [1], is shown in Listing 2.6.

1 module SampleAndPrint {

2 uses interface Boot;

3 uses interface TemperatureSensor;

4 uses interface AMSend;

5 uses interface Receive;

6 }

7
8 implementation {

9 message_t packet;

10
11 event void Boot.booted () {

12 call TemperatureSensor.read ();

13 }

14
15 event void TemperatureSensor.readDone(uint16_t temp) {

16 uint16_t* packet_payload = (uint16_t *)( call AMSend.getPayload (&packet , NULL ));

17 *packet_payload = temp;

18 call AMSend.send(AM_BROADCAST_ADDR , &packet , sizeof(uint16_t ));

19 }

20
21 event void AMSend.sendDone(message_t* msg , error_t error) {

22 if(msg == &packet && error = SUCCESS) {

23 printf("Successfully sent temperature");

24 }

25 }

26
27 event message_t* Receive.receive(message_t* msg , void* payload , uint8_t len) {

28 if(len == sizeof(uint16_t )) {

29 printf("Received temperature %d", *payload );

30 }

31 return msg;

32 }

33 }

Listing 2.6: nesC: Communication Example

To start its application logic, this component uses the Boot interface, which
signals a booted event when the TinyOS system is successfully started. The
event handler for this event is implemented on lines 11 to 13 and calls the asyn-
chronous read() operation on the TemperatureSensor to obtain the current
temperature. Note that read() is a split-phase operation, which means that it
returns its result by invoking an event handler (i.e., readDone). In this event
handler, the measured temperature is encapsulated in a packet and broadcasted
using AMSend’s send operation (lines 15-19). When this operation finishes, the
sendDone event handler will be invoked and a debug message is printed (lines
21-25). Note that other components on the sensor node can also use AMSend’s
send operation, which would cause this sendDone event handler to be invoked,
too. Therefore, it is verified whether the sent packet is the one originating from
this component before printing the debug message. Finally, the receive event
handler will be invoked whenever a packet is received from the network. In this
event handler, the packet is parsed and its contents are printed if it contained
a temperature (lines 27-32).

Depending on the sensor hardware, a specific Active Messages implemen-
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tation has to be used. However, in general, the implementations only support
unreliable one-hop unicast or broadcast transmissions.

2.2.1.2 SunSPOT

SunSPOT sensor nodes (SunSPOTs) can be programmed in Java ME. In con-
trast to nesC, this allows the object-oriented programming paradigm to be used
for programming WSN applications. To write node-level sensor code, it suffices
to create a subclass of the MIDlet base-class. A MIDlet can be compared to
a component from nesC and one or more MIDlets can run next to each other
on a single SunSPOT. However, as every MIDlet runs in isolation (i.e., in an
isolate), MIDlets do not share mutable memory. Note that, unlike nesC’s com-
ponents, MIDlets can be dynamically deployed, started, paused, stopped, and
undeployed (i.e. at runtime).

For programming node interactions, either a reliable streaming or an unre-
liable datagram-style connection can be employed. These connections allow a
node to interact with other nodes in its one-hop neighborhood. As in nesC,
a node’s transmission power can also be adjusted. Listing 2.7 illustrates the
use of the datagram-style connection (i.e., a radiogram connection) by showing
the code for a MIDlet that broadcasts its temperature reading in its one-hop
neighborhood and prints out the temperature readings it receives.

1 public class SampleAndPrint extends MIDlet {

2 protected void startApp () throws MIDletStateChangeException {

3 try {

4 int temp = EDemoBoard.getInstance (). getADCTemperature (). getValue ();

5
6 DatagramConnection dgConnection = null;

7 Datagram dg = null;

8
9 dgConnection = (DatagramConnection)Connector.open("radiogram :// broadcast :50");

10 dg = dgConnection.newDatagram(dgConnection.getMaximumLength ());

11 dg.writeInt(temp);

12 dgConnection.send(dg);

13 System.out.println("Successfully sent temperature");

14
15 dgConnection = (RadiogramConnection) Connector.open("radiogram ://:50");

16 dg = dgConnection.newDatagram(dgConnection.getMaximumLength ());

17 while(true) {

18 dg.reset ();

19 dgConnection.receive(dg);

20 temp = dg.readInt ();

21 System.out.println("Received temperature " + temp);

22 }

23 } catch(IOException ioe) {

24 /* Error */

25 }

26 }

27
28 protected void pauseApp () { }

29 protected void destroyApp(boolean b) throws MIDletStateChangeException { }

30 }

Listing 2.7: SunSPOT: Communication Example

As soon as the MIDlet is started, its startApp() method will be invoked.
Remember that a MIDlet can also be paused or destroyed, upon which the
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pauseApp() and destroyApp() methods will be invoked, respectively. How-
ever, as these methods are irrelevant for this MIDlet, their implementations are
left blank. When the MIDlet starts, it obtains a temperature reading by reading
out a temperature sensor (line 4). Afterwards, a datagram connection is initial-
ized for broadcasting and a datagram encapsulating the measured temperature
is sent over the node’s radio (lines 6-13). Finally, to receive and print other tem-
perature readings, a new datagram connection is initialized and listened upon
(lines 15-22). For identifying the temperature datagrams, they are broadcasted
and listened for on channel 50, as specified in the connection initialization state-
ments (lines 9,15). Note that the send and receive methods are blocking and
will only return when a new temperature datagram has been successfully sent
or received. In case something goes wrong, these methods throw an exception.

2.2.1.3 Evaluation

Node-centric programming models offer a high degree of control over individual
sensor nodes as they allow to explicitly specify these nodes’ behavior. However,
programming using these models is quite low-level. The programmer is respon-
sible to write energy-efficient code and complex interactions among nodes might
require the implementation of advanced routing algorithms on top of the very
basic, typically one-hop, communication primitives. Even when interactions are
limited to a node’s one-hop neighborhood, they can become very complex as
several messages might have to be exchanged with the neighboring nodes (e.g.,
for in-network processing). In these cases, application logic (e.g., controlling
an actuator) and interaction logic (e.g., encapsulating messages in packets and
parsing packets upon reception) become tangled, rendering the code difficult to
understand, maintain, extend or reuse. To deal with these problem, several solu-
tions, typically to be used in combination with these node-centric models, have
been proposed. The following section discusses some of the most representative
ones.

2.2.2 Support for Interactions among Nodes

Programming interactions among nodes, essential in the setting of sensor net-
works, is one of the most difficult challenges of WSANs [2]. As discussed in the
previous section, basic communication primitives are often not appropriate to
model rich interactions. To this end, several solutions have been proposed to
facilitate programming these interactions. This section discusses some of the
most representative ones, which either support node communication through
message exchanges or date sharing.

2.2.2.1 Communication Through Messages

Typically, sensor nodes communicate by exchanging messages. At a low level,
messages are represented as packets that are physically addressed to other nodes
in a node’s one-hop neighborhood. To facilitate communication through mes-
sages, solutions like Logical Neighborhoods [24] allow messages to be log-
ically addressed to groups of nodes anywhere in the network. Solutions like
LooCI [25], on the other hand, abstract messages as events that can be ex-
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changed throughout the network by using a Publish-Subscribe interaction pat-
tern [13].

Logical Neighborhoods. Logical Neighborhoods is a programming ab-
straction that allows a node to define its neighborhoods based on logical proper-
ties of the nodes in the network. This extends the previously mentioned notion
of neighborhood, which was based on a node’s radio communication range. De-
pending on the definition of a neighborhood, some nodes will be in it, while
other nodes won’t. Note that these nodes might be located anywhere in the
network, and not necessarily in the one-hop neighborhood of the node defining
the neighborhood. Neighborhoods can be defined using a declarative program-
ming language, called Spidey, which is an extension to an existing node-centric
programming language (e.g., Spidey has been built on top of TinyOS’s nesC).
After defining a neighborhood, variants of the underlying language’s communi-
cation primitives (i.e., send in nesC) can be employed to send messages to its
members.

As an example, we can consider a WSAN application for detecting and
fighting fire. In every room, several smoke sensors have to be deployed, next
to a single actuator node for controlling the sprinklers. To allow the actuator
node to easily communicate with the smoke sensors in its room, it can define
the mySensors neighborhood as shown in Listing 2.8.

1 neighborhood template SmokeSensors(loc)

2 with Function = "sensor" and

3 Type = "smoke" and

4 Location = loc

5
6 create neighborhood mySensors

7 from SmokeSensors(loc: "auditorium A")

8 max hops 3 credits 30

Listing 2.8: Logical Neighborhoods: neighborhood template and instantiation

A neighborhood definition consists of a template and an instantiation. In this
example, the template SmokeSensors(loc) includes all smoke sensors located in
loc (lines 1-4). As the actuator node is in auditorium A, it creates a mySensors

neighborhood by instantiating the template with the appropriate location (lines
6-8). Note that this instantiation also specifies the maximum number of hops
that a member of the neighborhood can be separated from the actuator, and
a limit on the cost for communication in terms of credits (i.e., an application-
defined notion of communication costs).

To allow attributes such as Function and Type to be used in a neighborhood
definition, potential members of the neighborhood should export them. To this
end, all potential members have to instantiate a node-template. Listing 2.9
shows the Spidey code to be used by a smoke sensor from the example.

1 node template Device

2 static Function

3 static Type

4 static Location

5 dynamic BatteryPower

6
7 create node smoke1 from Device

8 Function as "sensor"

9 Type as "smoke"
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10 Location as "auditorium A"

11 BatteryPower as getBatteryPower ()

Listing 2.9: Logical Neighborhoods: node template and instantiation

While the node template (lines 1-5) lists all exported attributes and their nature
(i.e., static or dynamic), its instantiation (lines 7-11) provides a node’s values
for these exported attributes.

LooCI. LooCI is an event-based WSN middleware that introduces both a
component infrastructure and a decentralized event-bus to sensor networks. It
allows multiple components to be deployed on the same sensor node and it
allows these components to communicate by exchanging events through the
decentralized event-bus. Events abstract messages; they have a particular type
and a payload that contains their values. Components can both publish events
and subscribe to certain event types. Based on the event-subscriptions (i.e.,
so-called wirings), the events published in the sensor network will be routed
from the publishers to the subscribers. LooCI is available on the SunSPOT
platform where its components can be compared to MIDlets. A component
can publish events by using the publish(Event) method, and it can process
the events it received by implementing an event handler. In addition, LooCI
comes with a gateway application to run on a back-end entity, which allows
to remotely deploy components on the nodes in the network, and to configure
the wirings amongst these components. As a result, sensor networks using the
LooCI middleware can be dynamically (re)configured.

As an example, Listing 2.10 shows the code for a component that acts as a
temperature filter (taken from the LooCI website1). This component subscribes
to temperature reading events, which it will re-publish only when they exceed
a certain threshold. This component has to be wired to a component that
publishes temperature readings and to other components that subscribe to these
readings.

1 public class TempFilter extends LooCIComponent {

2 private final int TEMP_THRESHOLD = 20;

3
4 public TempFilter () {

5 super("TempFilter", // component type

6 new byte []{ EventTypes.TEMP_READING}, // publications

7 new byte []{ EventTypes.TEMP_READING }); // subscriptions

8 }

9
10 protected void start() { }

11 protected void stop() { }

12
13 public void receive(Event event) {

14 if (event.getType () == EventTypes.TEMP_READING) {

15 PayloadBuilder payload = new PayloadBuilder(event.getPayload ());

16 int reading = payload.getIntegerAt (0);

17 System.out.println("[TempFilter] Received temperature: " + reading );

18 if (reading > TEMP_THRESHOLD) {

19 payload = new PayloadBuilder ();

20 payload.addInteger(reading );

21 publish(new Event(EventTypes.TEMP_READING , getComponentID (),

22 payload.getPayload ()));

23 }

1http://code.google.com/p/looci/wiki/FirstComponent
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24 }

25 }

26 }

Listing 2.10: LooCI: A Temperature Filter Component

As soon as the component is started or stopped, its start or stop method
will be invoked, respectively. However, as no special actions are required on
these moments, the implementation for these methods is left blank (lines 10-
11). The component’s main functionality is implemented in its event handler
(i.e., the receive(Event) method), which will be invoked whenever a new event
is received. In case the received event is a temperature reading, the measured
temperature is extracted from the event’s payload, compared to the tempera-
ture threshold, and published in a new temperature reading event if it exceeded
the threshold (lines 13-25). Finally, the super call in the component’s con-
structor specifies the component’s name together with the events it publishes
and the events it subscribes to (lines 4-8). Note, however, that this data in the
constructor is only meta-data that can be read using the gateway. To achieve
interactions between components, wirings have to be explicitly configured. Even
though these wirings can be hard-coded within a component’s implementation,
they are typically configured from the gateway.

To illustrate how the above component can be used, Listing 2.11 shows a
transcript of an interactive session with the gateway.

1 deploy TempSensor.jar 0000.0000.0000.0001

2 => 3

3 deploy TempFilter.jar 0000.0000.0000.0001

4 => 4

5 wireLocal 101 3 101 4 0000.0000.0000.0001

6 => true

7 wireToAll 101 4 0000.0000.0000.0001

8 => true

9 deploy TempDisplay.jar 0000.0000.0000.0002

10 => 3

11 wireFrom 101 4 0000.0000.0000.0001 101 3 0000.0000.0000.0002

12 => true

Listing 2.11: LooCI: Interacting with the gateway

This transcript assumes the existence of three components: a temperature sen-
sor, a temperature filter and a component for displaying temperatures. For their
interactions, these components all employ temperature reading events, which
have event type 101. The components are deployed to two different nodes in
the network (lines 1,3,9). Note that the gateway always answers a component’s
node-local identifier after deployment (lines 2,4,10). These identifiers have to
be used for wiring the components. As both the temperature sensor and -filter
have been deployed on the same node, they are wired using wireLocal. The
command on line 5 states that every temperature event published by the tem-
perature sensor has to be delivered to the temperature filter. The temperature
filter’s published events, on the other hand, should be delivered to all compo-
nents wired to it, which is expressed using wireToAll (line 7). Finally, the
component for displaying temperature events should obtain these events from
the temperature filter and is therefore wired to it using wireFrom (line 11).
Next to the illustrated commands, wireTo and wireFromAll can also be used
for wirings components. While the first allows a component to be wired to
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send its events to a specifically addressed other component, the latter allows a
component to be wired to receive a certain event from any component.

2.2.2.2 Communication Through Data Sharing

Next to communicating by exchanging messages, sensor nodes can also com-
municate by sharing data. Solutions that support this kind of communication
introduce a shared memory space for a particular region of the network in which
nodes can read or write data. This shared data is commonly represented as
shared variables or tuples. In this section, we will discuss three representative
solutions: Abstract Regions [26], which allows variables to be shared and ag-
gregated, TeenyLIME [27], which allows tuples to be shared and reacted upon
through event handlers, and FACTS [28], which allows tuples to be shared and
reacted upon through declarative rules.

Abstract Regions. Abstract Regions is a collection of communication
primitives that provide data sharing and aggregation in a particular region of
a sensor network. To share data within a region, a node can export named
variables, which can be read remotely by other nodes within the region. In
addition, when several nodes export variables with identical names, their values
can be aggregated using an associative operator (e.g., sum, max or min). A
node can define an arbitrary number of regions in terms of radio connectivity
or geographic location (e.g., a region with all nodes within n radio hops, or the
k nearest nodes). To support QoS requirements, the communication primitives
also return some quality measures (e.g., the amount of nodes that participated
in an aggregation). Based on these measures, low-level communication pa-
rameters can be tweaked through a tuning interface. Abstract Regions was
implemented in nesC and employs a lightweight, thread-like concurrency model
to provide blocking operations.

To illustrate the use of Abstract Regions, we can consider an object-
tracking application. This application uses several sensor nodes to take periodic
magnetometer readings. Every node shares its readings and its location, and
individually verifies whether its reading exceeds a certain threshold. In this
case, an object is detected and its centroid can be computed using the shared
variables to estimate its location. Listing 2.12 shows the code to be deployed
on the sensor nodes (modified from [26]).

1 location = get_location ();

2
3 // Create a region with the 8 nearest neighbors

4 region = k_nearest_region.create (8);

5
6 while (true) {

7 reading = get_sensor_reading ();

8
9 // Store data in shared variables

10 region.putvar(reading_key , reading );

11 region.putvar(reg_x_key , reading * location.x);

12 region.putvar(reg_y_key , reading * location.y);

13
14 if (reading > threshold) {

15 // Obtain the ID of the node that measured the highest reading (i.e., the leader)

16 max_id = region.reduce(OP_MAXID , reading_key );

17
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18 // If I am the leader ...

19 if (max_id == my_id) {

20 // Compute the centroid

21 sum = region.reduce(OP_SUM , reading_key );

22 sum_x = region.reduce(OP_SUM , reg_x_key );

23 sum_y = region.reduce(OP_SUM , reg_y_key );

24 centroid.x = sum_x / sum;

25 centroid.y = sum_y / sum;

26 send_to_basestation(centroid );

27 }

28 }

29 sleep(periodic_delay );

30 }

Listing 2.12: Abstract Regions: Implementing an object-tracking application

Every sensor node initializes a region to contain its eight nearest neighbors using
the k nearest region.create() primitive (line 4). In the main loop (lines 6-
30), the magnetometer is read out and the required data is stored in shared
variables using the putvar() primitive (lines 7-12). If the reading happens to
be above the predefined threshold, an object is detected and its position should
be computed. However, to make sure that only a single node computes this
position, a leader is elected based on the measured magnetometer readings. To
this end, the reduce() primitive is employed to aggregate the measured readings
using the OP MAXID operator (line 16). Finally, the node verifies whether it was
elected as the leader, and if so, it computes the centroid and sends it to the base
station (lines 18-27).

TeenyLIME. TeenyLIME brings the tuple space abstraction, originally pro-
posed in Linda [29], to WSNs. A tuple space (TS) is a repository of tuples, which
represent data as a sequence of typed fields (e.g., < ”temp”, 30 >). Every node
has a local TS, which is shared with other nodes in its one-hop neighborhood,
and several operations can be performed on either the local TS, or the union of
all TS’s in the neighborhood (i.e., the shared TS). As in Linda, tuples can be
stored using the out operation, read using the rd operation, and removed using
the in operation. For the latter operations, tuples can be matched through
pattern matching. A pattern is a tuple with fields for which the exact values
have not been specified (e.g., < ”temp”, ?int >). In contrast to Linda, fields
in a pattern can also be constrained by a predicate and a pattern can be con-
strained only to match tuples of a certain age. In addition, tuples can be set
to expire, after which they are automatically removed from the TS. Next to the
above operations, reactions can also be registered on a TS, and the notion of
capability tuples allows a node to store a pattern in its TS, which it can then
instantiate whenever it is matched by a query from another node. The latter
can be used, for instance, to make a node read out its sensors only on demand.
TeenyLIME has been implemented on top of TinyOS and provides an API
for nesC. As all operations are split-phase operations, they return their results
by invoking an event handler.

To illustrate the API, we can consider an application for detecting fire, which
bases its detection on very high temperature readings. Under the assumption
that all temperature sensors are in the one-hop neighborhood of an actuator that
controls sprinklers, the code from Listings 2.13 and 2.14, modified from [27], can
be deployed on the sensor- and actuator nodes, respectively.
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1 event void Boot.booted () {

2 call SensingTimer.start(TIMER_REPEAT , SENSING_TIMER );

3 }

4
5 event result_t SensingTimer.fired() {

6 return call TemperatureSensor.read ();

7 }

8
9 event void TemperatureSensor.readDone(uint16_t temp) {

10 tuple tempTuple = newTuple(2, actualField_uint16(TEMPERATURE),

11 actualField_uint16(temp ));

12 setExpireIn(tempTuple , 3);

13 call TupleSpace.out(FALSE ,TL_LOCAL ,& tempTuple );

14 return SUCCESS;

15 }

Listing 2.13: TeenyLIME: code for a sensor

1 TLOpId_t tempTupleReaction;

2
3 event void Boot.booted () {

4 tuple tempPattern = newTuple(2, actualField_uint16(TEMPERATURE),

5 greaterField(TEMPERATURE_SAFETY ));

6 tempTupleReaction = call TS.addReaction(TRUE , TL_NEIGHBORHOOD ,

7 &tempPattern );

8 }

9 event result_t TS.tupleReady(TLOpId_t opId , tuple* tuples , uint8_t number) {

10 if(opId == tempTupleReaction) {

11 // Turn on sprinklers ...

12 }

13 }

Listing 2.14: TeenyLIME: code for an actuator

As soon the temperature sensor is started, it sets a timer to be fired periodically
(Listing 2.13, lines 1-3). When this timer fires, the current temperature is
measured, encapsulated in a tuple and stored in the local tuple space, as specified
by TL LOCAL in the out operation (lines 5-15). Note that the tuple is set to expire
after 3 epochs2 (line 12). The actuator node, on the other hand, configures its
TS when it is started. To this end, a pattern for matching temperature tuples
with a value exceeding the predefined threshold is created (Listing 2.14, lines
4-5) and used to register a reaction on the shared TS, as specified by TL -

NEIGHBORHOOD in the addReaction operation (lines 6-7). As soon as a tuple
in the shared TS matches this pattern, the tupleReady event will be fired,
and the sprinklers can be turned on (lines 9-13). Note that both out and
addReaction take a boolean as a first argument (Listing 2.13, line 13, Listing
2.14, line 6). This boolean indicates whether the tuples for the operation should
be communicated reliably. As it is important for the actuator’s reaction to be
triggered when a high temperature is observed, this boolean is set to true for
the reaction. In addition, note that every operation in the TeenyLIME API
returns an operation id, which can be used in the event handler to identify the
operation that completed (Listing 2.14 lines 6,10). Finally, even though tuples
can expire, it is not possible to react to their expiration and therefore special
application logic would be required to decide when to turn off the sprinklers
from the example.

2An epoch is a constant amount of time specified by TeenyLIME.
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FACTS. FACTS introduces a rule-based programming language to WSNs.
Its main abstractions are facts, rules, and functions. Facts are named tuples
consisting of key-value pairs and are stored in a node-local fact repository. In
contrast to TeenyLIME’s tuple space, the fact repository itself is not shared,
but a fact can be sent to other nodes (possibly multiple hops away) which will
then add it to their fact repository. As such, a fact repository can contain facts
originating from several nodes. Whenever a fact is added to the fact repository,
it can trigger the execution of rules, which specify a reaction to facts. Rules are
named and consist of a set of conditions and an ordered list of statements to
be executed whenever their conditions are met. While a condition can verify a
boolean expression or the presence of a particular fact in the fact repository, a
statement can call a C function or create, remove, modify or publish facts. For
instance, a C function can read out a sensor and the result can be stored in a new
fact. Both conditions and statements can take a slot as a parameter, which has
to be used to select relevant facts from the fact repository. As such, conditions
and statements are entirely independent: while a parametrized condition is
satisfied when at least one fact matches its slot, a parametrized statement is
executed for every fact matching its slot. Finally, FACTS encapsulates related
rules and facts in a ruleset, which can be compared to a component that provides
a certain service. Rulesets can use other rulesets, which fosters code reuse.

As an example, we can consider the implementation of a coverage algo-
rithm. In this algorithm, every node broadcasts its range and individually ver-
ifies whether it covers the range of any other node. Based on this knowledge,
some sensor nodes might, for instance, be put to sleep. Listing 2.15 shows the
implementation for this algorithm (modified from [28]), which can be deployed
on every sensor node in the network. A rule is written as its name, followed by
its conditions prefixed with <- and its statements prefixed with ->.

1 sendRange

2 <- Exists Timer.expiredSlot

3 -> Retract Timer.expiredSlot

4 -> Define "rangeFact"

5 -> Set ("rangeFact" "xMin") (posXSlot - System.txRadiusSlot)

6 -> Set ("rangeFact" "xMax") (posXSlot + System.txRadiusSlot)

7 -> Set ("rangeFact" "yMin") (posYSlot - System.txRadiusSlot)

8 -> Set ("rangeFact" "yMax") (posYSlot + System.txRadiusSlot)

9 -> Send 0 System.txPowerSlot

10 ("rangeFact" [(("rangeFact" "owner") == nodeIDSlot )])

11 -> Define "rangeSendFact"

12
13 xyMinCovered

14 <- Exists "rangeSendFact"

15 <- Eval (( posXSlot - System.txRadiusSlot) < ("rangeFact" "xMin"))

16 <- Eval (( posYSlot - System.txRadiusSlot) < ("rangeFact" "yMin"))

17 -> Define "xyMinCoveredFact"

18
19 determineCoverage

20 <- Exists "xyMinCoveredFact"

21 <- Exists "xMaxYMinCoveredFact"

22 <- Exists "xyMaxCoveredFact"

23 <- Exists "xMinYMmaxCoveredFact"

24 -> Define "coveredFact"

Listing 2.15: FACTS: a coverage algorithm

The sendRange rule is triggered by a timer that adds a fact to the fact repos-
itory upon firing (lines 1-2). As a reaction, the rule removes the timer’s fact
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and creates a new rangeFact to contain the node’s range (lines 3-8). This fact
is broadcasted to all nodes in the one-hop neighborhood (line 9-10). Note that
only the locally created fact has to be broadcasted to avoid re-broadcasting
rangeFacts from other nodes. To this end, the fact to be broadcasted is se-
lected from the fact repository using a slot with an additional condition on
the fact’s owner, expressed between brackets (line 10). After broadcasting
the fact, a rangeSendFact is added to the fact repository to indicate that
the range information was published (line 11). Afterwards, a node awaits
the rangeFacts from its neighbors. Whenever such a fact is received, the
xyMinCovered, xMaxYMinCovered, xMinYMaxCovered, and xyMaxCovered rules
will inspect its data to verify whether the sensor node is covering the received
range. For brevity, only the xyMinCovered rule is shown (lines 13-17). Note
that this rule adds a xyMinCoveredFact to the fact repository if the bottom-
left of the received range is covered (line 17). When all corners of the received
range are covered, the range is covered and a coveredFact is added to the fact
repository (lines 19-24). This fact can be used in other rules to act accordingly.

2.2.2.3 Evaluation

This section introduced several representative solutions that aid in specifying
interactions among sensor nodes when programming sensor network applications
from a node-level perspective. To this end, it categorized the solutions according
to the type of communication that they support.

While the solutions for communication through messages clearly facilitate
sending messages, they do not help in processing these messages upon reception.
Indeed, both Active Messages and LooCI require all received messages (or
events) to be parsed and processed in a single event handler. Clearly, this
approach won’t scale as a node participates in more interactions (e.g., for in-
network processing of various data from several nodes).

For the solutions supporting communication through data sharing, more vari-
ations were presented. For instance, Abstract Regions allows to elegantly
express algorithms that operate on data originating from several nodes in the
network through aggregation. As a result, it is very appropriate to program
in-network processing logic. However, as it does not provide any means to react
to the appearance of new data, there’s no other option than to actively pull
the shared data in order to process it. TeenyLIME, on the other hand, allows
to react to the appearance of new data in the shared tuple space. Neverthe-
less, it suffers from the exact same issues as were identified for the solutions
for communication through messages: all registered reactions have to be dealt
with in a single event handler. Despite this fact, TeenyLIME also introduced
some interesting ideas. For instance, as tuples commonly contain sensor data,
typically only useful for a limited amount of time, the introduction of tuple
expiration and the ability to react to tuples with a maximum age is clearly
well-founded. The ability to react to the expiration of tuples can be considered
as a missing feature. Finally, FACTS’ rules allow to modularize interactions.
When a node has to react differently to various facts (i.e., when it participates
in multiple interactions), it suffices to install multiple rules. In addition, unlike
TeenyLIME, FACTS allows to react to the appearance of multiple facts (e.g.,
a temperature- and a humidity fact). However, variables can be considered as
a missing feature. In the absence of variables, no facts can be related by their
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content. For instance, it’s not possible to express a rule to compute a comfort
level based on a temperature sensor reading and a humidity sensor reading that
originate from the same node or room. Terfloth et al. motivate the absence
of variables by the fact that binding these variables at runtime would be too
expensive in terms of memory usage for an embedded system [28]. Noteworthy,
however, is the idea to modularize rules in rulesets that can be reused by other
rulesets.

2.2.3 Network-centric Programming

Having introduced node-centric programming models and solutions that support
programming node interactions from a node-level perspective, we shift our focus
to the programming models that allow a sensor network to be programmed
from a macroscopic viewpoint while still offering control over the individual
nodes. These programming models are often referred to as network-centric-
or macroprogramming models [2]. As they allow the desired global behavior
of the entire sensor network to be programmed in a centralized fashion, the
programmer can maintain a high-level overview of the application.

Network-centric programming models can be categorized according to their
target applications, which can be either applications exhibiting logical homo-
geneity, applications requiring mobile code or applications exhibiting logical het-
erogeneity. This section briefly introduces one representative model for each
category and thereby completes the picture of the major approaches in the
state of the art for programming wireless sensor networks.

2.2.3.1 Models for Homogeneous Applications

In applications that exhibit logical homogeneity, every sensor node requires the
same behavior. Typical examples are applications for constructing a routing
tree or for tracking objects. Among the programming models that support the
development of this kind of applications are Kairos [30] and snLog [31]. While
snLog is a declarative, rule-based language, Kairos is a set of abstractions that
can extend any imperative language. As a representative example for this cat-
egory of programming models, we will briefly discuss the latter.

Kairos abstracts a wireless sensor network as a collection of nodes that can
all be programmed together in a single program. To this end, it extends any
node-centric programming language with three abstractions: an abstraction for
a node, typically a member of a node-set that can be iterated over, an abstrac-
tion for a list containing a node’s one-hop neighbors (i.e., a node-set), and an
abstraction for remote (read-only) access to a node’s variables. Using these ab-
stractions, a WSN application can be programmed in a way that resembles the
high-level algorithm descriptions found in textbooks. Kairos comes with a pre-
compiler to compile its programs to code for the extended node-level language,
and a runtime library for this language. Both the precompiler and the run-
time have been implemented as an extension to Python. After precompiling a
Kairos program and compiling the node-level code, the binary can be deployed
on every node in the network. By default, the Kairos runtime loosely synchro-
nizes state across nodes, which means that reading a remote variable initially
blocks until the value is obtained and cached, but afterwards immediately re-
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turns the cached value. To reduce communication overhead, these cached values
are lazily updated as the remote variables are modified, and as such, eventually
converge to the most recent values.

To illustrate Kairos’ programming model, we can consider an application
for constructing a shortest-path routing tree. In this program, every node pe-
riodically queries its neighbors for their distance to the root, selects the node
at the shortest distance, and updates its own parent node accordingly. Listing
2.16 shows the code for this application (modified from [30]).

1 void buildtree(node root)

2 node parent , self;

3 unsigned short dist_from_root;

4 node_list neighboring_nodes , full_node_set;

5 unsigned int sleep_interval =1000;

6 // Initialize every node

7 full_node_set=get_available_nodes ();

8 for (node temp=get_first(full_node_set );

9 temp!=NULL;

10 temp=get_next(full_node_set ))

11 self=get_local_node_id ();

12 if (temp==root)

13 dist_from_root =0;

14 parent=self;

15 else

16 dist_from_root=INF;

17 neighboring_nodes=create_node_list(get_neighbors(temp ));

18 // Start the main loop on every node

19 full_node_set=get_available_nodes ();

20 for (node iter1=get_first(full_node_set );

21 iter1!=NULL;

22 iter1=get_next(full_node_set ))

23 for (;;)

24 sleep(sleep_interval );

25 for (node iter2=get_first(neighboring_nodes );

26 iter2!=NULL;

27 iter2=get_next(neighboring_nodes ))

28 if (dist_from_root@iter2 +1< dist_from_root)

29 dist_from_root=dist_from_root@iter2 +1;

30 parent=iter2;

Listing 2.16: Kairos: Constructing a shortest-path routing tree

Lines 2 to 5 declare the variables relevant to the application. These variables
can be used in the context of the global program (e.g., full node set), or in
the context of a node (i.e., within an iteration over all nodes). By iterating
over all nodes in the sensor network, obtained from get available nodes()

(line 7), every node’s state is first initialized (lines 8-17). Only the root node
knows its distance to the root, and its parent (i.e., itself). In addition, every
node’s neighboring nodes are obtained using get neighbors(Node) (line 17).
Afterwards, the main loop is started on every node (lines 18-30). After a period
of sleep, the distance from each neighbor to the root is remotely read using
dist from root@iter2 (line 28), and a neighbor is set as a node’s parent if it
provides a shorter path to the root than the currently stored one (lines 28-30).
Note that, due to the loose state synchronization, the remotely read distance
is not necessary the most recent one. However, as every node keeps looping
to update its state, every node will eventually obtain the right parent on the
shortest path to the root node.
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2.2.3.2 Models for Mobile Code

Certain applications or network tasks can be elegantly expressed as agents that
move throughout a WSN. The implementation of such an agent is often called
mobile code [1]. After injecting an agent in a WSN, it autonomously moves
throughout the network to execute instructions on every visited node, and af-
terwards typically returns to the node where it was injected to return some val-
ues. Among the programming models that support the development of mobile
code are ActorNet [4], Spatial Programming [32] and SpatialViews [33].
ActorNet allows mobile code to be written in a Scheme-like language, and it
allows this code to migrate from a node to any other node in its one-hop neigh-
borhood. Spatial Programming and SpatialViews, on the other hand,
allow regions in the WSN to be specified and allow mobile code to migrate to
the nodes within these regions. Note that, as the position of the nodes might
change, their membership in a particular region can also change. Since both
Spatial Programming and SpatialViews expect the nodes to have sub-
stantial computation and communication resources, an unrealistic scenario in
WSNs, we will discuss ActorNet as a representative example for this category
of programming models.

ActorNet is a Scheme-like language that allows programming mobile agents.
To this end, it implements the actor model of distributed computing [34] on
WSNs. An agent is represented by an actor, which can migrate itself to another
node in its one-hop neighborhood. In addition, every node runs, by default, a
single launcher actor. A launcher actor can be sent expressions which it will
evaluate. As such, an actor can evaluate expressions on the nodes in its one-hop
neighborhood, which can communicate their result back to their originating ac-
tor through message passing. In ActorNet, actor migration is implemented
in terms of the callcc primitive, which takes a single-parameter function as
its operand, and calls this function with the current continuation. Because the
state of an actor is represented by its current continuation and the value that
will be passed to it, an actor can migrate to a neighboring node by sending
its continuation and its value to that node’s launcher actor. As a result, the
launcher actor will evaluate the continuation and continue the migrated actor’s
work. The implementation for the migrate primitive, modified from [4], is
shown below:

1 (define (migrate addr value) ; Migrate to actor addressed by addr

2 (callcc (lambda (cc)

3 (send addr cc value ))))

The send primitive is used to send a message to the launcher actor with address
addr (line 3). Note that send can also be used to send a message to a regular
actor, which can access its messages in a queue accessible through the msgq

primitive.
To illustrate ActorNet’s programming model, we can consider an actor

that searches a WSN for the node where the highest temperature is measured,
turns on a LED on this node, and returns the measured temperature to the
base station to print it. The code for this searching actor, modified from [4], is
shown in Listing 2.17.

1 (rec (measure (oriActor) ; Return temp and launcher actor id

2 (send oriActor (io 1) (io 0)))) ; to originating actor
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3
4 (rec (move returnPath maxTemp) ; Searching Actor

5 (seq

6 ;; evaluate measure on the neighbors

7 (send 0 measure (id))

8 (delay 100) ;;wait for 10 sec

9 (( lambda (maxFromNeighbors)

10 (par

11 ;;if it arrives at an maximal point

12 (cond (<= (car maxFromNeighbors) maxTemp)

13 ;;then turn on LED and return the maxTemp to the base station

14 (seq (io 2)

15 (return migrate returnPath maxTemp ))

16 ;;else migrate to the highest temp. neighbor

17 (move (cons (io 0) returnPath)

18 (migrate

19 (cadr maxFromNeighbors) ; neighbor ’s launcher ID

20 (car maxFromNeighbors )))) ; neighbor ’s temp

21 (setcdr (msgq) nil))) ; reset msgq

22 ; find the max temp neighbor

23 (max (cdr (msgq)) (list 0 0)))))

24
25 (rec (return migrate path temp)

26 (cond (equal path nil)

27 (print temp)

28 (return migrate (cdr path) (migrate (car path) temp ))))

Listing 2.17: ActorNet: An agent/actor looking for the highest temperature in the
WSN

The searching actor is implemented by the move function (lines 4-23). To obtain
the temperatures in its surroundings, it evaluates measure on its neighboring
nodes and waits ten seconds to process the results (lines 6-8). The measure

function sends the measured temperature, obtained through (io 1), and the
id of the node’s launcher actor, obtained through (io 0) back to the searching
actor, whose address was passed to the measure function using (id) (line 7).
After ten seconds, the searching actor iterates over its message queue to obtain
the message from the neighboring node that answered the highest temperature
(lines 22-23). It then verifies whether this temperature is higher than its cur-
rently found maximum temperature (lines 11-20). If it is, the searching actor
migrates to this neighbor to continue its search for even higher temperatures
(lines 17-20). On the other hand, when none of its neighboring nodes answered
a higher temperature than the current maximum, the searching actor is on the
node with the highest temperature, turns on the LED using (io 2), and returns
the found maximum temperature to the base station (lines 14-15). To this end,
it employs the return function (lines 25-28) to migrate back to the base station
by following the path that was stored on its search (line 17) back, until the base
station is reached and the temperature can be printed (line 27). Note that the
par primitive is used on line 10 to reset the message queue (line 21) in parallel
with the processing of the message from the highest neighbor.

2.2.3.3 Models for Heterogeneous Applications

In applications that exhibit logical heterogeneity, various nodes need to behave
differently. A typical example is an application where sensor nodes need to
collect sensor data and actuator nodes need to process this data in order to
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control their actuators. One network-centric programming model that supports
the development of these applications is ATaG [35, 36].

Abstract Task Graph (ATaG) is a framework providing a mixed declarative-
imperative programming paradigm for developing WSN applications from a
macroscopic viewpoint. The main abstractions offered are abstract tasks, ab-
stract data items and abstract channels. Tasks represent an application’s pro-
cessing and can produce or consume data items. Channels, on the other hand,
represent the interactions among tasks. They connect data items to the tasks
that produce and consume them. While tasks, data items, and channels have
to be declared declaratively (i.e., graphically in a task graph), tasks have to be
implemented in an imperative language. Therein, the programmer can use two
primitives: getData() to consume a data item, and putData() to produce a
data item. Based on the channel declarations, ATaG’s runtime will move these
data items between producers and consumers. Finally, given the concrete in-
formation of the target network, the ATaG compiler can be used to transform
an ATaG program into architecture-specific node-level behaviors and decide on
their deployment to nodes.

To illustrate this programming model, we can consider a simple applica-
tion in which temperature sensors periodically take readings to be processed by
several cluster-heads, each deployed in a particular region. Figure 2.1, taken
from [1], depicts the task graph for the corresponding ATaG program. In this
graph, tasks are represented by ellipses, data items are represented by rectan-
gles, and channels are represented by arrows. As expressed by the channels,32 · L. Mottola and G.P. Picco

Fig. 24. A cluster-based data collection program in ATaG.

the rules involved. Optimization goals can also be set at compile-time, e.g., to
minimize code size as opposed to data size. Communication is handled using the
Active Message stack described in Section 5.1.1.

5.6.3 Hybrid: Abstract Task Graph (ATaG).

Overview. ATaG is a programming framework providing a mixed declarative-
imperative approach. The notions of abstract task and abstract data item are at
the core of the programming model. A task is a logical entity encapsulating the
processing of one or more data items, which represent the information. Different
copies of the same task may run on different nodes. The flow of information between
tasks is specified declaratively with abstract channels connecting a data item to the
tasks that produce or consume it.

The code in a task is written in an imperative language, and relies on a shared
data pool for local communication, allowing tasks to output data or to be no-
tified when some data of interest becomes available. To support the former, a
putData(DataItem) operation is made available. As for the latter, programmers
are provided with a task template that lists an empty handleDataItem() function
for each incoming channel. ATaG helps programmers in expressing multi-stage,
data-centric processing. It is therefore suited to sense-and-react applications, where
the application typically requires complex operations to decide on the actions to
take.

Example. Figure 24 illustrates a sample ATaG program, adapted from [Pathak
et al. 2007], specifying a cluster-based data gathering application. Sensors within a
cluster take periodic temperature readings collected by the corresponding cluster-
head. The former behavior is encoded in the Sampler task, while the latter is
specified in Cluster-Head. The Temperature data item is connected to both tasks
using a channel originating from Sampler, and a channel directed to Cluster-Head.

Tasks are annotated with firing and instantiation rules. The former specify
when the processing in a task must be triggered. In our example, the Sam-
pler task is triggered every 10 seconds according to the periodic rule. The
Cluster-Head fires whenever at least one data item is available on any of its in-
coming channels, according to the any-data firing rule. Tasks run on the indi-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Figure 2.1: ATaG: Cluster-based data processing - task graph

the Sampler tasks produce Temperature data items, which are consumed by a
Cluster-Head task. Note that both tasks and channels are annotated. These
annotations are shown in colored squashed rectangles. A task’s annotation has
two rules: an instantiation rule deciding the task’s instantiation to nodes, and
a firing rule deciding when the task will be executed. For instance, the Sampler
task is declared to be instantiated on every node in the network (i.e., through
nodes-per-instance:1), while the Cluster-Head is declared to be instantiated
once every 10 square meters (i.e., through area-per-instance:10sq.m). In
addition, the Sampler task will be executed every 10 seconds, as specified by
the periodic firing rule, while the Cluster-Head will be executed whenever any
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of the data items it consumes becomes available, as specified by the anydata

firing rule. If a task consumes multiple data items, the all-data firing rule
can also be used to specify that the task should be executed as soon as all of
these data items are available. Channels are annotated to express the specific
interest of a task in a data item. For instance, the Temperature data items
produced by a Sampler task remain local to the node where it was produced,
while the Cluster-Heads will gather these data items from the Sampler tasks in
their domain. Roughly speaking, a Cluster-Head ’s domain consists of all nodes
hosting a Sampler task within 10 square meters around the Cluster-Head (i.e.,
the domain is decided by the task’s area-per-instance instantiation rule).

Based on this task graph, the ATaG compiler will generate templates for the
tasks that can be implemented by the programmer. For instance, the code for
the Sampler task, taken from [1], is shown in Listing 2.18. The template itself
contained only the loop with the sleep instruction, based on the periodic firing
rule. Similarly, the template for the Cluster-Head contains an event handler in
which getData() can be used to consume the available data items. This event
handler will be invoked when the Temperature data item consumed by the task
becomes available.

1 // ...

2 while (TRUE) {

3 sleep (10000);

4 // Written by the programmer

5 int temperature = getTemperature ();

6 TemperatureDataItem t = newTemperatureDataItem(temperature );

7 putData(t);

8 }

9 // ...

Listing 2.18: ATaG: Cluster-based data processing - code for the Sampler task

Note that ATaG programs are highly extensible and reusable because there
is no direct task-to-task coupling. The ATaG framework allows users to build
libraries of ATaG programs that can be reused to build larger applications.

2.2.3.4 Evaluation

Network-centric programming models allow WSN applications to be programmed
in a centralized fashion, thereby allowing programmers to maintain a high-level
overview of their application. In this section, we introduced several network-
centric programming models categorized by their application domain. Given the
fact that these solutions each provide the appropriate level of abstraction for
their target applications, the growing interest in macroprogramming of sensor
networks [35] is well-founded. Next to facilitating WSN application develop-
ment, these models also foster code reuse. Even ATaG, the model that targets
applications exhibiting logical heterogeneity, allows tasks and interactions to be
reused among various projects. It does, however, still require the programmer
to deal with the complexities of event handlers.

2.3 Overview

The table in Figure 2.2 gives an overview of the state of the art for programming
WSNs, as presented in this chapter. While the first columns of this table present
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the general properties of each solution, the remaining columns require additional
explanation.

Communication. The column for communication presents the properties of
the solutions’ features that support node interactions. It is only filled in if these
features are visible to the programmer, otherwise the properties are presented
as non-applicable. The addressing property specifies how the nodes to interact
with have to be addressed, which can be either physical (e.g., by their MAC
address or distance in amount of hops) or logical. Through logical addressing,
nodes are addressed by their application-level properties (e.g., all nodes collect-
ing temperature measurements). Note that interactions have a certain scope.
While some solutions allow a node to interact only with nodes in their one-hop
neighborhood, others allow a node to interact with nodes anywhere in the net-
work. The final communication property describes how a programmer has to
process the data that was received from other nodes, for which several options
are applicable:

• Single event handler: all received data has to be processed in a single event
handler. Therein, the type of the received data has to be dispatched over
to select the appropriate processing (i.e., received data has to be parsed).

• Blocking receive operation: a programmer has to anticipate the reception
of a particular data type by invoking a blocking receive operation. Typ-
ically, multiple threads are required to receive various data types. The
alternative consists of manually parsing the received data.

• Single message queue: all received data is accessible through a single mes-
sage queue and has to be parsed.

• Event handler per data type: for each possible data type that can be
received, an individual event handler has to implement its processing.

• Variable access: all received data is accessible through logical variables
whose names specify the data type. Additionally, some solutions allow
the values for a particular logical variable to be aggregated using a reduce
operation.

• Declarative rules: rules can be used to specify the processing of one or
more received data types.

Note that the parsing of received data causes logic concerned with various node
interactions to be tangled, which is an issue in most programming models. As
we will discuss in Chapter 3, our work (i.e., CrimeSPOT) addresses this issue
by allowing the programmer to use declarative rules to specify the processing
of received data.

Support for reuse. The final column of the table presents the means that are
available to the programmer to reuse interaction- or application logic. While in-
teraction logic consists of all code concerned with interactions with other nodes,
application logic consists of all code concerned with the rest of the application
(e.g., code for steering an actuator, or SQL-like code for extracting temperature
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readings from the network). In both sub-columns, the general keyword repre-
sents the typical means for code reuse in the solution’s programming paradigm
(e.g., function declarations).

Note that only very few solutions introduce special means for reusing logic
within or among applications. The only exceptions are FACTS, snLog and
ATaG. As we will discuss in Chapter 4, our work (i.e., Macro-CrimeSPOT)
can also be added to this list of exceptions.

2.4 Conclusion

This chapter gave a non-exhaustive overview of the state of the art for program-
ming wireless sensor networks. Several representative programming models were
introduced for several application domains.

For traditional, sense-only applications, we discussed programming models
for raw data extraction, for programming queries, and for interpreted data ex-
traction. These models introduce high-level abstractions that are well-suited for
sense-only applications, yet too high-level for sense-and-react applications.

For sense-and-react applications (or so-called WSAN applications), a devel-
oper requires more control over the individual nodes to steer their actuators
and to implement in-network processing logic. In the context of these applica-
tions, we discussed representative node-centric- and network-centric program-
ming models.

Node-centric programming models allow individual WSN nodes to be pro-
grammed. As these models only provide limited support for programming inter-
actions among nodes, several solutions can be used to complement them. In this
category, we introduced solutions supporting message communication and data
sharing. However, we had to conclude that these solutions typically don’t help
in processing data upon reception. One exception was FACTS, which allows
the programmer to modularize node interactions using rules that can moreover
be reused in several applications.

The discussed network-centric programming models allow WSNs to be pro-
grammed as a whole while still offering control over the individual nodes. In this
category, we focussed on solutions supporting homogenous applications, mobile
code, and heterogenous applications. We believe that these models introduce the
appropriate level of abstraction for programming sense-and-react applications,
while also fostering code reuse.
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Figure 2.2: An overview of the covered State of the Art



3
Node-centric Programming with

CrimeSPOT

When programming wireless sensor network (WSN) applications from a node-
level perspective using event-based WSN middleware, every sensor node has
to be individually programmed by specifying its interactions with other sensor
nodes. The nodes communicate exclusively via a decentralized event bus to
which they publish events and from which they receive the published events of
the types they subscribed to. Hence, sensor nodes’ interactions often involve
reacting to events published by other sensor nodes. However, the only means
to process received events and specify reactions are event handlers, which have
already been shown to violate several software engineering principles, including
composability, scalability and separation of concerns [12].

In this chapter, we introduce CrimeSPOT, a new domain-specific program-
ming language for programming individual WSN nodes. This language consti-
tutes a building block, to be used on top of event-based middleware for WSNs,
that allows the programmer to use declarative interaction rules to specify the
interactions with other sensor nodes. This addresses the various problems that
using an event handler for this purpose brings along. The programmer no longer
has to dispatch a received event to its appropriate reaction, nor is she required to
implement ad-hoc state management to keep track of which events have already
been received and whether or not they are still valid.

After considering a representative running example and extracting program-
ming support requirements, we will show how CrimeSPOT meets these require-
ments by discussing its architecture and all of its features. Simultaneously, we
will incrementally implement the running example. To conclude this chapter, we
will revisit the running example and finalize its CrimeSPOT implementation.

While, up till now, we discussed the problem and our solution in the light of
plain event-based middleware, CrimeSPOT can also be used on top of event-
based component middleware. Basically, a component encapsulates node-level
application logic, while component middleware allows multiple components to

31
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run next to each other on the same sensor node. From this point on, we will
assume the use of event-based component middleware on top of a Java platform
and talk about components rather than sensor nodes when discussing node-level
application logic.

3.1 Running Example

To illustrate the need for programming support for building WSN applications
using event-based component middleware, this section introduces a representa-
tive running example. In the next sections, we will introduce the CrimeSPOT
language while referring to this running example to explain the language fea-
tures.

As a representative event-based WSN application1, we can consider a sys-
tem that controls the heating and logs the comfort levels of festival tents. Such
an application requires several components, each performing their own specific
task. Sensor readings should be made available by temperature- and humidity
sensor components, heaters should be controlled by heating controller compo-
nents, and the application should be steered by a comfort level monitor com-
ponent. Even though some of these components could be deployed on the same
WSN node, for simplicity, we assume that every component is deployed on a
different node. A high-level overview of the application is depicted in Figure3.1.
Within every tent, three components have to be deployed: the HeatingCon-
troller, the TemperatureSensor and the HumiditySensor. Typically, these com-
ponents are deployed only once within a tent, but for larger tents, multiple
redundant components could also be deployed. The ComfortLevelMonitor com-
ponent, on the other hand, is deployed only once and controls the entire system.
In the figure, a component’s outgoing arrow indicates the events it publishes,
while its incoming arrow indicates the events it subscribes to. The Temper-
atureSensor and HumiditySensor components publish temperatureReading-
and humidityReading events, respectively. The ComfortLevelMonitor, on the
other hand, is subscribed to these events and uses them to compute and log
the comfort levels for each tent, and to decide how much the heating in each
tent should be adjusted. To control the heating, it publishes adjustHeating

events, to which the HeatingController components are subscribed. Whenever
a HeatingController receives an adjustHeating event, it adjusts its associated
heater accordingly. Next to these basic events, the components deployed within
a tent also publish an online event carrying their component type, tent iden-
tifier (i.e., an identifier obtained by reading out a GPS sensor), component ID
and MAC address. The ComfortLevelMonitor subscribes to these events as it
should know which components are deployed in which tents to process their
events2 and to send the adjustHeating event to the HeatingControllers in the
appropriate tent. In addition, publishing these events allows the components
to be arbitrarily moved on the festival terrain. For instance, when a Heating-
Controller component is moved to another tent, the ComfortLevelMonitor will
know about its new location and will therefore no longer send it adjustHeating

1i.e., a WSN application that uses event-based component middleware.
2It is assumed that every event contains its originating component’s MAC address and com-

ponent ID. This way, any event can be related with an online event to obtain the originating
tent.
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Figure 3.1: Overview of a Wireless Sensor Network application that controls the
heating and logs the comfort levels of festival tents

events for the old tent. As shown in the figure, all the events are routed through
the decentralized event bus offered by the event-based component middleware.

The functional requirements for this application are listed in Table 3.1.
While functional requirements 1, 2, 3, and 5 are not that difficult to imple-
ment, the other requirements would clearly require to implement ad-hoc timers,
state management and event-matching. For instance, to avoid that a heater
keeps heating when the ComfortLevelMonitor fails or gets disconnected from
the WSN (i.e., F.R.4), the HeatingController has to reset its associated heater
if no adjustHeating event has been received for a certain amount of time.
Functional requirements 6 and 7, on the other hand, require that events are
stored in memory upon reception, and that they can later be consulted and
related with other events. In addition, functional requirement 6 requires that
events can be send to specific components, rather than being broadcasted to all
subscribers. Finally, functional requirement 8 requires that previously stored
events can be removed from memory when new events have been received.

Clearly, programming this application requires the programmer to deal with
a fair amount of accidental complexity, which is inherent to using event-based
WSN middleware. Therefore, the CrimeSPOT language is explicitly designed
to deal with this accidental complexity and to allow the programmer to focus
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Description
F.R.1 The HumiditySensor and TemperatureSensor have to publish

their sensor readings at set intervals.
F.R.2 The HumiditySensor, TemperatureSensor and HeatingController

have to publish their online presence and location at set intervals.
F.R.3 The HeatingController has to adjust its associated heater accord-

ing to a received adjustHeating event.
F.R.4 The HeatingController has to make sure that its associated heater

won’t keep heating when the ComfortLevelMonitor fails or gets
disconnected from the WSN.

F.R.5 The ComfortLevelMonitor has to compute a tent’s heating level
based on a received temperatureReading event and publish this
level in an adjustHeating event.

F.R.6 The ComfortLevelMonitor has to control the heating for each tent
individually by sending adjustHeating events only to the Heat-
ingControllers in the tent to be heated.

F.R.7 The ComfortLevelMonitor has to relate received
humidityReading and temperatureReading events that
originate from the same tent and use them to compute and log
that tent’s comfort level.

F.R.8 The ComfortLevelMonitor has to make sure that only the most
recent sensor readings from a certain tent are used for computing
the heating- and comfort levels.

Table 3.1: Functional requirements for a WSN application that controls the heating
and logs the comfort levels of festival tents

on the application’s essential complexity.

3.1.1 Programming Support Requirements

Because the running example is a representative event-based WSN application,
we used its functional requirements to extract the requirements for a program-
ming support solution that deals with the aforementioned accidental complexity.
We categorized the results in state management- and component interaction re-
quirements, which are listed in Table 3.2 and 3.3, respectively. Note that there’s
a clear separation between component interaction (i.e., publishing events) and
invoking general application logic.

Every requirement enables one or more functional requirements of the run-
ning example. While most requirements are an obvious generalization of the
running example’s requirements, S.R.2 and S.R.3 are not. These requirements
allow events to expire after a certain amount of time and allow programmers
to react to such expirations. However, any solution meeting these requirements
provides an elegant way for dealing with functional requirements such as F.R.4,
which require timeouts. Later, we will further motivate the need for stored
events to expire.

It must be noted that these programming support requirements also prove
the representativeness of our running example. Analysis showed that various
other WSN applications found in literature (cfr. Section 5.1) can be imple-
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Description Enables
S.R.1 A component has to be able to store received events in its

memory.
F.R.4
F.R.6
F.R.7

S.R.2 Events have to be able to expire after a certain amount of
time, after which they are removed from the component’s
memory.

F.R.4

S.R.3 A component has to be able to react to the expiration of an
event.

F.R.4

S.R.4 A component has to be able to consult previously received
events.

F.R.6
F.R.7

S.R.5 A component has to be able to relate events by comparing
their payloads.

F.R.6
F.R.7

S.R.6 A component has to be able to react to the reception of an
event by removing older events from its memory.

F.R.8

Table 3.2: Programming Support Requirements concerning State Management

Description Enables
I.R.1 A component has to be able to invoke application logic at

set intervals and to publish the results in events.
F.R.1
F.R.2

I.R.2 A component has to be able to react to the reception of an
event by invoking application logic.

F.R.3
F.R.7

I.R.3 A component has to be able to react to the reception of an
event by performing a computation and publishing its result
in an event.

F.R.5

I.R.4 A component has to be able to publish events to specific
components.

F.R.6

Table 3.3: Programming Support Requirements concerning Component Interactions

mented with a solution meeting these requirements. In the remaining part of
this chapter, we will show how our solution, dubbed CrimeSPOT, meets all
identified programming support requirements.

3.2 CrimeSPOT in a Nutshell

CrimeSPOT is a declarative, rule-based language to be used on top of event-
based component middleware for wireless sensor networks. It provides program-
ming support for building event-based WSN applications and is founded on the
notions of facts and interaction rules.

To meet the state management requirements identified earlier, CrimeSPOT
reifies received events as facts and stores them in a Fact Base. In general, facts
can be added to the Fact Base (i.e., asserted), removed from the Fact Base (i.e.,
retracted), and they can expire. When a fact expires, the CrimeSPOT runtime
will retract it from the Fact Base. In addition, a fact can also be published, which
corresponds to the publication of an event. For a proper conversion between
events and facts, the CrimeSPOT runtime can be configured in a declarative
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way by adding event-to-fact mappings.
The interaction rules mainly support the interaction requirements. They can

be used to specify, in a declarative manner, how a component should react when
it receives a particular event or several related events. Within the conditions
(or body) of an interaction rule, one can specify the events to react upon by
specifying their reifying facts, while, in its head, one can specify the reaction
(e.g., publishing a fact or invoking application logic). Additionally, interaction
rules can also be used to specify that a component should publish a particular
fact at certain intervals. For every component interaction, an interaction rule
should be added to the CrimeSPOT runtime.

3.3 Architectural Overview

To give an idea of how CrimeSPOT is used, Figure 3.2 depicts the physical
view on a WSN node running event-based component middleware. Note that the

Component
CrimeSPOT

Event-based Component Middleware

WSN Node

Component
CrimeSPOT

Component

Figure 3.2: Physical view on a Wireless Sensor Network node running event-based
component middleware

CrimeSPOT runtime is part of an event-based component and doesn’t preclude
such a component to interact with the underlying middleware. This is essential
because CrimeSPOT is a building block for event-based components. Conse-
quentially, CrimeSPOT components (i.e., components using CrimeSPOT) can
run next to regular components without any problems.

3.3.1 CrimeSPOT Runtime

An architectural overview of the three-layered CrimeSPOT runtime is depicted
in Figure 3.3.

The infrastructure layer binds the CrimeSPOT runtime to the underlying
middleware. To this end, a middleware-specific implementation for the Middle-
ware Bridge should be provided which transfers the events received from the
event-based middleware to the Reification Engine. In addition, the Middle-
ware Bridge should also implement all required middleware-specific function-
ality, which will be invoked by the Reification Engine (e.g., functionality to
construct and publish an event). Clearly, the Middleware Bridge can be config-
ured for any underlying event-based middleware.

The reification layer takes care of reifying events as facts upon reception
(i.e., to be asserted in or retracted from the Fact Base), and reifying facts as
events (i.e., to be published through the underlying middleware). To this end,
the Reification Engine will use the event-fact mappings from its Configura-
tion Base. As we will explain later, the Configuration Base can also contain
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Figure 3.3: Architectural overview of the CrimeSPOT runtime

meta-facts, which further influence the Reification Engine’s behavior. Event-
fact mappings and meta-facts are application-specific and can be arbitrarily
added to the CrimeSPOT runtime by a component. The cooperation of the
Middleware Bridge and the Reification Engine is further illustrated in Figure
3.4. On the left-hand side, a fact is published and therefore reified as an event
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Figure 3.4: Fact publication and Event reification

by the Reification Engine and published to the event bus by the the Middleware
Bridge. On the right-hand side, an event is received from the event bus and
therefore transferred to the Reification Engine by the Middleware Bridge and
reified as a fact and asserted in the Fact Base by the Reification Engine.

Next to the Fact Base, the inference layer of the CrimeSPOT runtime also
contains the Rule Base, which stores the component’s interaction rules. By
evaluating the Rule Base against the Fact Base whenever the Fact Base is up-
dated, the Inference Engine will activate the interaction rules as soon as their
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conditions are met. Furthermore, because CrimeSPOT is a truth maintenance
system, the Inference Engine will also deactivate the interaction rules as soon as
their conditions are no longer met. The activation of an interaction rule corre-
sponds to the invocation of its reaction (e.g., invoking application logic), while
its deactivation corresponds to undoing its reaction (e.g., invoking compensating
application logic).

3.3.2 Interacting with the CrimeSPOT Runtime

Figure 3.5 depicts the logical view on the possible interactions with the CrimeSPOT
runtime. The interface of the CrimeSPOT runtime is simple. While all textual

Component CrimeSPOT

processExpression(String)

registerRule(String,Action)

Figure 3.5: Logical view on the possible interactions with the CrimeSPOT runtime

expressions (e.g., facts, plain rules, etc.) can be added to the system through
the processExpression(String) method, interaction rules invoking applica-
tion logic can be added through the registerRule(String,Action) method.

3.3.3 Network View on Component Interactions

Interactions among CrimeSPOT components To illustrate the interac-
tions between CrimeSPOT components, Figure 3.6 depicts a network-level
view on two interacting CrimeSPOT components that don’t have any event-
fact mappings in their Configuration Base. The absence of these mappings is
the default situation and therefore does not preclude two CrimeSPOT com-
ponents to communicate. When a CrimeSPOT component publishes a fact
that’s not mapped to a particular event, the CrimeSPOT runtime will encode
this fact in a CrimeSPOT event to which all CrimeSPOT components are
subscribed. In the Figure, the component on the left-hand side publishes a fact
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CS Event

Component
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{ }
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C.B.
{ }

CS Event

Figure 3.6: Two CrimeSPOT components exchanging CrimeSPOT events

that is reified as a CrimeSPOT event, published to the event bus and received
by the component on the right-hand side. The receiving component will reify
the CrimeSPOT event as the corresponding fact and assert it in its Fact Base.
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Interactions with regular components As shown above, all CrimeSPOT
components can interact in the absence of event-fact mappings. However, to
interact with regular components, a CrimeSPOT component should add the
required event-fact mappings to the CrimeSPOT runtime. The reason for this
requirement is that regular components exchange events with a particular type
and payload whose structure is agreed upon3. The purpose of an event-fact
mapping is to map the structure of an event to the structure of a fact to allow
proper reification. It will be used to reify received events as facts to be stored,
and to reify facts as events to be published. For instance, if an event-fact map-
ping for temperature events is present in the Configuration Base, CrimeSPOT
components can freely exchange these events with regular components. This is
depicted in Figure 3.7, which shows the interactions between two CrimeSPOT
components and a regular component. The CrimeSPOT component on the
left-hand side publishes a temperature fact, which is reified as a temperature
event and published to all components subscribing to this event. Conversely, as
shown on the right-hand side, the CrimeSPOT components will use the same
mapping to reify received temperature events as facts. As we will explain in Sec-
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temp
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Figure 3.7: Event-based components exchanging temp events

tion 3.6.2, a component should add an event-fact mapping to the CrimeSPOT
runtime for every event it subscribes to, and every event it plans to publish to
regular components.

3.4 Inference Engine

The CrimeSPOT interaction rules have to be activated as soon as their condi-
tions are met (i.e., as soon as the required events have been received, reified as
facts and asserted in the Fact Base) and deactivated as soon as their conditions
are no longer met (i.e., as soon as the required facts were retracted from the
Fact Base). Consequentially, the Inference Engine has to re-evaluate all rules
whenever the Fact Base is updated.

To obtain this functionality, the CrimeSPOT Inference Engine uses a for-
ward chaining inference strategy. Forward chaining is a data-driven strategy
which derives all valid conclusions given a fact- and a rule base. Note that the
derivation of conclusions corresponds to the triggering of the interaction rules’
reactions in the CrimeSPOT setting.

3As as example, one can consider an event with the temperature type and a payload
containing one integer that represents the measured temperature in degrees Celsius.
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As we will further explain in Appendix A, our forward chaining Inference
Engine is based on the Rete algorithm [37], which allows efficient forward
chaining. This is essential in the setting of wireless sensor networks, because
WSN nodes only have low processing power available. The Rete algorithm
caches its proofs and whenever the Fact Base is updated, it uses the update
itself (e.g., the assertion of a fact) to derive only the new conclusions rather
than attempting to derive all valid conclusions from scratch. This significantly
reduces the performance overhead of Fact Base updates.

The original Rete algorithm was extended with various domain-specific fea-
tures. For instance, the Inference Engine can be triggered at specific intervals
and facts can expire after a certain amount of time, after which the Inference
Engine will retract them from the Fact Base. In general, our Inference Engine
is triggered:

• when a fact is asserted in the Fact Base,

• when a fact is retracted from the Fact Base (e.g., upon its expiration),

• and at specific intervals, specified by the programmer.

3.5 Grammar

The CrimeSPOT BNF grammar is depicted in Figure 3.8. We extended the
Backus Naur Form notation with large square brackets to depict optional items
and large parenthesis suffixed with an asterisk to depict zero or more repetitions.
As mentioned earlier, every valid expression can be added to the CrimeSPOT
runtime through the processExpression(String) method. In the following
sections, we will introduce all language features shown in the grammar.

3.6 Facts

Our approach is founded on the notion of a fact rather than an event. Even
though both notions look similar, they are significantly different from a seman-
tic point of view [38]. While events are transient, typically only valid at the
time of reception, facts are persistent (i.e., asserted in a Fact Base) and thus
remain valid until they are explicitly removed. To blend both notions, we allow
associating an expiration time with a fact.

Every fact has a type and optional attributes (i.e., name-value pairs, sep-
arated by the = symbol). Additionally, a fact can also carry meta-attributes
representing its meta-data. A fixed number of meta-attributes can be added to
a fact by listing them after the @ symbol. An example is depicted in Listing 3.1.

1 temperatureReading(Celsius = 27,

2 Fahrenheit = 81)@[factExpires(Seconds =600)].

Listing 3.1: A temperatureReading fact

The fact represents a temperature reading of 27 degrees Celsius or 81 degrees
Fahrenheit, which remains valid for ten minutes. When adding this fact to the
CrimeSPOT runtime, it will be asserted in the Fact Base and the Inference
Engine will read the factExpires meta-attribute and consequentially retract
the fact after ten minutes.
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3.6.1 Controlling a Fact’s Scope

Next to the factExpires meta-attribute, a fact can also carry the to meta-
attribute, which can be used to publish the fact to a given destination and
thereby control its scope. Within this meta-attribute, the fact’s destination
should be specified by providing values for the ID- and/or the MAC attribute,
which refer to the destination component’s ID and sensor node MAC address,
respectively. To broadcast a fact to all sensor nodes, or to all components
running on a particular sensor node, the any keyword can be used as a value for
the MAC - or ID attribute, respectively. Listing 3.2 illustrates the use of the to

meta-attribute.

1 temperatureReading(Celsius = 27)@[to(MAC=any)],

2 factExpires(Seconds =600)].

3 temperatureReading(Celsius = 27)@[to(MAC="1234:1234:1234:1234",ID=3)],

4 factExpires(Seconds =600)].

Listing 3.2: Publishing a temperatureReading fact

When adding these facts to the CrimeSPOT runtime, they will be asserted in
the Fact Base and the fact on line 1 will be broadcasted to all CrimeSPOT com-
ponents, while the fact on line 3 will be send only to the specifically addressed
component. If the underlying middleware allows directed event publications,
the Middleware Bridge can consult the values from the to meta-attribute to
employ this feature. If not, it can consult these values upon event reception and
misaddressed events can be dropped. As discussed earlier, every component
that receives a fact will assert it in its Fact Base. Additionally, the component’s
Inference Engine will also read the factExpires meta-attribute, if present, to
deal with its expiration.

3.6.2 Mapping Events to Facts

As shown above, a fact is self-explaining. It has a particular type and all of its
attributes are named. An event, on the other hand, is not. Next to its type,
it has a particular payload whose structure is agreed upon by the components
exchanging the event. The payload consists of one or more numbered values
(e.g., integers or strings), but only the components exchanging the event know
the semantics of each value. For instance, components can exchange an event of
type 101 with a payload containing two integers and agree that this event rep-
resents a temperature reading measured in degrees Celsius (i.e., the first value)
and Fahrenheit (i.e., the second value), which remains valid for ten minutes. To
reify such events as facts and add them to the Fact Base, the structure agree-
ment should be made explicit by the programmer. This can be done by adding
event-fact mappings to the CrimeSPOT runtime.

To map the aforementioned temperature event to a temperatureReading

fact with Celsius and Fahrenheit attributes, the programmer can use the
mapping depicted in Listing 3.3.

1 mapping temperatureReading(Fahrenheit =?tempf ,

2 Celsius =?tempc)@[factExpires(Seconds =600)]

3 <=> Event_101(Integer =?tempc , Integer =?tempf ).

Listing 3.3: Mapping a temperature event to a temperatureReading fact
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A mapping starts with the mapping keyword, followed by the reifying fact and
a description of the event which are separated by the <=> symbol. The event
description, on the right-hand side of the <=>, resembles the fact notation. It
has a type and one or more fields, which are comparable to attributes but have
a type rather than a name. Every field represents a value from the payload:
its type represents the value’s type and its position in the event description
represents the value’s position in the payload. The corresponding values of the
fact’s attributes and the event’s fields are related by using identical variables in
the mapping (e.g ?tempc and ?tempf in the example). Note that, unlike the
fields of an event, the attributes of a fact are not ordered, but uniquely identified
by their name.

After adding event-fact mappings to the CrimeSPOT runtime, they will be
stored in the Configuration Base and used by the Reification Engine when pro-
cessing incoming events (i.e., to reify them as the corresponding fact) and when
publishing facts (i.e., to reify them as the corresponding event). In addition,
the Middleware Bridge can subscribe the component to the mapped event type
as soon as the mapping is added. As a result, mappings allow a CrimeSPOT
component to communicate freely with regular components.

3.6.2.1 Event Meta-Data

Next to a payload, most event-based component middleware also associate meta-
data with an event. For instance, an event can carry, in addition to its payload,
its originating component’s ID and sensor node MAC address. To avoid losing
this data upon event reification, CrimeSPOT also incorporates it in its facts
using the meta-attributes. For every event meta-datum, the Middleware Bridge
can add a meta-attribute to the fact reifying the event. In general, it is as-
sumed that a from(ID=..,MAC=..) meta-attribute specifying the fact’s origin
is present for every fact in the Fact Base.

Decentralized Event Bus

Component
CrimeSPOT

temperatureReading(Celsius=27, Fahrenheit=81)@
[from(MAC="M", ID=3), factExpires(Seconds=600)]

Event 101 from M/3
{27,81}

Fact Base

Figure 3.9: Illustrating the temperature event mapping

Figure 3.9 further illustrates the meaning of the mapping in Listing 3.3.
When read from top to bottom, the Figure shows how the temperatureReading
fact is reified as an event upon its publication, and conversely, when read from
bottom to top, the Figure shows how the temperature reading event is reified
as a temperatureReading fact upon its reception.
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3.7 Interaction Rules

As mentioned before, interaction rules have to be used for specifying a com-
ponent’s interactions. An interaction rule consists of a body containing one or
more conditions, and a head containing either a fact or an action (i.e., a Java
object encapsulating application logic). The head and the body are separated
by the arrow <- symbol.

�expression� ::= �expr�.
�expr� ::= �mapping�

| �meta-fact�
| �fact� | �rule�

�mapping� ::= mapping �fact� <=> �event�
�meta-fact� ::= �subsumption� | �drop�
�subsumption� ::= subsumes!(Incoming=�fact�,Fact=�fact� [ ,When=[�body�] ] )

�drop� ::= drop!(Incoming=�fact� [ ,When=[�body�] ] )

�fact� ::= �type�( [ �attribute� (, �attribute�)* ] ) [ @[ �meta-attributes� ] ]

�attribute� ::= �name� �relop� ( �value� | �variable� )

�meta-attributes� ::= �meta-attribute� (, �meta-attribute�)*
�meta-attribute� ::= �assert-meta-attribute�

| �condition-meta-attribute�
�event� ::= �type�(�field� (, �field�)*)
�field� ::= �type� = �variable�
�rule� ::= �fact� <- �body�
�body� ::= �condition� (, �condition�)*
�condition� ::= �fact�

| �extralogical condition�
�value� ::= �number� | �quoted text� | �symbol� | �list�
�list� ::= [ [ (�value� | �variable�) (, (�value� | �variable�))* ] ]

�quoted text� ::= "�text�"
�symbol� ::= ‘�text�
�type� ::= �text�
�name� ::= �text�
�variable� ::= ?�name�
�relop� ::= = | != | <= | >= | < | >

�assert-meta-attribute� ::= to(MAC=(�quoted text� | any))
| to(ID=(�number� | any))
| factExpires(Seconds=�number�)

�condition-meta-attribute� ::= from(MAC=(�quoted text� | �variable� | this.MAC))
| from(ID=(�number� | �variable� | this.ID))
| matchExpires(Seconds=�number�)
| matchEvery(Seconds=�number�)

�extralogical condition� ::= (�value� | �variable�) is �methodinvocation�
| findall(�variable�,[�body�],�variable�)
| length(�list�,(�value� | �variable�))
| not �fact�
| �variable� �relop� (�value� | �variable�)

�methodinvocation� ::= �name�( [ �argument� (, �argument�)* ] ) [ @[�option�] ]

�argument� ::= �value� | (�typecast�)�variable�
�typecast� ::= Number | Fraction | Text | Symbol | List
�option� = evalEvery(Seconds=�number�)

| renewEvery(Seconds=�number�)

Figure 3.10: Syntax for an interaction rule with a fact in its head

As we will extensively explain in the following sections, a condition can be
either logical or extra-logical. A logical condition specifies a fact and obtains
a match for every matching fact in the Fact Base. An extra-logical condition,
on the other hand, uses a built-in operator to obtain matches. As soon as all
conditions in the body of a rule have a match, the rule itself has a match and will
be activated for this match by the Inference Engine. Depending on the rule’s
head, its activation results in either asserting a fact in the Fact Base, which can
optionally be published, or invoking an action’s application logic.

Every time the Fact Base is updated (e.g., when a new event is received
from the event bus or when a fact expires), all rules are re-evaluated against
the Fact Base (i.e., conceptually). Rules of which a single condition did not yet
have a match, can obtain a match upon the next evaluation against the Fact
Base. Conversely, a rule can also lose a match if one of its conditions lost a
match. As soon as a rule loses a match, the Inference Engine will deactivate it
for this match. Depending on the rule’s head, its deactivation results in either
retracting a fact from the Fact Base, or invoking an action’s application logic.

The above can be summarized by the invariant that, at any time, an inter-
action rule is activated for each of its matches. As an example, consider the rule
in Listing 3.4, which asserts a temperature fact for every temperatureReading

fact in the Fact Base.

1 temperature(Celsius =?temp)

2 <- temperatureReading(Celsius =?temp).

Listing 3.4: An interaction rule for copying temperatureReading facts to tempera-
ture facts

If the Fact Base contains three matching temperatureReading facts (e.g., with
?temp 20, 20 and 24), this rule is activated three times with a corresponding
binding for ?temp and the three corresponding temperature facts will conse-
quentially be present in the Fact Base. As soon as a new temperatureReading

fact is asserted in the Fact Base, the rule obtains a new match and hence, it
will be activated for this match and the corresponding temperature fact will
be asserted. Conversely, as soon as one of the temperatureReading facts is
retracted from the Fact Base, one of the rule’s matches is lost and hence, the
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rule will be deactivated for that match and the corresponding temperature fact
will be retracted.

More details concerning the interaction rules’ behavior will be given in Sec-
tion 3.7.2. In the next section, we will first elaborate on the conditions that can
be used in an interaction rule’s body.

3.7.1 Conditions

Typically, a condition is used for matching facts from the Fact Base. To this end,
one can employ a logical condition which specifies the facts to be matched. For
instance, if a component should react to the reception of a temperature reading,
one of the following conditions can be used in the body of its interaction rule:

1 temperatureReading(Fahrenheit =?temp)

2 temperatureReading(Celsius =?temp)

3 temperatureReading(Celsius =40)

4 temperatureReading(Celsius <40)

Since the first two conditions employ a variable for the measured tempera-
ture, the measured value is not constrained. Any temperatureReading with
a Fahrenheit attribute will provide a match for the first condition, while any
temperatureReading with a Celsius attribute will provide a match for the sec-
ond condition. The third condition is further constrained as it will only be
matched when the received temperature reading is 40 degrees Celsius. The
fourth condition employs the < operator and hence will only be matched when
the received temperature reading is less than 40 degrees Celsius.

Note that it suffices to only specify the attributes required to do the matching
within a logical condition. A temperatureReading fact with both Celsius and
Fahrenheit attributes can also match the previous conditions.

3.7.1.1 Incorporating Meta-Data

As mentioned earlier, every fact carries meta-attributes next to its regular at-
tributes. For all event meta-data made available by the underlying event-based
middleware, such meta-attributes can be added to the facts reifying the events.
To incorporate this meta-data in the interaction rules, the meta-attributes can
also be matched in a condition. For instance, if a component should react to
the reception of a temperature request, the following condition can be used in
the body of its interaction rule:

1 getTemperature ()@[from(MAC=?mac , ID=?id)]

For every match, the variables ?id and ?mac will be bound to the requesting
component’s ID and sensor node MAC address, respectively. Since all variables
bound in the body of an interaction rule are available in its head, these variables’
values can be used in this example to answer the request by publishing the
current temperature to the requesting component.

The this.MAC or this.ID keyword can be used as a value for the MAC
or ID attribute within the from meta-attribute. While the this.ID keyword
substitutes for the current component’s ID, the this.MAC keyword substitutes
for the current sensor node’s MAC address. For instance, in the context of our
running example, a component that publishes online facts can use the following
condition to match the online fact that it has published before. A match for
this condition will bind ?tent to the identifier of the current tent.
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1 online(Tent=?tent)@[from(MAC=this.MAC , ID=this.ID)]

3.7.1.2 Relating Facts

Wireless sensor network nodes often have to react to the occurrence of related
events. For instance, as the ComfortLevelMonitor from the running example
should log the comfort levels in each tent, it should relate humidity- and tem-
perature readings which originate from the same tent to compute the associated
comfort level and do the logging. For this purpose, several conditions in an in-
teraction rule’s body can be related by using identical variables. Because, within
a rule’ match, a variable can be bound to only one value, all occurrences of the
same variable have to be consistent. This behavior is also called unification. As
an example, we can consider the ComfortLevelMonitor component’s interaction
rules for logging the comfort levels. These interaction rules relate facts based
on their publisher and based on their contents.

Publisher-based relations As mentioned before, the meta-attributes of a
fact can be matched within a logical condition. Consequentially, two pre-
processing interaction rules can be added to the ComfortLevelMonitor to re-
late the received sensor readings with their originating tent. The following
rule relates humidityReading facts with online facts and stores the result in
humidityInTent facts.

1 humidityInTent(Percent =?humid , Tent=?tent)

2 <- humidityReading(Percent = ?humid)@[from(MAC=?hMac , ID=?hId)],

3 online(Tent = ?tent)@[from(MAC = ?hMac , ID = ?hId)].

Listing 3.5: Relating humidity readings with online facts

The body of an interaction rule specifies a conjunction and all conditions are
separated by a comma. Consequentially, this rule requires humidityReading-
and online facts to be available in the Fact Base before it will be triggered.
However, it also requires these facts to be related. If a humidityReading is
received, it will match the first condition. The variable ?humid will be bound to
the measured humidity and the variables ?hMac and ?hId will be bound to the
publishing component’s MAC address and ID, respectively. As a consequence,
only the online fact published by the very same component will match the
second condition and will bind ?tent to the originating tent. As soon as both
conditions are matched and the variable bindings are consistent, the rule is
activated and the humidityInTent fact (with ?humid and ?tent substituted by
their values) will be asserted in the Fact Base. Analogously, a rule for relating
temperatureReading facts with online facts in temperatureInTent facts can
be added to the ComfortLevelMonitor.

Content-based relations The facts asserted by the aforementioned prepro-
cessing rules can now be related in the interaction rule for logging the comfort
levels. Note that this rule has to invoke application logic when it’s activated
and that it therefore requires an action (i.e., logAction) rather than a fact in
its head. We will further explain the use of actions in Section 3.7.2.

1 logAction

2 <- humidityInTent(Percent =?humid , Tent=?tent),

3 temperatureInTent(Celsius =?temp , Tent=?tent).
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As soon as a humidityInTent fact is asserted in the Fact Base, it will match
the first condition and the variable ?tent will be bound to the originating tent.
Consequentially, only a temperatureInTent fact for the same tent ?tent will
provide a valid match for the second condition. When the rule is activated, the
application logic in the logAction will be invoked to compute and log the tent’s
comfort level.

It must be noted that an interaction rule with a body consisting of multiple
conditions does not require these conditions to be matched in any particular
order. A match for such an interaction rule only requires a match for each
condition with consistent variable bindings.

However, in general, care must be taken to make sure that a condition
matches only the expected amount of times. To illustrate this, we can reconsider
the running example. In this application, it is perfectly possible that a certain
humidity sensor node is reset due to some failure. If this happens, the node
will restart and re-publish its online fact, and as a result, the ComfortLevel-
Monitor ’s Fact Base will contain two such facts4. Consequentially, the rule for
asserting HumidityInTent facts discussed above will have two matches for the
condition on line 3, and will thus be activated twice for each for each humidity
reading from the reseted node’s tent. Figure 3.11 further illustrates this issue.

online(Tent=`A, Component=`HumiditySensor)@[from(MAC="hsMAC", ID=3)]
online(Tent=`A, Component=`HumiditySensor)@[from(MAC="hsMAC", ID=3)]

humidityReading(Percent=25)@[from(MAC="hsMAC",ID=3)]

Match 1: <humidityReading(Percent=25)@[from(MAC="hsMAC",ID=3)], 
                 online(Tent=`A, Component=`HumiditySensor)@[from(MAC="hsMAC", ID=3)]>

Match 2: <humidityReading(Percent=25)@[from(MAC="hsMAC",ID=3)], 
                 online(Tent=`A, Component=`HumiditySensor)@[from(MAC="hsMAC", ID=3)]>

Figure 3.11: Faulty matching illustrated

The humidityReading in the Fact Base will match the condition on line 2
and bind ?hMac and ?hId. However, because two online facts with consistent
values for these variables will match the second condition, the rule itself will
have two matches and will consequentially be activated twice. This results in
the assertion of two humidityInTent facts for a single humidityReading fact.
To allow the programmer to deal with this unintended behavior, CrimeSPOT
offers functionality to retract old facts when new facts are received. In this case,
this would be useful to retract a component’s existing online fact when a new
one is received. We will explain the use of this functionality in Section 3.8.

3.7.1.3 Fine-grained Matching Control

When matching facts using logical conditions, it might be desired to get more
control over the matching process. To this end, our language offers some built-in

4That is, until the oldest one expires.
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meta-attributes that can be added to a fact specification in a condition. Unlike
the meta-attributes specifying a fact’s associated meta-data, these built-in meta-
attributes are not part of the facts in the Fact Base, but allow the programmer
to exert control over the matching process for the associated fact specification.
The built-in meta-attributes can be combined as desired.

Match Expiration In certain cases, it is useful to make a match for a con-
dition expire after a specific amount of time. For instance, when dealing with
temperatureReading facts, a more recent temperature reading can have a dif-
ferent meaning than an older temperature reading. This can be specified using
the matchExpires meta-attribute. In case the programmer only wants tempera-
ture readings with a maximum age of ten seconds to match an interaction rule’s
condition, she can express this using the condition from Listing 3.6.

1 temperatureReading(Celsius =?temp)@[from(MAC=?m, ID=?i),

2 matchExpires(Seconds =10)]

Listing 3.6: A condition for matching only recent temperature readings

Any fact matching a condition with an associated matchExpires meta-attribute
will only match this condition for the specified amount of time. Note that the ex-
piration of the match does not imply the expiration of the matched fact. Hence,
nothing precludes other rules to use such a fact for matching their conditions.
Figure 3.12 further illustrates the impact of the matchExpires meta-attribute on
the above condition. At every point in time (denoted in seconds), the contents
of the Fact Base and the matches for the condition are shown. Temperature
readings are received at 0s and 4s. For simplicity, these temperature readings
are assumed not to expire. However, due to the matchExpires meta-attribute,
their match for the above condition does expire after ten seconds. Hence, while
the facts remain in the Fact Base and therefore can still match other conditions,
they do not match this condition for more than ten seconds.

time

received fact temp(C=15)

{temp(C=15)}matches

fact base  { }

 { }

 {temp(C=15)}

temp(C=20)

0 4 8 12

 {temp(C=15)
  temp(C=20)}

 {temp(C=15)
  temp(C=20)}

 {temp(C=15)
  temp(C=20)}

 {temp(C=20)}

16

 {temp(C=15)
  temp(C=20)}

 {}

Figure 3.12: Illustrating Match Expiration

Match Verification Additionally, it is also useful to specify the expected
matching for a condition, for instance, to do some sort of error handling when-
ever the expected matching is not obtained. To this end, the matchEvery meta-
attribute can be added to a fact specification. Whenever a condition carrying
this meta-attribute isn’t matched in the specified amount of time, a timedOut

fact will be asserted in the Fact Base. Such a timedOut fact specifies exactly
which condition was violated by specifying the rule in which the condition was
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used5, and the type of the fact specification carrying the matchEvery meta-
attribute. As an example, we can consider the rule from Listing 3.7.

1 gotReadingFrom(MAC=?m)

2 <- temperatureReading(Celsius =?temp)@[from(MAC=?m, ID=?i),

3 matchEvery(Seconds =60)].

Listing 3.7: A rule with a condition that expects a match at least every minute

As soon as this condition doesn’t get a new match within one minute, the
following timedOut fact will be asserted in the Fact Base.

1 timedOut(Head=‘gotReadingFrom_1 , ViolatedCondition=‘temperatureReading ).

To do the appropriate error handling, this fact can be matched in the condition
of another rule to signal the malfunctioning of the sensor node publishing the
temperature readings. As soon as the condition obtains a new match, the cor-
responding timedOut fact is retracted from the Fact Base. Figure 3.13 depicts
the impact of the matchEvery meta-attribute. At every point in time (denoted
in seconds), the contents of the Fact Base and the matches for the condition are
shown6. Temperature readings are expected to be received every 60 seconds,
but are for some reason received at 0s and 90s. Due to the matchEvery meta-
attribute, a timedOut fact is asserted at 60s because the expected matching was
not obtained. Afterwards, at 90s, a new temperature reading is received and
the timedOut fact is consequentially retracted.

time

received fact temp(C=15)

{temp(C=15)}matches

fact base  { }

 { }

 {temp(C=15)}

temp(C=20)

0 30 60 90

 {temp(C=15)
  timedOut(...)}

 {temp(C=15)}  {temp(C=15)}

120

 {temp(C=15)
  temp(C=20)}

 {temp(C=15)
  timedOut(...)}

 {temp(C=15)
  temp(C=20)}

Figure 3.13: Illustrating Match Verification

3.7.1.4 Extra-logical Conditions

Up till now, we have only considered using logical conditions to match facts from
the Fact Base and provide variable bindings. While logical conditions are often
sufficient to specify a reaction to incoming events, it is also desirable to bind
variables using other sources (e.g., method invocations), or to add additional
constraints to the body of an interaction rule. To this end, our language provides
the programmer with some extra-logical conditions, which we will briefly discuss
in this section.

Incorporating component state The state of the component using CrimeSPOT
can be accessed from within the rules’ bodies using the built-in is-operator. This
operator expects either a constant value or a variable on its left-hand side and

5Every interaction rule is uniquely identified by the fact type of the fact in its head, or the
keyword actionRule if the head contains an action, followed by its lexicographical number.

6For simplicity, the gotReadingFrom facts are not shown in the Fact Base.
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a method invocation on its right-hand side. It only provides a match if the
expression on the left-hand side can be unified with the result of the method
invocation. In addition, the arguments for the method to invoke should be ei-
ther constants, or variables that were bound by the previous conditions in the
rule’s body. For instance, one can bind a variable with the current temperature
by invoking one of the component’s methods as shown below.

1 ?temp is getTemperature ()

Another relevant use is to compute a comfort level based on the temperature-
and humidity readings originating from the same sensor node. In that case, the
following body can be used.

1 humidityReading(Percent = ?h)@[from(MAC=?mac)],

2 temperatureReading(Celsius = ?t)@[from(MAC=?mac)],

3 ?comfortLevel is computeComfortLevel (( Number )?h, (Number )?t)

Note that variable method arguments have to be type-casted to their values’
Java type7. For this method invocation to succeed, the component should have
a method with the following signature.

1 Attribute computeComfortLevel(Number , Number );

In general, a method is invoked for every match for the previous conditions
in the rule’s body. For instance, in the previous example, computeComfortLevel
is invoked for every pair of humidity- and temperature readings originating from
the same sensor node. In case there are no preceding conditions, the method
is invoked only once. However, the programmer can also specify an invocation
schedule by adding a scheduling option to the method invocation. Scheduling
options employ the same notation as meta-attributes. To illustrate their use, we
can reconsider the sensing components from our running example, which have
to publish their sensor readings at set intervals. An interaction rule specifying
this behavior for the HumiditySensor component is shown in Listing 3.8.

1 humidityReading(Percent = ?p)@[to(MAC=any),

2 factExpires(Seconds = 600)]

3 <- ?p is getHumidity ()@[renewEvery(Seconds = 600)].

Listing 3.8: Publishing humidity readings using the is operator

The scheduling option added to the method invocation specifies that, whenever
the method is invoked, it should be re-invoked after ten minutes.

Either the renewEvery- or the evalEvery option can be used to schedule
additional invocations. While renewEvery invalidates the previous match for
the is-operator, evalEvery keeps the older matches valid. The latter can, for
instance, be used to keep a history of humidity readings in the Fact Base, as
shown in Listing 3.9.

1 humidityReading(Percent = ?p)

2 <- ?p is getHumidity ()@[evalEvery(Seconds = 600)].

Listing 3.9: Keeping a history of humidity readings

Every ten minutes, a new humidityReading will be asserted in the Fact Base.
Using renewEvery, on the other hand, would replace the asserted humidity read-
ing every ten minutes. This can be observed in Figure 3.14, which depicts the

7The most commonly used Java types are Number, Fraction, Symbol, Text and List, which
all subclass Attribute.
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matches for the is-operator together with the resulting Fact Base at every point
in time (denoted in minutes).

evalEvery

renewEvery

time

 {?p=h0,
 ?p=h1}

matches

fact base  {humid(P=h0)}

 {?p=h0}

 {humid(P=h0),
  humid(P=h1)}

0 10 20

 {humid(P=h0),
  humid(P=h1),
  humid(P=h2)}

 {?p=h0,
 ?p=h1,
 ?p=h2}

{?p=h1}matches

fact base  {humid(P=h1)}  {humid(P=h2)}

 {?p=h2}

 {humid(P=h0)}

 {?p=h0}

Figure 3.14: Scheduling method invocations: evalEvery vs. renewEvery

Other useful constructs Finally, four other constructs can be used as a
condition in a rule’s body. An External Constraint can be used for specifying
the required relationship between variables, or between variables and constants.
To this end, every relational operator is built-in and expects a variable on its
left-hand side, and a variable or constant on its right-hand side. It provides a
match if the specified relationship holds. For instance, to react to the occurrence
of two temperature readings where one temperature reading is larger than the
other, the following body can be used.

1 temperatureReading(Celsius =?t1),

2 temperatureReading(Celsius =?t2),

3 ?t1 > ?t2

In contrast to external constraints, internal constraints can be used within a
fact specification. For instance, if the value of the second temperatureReading

is irrelevant to the interaction rule, the above body can be rewritten as shown
below.

1 temperatureReading(Celsius =?t1),

2 temperatureReading(Celsius <?t1)

The Negation can be used to check for the absence of matching facts. To
this end, a logical condition can be preceded by the not operator, which only
provides a match if the logical condition is unmatched. For instance, to check for
the absence of an adjustHeating fact, the following condition can be employed.

1 not adjustHeating(Level=?l)

The findall operator can be used to accumulate values from several facts
in a List. As its second argument, it takes a list of one or more conditions
(i.e., its body), which bind certain variables in every match8. In addition, the
variable whose bindings should be accumulated in the list should be given as
findall’s first argument, and the variable to be bound to the resulting list should

8Note that this body is also conceptually re-evaluated whenever the Fact Base changes.
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be given as findall’s last argument. At any time, the findall operator provides
a match which binds this last variable to the list of accumulated values. As an
example, we can consider the body of an interaction rule residing in a controller
for smoke detectors. If all smoke detectors publish a smoke event upon smoke
detection, and the controller should sound the alarm as soon as three different
smoke events have been received, the body from Listing 3.10 can be used in the
interaction rule.

1 findall (?m,

2 [smoke()@[from(MAC=?m)]],

3 ?alarmingSensors),

4 length (? alarmingSensors , ?l),

5 ?l >= 3

Listing 3.10: Collecting smoke facts using findall

At all times, ?alarmingSensors will be bound to a list containing the publishers
of the smoke facts in the Fact Base. However, the interaction rule will only
be activated when this list contains at least three values. This example also
illustrates the use of the length operator, which can be used to compute the
length of a given list.

3.7.2 Reactions

Having discussed the kinds of conditions that can be used in the body of an
interaction rule, we shift our focus to the head. The content of the head (i.e.,
either a fact or an action) determines the behavior that corresponds to the
triggering of an interaction rule, or indirectly, it determines the reaction to the
reception of events. In general, two reactions can occur: a fact can be asserted
in or retracted from the Fact Base, or application logic can be invoked.

3.7.2.1 Fact Assertion or Retraction

If an interaction rule’s head contains a fact, this fact will be asserted in the
Fact Base for every activation of the rule. On the other hand, when the rule is
deactivated, the corresponding fact will be retracted from the Fact Base. Hence,
the view a component has on its world is always up-to-date.

As every match for a rule provides bindings for the variables that occur in
its body, these variables can be used in the head. For instance, the previously
discussed rule for keeping a history of humidity readings in the Fact Base (cfr.
Listing 3.9) asserts humidityReading(Percent=?p) facts in which the variable
?p is substituted for its value.

Publishing facts A common reaction to the reception of facts is to publish
another fact. As discussed earlier, facts can be published on the underlying mid-
dleware’s event-bus by giving it a to meta-attribute that specifies its destination.
For instance, the following interaction rule can be added to the CrimeSPOT
runtime to answer temperature requests.

1 temperatureReading(Celsius =?temp)@[to(MAC=?mac , ID=?id)]

2 <- getTemperature ()@[from(MAC=?mac , ID=?id)],

3 ?temp is getTemperature ().
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Whenever a getTemperature fact is received, the getTemperature() method will
be invoked and the temperatureReading fact will be published to the requester.

Note that, when an interaction rule is deactivated, its published fact should
also be retracted in the remote Fact Bases. To this end, retractions are also
published through the underlying middleware9.

Fact Expiration It is often desired to retract a fact from the Fact Base before
the interaction rule that asserted it is deactivated. To this end, the programmer
can add a factExpires meta-attribute to the fact in which its lifetime can be
expressed. Such fact expiration was, for instance, specified in the interaction
rule for publishing humidityReading facts:

1 humidityReading(Percent = ?p)@[to(MAC=any),

2 factExpires(Seconds = 600)]

3 <- ?p is getHumidity ()@[renewEvery(Seconds = 600)].

The humidityReading fact expires after ten minutes and will consequentially
be retracted from the local and remote Fact Bases. As such, this rule, which is
re-activated every ten minutes, does not require a retraction for the humidity
reading to be published.

3.7.2.2 Invoking Application Logic

Interaction rules that have an action as their head will invoke application logic
whenever they are activated or deactivated. To illustrate this, we can consider
the interaction rule for logging the comfort levels in our running example. This
rule can be added to the ComfortLevelMonitor component’s Rule Base using
the registerRule(String,Action) method as shown in Listing 3.11. The
registerRule method takes the body of the interaction rule as its first argument
and an instance of the abstract Action type as its second argument. To specify
the application logic to invoke, the instance of the Action type should provide an
implementation for the activated(TypedObject) and deactivate(TypedObject)

methods. These methods will be invoked whenever the interaction rule is acti-
vated and deactivated, respectively.

1 registerRule(

2 "humidityInTent(Percent =?humid , Tent=?tent), " +

3 "temperatureInTent(Celsius =?temp , Tent=?tent)",

4 new Action () {

5 public void activated(TypedObject args) {

6 // Compute and log the comfort level using

7 // args.getValue (" humid "), args.getValue (" temp "),

8 // and args.getValue (" tent ")

9 }

10 public void deactivate(TypedObject args) {

11 // no compensating action for this rule

12 }

13 });

Listing 3.11: Adding an interaction rule for invoking application logic to the
CrimeSPOT runtime

Whenever the interaction rule is triggered, the TypedObject instance passed to
both of these methods can be used to consult the bindings for the variables that

9In the example, it is assumed that getTemperature requests remain in the Fact Base, and
hence, that the interaction rule will never be deactivated.
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occur in the body of the interaction rule. For instance, the binding for ?temp

can be obtained by invoking getValue("temp") on the TypedObject.

3.7.3 Precedence

In CrimeSPOT, the precedence between the interaction rules is determined by
the order in which they were added to the CrimeSPOT runtime. If multiple
rules employ a condition that is matched by a newly asserted fact, the rule that
was added first will be activated first. Conversely, when multiple rules employ
a condition that is no longer matched due to the retraction of a fact, the same
precedence is retained for their deactivation.

3.8 Fine-tuning the Reification Engine

Since all facts in the Fact Base are taken into account for triggering the inter-
action rules, it’s important to keep only the relevant ones. Up till now, we’ve
discussed that facts can expire and are consequentially retracted from the Fact
Base. However, the expiration of facts is not sufficient to keep the Fact Base
clean. Often, a newly received fact subsumes older facts which should conse-
quentially be retracted. In addition, it can occur that an incoming fact should
be dropped right away rather than being asserted in the Fact Base.

In CrimeSPOT, these concerns can be expressed through meta-facts, which
can be added to the CrimeSPOT runtime just like any other textual expression.
While meta-facts look like regular facts, they represent the configuration of the
Reification Engine and are stored in the Configuration Base rather than the
Fact Base. Whenever the Reification Engine processes an incoming event, it
will act according to its meta-facts. Figure 3.15 depicts the event reification
pipeline. When the Reification Engine receives an event, it will first reify it as a
fact and verify whether it should be dropped. If the fact shouldn’t be dropped,
the Reification Engine will retract all facts that were subsumed by the newly
received fact, after which it will assert the new fact in the Fact Base.

Decentralized 
Event Bus Event Middleware 

Bridge
Reification 

Engine

Config.
Base

Fact
Base

Fact

Event 
Reification Drop? Subsumes? Assert

Reification Process

Figure 3.15: Event reification pipeline
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3.8.1 Specifying Subsumption Strategies

The subsumption meta-fact can be used to specify exactly which facts should
be removed from the Fact Base when a new fact is received. For instance,
for the HeatingController component from our running example, only the last
adjustHeating fact is of relevance. This fact will be used for steering the
component’s associated heater and no history of heating levels should be kept.
Hence, before asserting a new adjustHeating fact, the previous ones should be
removed. In other words, every new adjustHeating fact subsumes the previ-
ously stored one. This subsumption strategy can be expressed by adding the
subsumption meta-fact from Listing 3.12 to the CrimeSPOT runtime.

1 subsumes !( Incoming=adjustHeating(Level = ?new),

2 Fact=adjustHeating(Level = ?old)).

Listing 3.12: Specifying a subsumption strategy for adjustHeating facts

While the Incoming attribute specifies the newly reified event, the Fact attribute
specifies which facts should be retracted from the Fact Base before the new fact
is asserted (i.e., all matching facts10). Because the variables specifying the
heating level in either attribute are distinct, their values aren’t required to be
equal and hence every adjustHeating fact is retracted from the Fact Base when
a new one is received. The impact of this meta-fact on the Fact Base is further
illustrated in Figure 3.16. At every point in time, the contents of the Fact Base
are shown together with the received adjustHeating fact and the set of facts
subsumed by this new fact. Note that, every time a new adjustHeating fact is
received, the previously stored one is retracted due to the presence of the above
subsumption meta-fact in the Reification Engine’s Configuration Base.

time

received fact adjustH(L=5) adjustH(L=3)

subsumed facts

fact base  { }

 { }

 {adjustH(L=5)}

 {adjustH(L=5)}

adjustH(L=0)

 {adjustH(L=3)}

 {adjustH(L=3)}

 {adjustH(L=0)}

0 1 2 3

Figure 3.16: Subsumption impact for adjustHeating facts

By using the same variables in both fact specifications, more specific sub-
sumption strategies can be expressed as the values bound to these variables
should be equal for the subsumption to take place. This is useful, for instance,
to deal with the unintended matching behavior in the ComfortLevelMonitor
component from the running example (cfr. Figure 3.11). At any time, the
ComfortLevelMonitor should only have a single online fact in its Fact Base for
every running component. To avoid the faulty matching when a running compo-
nent fails, restarts, and republishes its online fact, the following subsumption
meta-fact should be added to the CrimeSPOT runtime:

10In case a certain incoming fact should subsume multiple fact types, multiple subsumption
meta-facts should be added for this fact.
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1 subsumes !( Incoming=online(Tent = ?new , Component = ?comp)@[from(MAC=?mac)],

2 Fact=online(Tent = ?old , Component = ?comp)@[from(MAC=?mac )]).

Listing 3.13: Specifying a subsumption strategy for online facts

When a new online fact is received and the above meta-fact is processed by the
Reification Engine, ?mac and ?comp will be bound to the new fact’s originat-
ing MAC address and component name, respectively. Hence, only the existing
online fact originating from the very same component will match the Fact
specification and will consequentially be retracted from the Fact Base before
the new online fact is asserted. Note that nothing precludes a component to
restart in another tent because the variables specifying the tent identifiers are
distinct.

Finally, a subsumption meta-fact can also have a When attribute, specifying
a list of conditions (i.e., its body). These conditions should be satisfied at the
time a new fact is received for the corresponding subsumption to take place.
To illustrate its use, we can consider another subsumption meta-fact for the
ComfortLevelMonitor component of our running example. The following sub-
sumption meta-fact expresses that a new humidityReading from a certain tent
?tent subsumes all older humidity readings from that same tent:

1 subsumes !( Incoming=humidityReading(Percent = ?new)@[from(MAC=?mac ,ID=?id)],

2 Fact=humidityReading(Percent = ?old)@[from(MAC=?othermac ,ID=? otherid)],

3 When=[ online(Tent = ?tent)@[from(MAC=?mac ,ID=?id)],

4 online(Tent = ?tent)@[from(MAC=?othermac ,ID=? otherid )]]).

Listing 3.14: Specifying a subsumption strategy for humidityReading facts

When a new humidity reading is received and this meta-fact is processed by the
Reification Engine, ?mac and ?id will be bound to the new reading’s originating
MAC address and component ID, respectively. As a result, the condition on line
3 will bind ?tent to the originating tent and only the humidity readings from
that same tent will be subsumed due to the condition on line 4.

As can be observed, the programmer has the full power of the logical reason-
ing engine for expressing her subsumption strategies. It must be noted, however,
that the programmer cannot expect the variables used in the Incoming fact
specification to be bound before the When clause is evaluated. Consequentially,
these variables cannot be used where a bound variable is expected (e.g., as the
argument of a method invocation). In addition, while the When clause might
be unsatisfied after a subsumption, this operation is irreversible and will not be
undone.

3.8.2 Dropping Incoming Facts

As various facts can be published to the decentralized event-bus, it is possible
that a component is not interested in certain facts and hence shouldn’t add
these facts to its Fact Base upon reception. The drop meta-fact can be used to
specify exactly those irrelevant facts. To illustrate its use, we can reconsider the
running example. If for some reason, the HeatingController, TemperatureSensor
and HumiditySensor would receive the other components’ online facts, these
facts could be dropped upon reception because they’re never used by these
components and hence would only pollute their Fact Bases11. To this end, the

11This would be the case if the online facts are published by a rule and carry the
to(MAC=any) meta-attribute, implying a broadcast.
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drop meta-fact from Listing 3.15 could be added to each of those components.

1 drop!( Incoming=online(Tent = ?tnt , Component = ?c)).

Listing 3.15: Dropping irrelevant facts

Just as in a subsumption meta-fact, the Incoming attribute specifies the newly
received fact, which in this case has to be dropped. Whenever an incoming fact
is dropped, it won’t trigger any subsumption meta-facts and it won’t be asserted
in the Fact Base. Consequentially, it also won’t trigger any interaction rules.

Additionally, a drop meta-fact can also have a When attribute, specifying a
list of conditions (i.e., its body) to be satisfied at the time a new fact is received
for the corresponding fact drop to take place. An example illustrating its use
consists of storing only the maximum received temperature in the Fact Base. To
obtain this behavior, the following meta-facts can be added to the CrimeSPOT
runtime:

1 drop!( Incoming=temperatureReading(Celsius =?t),

2 When=[ temperatureReading(Celsius >= ?t)]).

3
4 subsumes !( Incoming=temperatureReading(Celsius =?t),

5 Fact=temperatureReading(Celsius = ?oldT),

6 When =[? oldT < ?t]).

With these meta-facts in the Configuration Base, the Reification Engine will
only accept a new temperature if it’s strictly larger than any temperature al-
ready in the Fact Base (lines 1-2). In addition, an accepted temperature will
subsume all smaller temperatures in the Fact Base (lines 4-6). Therefore, at
any time, the Fact Base will contain at most one temperatureReading, which
is the largest one received up till that moment. Again, the programmer cannot
expect the variables used in the Incoming fact specification to be bound before
the When clause is evaluated, and a drop operation will not be undone when
the When clause is unsatisfied after the drop took place.

While up till now, the specifications used in the meta-facts employed vari-
ables for the attributes’ values, it must be noted that constants can also be used
for more specific matching. For instance, if one wants to drop all incoming sen-
sor readings from a certain MAC address ”1234:1234:1234:1234”, the meta-fact
from Listing 3.16 can be added to the CrimeSPOT runtime.

1 drop!( Incoming=sensorReading(Type=?v)@[from(MAC="1234:1234:1234:1234")]).

Listing 3.16: Using constants in meta-facts

3.9 Revisiting the Running Example

Having introduced the CrimeSPOT language, we will now revisit the running
example and finalize its CrimeSPOT implementation. To this end, we will
use the functional requirements identified earlier (cfr. Table 3.1). As most of
the implementation was already explained in the previous sections, we will only
discuss the remaining parts.

The sensing components For the sensing components (i.e., the Humidi-
tySensor and TemperatureSensor), the following functional requirements were
identified:



CHAPTER 3. NODE-CENTRIC PROGRAMMING WITH CRIMESPOT 57

F.R.1 The HumiditySensor and TemperatureSensor have to publish
their sensor readings at set intervals.

F.R.2 The HumiditySensor and TemperatureSensor have to publish
their online presence and location at set intervals.

Clearly, these requirements are easily met by using interaction rules in combi-
nation with the is-operator to invoke the required application logic and publish
the results at set intervals. The interaction rule for publishing humidity read-
ings was already depicted in Listing 3.8. The interaction rules for publishing
temperature readings and online facts (i.e., facts encapsulating a component’s
location) are very similar, which is why only the latter is shown below.

1 online(Tent = ?t, Component = ‘TemperatureSensor)@[to(MAC=any),

2 factExpires(Seconds =3600)]

3 <- ?t is getTentBasedOnGPSReading ()@[renewEvery(Seconds =3600)].

Listing 3.17: Publishing online facts from the TemperatureSensor component using
the is operator

This rule should be added to the TemperatureSensor component and publishes
an online fact every hour. To this end, the identifier for the current tent is ob-
tained by reading out a GPS sensor in the getTentBasedOnGPSReading method,
which is invoked every hour. After substituting the value for the Component
attribute in the online fact, this rule can also be added to the HumiditySensor
component.

The HeatingController component For the HeatingController component,
the following functional requirements were identified:

F.R.2 The HeatingController has to publish its online presence and lo-
cation at set intervals.

F.R.3 The HeatingController has to adjust its associated heater accord-
ing to a received adjustHeating event.

F.R.4 The HeatingController has to make sure that its associated heater
won’t keep heating when the ComfortLevelMonitor fails or gets
disconnected from the WSN.

While F.R.2 can be met through the rule from Listing 3.17 (i.e., after sub-
stituting the value for the Component attribute in the online fact), F.R.3 and
F.R.4 require an interaction rule that invokes application logic upon triggering.
This rule can be added to the CrimeSPOT runtime as shown below.

1 registerRule("adjustHeating(Level = ?h)",

2 new Action () {

3 public void activated(TypedObject args) {

4 // adjust the heater using args.getValue ("h")

5 }

6 public void deactivate(TypedObject args) {

7 // reset the heater

8 }

9 });

Listing 3.18: Reacting to adjustHeating facts
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As soon as the HeatingController receives an adjustHeating fact, this rule will
be activated and the component will steer its heater accordingly. To deal with
F.R.4, an adjustHeating fact expires after a specific amount of time, after
which this rule will be deactivated and the component will reset its heater
to a neutral setting. Additionally, as we’ve discussed before, only the last
adjustHeating fact should be stored in the Fact Base. To this end, the sub-
sumption meta-fact from Listing 3.12 should also be added to the component.

The ComfortLevelMonitor component Finally, the ComfortLevelMonitor
component had the following functional requirements:

F.R.5 The ComfortLevelMonitor has to compute a tent’s heating level
based on a received temperatureReading event and publish this
level in an adjustHeating event.

F.R.6 The ComfortLevelMonitor has to control the heating for each tent
individually by sending adjustHeating events only to the Heat-
ingControllers in the tent to be heated.

F.R.7 The ComfortLevelMonitor has to relate received
humidityReading and temperatureReading events that
originate from the same tent and use them to compute and log
that tent’s comfort level.

F.R.8 The ComfortLevelMonitor has to make sure that only the most
recent sensor readings from a certain tent are used for computing
the heating- and comfort levels.

As discussed earlier, F.R.7 can be met by adding three rules to the Com-
fortLevelMonitor component. First of all, the humidity- and temperature read-
ings have to be related to the online facts to obtain their originating tent.
For humidity readings, this can be done through the preprocessing rule de-
picted in Listing 3.5, which relates these readings with online facts, and asserts
humidityInTent facts. The rule for asserting temperatureInTent facts is very
similar and therefore not shown for brevity12. The third rule invokes applica-
tion logic to compute and log a tent’s comfort level, and was depicted in Listing
3.11.

To deal with F.R.5 and F.R.6, the following interaction rule can be added
to the ComfortLevelMonitor component:

1 adjustHeating(Level = ?heatingLevel)@[to(MAC=?hcm , ID=?hci),

2 factExpires(Seconds = 600)]

3 <- temperatureInTent(Celsius = ?temp , Tent = ?tnt),

4 ?heatingLevel is computeHeatingLevel (( Number )?temp),

5 online(Component = ‘HeatingController ,

6 Tent = ?tnt)@[from(MAC = ?hcm , ID=?hci)].

As soon as a temperatureInTent fact is asserted (i.e., as soon as a new tem-
perature reading is received), the condition on line 3 will be matched and will
bind ?temp to the measured temperature and ?tnt to the originating tent. The
subsequent method invocation on line 4 will compute the required heating level,

12Remember that these preprocessing rules require the presence of exactly one online fact
in the Fact Base for each running component and that it’s therefore also a good idea to add
the subsumption meta-fact from Listing 3.13 to the CrimeSPOT runtime.
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which has to be published to the HeatingControllers in the tent to be heated. To
this end, the condition on line 5 will bind ?hcm and ?hci to such a HeatingCon-
troller ’s MAC address and component ID, respectively, and the adjustHeating
fact in the rule’s head is published using these values. Note that the condition
on line 5 will have a match for every HeatingController in the tent to be heated
and that this rule will consequentially send the adjustHeating fact to each of
these controllers. As mentioned before, the adjustHeating fact should expire,
which is expressed by its factExpires meta-attribute.

F.R.8 has to be dealt with using subsumption meta-facts. Because all facts
in the Fact Base are taken into account for triggering the interaction rules, and
consequentially for computing the heating- and comfort levels, this requirement
actually states that every newly received sensor reading from a certain tent
subsumes any older sensor reading from that tent. This subsumption strategy
was expressed earlier for humidityReading facts in Listing 3.14. The subsump-
tion strategy for temperatureReading facts, which is entirely analog, is shown
below.

1 subsumes !( Incoming=temperatureReading(Celsius =?new)@[from(MAC=?mac ,ID=?id)],

2 Fact=temperatureReading(Celsius =?old)@[from(MAC=?othermac ,ID=? otherid)],

3 When=[ online(Tent=?tnt)@[from(MAC=?mac ,ID=?id)],

4 online(Tent=?tnt)@[from(MAC=?othermac ,ID=? otherid )]]).

Both subsumption strategies make sure that for every tent, only the last
temperatureReading and the last humidityReading will be stored in the Fact
Base, even when multiple redundant TemperatureSensor - or HumiditySensor
components have been deployed in the same tent.

3.10 Conclusion

When programming wireless sensor network applications from a node-level per-
spective using event-based component middleware, every component has to be
individually programmed by specifying its interactions with other components.
These interactions are driven by the exchange of events over a decentralized
event-bus. However, without additional support, event handlers are the only
means to react to the reception of events.

This chapter introduced CrimeSPOT, our programming language that pro-
vides additional support for programming interactions among WSN compo-
nents. Rather than using event handlers, it advocates the use of declarative
interaction rules to react to the reception of events. To this end, CrimeSPOT
reifies events as facts and stores them in a Fact Base. By allowing the pro-
grammer to associate an expiration time with reified events, we reconcile the
transient nature of events with the persistent nature of facts. The interaction
rules, each specifying one or more facts to react upon, are re-evaluated when-
ever the Fact Base is updated, which indirectly corresponds to the reception or
expiration of events. As soon as an interaction rule’s conditions are met, its
reaction is triggered. In addition, a rule is also triggered when its conditions
are no longer met, which allows its reaction to be compensated for.

By using CrimeSPOT, the programmer no longer has to deal with the
accidental complexity inherent to the use of event-based WSN middleware. She
no longer has to dispatch a received event to its appropriate reaction in an event
handler, nor is she required to implement ad-hoc state management to keep track
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of which events have already been received and whether or not they are still
valid. More importantly, CrimeSPOT’s interaction rules facilitate untangling
the code concerned with application logic and component interactions.

More details about the implementation of the CrimeSPOT language can
be found in Appendix A. The next chapter introduces the Macro-CrimeSPOT
extension, which allows programming CrimeSPOT components from a network-
level perspective.
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�expression� ::= �expr�.
�expr� ::= �mapping�

| �meta-fact�
| �fact� | �rule�

�mapping� ::= mapping �fact� <=> �event�
�meta-fact� ::= �subsumption� | �drop�
�subsumption� ::= subsumes!(Incoming=�fact�,Fact=�fact� [ ,When=[�body�] ] )

�drop� ::= drop!(Incoming=�fact� [ ,When=[�body�] ] )

�fact� ::= �type�( [ �attribute� (, �attribute�)* ] ) [ @[ �meta-attributes� ] ]

�attribute� ::= �name� �relop� ( �value� | �variable� )

�meta-attributes� ::= �meta-attribute� (, �meta-attribute�)*
�meta-attribute� ::= �assert-meta-attribute�

| �condition-meta-attribute�
�event� ::= �type�(�field� (, �field�)*)
�field� ::= �type� = �variable�
�rule� ::= �fact� <- �body�
�body� ::= �condition� (, �condition�)*
�condition� ::= �fact�

| �extralogical condition�
�value� ::= �number� | �quoted text� | �symbol� | �list�
�list� ::= [ [ (�value� | �variable�) (, (�value� | �variable�))* ] ]

�quoted text� ::= "�text�"
�symbol� ::= ‘�text�
�type� ::= �text�
�name� ::= �text�
�variable� ::= ?�name�
�relop� ::= = | != | <= | >= | < | >

�assert-meta-attribute� ::= to(MAC=(�quoted text� | any))
| to(ID=(�number� | any))
| factExpires(Seconds=�number�)

�condition-meta-attribute� ::= from(MAC=(�quoted text� | �variable� | this.MAC))
| from(ID=(�number� | �variable� | this.ID))
| matchExpires(Seconds=�number�)
| matchEvery(Seconds=�number�)

�extralogical condition� ::= (�value� | �variable�) is �methodinvocation�
| findall(�variable�,[�body�],�variable�)
| length(�list�,(�value� | �variable�))
| not �fact�
| �variable� �relop� (�value� | �variable�)

�methodinvocation� ::= �name�( [ �argument� (, �argument�)* ] ) [ @[�option�] ]

�argument� ::= �value� | (�typecast�)�variable�
�typecast� ::= Number | Fraction | Text | Symbol | List
�option� = evalEvery(Seconds=�number�)

| renewEvery(Seconds=�number�)

Figure 3.8: CrimeSPOT Grammar
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Network-centric Programming with

Macro-CrimeSPOT

So far, we have introduced the CrimeSPOT programming language which fa-
cilitates programming individual wireless sensor network components. Next to
significantly reducing the complexity of dealing with events in such components,
it also untangles the code concerned with application logic and component in-
teractions. However, a few important shortcomings can be identified when pro-
gramming WSN applications using CrimeSPOT.

First of all, each component is typically programmed in an individual Java
class. This makes it difficult to maintain an overview on a large WSN application
(i.e., an application consisting of several components). For instance, to find out
which components interact with each other, a programmer carefully has to go
through each individual class to inspect the interaction rules that were added
to the CrimeSPOT runtime.

Second, while (nearly) identical interaction rules, event-fact mappings, and
meta-facts are often required in multiple components of the same or different
WSN applications, they cannot be reused through any other means than code
duplication.

Inspired by the state of the art presented in Chapter 2, we decided to tackle
these shortcomings by extending node-centric CrimeSPOT with a network-
centric variant. Concretely, we extended CrimeSPOT with a macroprogram-
ming language, dubbed Macro-CrimeSPOT, in which CrimeSPOT com-
ponents can be programmed from a network-level perspective and in which
means for code reuse are provided. Macro-CrimeSPOT comes with a precom-
piler, which compiles the macro-code to node-level code. When using Macro-
CrimeSPOT, the application code is no longer cluttered with Java statements
(e.g., to install CrimeSPOT expressions) and a lucid view on the entire WSN
application is maintained. As a result, the interactions among the components
become clearer and possible opportunities for code reuse become apparent.

In this chapter, we introduce Macro-CrimeSPOT and its accompanying

62
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precompiler, and discuss the final implementation of our running example.

4.1 Grammar

Figure 4.1 gives an overview of the Macro-CrimeSPOT language. It depicts
the language’s grammar using a Backus Naur Form notation extended with large
square brackets to depict optional items and large parenthesis suffixed with an
asterisk to depict zero or more repetitions. Note that <cs expression> refers to

�application� ::= (�component block�)*
�component block� ::= �quantifier� �code block�
�quantifier� ::= * | �name� (, �name�)*
�code block� ::= �crimespot block� | �java block�
�crimespot block� ::= { �crimespot code� }
�java block� ::= :java { �java code� }
�crimespot code� ::= (�cs expression�. | �mcs expression�)*
�mcs expression� ::= defvar �meta-var�: �meta-var-value�.

| defmacro �name�( [ �meta-var� (, �meta-var�)* ] ): �cs expression�.
| �macro�.
| import!("�library file path�").

�meta-var� ::= $�name�
�macro� ::= �name�( [ �meta-var-value� (, �meta-var-value�)* ] )

�library file path� ::= �text�
�library� ::= �crimespot code�
�name� ::= �text�

Figure 4.1: Macro-CrimeSPOT Grammar

<expr> from the CrimeSPOT grammar, which was depicted in Figure 3.8. A
Macro-CrimeSPOT application can be written in a text file and compiled by
the precompiler, which generates the node-level Java code for the application’s
components. In the following sections, we will introduce all language features
shown in the grammar.

4.2 Grouping the Components of a WSN Application

The code base of a CrimeSPOT WSN application is typically small. Each com-
ponent is written in a Java class and consists of only a few event-fact mappings,
meta-facts, interaction rules and Java methods. Hence, a straightforward way
to switch to the network-level perspective is by collecting the code concerning
a single application in one source file.

In Macro-CrimeSPOT, every application is represented as a single file
containing blocks of code for each component. There are two kinds of blocks:
blocks that group the CrimeSPOT expressions governing a component’s in-
teractions, and blocks that group the Java code implementing a component’s
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application logic. To introduce the syntax, Listing 4.1 depicts an example ap-
plication consisting of two components.

1 TemperatureSensor {

2 online(Tent = ?t, Component = ‘TemperatureSensor)@[to(MAC=any),

3 factExpires(Seconds =3600)]

4 <- ?t is getTentBasedOnGPSReading ()@[renewEvery(Seconds =3600)].

5
6 temperatureReading(Celsius = ?temp)@[to(MAC=any),

7 factExpires(Seconds = 600)]

8 <- ?temp is getTemperature ()@[renewEvery(Seconds = 600)].

9 }

10
11 HumiditySensor {

12 // publish online and humidityReading facts

13 }

Listing 4.1: Macro-CrimeSPOT syntax

Note that each block is delimited by curly braces and preceded by a quanti-
fier. This quantifier indicates the component to which the code from within
the corresponding block should be added. In this example, the blocks group
the CrimeSPOT expressions for the TemperatureSensor - and HumiditySensor
components from our running example.

As it’s often required to introduce rules that invoke application logic, and to
specify their corresponding application logic in Java, every quantifier can also
take the :java suffix to indicate that the corresponding block’s content is plain
Java code. To illustrate this, we can reconsider the HeatingController compo-
nent from our running example. This component reacts to adjustHeating facts
and steers its associated heater accordingly. Its partial macro-implementation
is given below.

1 HeatingController {

2 // ...

3 this.adjustHeater

4 <- adjustHeating(Level = ?h).

5 }

6 HeatingController:java {

7 private Action adjustHeater = new Action () {

8 public void activated(TypedObject args) { ... }

9 public void deactivate(TypedObject args) { ... }

10 };

11 }

Listing 4.2: Implementing the HeatingController in Macro-CrimeSPOT

The precompiler will add all Java code to the component’s Java class without
further processing. Note that the Java variable bound to the instance of the
abstract Action type is accessible from within the interaction rule’s head by
prefixing it with this.

4.2.1 Quantifying over Multiple Components

When considering the code from Listing 4.1, opportunities for code reuse already
become apparent. Since both the TemperatureSensor and HumiditySensor com-
ponents publish their presence using an online fact, the corresponding inter-
action rule could just be added to each component by the precompiler rather
than manually duplicating it. To this end, Macro-CrimeSPOT allows the
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programmer to quantify code blocks over multiple components. Such quantifi-
cation can be achieved by either listing multiple component names as a block’s
quantifier, or by using the universal * quantifier.

The use of the universal * quantifier is illustrated in Listing 4.3. When
this quantifier is used, the precompiler will add all code specified within the
corresponding block to each component in the application.

1 * {

2 online(Tent = ?t, Component = ‘$COMPONENT_NAME)@[to(MAC=any),

3 factExpires(Seconds =3600)]

4 <- ?t is getTentBasedOnGPSReading ()@[renewEvery(Seconds =3600)].

5 }

6
7 *:java {

8 private Attribute getTentBasedOnGPSReading () { ... }

9 }

10
11 TemperatureSensor { /* publish temperature readings */ }

12 HumiditySensor { /* publish humidity readings */ }

Listing 4.3: Illustrating the universal quantifier

For this example, the same behavior could be obtained by using TemperatureSensor,

HumiditySensor as the blocks’ quantifier. Listing destination components is
especially useful in applications with multiple components where specific code
should be added to some, but not all, components.

4.2.2 Using Meta-Variables in CrimeSPOT Expressions

When developing an application using Macro-CrimeSPOT, the programmer
can employ meta-variables in her CrimeSPOT expressions. Unlike CrimeSPOT’s
variables, Macro-CrimeSPOT’s meta-variables are only valid at compile-time
and will be substituted by their value by the precompiler. Meta-variables are
prefixed by a $ sign and are either predefined by the precompiler, or defined by
the programmer in the scope of a particular component.

Within a CrimeSPOT code block, the programmer can use the predefined
$COMPONENT NAME meta-variable wherever the component’s name is expected.
This is often useful when quantifying over multiple components. For instance,
in Listing 4.3, the online fact published by a component has to contain the
component’s name, which is therefore represented by $COMPONENT NAME.

Other meta-variables can also be introduced by the programmer. This is,
for instance, useful when dealing with several sensing components which publish
facts at set intervals. To configure such an interval for the entire application,
the defvar statement can be used within a universally quantified CrimeSPOT
block to bind the interval to a meta-variable.

1 * {

2 defvar $publicationInterval: Seconds = 600.

3 }

When using the above code in combination with the TemperatureSensor and
HumiditySensor components from Listing 4.1, the explicit intervals in these
components’ code can be replaced by the $publicationInterval meta-variable.
As such, the application becomes easier to reconfigure.

In general, meta-variables and their definitions can only be used within
CrimeSPOT code blocks. The meta-variables can be bound to any textual
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expression without dots, in which commas appear only within balanced paren-
theses or brackets. Typically, meta-variables are used for representing very small
snippets of CrimeSPOT code.

4.2.3 Abstracting CrimeSPOT Expressions

While the possibility to quantify code blocks over multiple components allows
to implicitly reuse code in certain components, any full-fledged CrimeSPOT
expression can also be reused by abstracting it as a macro and explicitly referring
to it from within a CrimeSPOT code block.

As an example, we can consider a macro for reusing an event-fact mapping
for temperature readings. If we assume that the $publicationInterval meta-
variable is bound where the macro will be used1, the macro-definition from
Listing 4.4 can be used for this purpose.

1 * {

2 defmacro temperatureMapping ():

3 mapping temperatureReading(Celsius =?temp)@[factExpires($publicationInterval )]

4 <=> Event_101(Integer =?temp).

5 }

Listing 4.4: Macro for the temperature event-fact mapping

Because the macro is defined in a universally quantified code block, its definition
is available to all components. They can refer to the macro as follows:

1 temperatureMapping ().

Whenever the precompiler encounters a macro-name within a CrimeSPOT
code block, it will expand the macro as specified in its definition. Since in
our running example, only the TemperatureSensor and ComfortLevelMonitor
components employ temperature readings, this macro can be used in exactly
those components.

If we further reconsider our running example, another useful macro would
represent the interaction rule for publishing the online facts. Since only the
TemperatureSensor, HumiditySensor and HeatingController components should
publish such facts, this macro could be used in exactly those components. A
possible macro-definition is given in Listing 4.5. This macro takes the $time

meta-variable as an argument.

1 * {

2 defmacro publishPresenceEvery($time):

3 online(Tent = ?tnt , Component = ‘$COMPONENT_NAME)@[to(MAC=any),

4 factExpires($time)]

5 <- ?tnt is getTentBasedOnGPSReading ()@[renewEvery($time )].

6 }

Listing 4.5: Macro for publishing a component’s presence

In general, a macro can take any number of meta-variables as arguments for
which the values have to be passed whenever the macro is used. As such,
expanding a macro also binds meta-variables, but only during this expansion.
For instance, the code below can be added to any component to publish an
online fact every hour.

1 publishPresenceEvery(Seconds =3600).

1Our macros are dynamically scoped.
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4.2.4 Organizing Abstract CrimeSPOT Expressions into
Libraries

Finally, we also allow CrimeSPOT expressions and macro- and meta-variable
definitions to be stored in external files or libraries. Such a library can be
imported from within a CrimeSPOT code block using the import! statement
as shown below.

1 import !("/path/to/library.mcs").

The precompiler will substitute this statement by the imported library’s con-
tents. By providing this feature, our macroprogramming language allows to
easily reuse code among various WSN applications (e.g., a library with general
macro-definitions or a full-fledged component extension).

4.3 Compiling Macro-Code

As mentioned before, Macro-CrimeSPOT comes with a precompiler that
compiles the macro-code to node-level Java code for each component. Our
implementation’s source code can be found online2. While our precompiler
targets CrimeSPOT on the SunSPOT platform with the LooCI event-based
component middleware, it could easily be adapted to target any other platform.
Figure 4.2 gives an overview of how the precompiler works.

Figure 4.2: Macro-CrimeSPOT Precompiler

As can be observed, compiling macro-code is quite straightforward and typ-
ically a three phase process.

In the first phase, the Macro-CrimeSPOT source is parsed to extract the
individual components’ CrimeSPOT- and Java code blocks. In case certain
code blocks were quantified over multiple components, the contents of these
blocks will be added to the corresponding blocks of the individual components.

In the second phase, every component is individually processed. Its
CrimeSPOT code block is parsed to detect errors in the expressions3 and to
do macro-expansions, imports, and meta-variable substitutions. In addition, all
methods invoked from within the component’s interaction rules are detected and
the dispatcher method (cfr. Section A.4) is dynamically generated. To end this

2http://soft.vub.ac.be/amop/crime/sunspot
3Since all CrimeSPOT expressions are installed at runtime, this error detection makes sure

that all possible errors are detected at compile-time.

http://soft.vub.ac.be/amop/crime/sunspot


CHAPTER 4. NETWORK-CENTRIC PROGRAMMINGWITHMACRO-CRIMESPOT68

phase, the required Java statements to install the CrimeSPOT expressions are
generated and all Java code is merged in a full-fledged Sun SPOT Application
for the component.

The third phase is optional. In case the components’ node-level Java code
doesn’t have to be refined, the precompiler can produce a JAR for every compo-
nent, which is ready for deployment on WSN nodes using LooCI’s over-the-air
deployment tools.

4.4 Revisiting the Running Example

Having introduced Macro-CrimeSPOT, we will now illustrate its use by re-
visiting the running example from a network-perspective. The running example
was explained in Section 3.1 and concerns a wireless sensor network application
for controlling the heating and logging the comfort levels of festival tents. Since
all Java code has already been shown, we won’t discuss the Java code blocks for
brevity.

Listing 4.6 shows the application’s universally quantified code block,
which provides the code to be added to each application component.

1 * {

2 import !("mappings -library.mcs").

3
4 defvar $readingPublicationInterval: Seconds = 600.

5 defvar $onlinePublicationInterval: Seconds = 3600.

6
7 defmacro publishPresenceEvery($time):

8 online(Tent = ?tnt , Component = ‘$COMPONENT_NAME)@[to(MAC=any),

9 factExpires($time)]

10 <- ?tnt is getTentBasedOnGPSReading ()@[renewEvery($time )].

11
12 defmacro newReadingSubsumesOlderFromSameTent($reading , $type):

13 subsumes !( Incoming= $reading($type = ?new)@[from(MAC=?mac)],

14 Fact=$reading($type = ?old)@[from(MAC=? othermac)],

15 When=[ online(Tent = ?tnt)@[from(MAC=?mac)],

16 online(Tent = ?tnt)@[from(MAC=? othermac )]]).

17 }

Listing 4.6: Running Example - Universally quantified code block

Since event-fact mappings are used in various WSN applications, the default
ones have been put in a library that is imported in this application (line 2).
As shown in Listing 4.7, this library contains two interesting macros, namely
temperatureMapping($factExp) and humidityMapping($factExp), which pro-
vide exactly the event-fact mappings required for this application.

1 defmacro temperatureMapping($factExp ):

2 mapping temperatureReading(Celsius =?temp)@[factExpires($factExp )]

3 <=> Event_101(Integer =?temp).

4
5 defmacro humidityMapping($factExp ):

6 mapping humidityReading(Percent =?h)@[factExpires($factExp )]

7 <=> Event_102(Integer =?h).

8
9 // ...

Listing 4.7: Running Example - Event-Fact Mappings Library
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Next to importing the library, two meta-variables and two application-specific
macros are defined. While the meta-variables configure the time intervals rele-
vant to this application, the macros define some reusable code. For instance, the
newReadingSubsumesOlderFromSameTent($reading, $type) macro can be used
to install a subsumption meta-fact which specifies that a new $reading fact from
a certain tent subsumes all older $reading facts from the same tent.

The implementation for the sensing components and the HeatingCon-
troller component is shown in Listing 4.8. Compared to the implementation
given earlier, the required event-fact mappings are now installed using the li-
brary macros (lines 19, 28) and the interaction rule for publishing the online

fact is installed using the publishPresenceEvery macro (lines 20, 29, 37).

18 TemperatureSensor {

19 temperatureMapping($readingPublicationInterval ).

20 publishPresenceEvery($onlinePublicationInterval ).

21
22 temperatureReading(Celsius = ?temp)@[to(MAC=any),

23 factExpires($readingPublicationInterval )]

24 <- ?temp is getTemperature ()@[renewEvery($readingPublicationInterval )].

25 }

26
27 HumiditySensor {

28 humidityMapping($readingPublicationInterval ).

29 publishPresenceEvery($onlinePublicationInterval ).

30
31 humidityReading(Percent = ?p)@[to(MAC=any),

32 factExpires($readingPublicationInterval )]

33 <- ?p is getHumidity ()@[renewEvery($readingPublicationInterval )].

34 }

35
36 HeatingController {

37 publishPresenceEvery($onlinePublicationInterval ).

38
39 subsumes !( Incoming=adjustHeating(Level = ?new),

40 Fact=adjustHeating(Level = ?old)).

41
42 this.adjustHeater

43 <- adjustHeating(Level = ?h).

44 }

Listing 4.8: Running Example - Sensor- and HeatingController components

In addition, the interaction rules for publishing the sensed readings now em-
ploy the $readingPublicationInterval meta-variable to specify the interval
at which the readings should be published. Because a published sensor reading
fact expires just before a new sensor measurement is taken, no retraction events
have to be published on the underlying event-bus when these interaction rules
are triggered4.

45 ComfortLevelMonitor {

46 temperatureMapping($readingPublicationInterval ).

47 humidityMapping($readingPublicationInterval ).

48
49 subsumes !( Incoming=online(Tent = ?tnt , Component = ?c)@[from(MAC=?m)],

50 Fact=online(Tent = ?otnt , Component = ?c)@[from(MAC=?m)]).

51

4In case the published fact had not expired at the time a new match for the is-operator
is obtained and the old one consequentially becomes invalid, a retraction for the fact would
have to be published because the interaction rule got deactivated for the invalidated match.
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52 newReadingSubsumesOlderFromSameTent(humidityReading , Percent ).

53 newReadingSubsumesOlderFromSameTent(temperatureReading , Celsius ).

54
55 this.logComfortLevel

56 <- humidityReading(Percent = ?h)@[from(MAC=?hm, ID=?hi)],

57 temperatureReading(Celsius = ?t)@[from(MAC=?tm, ID=?ti)],

58 online(Tent = ?tnt)@[from(MAC = ?hm , ID = ?hi)],

59 online(Tent = ?tnt)@[from(MAC = ?tm , ID = ?ti)].

60
61 adjustHeating(Level = ?heatingLevel)@[to(MAC=?hcm , ID=?hci),

62 factExpires($readingPublicationInterval )]

63 <- temperatureReading(Celsius = ?t)@[from(MAC=?tm , ID=?ti)],

64 online(Tent = ?tnt)@[from(MAC = ?tm , ID = ?ti)],

65 ?heatingLevel is computeHeatingLevel (( Number )?t),

66 online(Component = ‘HeatingController ,

67 Tent = ?tnt)@[from(MAC = ?hcm , ID=?hci)].

68 }

Listing 4.9: Running Example - ComfortLevelMonitor component

Listing 4.9 shows the implementation for the ComfortLevelMonitor com-
ponent and concludes the macro-implementation of our running example. Com-
pared to the implementation given earlier, the ComfortLevelMonitor compo-
nent now uses the application’s configuration meta-variables, the mapping li-
brary macros, and the newReadingSubsumesOlderFromSameTent macro to reuse
as much code as possible. In addition, the preprocessing rules for asserting
temperatureInTent and humidityInTent facts are no longer used. As can be
observed, the CrimeSPOT expressions for the entire WSN application roughly
consume only 68 source lines of code (i.e., excluding the mappings library).

4.5 Conclusion

This chapter introduced Macro-CrimeSPOT, our macroprogramming lan-
guage for programming WSN applications using CrimeSPOT from a network-
level perspective. For shifting to a network-level perspective, Macro-CrimeSPOT
merges all components’ code in a single source file per application. However, as
WSN components are typically small, this merging doesn’t result in huge source
files. On the contrary, it results in clearer code in which a lucid view on the
entire WSN application is retained.

Next to the ability of programming an entire WSN application from a
network-level perspective, Macro-CrimeSPOT also provides the programmer
with means to reuse code and thereby avoid code duplication. While component
quantification, meta-variables and macros can be used to reuse code within a
single WSN application, code can also be imported from libraries and thereby
reused over various applications.

The next chapter will validate both CrimeSPOT and Macro-CrimeSPOT
through some additional illustrative examples.



5
Validation

To validate both CrimeSPOT and Macro-CrimeSPOT, this chapter dis-
cusses the implementation of illustrative example applications. Afterwards, we
summarize the discussed applications’ statistics to evaluate the expressiveness
of our language.

5.1 Illustrative Examples

Wireless sensor networks are used for a plethora of applications. Some ex-
amples are monitoring applications (e.g., monitoring habitats [5], zebras [6] and
glaciers [7]), emergency detection applications (e.g., detecting intrusions [8], for-
est fires [9] and flooding rivers [10]), and more active applications like controlling
heating- and air conditioning systems [11]. In this section, we will discuss some
of these applications together with their Macro-CrimeSPOT implementation
to demonstrate the expressiveness of our solution.

5.1.1 Fire Detection

As illustrated in Figure 5.1, an application for detecting and fighting fire requires
two types of WSN nodes: smoke detectors (D), which have a smoke sensor
and publish smoke detection events, and controllers (C), which each monitor
a certain region and turn on their associated sprinklers, alarms and emergency
exit lights in case a fire is detected. The arrows in the Figure illustrate the
node interactions in a particular region. After a controller informs its smoke
detectors that they’re within its region, the smoke detectors will publish their
events to that controller.

5.1.1.1 Implementation

For each type of WSN node, a component can be developed and afterwards
deployed on the corresponding nodes. As shown below, we start the development

71



CHAPTER 5. VALIDATION 72

Fire Detection Region

D

D D

D

C

Figure 5.1: A Wireless Sensor Network application for detecting and fighting fire

by defining some meta-variables in the universally quantified code block to
configure the application.

1 * {

2 defvar $detectionInterval: Seconds =60.

3 defvar $alarmThreshold: 2.

4 }

While the $detectionInterval configures the interval between every two sub-
sequent smoke sensor readouts, the $alarmThreshold configures the amount of
sensors that have to detect smoke in a region before the controller will sound
the alarm.

A Controller component participates in two interactions. After informing
its region’s smoke detectors, it listens for their smoke facts to detect fire. Its
implementation is given below.

5 Controller {

6 mySensor(MAC="MAC1").

7 mySensor(MAC="MAC2").

8 mySensor(MAC="MACn").

9
10 itsController ()@[to(MAC=? sensorMAC )]

11 <- mySensor(MAC=? sensorMAC ).

12
13 this.respond

14 <- findall (?m,

15 [smoke()@[from(MAC=?m)]],

16 ?alarmingSensors),

17 length (? alarmingSensors , ?l),

18 ?l > $alarmThreshold.

19 }

20
21 Controller:java {

22 private Action respond = new Action () {

23 public void activated(TypedObject arguments) {

24 // turn on the sprinklers , alarms , and emergency exit lights

25 }

26 public void deactivate(TypedObject arguments) {

27 // turn off the sprinklers , alarms , and emergency exit lights

28 }

29 };

30 }
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Note that the mySensor facts are statically added to the Controller’s Fact Base
to configure its region (lines 6-8)1. The presence of these facts will activate
the first interaction rule, which will configure the listed smoke detectors to send
their facts to the controller (lines 10-12). To this end, the Controller sends them
an itsController fact which includes its MAC address2.

The second interaction rule is used for detecting and reacting to fire (lines
13-18). It explicitly states when the Controller should respond; i.e., whenever
more than $alarmThreshold smoke facts have been received and are still valid.
The response itself is defined in the implementation for the respond Action
instance (lines 22-29). Whenever the rule is activated, the controller will turn
on its sprinklers, alarms, and emergency exit lights, and conversely, whenever
the rule gets deactivated, it will turn them off.

The remaining Smoke Detector component can be defined using the
single interaction rule shown below.

31 SmokeDetector {

32 smoke()@[to(MAC=?mac), factExpires($detectionInterval )]

33 <- itsController ()@[from(MAC=?mac)],

34 ‘true is smokeDetected ()@[renewEvery($detectionInterval )].

35 }

36
37 SmokeDetector:java {

38 private Attribute smokeDetected () { /* read out smoke sensor */ }

39 }

As soon as an itsController fact has been received, the smoke detector is con-
figured and will query its sensor at intervals specified by the $detectionInterval
meta-variable (line 34). Upon smoke detection, it will send a smoke fact to its
controller. Clearly, a smoke detector can be configured for several controllers,
in which case its Fact Base will contain several itsController facts. Conse-
quentially, whenever smoke is detected, the interaction rule will be activated
for every itsController fact and the smoke detector will send a smoke fact to
each controller.

It must be noted that the Smoke Detector can also be implemented as a non-
CrimeSPOT, plain event-based component, which might be useful when certain
smoke detector sensor nodes are less powerful or unable to use CrimeSPOT
because it’s not available on their platform. To this end, the event-based middle-
ware should be manually configured such that the plain smoke detectors publish
their events to the correct controller, and the Controller’s implementation should
be augmented with an event-fact mapping to map these events to smoke facts
that can be asserted in its Fact Base. If the smoke events are of type 100 and
are published at the same intervals as specified by the $detectionInterval

meta-variable, the following event-fact mapping can be used.

1 mapping smoke()@[factExpires($detectionInterval )]

2 <=> Event_100 ().

1In case several controller components are deployed within the application, every con-
troller’s region has to be individually configured. This can, for instance, be done by refining
the controller’s source code that was produced by the Macro-CrimeSPOT precompiler.

2As explained earlier, a fact’s originating MAC address is implicitly present in its meta-
attributes.
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5.1.2 Monitoring Temperatures

Another interesting WSN application monitors the temperature in several re-
gions, computes the average temperature in the regions and notifies the regions
with the highest temperature. A possible configuration for this application is
depicted in Figure5.2. The application uses only two components: the Tem-

Figure 5.2: A Wireless Sensor Network application for monitoring temperatures

perature Sensor component (T) has been deployed in all regions and blinks a
led when its region has the highest temperature, and the Average Computer
component (C) is deployed only once to steer the application. In addition, the
Average Computer is connected to a display that outputs the current average
temperature. While every Temperature Sensor broadcasts its measured temper-
ature, the Average Computer sends a notification to the Temperature Sensors
in the regions with the highest temperature.

5.1.2.1 Implementation

The Temperature Sensor component has a simple implementation, which
is shown below.

1 TemperatureSensor {

2 defvar $readingPublicationInterval: Seconds =60.

3
4 temperatureReading(Celsius = ?temp)@[to(MAC=any),

5 factExpires($readingPublicationInterval )]

6 <- ?temp is getTemperature ()@[renewEvery($readingPublicationInterval )].

7
8 this.alertMaxTemp

9 <- maximumTemperature ().

10 }

11
12 TemperatureSensor:java {

13 private Action alertMaxTemp = new Action () {

14 public void activated(TypedObject args) { /* blink led */ }

15 public void deactivate(TypedObject args) { /* turn off led */ }

16 };

17 }

While the first interaction rule publishes temperatureReading facts at inter-
vals specified by the $readingPublicationInterval meta-variable, the second
interaction rule reacts to the reception of a maximumTemperature fact, which
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indicates that the component is deployed in a region that currently has the
highest measured temperature and should consequentially blink its led.

Even though the implementation for the Average Computer component
is somewhat larger, it’s not necessarily more complex. The implementation is
shown below. Next to two interaction rules, the component also requires some
additional Java methods to do its job. However, since these Java methods are
straightforward to implement, only a description of their behavior is given here.

18 AvgComputer {

19 this.outputAverageTemp

20 <- findall (?t, [temperatureReading(Celsius = ?t)], ?temps),

21 ?avgTemp is computeAverage ((List)?temps ).

22
23 maximumTemperature(Celsius = ?maxTemp)@[to(MAC=?m)]

24 <- findall (?t, [temperatureReading(Celsius = ?t)], ?temps),

25 ?maxTemp is computeMaximum ((List)?temps),

26 temperatureReading(Celsius =? maxTemp)@[from(MAC=?m)].

27 }

28
29 AvgComputer:java {

30 private Action outputAverageTemp = new Action () {

31 public void activated(TypedObject args) {

32 // show args.getValue (" avgTemp ") on the display

33 }

34 public void deactivate(TypedObject args) { /* erase display */ }

35 };

36
37 private Attribute computeAverage(List nrLst) {

38 // compute the average Number in the List

39 }

40
41 private Attribute computeMaximum(List nrLst) {

42 // compute the maximum Number in the List

43 }

44 }

The first interaction rule computes the average temperature based on the current
valid readings in the Fact Base. After collecting all temperatures in a List using
the findall primitive, the average is computed and shown on the display.

The second interaction rule, on the other hand, is used for interacting with
the Temperature Sensor components. Again, all temperature readings are col-
lected in a List, but this time, the highest temperature is computed and bound
to ?maxTemp. Finally, the last condition of the interaction rule (line 26) uses
?maxTemp to obtain the MAC addresses of those Temperature Sensor compo-
nents that are deployed in a region that currently has the highest tempera-
ture. This interaction rule will be activated for every such component and will
consequentially notify exactly those Temperature Sensors by sending them a
maximumTemperature fact.

5.1.3 River Monitoring

In [10], Hughes et al use the LooCI event-based component middleware to deploy
a river monitoring WSN application, which we have used as an inspiration for
this example. Even though this application doesn’t introduce a lot of new
techniques, it demonstrates a WSN component that publishes sensor readings,
but in addition also autonomously acts based on its sensed readings. A possible
configuration for this application is shown in Figure5.3. Two components have
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been deployed: the River Monitor (M), which publishes the river’s water level,
and the Logger (L), which sends its received data to a connected terminal. Next

Figure 5.3: A Wireless Sensor Network application for monitoring a river

to monitoring the river’s water level, the river monitor component also controls
its associated sluice and detects possible theft attempts.

5.1.3.1 Implementation

Because the Logger component only sends its received data to a terminal by
using interaction rules that invoke application logic, we will not further discuss
its implementation for brevity.

The implementation of the River Monitor component, which is the most
interesting one, is shown below. The component is configured with meta-
variables that are used in its three interaction rules.

1 Logger { ... }

2 Logger:java { ...}

3
4 RiverMonitor {

5 defvar $logger: MAC="logger -mac".

6 defvar $verifyRiverLevelInterval: Seconds =600.

7 defvar $floodThreshold: 20.

8 defvar $verifyTheftInterval: Seconds =60.

9 defvar $theftThreshold: 1.

10
11 riverLevel(L=?l)@[to($logger),

12 factExpires($verifyRiverLevelInterval )]

13 <- ?l is getRiverLevel ()@[renewEvery($verifyRiverLevelInterval )].

14
15 possibleTheft ()@[to($logger )]

16 <- ?a is getAcceleration ()@[renewEvery($verifyTheftInterval )],

17 ?a > $theftThreshold.

18
19 this.controlSluice

20 <- ?l is getRiverLevel ()@[renewEvery($verifyRiverLevelInterval )],

21 ?l > $floodThreshold.

22 }

As can be observed, a river monitor only interacts with its logger through the
first two interaction rules, which are used for sending the measured river levels
and possible theft detections, respectively. To detect a possible theft, the WSN
node’s accelerometer is read every minute to verify whether its value exceeds
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the $theftThreshold. When a possible sensor-theft is detected, the terminal
connected to the logger can, for instance, sound the alarm.

The last interaction rule is used for controlling the sluice when the mea-
sured river level rises above the predefined $floodThreshold (e.g., by lifting
the sluice), and when it falls below it afterwards (e.g., by lowering the sluice
again). Clearly, the river monitor component acts autonomously, as it never
receives any facts to react upon.

5.1.4 Range Coverage

Finally, we will discuss the implementation of a Range Coverage detection sys-
tem [28]. This system can be used to extend a WSN application’s components
and allow them to individually detect whether their range is covered by other
components. A WSN configuration for the bare detection system is shown in
Figure5.4. The Range component (R) is deployed on every WSN node and every

Figure 5.4: A Wireless Sensor Network application with range coverage detection

node interacts with every other node by periodically broadcasting its range over
the underlying, decentralized event-bus. This allows every node to individually
detect whether its range is covered by other nodes. For instance, in the knowl-
edge of the other nodes’ ranges from Figure5.4, the green node can detect that
its range is covered by its four adjacent nodes.

5.1.4.1 Implementation

The first part of the Range component’s implementation is straightforward
and shown below.

1 RangeComponent {

2 defvar $rangeBroadcastInterval: Seconds =3600.

3
4 subsumes !( Incoming=sensorRange(X = ?x, Y = ?y, R = ?r)@[from(MAC=?m)],

5 Fact=sensorRange(X = ?ox, Y = ?oy , R = ?or)@[from(MAC=?m)]).
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6
7 sensorRange(X = ?x, Y = ?y, R = ?r)@[to(MAC=any),

8 factExpires($rangeBroadcastInterval )]

9 <- ?x is getX()@[renewEvery($rangeBroadcastInterval )],

10 ?y is getY(),

11 ?r is getR ().

The component broadcasts sensorRange facts at intervals specified by the
$rangeBroadcastInterval meta-variable. To this end, it obtains its range
through the getX(), getY() and getR() methods, whose implementations are
outside the scope of this example. One possible implementation could read out
a GPS sensor to obtain these values.

Next to the interaction rule for broadcasting the sensor range, the compo-
nent also installed a subsumption meta-fact to make sure that only the last
sensorRange fact from a certain sensor node is kept in its Fact Base. This is
important because multiple such facts could be received from the same sensor
node when multiple range components have been deployed on it.

The remaining part of the implementation is concerned with detecting range
coverage based on the sensorRange facts in the Fact Base. It is shown below.

12 defmacro verifyPartialCoverage($verificationMethod , $factToAssert ):

13 $factToAssert(byMAC=?m)

14 <- sensorRange(X = ?x, Y = ?y, R = ?r)@[from(MAC=?m)],

15 ?myMAC is getMAC(), ?m != ?myMAC ,

16 ‘true is $verificationMethod (( Number )?x, (Number )?y, (Number )?r).

17
18 verifyPartialCoverage(coversTopLeft ,topLeftIsCovered ).

19 verifyPartialCoverage(coversTopRight ,topRightIsCovered ).

20 verifyPartialCoverage(coversBottomLeft ,bottomLeftIsCovered ).

21 verifyPartialCoverage(coversBottomRight ,bottomRightIsCovered ).

22
23 myRangeIsCovered(TL=?tlm , TR=?trm , BL=?blm , BR=?brm)

24 <- topLeftIsCovered(byMAC =?tlm),

25 topRightIsCovered(byMAC=?trm),

26 bottomLeftIsCovered(byMAC=?blm),

27 bottomRightIsCovered(byMAC=?brm).

28 }

29
30 RangeComponent:java {

31 private Attribute coversTopLeft(Number x, Number y, Number r) {

32 int myTLMinX = getXCoordinate () - getRadius ();

33 int myTLMinY = getYCoordinate ();

34 int myTLMaxX = getXCoordinate ();

35 int myTLMaxY = getYCoordinate () + getRadius ();

36
37 if(covers(x.getValue(), y.getValue(), r.getValue(),

38 myTLMinX , myTLMinY , myTLMaxX , myTLMaxY ))

39 return ExpressionFactory.symbol("true");

40 else

41 return ExpressionFactory.symbol("false");

42 }

43 private boolean covers(int x, int y, int r,

44 int bbMinX , int bbMinY ,

45 int bbMaxX , int bbMaxY) {

46 int obbMinX = x - r;

47 int obbMinY = y - r;

48 int obbMaxX = x + r;

49 int obbMaxY = y + r;

50
51 return obbMinX <= bbMinX && obbMinY <= bbMinY
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52 && obbMaxX >= bbMaxX && obbMaxY >= bbMaxY;

53 }

54 ...

55 }

As expressed in the rule on lines 23-27, a component’s range coverage is detected
by splitting its range in four parts (i.e., top- and bottom left and right) and
verifying whether each of these parts is covered by any other component. For
every possible covering of a component’s range, a myRangeIsCovered fact is
asserted in the Fact Base, which can be reacted to by an application-specific
rule. For instance, in case a component’s range is covered, it can choose drop
certain facts to lower its processing load.

Verifying the coverage of each partial range is done by using the
verifyPartialCoverage macro on lines 18-21. This macro expands to a
rule for verifying a specific partial range’s coverage. For instance, the
first macro usage (line 18) expands to a rule for verifying whether the
top left part of the component’s range is covered. To verify this cover-
age, the rule will invoke the coversTopLeft(Number,Number,Number) method
with the data of each sensorRange()@[from(MAC=?m)] fact, and will assert a
topLeftIsCovered(byMAC=?m) fact for every sensor node covering this compo-
nent’s top left partial range. Conversely, these facts are retracted when the
partial range is no longer covered.

The Java methods for verifying the top left partial range coverage are
included on lines 31-53. The implementation is straightforward: for both the
component’s top left partial range and the range to verify, a bounding box
is created, and the method checks whether the component’s bounding box is
included in the other bounding box. If this is the case, the top left partial
range is covered.

To extend another WSN application with this range coverage system,
the code from lines 3 to 27 should be stored in a library and imported in the
components to be extended as illustrated below. Because the range compo-
nent’s Java code cannot be part of the library, it should be added manually to
the extended components’ Java code blocks. However, this allows to specify an
application-specific implementation for the required Java methods.

1 AnyComponent {

2 defvar $rangeBroadcastInterval: Seconds=n.

3 import !("/path/to/rangecoverage.mcs").

4
5 // other logic

6 }

7 AnyComponent:java {

8 // application -specific range coverage logic

9
10 // other logic

11 }

After successfully importing the range coverage system, the extended compo-
nents can now use the myRangeIsCovered fact from their Fact Base, knowing
that it will be present whenever other components cover their range.
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5.2 Expressiveness

Having explained several illustrative example applications, we will now discuss
the expressiveness of the CrimeSPOT language. Even though it’s difficult to
measure expressiveness, we made an attempt by analyzing the statistics of our
example applications. These statistics are presented in Tables 5.1 and 5.2.

Components Macros Meta-Vars
Running Example 4 4 2
Fire Detection 2 0 2
Temperature Monitoring 2 0 1
River Monitoring 2 0 5
Range Coverage 1 1 1
Average/Application 2,2 1 2,2

Table 5.1: Example Applications: General Statistics

Mappings Meta-Facts Rules Java Methods
Running Example 4 4 10 6
Fire Detection 1 0 3 3
Temperature Monitoring 0 0 4 6
River Monitoring 0 0 5 7
Range Coverage 0 1 6 7
Average/Component1 0,3 0,4 2,9 3,3

Table 5.2: Example Applications: Total Component Code

As can be observed in Table 5.2, the average CrimeSPOT component has
0, 3 event-fact mappings, 0, 4 meta-facts, 2, 9 rules, and 3, 3 Java methods, which
corresponds to a relatively small amount of source lines of code. While these
numbers are quite application-specific, we believe that they give a fair indica-
tion of the expressiveness of our language. Implementing the same behavior in
plain Java on top of event-based middleware would imply a substantial increase
in component code. Such an ad-hoc implementation requires code for event
dispatching, event storage and management and event matching. Worse, this
code would be tangled with the component’s application logic, rendering the
latter less clear and adaptable. Furthermore, it would be duplicated across each
component.

Complementary to the statistics relevant to CrimeSPOT, Table 5.1 presents
general statistics relevant to Macro-CrimeSPOT. The average amount of
components per application is 2, 2 and the example applications used at most
4 macro-definitions and 5 meta-variables. Obviously, using macro-definitions
provides an increasing benefit as the number of developed components grows
and more code can be reused. Analogously, the benefit of using application-level
CrimeSPOT- and Java code (i.e., CrimeSPOT- and Java code to be added to
several components in the application; specified by quantifying a code block over
multiple components) increases as the number of components in an application

1This average was computed by first taking the average per application and afterwards
averaging over the applications.
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grows. On the other hand, a larger number of components per application might
render Macro-CrimeSPOT’s approach of centralized programming less useful
as an application’s source file would become larger. We plan to investigate how
we can better modularize this code in future work.

5.3 Conclusion

This chapter validated the CrimeSPOT and Macro-CrimeSPOT program-
ming languages through the implementation of illustrative example applica-
tions. As could be observed, developing WSN applications using Macro-
CrimeSPOT is quite straightforward. Making a component participate in an
interaction is as simple as adding a new interaction rule to its Rule Base. Fur-
thermore, when compared to implementing an event handler to react to events,
the interaction rules scale very well while keeping the application logic uncom-
plicated.

Next to the interaction rules, the facts also alleviate a developer’s work
significantly. A developer no longer has to manually store or remove events. It
suffices to specify how events are reified as facts and which facts subsume which
other facts, and CrimeSPOT will take care of the rest. As required, facts will
be asserted in and retracted from the Fact Base, and interaction rules will be
activated and deactivated.

Appendix B further evaluates our CrimeSPOT prototype implementation
in terms of memory footprint, network overhead and performance. The next
chapter will conclude this dissertation by discussing its contributions and future
work.



6
Conclusion

Sense-and-react applications are an emerging breed of wireless sensor network
applications in which certain nodes steer actuators and the processing of sensor
data is typically moved inside the network. The development of these applica-
tions requires a high degree of control over the individual nodes and support for
programming these nodes’ interactions.

This dissertation described our work carried out in the domain of wireless
sensor networks. The main objective of this work was to provide language sup-
port for programming interactions among WSN nodes to complement existing
node-centric programming models. As illustrated in Chapter 2, most contem-
porary node-centric programming models do not help in processing data upon
reception. Instead, they typically force the programmer to process this data in
an event handler, even though event handlers have already been shown to violate
several software engineering principles, including composability, scalability and
separation of concerns [12]. One exception is FACTS, which allows the use of
declarative rules for specifying interactions among WSN nodes. This approach
was an inspiration for the CrimeSPOT language that was presented in the
first part of this thesis (cfr. Chapter 3). Next to presenting the CrimeSPOT
language, we also implemented a runtime prototype as a proof of concept (cfr.
Appendix A) and presented a preliminary evaluation of its overhead (cfr. Ap-
pendix B).

The second part of this thesis focussed on a network-centric programming
approach. Inspired by the state of the art, we extended CrimeSPOT with a
network-centric variant, dubbed Macro-CrimeSPOT, which provides facilities
for code reuse within and among WSN applications. As a proof of concept, we
implemented a precompiler for compiling Macro-CrimeSPOT code to node-
level CrimeSPOT code that targets our runtime prototype (cfr. Chapter 4).

In the last part of this thesis, both CrimeSPOT and Macro-CrimeSPOT
were validated through illustrative examples (cfr. Chapter 5).
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6.1 Contributions

The main contributions of this dissertation are:

• The introduction of the CrimeSPOT node-centric programming language
that advocates the use of declarative interaction rules to specify a node’s
interactions.

• The introduction of the Macro-CrimeSPOT network-centric program-
ming language and its facilities for code reuse within and among WSN
applications.

• The proof of concept implementations for both the CrimeSPOT runtime
and the Macro-CrimeSPOT precompiler.

• Extensions to the well-known Rete algorithm to support CrimeSPOT’s
meta-facts and time-related functionality (e.g., the expiration of facts and
matches).

The CrimeSPOT language was based on FACTS’ rule-based approach, which
was described in Chapter 2 and the CrimeSPOT runtime prototype reused
parts of CRIME’s implementation, as described in Appendix A.

However, CrimeSPOT is significantly different from FACTS. The only as-
pect both approaches have in common is the use of declarative rules to specify
a node’s interactions. The major features present in CrimeSPOT but missing
in FACTS are: the ability to use variables in interaction rules, thereby allowing
a sensor node to react to several related facts, and the ability for a sensor node
to react to the invalidation of an interaction rule’s conditions.

Furthermore, CRIME’s implementation did not readily translate to the set-
ting of wireless sensor networks. As discussed in Appendix A, CRIME only
provided an initial implementation for CrimeSPOT’s Inference Layer. This
implementation was entirely ported to the SunSPOT platform and was more-
over adapted to support, amongst others: CrimeSPOT’s time-related func-
tionality (e.g., the expiration of facts and matches), the invocation of methods
from within a rule’s body and the association of meta-attributes with facts.

6.2 Future Work

There are several opportunities to improve on our work:

• Extending the CrimeSPOT language

– Fact Base Sharing: While CrimeSPOT targets event-based com-
ponent middleware, it offers no facilities to share a Fact Base among
all components on the same node. As such sharing might facilitate
the interactions between node-local components, it might be inter-
esting to further investigate this feature.

– Rule Priorities: Currently, the programmer is given only limited
control over the interaction rules’ priorities. When triggered, inter-
action rules are processed in their installation order. More control
over these priorities can, for instance, be given to the programmer
by allowing to associate explicit priorities with rules.
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– Control over the truth maintenance system: Due to
CrimeSPOT’s truth maintenance behavior, every rule is deactivated
when it loses a match. While this causes no issues for rules with an
Action in their head, it might for rules with a fact in their head. For
the latter, the programmer is given no control over the behavior that
corresponds to the deactivation of the rule; the fact that was asserted
earlier will simply be retracted. As this is not always the desired be-
havior, it might be useful to allow a programmer to disable the truth
maintenance for certain rules. An example of a rule for which this
would be appropriate is one that reacts to getTemperature requests
by publishing a temperature fact. While the fact representing the
request should be short-living, the answered temperature fact should
not be retracted when the request expires.

– Fact Consumption: While currently unsupported, it might be in-
teresting to investigate how a rule can consume facts matching its
conditions (i.e., hide them from other rules). One idea is to intro-
duce a special consume meta-attribute for logical conditions. This
meta-attribute can then specify that a fact matching the condition
is consumed by the rule either as soon as it matched the condition,
or as soon as the rule was triggered.

– Context-aware rules and meta-facts: Certain rules or meta-facts
might be context-aware, meaning that they should only be active
when a certain condition holds. To support such context-aware rules
or meta-facts, an additional body can be introduced for specifying the
conditions for the rules or meta-facts to be active. As an example of
a context-aware meta-fact, consider one specifying that certain facts
should be dropped upon reception only if these facts will be processed
by other nodes in the WSN.

– Fact publication in the n-hop neighborhood: Currently,
CrimeSPOT does not offer facilities to publish a fact in a node’s
physical n-hop neighborhood. The publication of facts carrying the
to(MAC=any) meta-attribute is assumed to be network-wide. Even
though the scope of fact publication highly depends on the underlying
event-based middleware’s capabilities, it might be interesting to in-
vestigate how CrimeSPOT can incorporate facilities to publish facts
in an n-hop neighborhood. Such facilities would allow CrimeSPOT
to be used to implement a wider range of applications.

• Default semantics for the CrimeSPOT language: Even though we
have a rationale for the design choices in the current semantics of the
CrimeSPOT language, further experiments are required to decide on a
good default semantics. For instance, it might be appropriate to publish
facts by default rather than requiring a to meta-attribute to be associated
with a fact to be published. Another example of discussion is the truth
maintenance behavior, which is currently enabled by default.
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• Optimizing the CrimeSPOT prototype: As discussed in Appendix
B, the CrimeSPOT prototype implementation is not entirely optimized
for use on WSN nodes with highly-constrained resources. In particular,
its memory footprint and performance can be further improved upon. For
the latter, the scaffolding technique for the Rete algorithm, described by
Perlin [39], can be implemented. Concretely, this implies that the causal
links between facts and reactions are kept. When a fact is subsequently
retracted, it becomes straightforward to identify exactly those reactions
that need to be undone. As a consequence, facts can be retracted in
constant time because it’s no longer required to propagate a negated token
through the Rete network.

Additionally, a more efficient implementation for the Middleware Bridge
can be built. Concretely, one that implements unicast fact publication by
efficiently registering specific LooCI bindings at runtime.



A
CrimeSPOT Prototype Implementation

This appendix will briefly explain the highlights of the CrimeSPOT prototype
implementation. The prototype is an extension to the CRIME coordination
language [40] and was instantiated on top of the LooCI event-based compo-
nent middleware [25] for the SunSPOT platform. As the prototype’s source
code is too voluminous to add to this appendix, the reader can consult it on-
line1. In the following sections, we will visit all layers of the CrimeSPOT
runtime (cfr. Figure 3.3) and conclude with more details on how to implement
a CrimeSPOT component that uses the prototype implementation. Note that
such a component is the compilation target for the Macro-CrimeSPOT lan-
guage.

A.1 Inference Layer

As mentioned before, the Inference Layer consists of the Fact Base, the Rule
Base and the Inference Engine. For implementing this layer, we were able to
reuse a large part of the CRIME implementation.

A.1.1 The CRIME Inference Engine

CRIME [40] is a logic-based coordination language that allows applications to
use logic rules to specify how they should respond to changes in the environment.
These changes are modeled by the addition or removal of facts that contain
context information. Because CRIME allows applications to respond to the
removal of facts, it is also a truth maintenance system.

CRIME conceptually stores its facts in a Fact Base and its rules in a Rule
Base. CRIME’s Inference Engine (i.e., a Rete [37] forward chaining inference
engine) evaluates the rules from the Rule Base against the Fact Base whenever
the latter changes. Because this behavior is exactly what’s required for the

1http://soft.vub.ac.be/amop/crime/sunspot

86

http://soft.vub.ac.be/amop/crime/sunspot


APPENDIX A. CRIMESPOT PROTOTYPE IMPLEMENTATION 87

CrimeSPOT language (cfr. Section 3.4), CRIME provided a solid basis for the
prototype implementation. Next to the Rete implementation, it also provided
some useful constructs that can be used within the rules (i.e., the not, findall,
and length operators, cfr. Section 3.7.1.4).

A.1.1.1 The RETE Algorithm

The most relevant part of the CRIME language is its Inference Engine, which
implements the Rete algorithm [37]. Rete is an efficient forward chaining in-
ference algorithm that optimizes its inference process by using a combination of
smart caching techniques. To illustrate how the algorithm works, we can con-
sider the CRIME rule from Listing A.1. This rule asserts temperatureInTent
facts as soon as the necessary temperature, online and tent facts have been
asserted in the Fact Base. Conversely, when one of these facts is retracted from
the Fact Base, the rule retracts the corresponding temperatureInTent facts.

1 temperatureInTent(Celsius =?temp , Tent=?tent)

2 <- temperature(Celsius =?temp , FromMAC =?tMac),

3 online(TID=?tentId , MAC=?tMac),

4 tent(ID=?tentId , Name=?tent).

Listing A.1: RETE Algorithm: a rule for asserting temperatureInTent facts

The Rete algorithm transforms rules to a tree-like structure, called a Rete
network. This network represents the Rule Base and has a single root node, in
which all new facts are inserted. Because facts are stored in the network, the
network also represents the Fact Base. A Rete network consists of two parts.
The first part is the alpha network, which contains filter nodes, and the second
part is the beta network, which contains join- and production nodes. Whenever a
fact is asserted, it is encapsulated in a token that is inserted in the root node and
propagated through the network. Figure A.1 depicts the Rete network after
installing the example rule from Listing A.1 and asserting some facts. Note that
tokens are denoted between < and > brackets.

For every condition in a rule’s body, the Rete algorithm generates two fil-
ter nodes: one for checking the type of the fact in the condition and one for
checking the inner constraints of the condition. These filter nodes will only
allow tokens to pass if these tokens satisfy their constraints. For instance, for
the temperature(Celsius=?temp, FromMAC=?tMac) condition, the first filter
node verifies that the inserted token has a fact with the temperature type, while
the second filter node verifies that this fact also has Celsius and FromMAC at-
tributes. Note that every filter node also has a memory to cache the inserted
tokens that satisfied their constraints. For instance, it can be observed in the
Figure that the asserted temperature(Fahrenheit=50) fact passed the con-
straint of the temperature filter node (i.e., it has the temperature type), but it
didn’t pass the second filter node for the temperature condition (i.e., it doesn’t
have the Celsius and FromMAC attributes).

Every token that passes the second filter node enters the beta network.
The top nodes in the beta network are called join nodes and will try to
join an inserted token with all tokens from the memory of their other par-
ent node (i.e., the parent that didn’t insert the token). For instance, when the
<temperature(Celsius=30, FromMAC="m1")> token is propagated to the first
join node in the example, this join node will attempt to join this token with
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<temperature(Celsius=30,
                      FromMAC="m1")>
<temperature(Celsius=25,
                      FromMAC="m1")>
<temperature(Fahrenheit=50)>

<tent(ID=1,Name="Marquee")>
<tent(ID=2,Name="Main")>

Alpha Network

temperatureInTent(Celsius=30,Tent="Marquee")
temperatureInTent(Celsius=25,Tent="Main")

<online(MAC="m1",TID=1)>
<online(MAC="m2",TID=2)>
<online(MAC="m3",TID=2)>

<temperature(Celsius=30,FromMAC="m1"),
  online(MAC="m1",TID=1)>
<temperature(Celsius=25,FromMAC="m2"),
   online(MAC="m2",TID=2)>

temperature

Beta Network

tentonlineMemory T1 Memory E1Memory O1

Memory TO

Memory T2

Memory O2

Memory TO

Memory E2
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FromMAC

MAC,
TID

ID,
Name

<tent(ID=1,Name="Marquee")>
<tent(ID=2,Name="Main")>

Memory E2

<online(MAC="m1",TID=1)>
<online(MAC="m2",TID=2)>
<online(MAC="m3",TID=2)>

Memory O2

<temperature(Celsius=30,
                      FromMAC="m1")>
<temperature(Celsius=25,
                      FromMAC="m1")>

Memory T2

<temperature(Celsius=30,FromMAC="m1"),online(MAC="m1",TID=1),
  tent(ID=1,Name="Marquee")>
<temperature(Celsius=25,FromMAC="m2"),online(MAC="m2",TID=2),
  tent(ID=2,Name="Main")>

Memory TOE

Figure A.1: A RETE Network with a single rule for asserting temperatureInTent
facts

all tokens in the memory of the second online filter node. For a pair of tokens
to be joinable, the variable bindings that they provide have to be consistent.
In the example, this means that the token containing a temperature fact will
only be joined with a token containing an online fact if these tokens provide
the same binding for ?tMac. Consequentially, the <temperature(Celsius=30,

FromMAC="m1")> token can only be joined with the <online(MAC="m1",TID=1)>
token. Note that every pair of joined tokens is merged into a single token, cached
in the memory of the join node and further propagated through the network.

After the required propagating and joining, a token will eventually reach
the bottom node in the beta network (i.e., the production node), which
means that a match for all of the rule’s conditions has been found and that
the rule’s reaction can be invoked. For instance, whenever the production
node from the example rule receives a token, it will assert the corresponding
temperatureInTent fact (i.e., the one instantiated with the token’s variable
bindings). Note that in this Rete network, no rule has a condition for
temperatureInTent facts and that these facts are therefore not immediately
useful.

Whenever a fact is retracted, it is also encapsulated in a token that is
inserted in the root node and propagated through the Rete network. To
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distinguish such a token from a regular token, it carries a negation sign while a
regular token carries an addition sign. Unlike positive tokens, negated tokens
are not stored in the Rete network. Whenever a negated token passes a node
in the network, the previously stored corresponding token (i.e., the positive one
containing the same facts) will be removed from that node’s memory before the
negated token is further propagated. When a negated token eventually reaches
a production node, the rule corresponding to this production node has lost a
match and will invoke its compensating reaction. For the example rule, this
means that the temperatureInTent fact corresponding to the negated token
will be retracted.

Note that the Rete algorithm gains its efficiency through state-saving.
By using memories to store intermediate results in both the alpha and beta
part of the network, no previously calculated results have to be recomputed
when a new fact is asserted or retracted. In addition, the algorithm shares the
type filter nodes among various conditions of various rules and is therefore as
memory-efficient as possible.

A.1.1.2 Sequentializing Access to the RETE Network

CRIME employs a thread-safe agenda to which activations can be added. All
of the agenda’s activations are activated one after another in a first-in first-
out order. As an example of an activation, one can consider an activation
for asserting or retracting a fact. When this activation is activated, it will
encapsulate the fact in a token and insert this token in the root node of the Rete
network. This activation is, for instance, added to the agenda whenever a token
is inserted in a production node (e.g., to assert or retract the corresponding
fact) or when a new fact is received from the network.

A.1.2 Introducing Time-related Functionality

While CRIME’s Rete implementation provides a good basis for CrimeSPOT’s
Inference Layer, it doesn’t provide support for CrimeSPOT’s time-related fea-
tures such as fact expiration, match expiration and match verification. To sup-
port such functionality, we introduced a timer that can be used to add activa-
tions to the aforementioned agenda. This timer runs in a separate thread and
allows activations to be scheduled for addition in the agenda after a particular
amount of time has passed, or at every interval of a particular amount of time.
As we will discuss in the following sections, the activations scheduled in the
timer vary for each of the time-related features.

A.1.2.1 Dealing with Timeouts

Fact Expiration CrimeSPOT’s most notable time-related feature is the ex-
piration of facts. As mentioned before, a fact can have an associated factExpires
meta-attribute that specifies how long this fact remains valid. Whenever a fact
carrying this meta-attribute is asserted, an activation for retracting the fact will
be scheduled in the timer. This activation will be added to the agenda after the
amount of time that was specified in the factExpires meta-attribute has passed,
and the fact will consequentially be retracted.
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In addition, fact expiration also required the introduction of fact IDs to
uniquely identify facts. There were two reasons for this requirement. First of
all, it’s perfectly possible to assert the same fact multiple times, in which case
the conceptual Fact Base contains two or more identical facts. Secondly, a fact
carrying a factExpires meta-attribute can be retracted before it has expired
(e.g., when the rule that asserted it has lost a match). When this happens, the
scheduled retraction activation for this fact should be unscheduled. However,
when there can be multiple retraction activations for several identical facts,
it becomes impossible to decide which activation to unschedule, even though
all these activations are fundamentally different because they will be added to
the agenda at different times. The rule in Listing A.2 further illustrates this
problem. This rule asserts a gotReading() fact whenever a reading fact is
asserted.

1 gotReading ()@[factExpires(Seconds =999)]

2 <- reading(T=?v).

Listing A.2: A rule for motivating fact IDs

When reading(T="x") is asserted at time t1, and reading(T="x") is asserted
at time t2 (with t2 > t1), gotReading() will be asserted twice and scheduled
for retraction at time t1 + 999 and at time t2 + 999. Now, when at a later time
t3, the last reading(T="x") gets retracted, the last gotReading() should also
be retracted and its retraction activation should be unscheduled. However, it’s
impossible to decide which retraction activation for gotReading() to unsched-
ule: the one that will be added to the agenda at t1 + 999 or the one that will be
added at t2+999. Associating a unique fact ID with every fact solves this issue
because this ID also uniquely identifies a fact’s retraction activation (if any),
which can therefore easily be unscheduled when a fact is retracted.

Match Expiration Another time-related feature is match expiration. This
feature is employed whenever a logical condition in a rule’s body carries a match-
Expires meta-attribute. This meta-attribute specifies how long a match for the
associated condition remains valid (cfr. Section 3.7.1.3). Note that, in Rete
terms, a match for a condition corresponds to the insertion of a positive token
in the condition’s second filter node (i.e., the one that checks the condition’s
inner constraints), while the invalidation of a match for a condition corresponds
to the insertion of a negated token in this node.

To introduce match expiration, we extended the aforementioned filter nodes
from the Rete network with so-called filter actions. A filter action represents
additional logic to be invoked whenever a valid token is inserted in its filter node.
Hence, whenever a filter node receives a token that satisfies its constraints, it will
not only store and forward this token, but it will also invoke all of its associated
filter actions with this token. For every logical condition carrying a matchEx-
pires meta-attribute, a special filter action will be added to the filter node that
checks the condition’s inner constraints (i.e., the condition’s second filter node).
Whenever this filter action is invoked with a positive token, it will schedule a
token insertion activation in the timer, which will be added to the agenda after
the amount of time that was specified in the matchExpires meta-attribute has
passed. This activation will insert a negated copy of the previously inserted
token in the filter node, which will consequentially be propagated through the
Rete network and make the match (that was represented by the positive token)
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expire. Because a condition can also lose a match due to the retraction of a fact
(i.e., before the match expired), the aforementioned filter action will, whenever
it is invoked with a negated token, unschedule the previously scheduled token
insertion activation because the match no longer has to expire.

Match Verification Finally, the match verification feature is also time-
related. This feature is employed whenever a logical condition in a rule’s body
carries a matchEvery meta-attribute. A matchEvery meta-attribute specifies
the expected matching for its associated condition and will cause a timedOut

fact to be asserted if the condition isn’t matched in the specified amount of time
(cfr. Section 3.7.1.3).

This feature is also implemented using the aforementioned filter actions.
For every logical condition carrying a matchEvery meta-attribute, a special
filter action will be added to the filter node that checks the condition’s inner
constraints (i.e., the condition’s second filter node). Upon initialization, this
filter action schedules a timeout activation in the timer that will be added to
the agenda after the amount of time that was specified in the matchEvery meta-
attribute has passed. When this activation is activated by the agenda, it will
assert the timedOut fact for the condition. Whenever the filter action is invoked
with a positive token (i.e., whenever the condition obtained a new match), it
will verify whether the condition already timed out. If it did, the filter action
will retract the timedOut fact and reschedule the timeout activation in the timer
such that it is added to the agenda after the amount of time that was specified
in the matchEvery meta-attribute has passed starting from this point in time.
If it didn’t, the filter action will only reschedule the timeout activation.

A.1.3 Introducing a Compute Node for the RETE Net-
work

Next to the logical conditions for matching facts in the body of a rule,
CrimeSPOT also supports extra-logical conditions. Extra-logical conditions
employ operators and obtain matches by invoking predefined functionality
(cfr. Section 3.7.1.4). While some of CrimeSPOT’s extra-logical conditions
are a part of CRIME (i.e., the not, findall, and length operators), the is

operator is not. As discussed earlier, this operator can be used to invoke one
of the component’s methods from within the body of a rule. The syntax for an
is-expression (i.e., a condition that employs the is-operator) is shown below.
Note that the is-operator will only provide a match if the expression on its

�extralogical condition� ::= (�value� | �variable�) is �methodinvocation�
| findall(�variable�,[�body�],�variable�)
| length(�list�,(�value� | �variable�))
| not �fact�
| �variable� �relop� (�value� | �variable�)

�is expression� ::= (�value� | �variable�) is �methodinvocation�
�methodinvocation� ::= �name�( [ �argument� (, �argument�)* ] ) [ @[�option�] ]

�argument� ::= �value� | (�typecast�)�variable�
�typecast� ::= Number | Fraction | Text | Symbol | List
�option� = evalEvery(Seconds=�number�)

| renewEvery(Seconds=�number�)

left-hand side can be unified with the result of the method invocation on its
right-hand side.
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For every is-expression in a rule’s body, a compute node is created (i.e.,
to invoke the method) and fitted in the Rete network. When the is-expression
is the rule’s first condition, the compute node will not have a parent, while
otherwise, it will have a parent. To simplify the explanation of this node, we
will distinguish between these two cases.

A Compute Node without a parent

Compute

<compute(Result=x)>

Memory
A compute node without a parent can be com-
pared to a filter node. It will filter the results
of method invocations and will only allow the
results that unify with the expression on the
left-hand side of the is-operator to pass.

Unlike a filter node, a compute node is not connected to the Rete network’s
root node. This is because it doesn’t rely on the assertion or retraction of facts to
do its work. As soon as the compute node is initialized (i.e., fitted in the Rete
network), it will invoke its method and verify whether the result can be unified
with the expression on the left-hand side of the is-operator. If this unification
succeeds, the result is placed in a special fact that is encapsulated within a
token. This token is stored in the compute node’s memory and propagated to
its child node. Note that this special fact will never be asserted in the Fact
Base and can therefore not be matched in other conditions. Its sole purpose is
to represent the result of the compute node (e.g., to bind a variable, when the
expression on the left-hand side of the is-operator was an unbound variable).

When the is-expression specified a scheduling option for the method invo-
cation, the compute node will invoke its method multiple times. In this case,
a compute activation will be scheduled in the timer that will be added to the
agenda at every interval of the time specified by the option (e.g., every 10 sec-
onds). This activation will trigger the compute node. When the evalEvery
option was employed, the compute node will just repeat the aforementioned
behavior when it is triggered. On the other hand, when the renewEvery op-
tion was employed, the compute node will first remove the stored token from
its memory, negate it, and forward it to its child node (i.e., to invalidate the
previous match) before repeating the aforementioned behavior.

A Compute Node with a parent.

Compute<f1, .., fn, compute(Result=x)>

Memory A compute node with a parent can be
compared to a join node. It will join
every inserted token with the result of
the corresponding method invocation.

Due to the presence of a parent, the compute node will do its work as soon
as a token has been inserted. When a positive token is inserted, the node



APPENDIX A. CRIMESPOT PROTOTYPE IMPLEMENTATION 93

will use this token to invoke its method (e.g., to extract values for variable
method arguments) and to verify the unifiability of the invocation’s result and
the (possibly variable) expression on the left-hand side of the is-operator. If
the unification succeeds, the node will merge the inserted token with the token
containing the invocation result. The resulting token is stored in the compute
node’s memory and propagated to its child node.

On the other hand, when a negated token is inserted, the method should
not be re-invoked but the previously propagated positive token should be in-
validated. To this end, the node will search its memory for the token with the
result of the method invocation that employed the positive token corresponding
to the inserted negated token (i.e., the positive token with the same facts). This
token will be removed from its memory, negated, and propagated to its child
node.

When the is-expression specified a scheduling option for the method invoca-
tion, the compute node will invoke its method multiple times for every inserted
positive token. Therefore, for every such token, a compute activation is sched-
uled in the timer that will be added to the agenda at every interval of the time
specified by the scheduling option. Unlike the aforementioned computation ac-
tivation, this activation will trigger the compute node using the token. When
the evalEvery option was employed, the compute node will just behave as if a
new positive token is inserted when it is triggered. On the other hand, when the
renewEvery option was employed, the compute node will first remove the stored
token with the result of the previous method invocation for the token from its
memory, negate it, and forward it to its child node (i.e., to invalidate the pre-
vious match) before behaving as if a new positive token is inserted. When a
negated token is inserted in the compute node, the method will no longer have
to be invoked for the corresponding positive token and therefore, this positive
token’s compute activation is unscheduled.

A.2 Reification Layer

As explained earlier, the reification layer consists of the Reification Engine and
the Configuration Base. While its main purpose is to reify events as facts
upon reception (i.e., to be asserted in or retracted from the Fact Base), and to
reify facts as events (i.e., to be published through the underlying middleware),
it also takes care of processing the subsumption- and drop meta-facts that are
conceptually present in the Configuration Base (cfr. Section 3.8). In this section,
we will explain how these meta-facts are implemented.

A.2.1 Processing Incoming Events

The conceptual processing of incoming events has already been illustrated in
the Event reification pipeline (cfr. Figure 3.15). When the Reification Engine
receives an event, it will first reify it as a fact and verify whether it should be
dropped. If the fact shouldn’t be dropped, the Reification Engine will retract all
facts that were subsumed by the newly received fact, after which it will assert the
new fact in the Fact Base. To implement this functionality, three activations
are added to the aforementioned agenda after an event was reified as a fact:
one for verifying whether the fact should be dropped, one for retracting all
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facts that were subsumed by the newly received fact, and one for asserting the
new fact in the Fact Base. While the activation for asserting a fact is by now
straightforward, the following sections will clarify what the other activations
actually do.

A.2.2 Implementing the Meta-Facts

While meta-facts are conceptually represented as entities stored in the Config-
uration Base, their functionality is implemented as special-purpose Rete net-
works. These networks are rooted in the Reification Layer and employ special-
purpose filter-, join- and production nodes. In addition, they are joined with
the previously explained Rete network from the Inference Layer.

A.2.3 Building a RETE Network for Drop Meta-Facts

Whenever a drop meta-fact is added to the CrimeSPOT runtime, the Reifica-
tion Layer’s Rete network for drop meta-facts is extended. To this end, the
drop meta-fact is transformed as if it was a rule. To illustrate this transforma-
tion, we can consider the following drop meta-fact:

1 drop!( Incoming=temperature(Celsius =?n)@[from(MAC=?m)],

2 When=[ refuseTemp(From=?m)].

This meta-fact specifies that a newly received temperature fact should be
dropped when there’s a refuseTemp fact in the Fact Base for the sensor node
that published the temperature. Figure A.2 depicts the Rete network after
installing the above drop meta-fact. While the drop meta-fact’s body (i.e., the
value of the When attribute) is transformed like a regular rule’s body and added
to the Inference Layer’s Rete network, the incoming fact’s specification (i.e.,
the value of the Incoming attribute) is transformed like a regular condition and
added to the Reification Layer’s Rete network for drop meta-facts. Note that
the filter-, join- and production nodes in the Reification Layer’s drop Rete net-
work are different than the previously discussed ones. First of all, the filter-
and join nodes do not cache any tokens. Furthermore, while the filter node
behaves the same, the join node will only try to join an inserted token from the
second temperature filter node with the tokens in memory R2 (and not the other
way around). As soon as one pair of tokens was joined, the join node will not
attempt to join the inserted token with any other token from memory R2. It
will immediately propagate the merged token to the production node. Finally,
when a token reaches the production node, this node will immediately invoke
its functionality (i.e., rather than scheduling an activation in the agenda).

When an activation for verifying whether a received fact should be dropped
is activated2, the received fact is encapsulated in a token that is inserted in the
root node of the Reification Layer’s network for drop meta-facts. As an exam-
ple, consider the reception of a temperature(Celsius=-1)@[from(MAC="m2")]

fact. The token encapsulating this fact will be passed by both the first and
the second filter node in the drop network because it has the temperature
type and a Celsius attribute. When it reaches the join node, the join node
will be able to join it with <refuseTemp(From="m2")> and will propagate

2Remember, this activation was added to the agenda by the Reification Engine after it
reified a received event as a fact.
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Figure A.2: A RETE Network with a single meta-fact for dropping temperature
facts

<refuseTemp(From="m2"),temperature(Celsius=-1)@[from(MAC="m2")]>

to the production node. The latter will immediately invoke its functionality:
as the received fact should be dropped, it will remove both the activation for
retracting all facts that were subsumed by the received fact, and the activation
for asserting the received fact from the agenda.

If we consider the reception of a humidity(Percent=50)@[from(MAC="m2")]
fact, this fact’s token will never pass the first filter node and therefore, the
remaining activations for dealing with subsumptions and for asserting the fact
in the Fact Base will not be removed from the agenda but will just be activated
one after another as soon as the token propagation stopped.

Note that this drop Rete network introduces a minimal overhead when a
token is inserted in its root node. All required results in the Inference Layer’s
network are cached and don’t have to be recomputed.

A.2.4 Building a RETE Network for Subsumption Meta-
Facts

Whenever a subsumption meta-fact is added to the CrimeSPOT runtime, the
Reification Layer’s Rete network for subsumption meta-facts is extended. To
this end, the subsumption meta-fact is transformed as if it was a rule. To
illustrate this transformation, we can consider the following subsumption meta-
fact:

1 subsumes !( Incoming=temperature(Celsius =?new)@[from(MAC=?m)],
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2 Fact=temperature(Celsius =?old)@[from(MAC=? otherm)],

3 When=[ online(Tent=?tnt)@[from(MAC=? otherm)],

4 online(Tent=?tnt)@[from(MAC=?m)]]).

This meta-fact specifies that a received temperature fact subsumes all exist-
ing temperature facts that originate from the same tent. Figure A.3 depicts
the Rete network after installing the above subsumption meta-fact. Before
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Figure A.3: A RETE Network with a single meta-fact that specifies the subsumption
strategy for temperature facts

transforming the subsumption meta-fact’s body (i.e., the value of the When
attribute), it is merged with the fact-to-subsume’s specification (i.e., the value
of the Fact attribute). For instance, the above meta-fact’s body is actually:
temperature(Celsius=?old)@[from(MAC=?otherm)], online(Tent=?tnt)

@[from(MAC=?otherm)], online(Tent=?tnt)@[from(MAC=?m)]. This body
will be transformed like a regular rule’s body and added to the Inference Layer’s
Rete network3. The incoming fact’s specification (i.e., the value of the Incoming
attribute), on the other hand, is transformed like a regular condition and added

3Note that the above network also illustrates the sharing of type filter nodes: the type filter
node for online facts is shared among both online conditions in the subsumption meta-fact’s
body.
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to the Reification Layer’s Rete network for subsumption meta-facts. Most
nodes in this subsumption network are identical to the ones of the aforemen-
tioned drop network. However, the join node will attempt to join any inserted
token from the second temperature filter node with all tokens from memory
TOO and will consequentially propagate all successfully joined tokens to its child
(i.e., the production node). Note that this network construction allows the pro-
duction node to easily identify the subsumed facts: a subsumed fact will be in
the first position of an inserted token.

To illustrate how the above network functions, we can now consider the
activation for retracting all facts that were subsumed by a newly received fact4.
When this activation is activated, the newly received fact is encapsulated in
a token that is inserted in the root node of the Reification Layer’s network
for subsumption meta-facts. As an example, consider the reception of a
temperature(Celsius=28)@[from(MAC="m2")] fact that wasn’t dropped.
The token encapsulating this fact will be passed by both the first and the
second filter node in the subsumption network because it has the temperature
type and a Celsius attribute. When it reaches the join node, the join node
will be able to join it with <temperature(Celsius=30)@[from(MAC="m1")],

online(Tent="A")@[from(MAC="m1")], online(Tent="A")@[from(MAC="m2")]>

and will propagate <temperature(Celsius=30)@[from(MAC="m1")],

online(Tent="A")@[from(MAC="m1")], online(Tent="A")@[from(MAC="m2")],

temperature(Celsius=28)@[from(MAC="m2")]> to the production node. The
latter will immediately invoke its functionality: because a token was inserted,
an incoming fact subsumed another fact (i.e., the one in the first position of
the inserted token: temperature(Celsius=30)@[from(MAC="m1")]), and this
subsumed fact is consequentially retracted from the Fact Base.

Note that, just like the drop Rete network, the subsumption network in-
troduces a minimal overhead when a token is inserted in its root node. All
required results in the Inference Layer’s network are cached and don’t have to
be recomputed.

A.3 Infrastructure Layer

The Infrastructure Layer binds the CrimeSPOT runtime to the underlying mid-
dleware. To this end, a middleware-specific implementation for the Middleware
Bridge should be provided which transfers the events received from the event-
based middleware to the Reification Engine. In addition, the Middleware Bridge
should also implement all required middleware-specific functionality, which will
be invoked by the Reification Engine.

For CrimeSPOT’s prototype implementation, we used the LooCI event-
based component middleware for the SunSPOT platform and instantiated the
middleware bridge accordingly. This section will introduce the LooCI mid-
dleware and give more details regarding the implementation of its middleware
bridge.

4Remember, this activation was added to the agenda by the Reification Engine after it
reified a received event as a fact.
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A.3.1 LooCI

The LooCI [25] middleware introduces both a component infrastructure and a
decentralized event-bus to wireless sensor networks. It allows multiple compo-
nents to be deployed on the same WSN node and it allows these components to
communicate by exchanging events through the decentralized event-bus. Com-
ponents can both publish events and subscribe to certain event types. Based on
the event-subscriptions (i.e., wirings in the LooCI jargon), the events published
in the WSN application will be routed from the publishers to the subscribers
through the decentralized event-bus. This is illustrated in Figure A.4 (taken
from the LooCI website5), which depicts a runtime view on a WSN node run-
ning LooCI. Next to the components and the event-bus, it also depicts the Re-

Figure A.4: Runtime view on a WSN node running LooCI

configuration Engine, which is the heart of the LooCI middleware and controls
the components running on the WSN node. To allow a developer to control the
Reconfiguration Engine, LooCI comes with a gateway application. This gate-
way should run on a back-end entity and can, for instance, be used to remotely
deploy components on the nodes in the wireless sensor network.

A.3.2 Instantiating the Middleware Bridge for the LooCI
Middleware

To instantiate the Middleware Bridge, an implementation for the following
methods has to be provided:

• void subscribeToEvent(EventDescription desc) subscribes to the
events of the given Event Description. This method is called whenever
a new event-fact mapping has been added to the CrimeSPOT runtime.

5http://code.google.com/p/looci/

http://code.google.com/p/looci/
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• Object toEvent(GenericFact fact, Mappings m, Boolean

isAssertion) converts the given fact to an event and returns
it.

• void publish(Object event) publishes the given event.

• GenericFact toFact(Object event, Mappings m) converts a received
event to a GenericFact and returns it. This method can return null

if the event is misaddressed, which is useful for middleware that doesn’t
allow directed event publications.

• Boolean isAssertion(Object event, Mappings m) decides whether
the event represents a fact to be asserted or retracted.

Given the LooCI API, the implementation for these methods is quite
straightforward. We assigned a specific event type for publishing non-mapped
facts and for publishing fact retractions and subscribed each CrimeSPOT com-
ponent to these event types (i.e., by registering so-called toAll and fromAll
wirings with LooCI’s Reconfiguration Engine). All of the mapped facts or
events are converted to events or facts using the mappings. Note that LooCI
does not support directed event publications and that this functionality is there-
fore simulated in our middleware bridge implementation by verifying an event’s
destination at the receiver.

Subscribing to events Using the LooCI API, it is possible to subscribe a
component to a specific event type at runtime by registering so-called toAll - and
fromAll wirings with the Reconfiguration Engine. The implementation of the
subscribeToEvent(EventDescription) method registers these wirings when-
ever it is called (i.e., after an event-fact mapping was added to the CrimeSPOT
runtime).

Converting Facts to Events Depending on whether the toEvent method
is called to create an event for a fact assertion or a fact retraction, the fact is
converted to a potentially mapped event or a retraction event (i.e., an event of
the aforementioned fact retraction type).

In the case of a fact assertion, the Mappings dictionary is first searched for a
mapping for this fact. If such a mapping is found, the fact is converted to the
corresponding event. In addition, extra fields are added to this event’s payload
to store the fact’s ID and destination (i.e., the destination MAC address and
component ID). As LooCI does not allow directed publications, such publi-
cations are simulated: the extra destination fields will be read in the toFact

method to decide whether or not to accept a received event. Regular LooCI
components will typically not read these extra fields. On the other hand, if no
mapping is found, an event of the aforementioned event-type for non-mapped
facts is created. This event has, as its payload, a single String containing the
fact’s textual representation.

In the case of a fact retraction, an event of the event-type for fact retractions
is created. This event has, as its payload, a String containing the network-unique
identifier for the fact (i.e., a combination of the originating component’s MAC
address, its component ID, and the fact ID). In addition, it also has extra fields



APPENDIX A. CRIMESPOT PROTOTYPE IMPLEMENTATION 100

containing the destination component’s MAC address and component ID (i.e.,
to simulate a directed publication).

Publishing Events The publish(Object) method maps exactly on the
publish(Event) method that’s provided by the LooCI API.

Converting Events to Facts Converting an event to a fact is analog to the
inverse process.

In the case the event type is present in the Mappings dictionary or is equal
to the non-mapped fact event type, the event is converted to a fact accord-
ingly. To convert a fact’s textual representation to a fact (i.e., in the case of a
non-mapped fact event type), the CrimeSPOT runtime provides a conversion
method to parse the textual representation. Misaddressed events are detected
by comparing the fact’s destination address (if any), with the current compo-
nent’s address.

Else, if the event type is of the fact retraction type, the corresponding fact
is obtained from the CrimeSPOT runtime by querying the Fact Base using the
fact’s unique identifier.

Deciding on fact assertion or retraction Due to the above implementa-
tion, the implementation of isAssertion is simple. It suffices to verify whether
the event carries the fact retraction event type to decide whether a given event
represents a fact assertion or -retraction.

A.4 Macro-CrimeSPOT’s Compilation Target

As we’ve explained earlier, Macro-CrimeSPOT code compiles to node-
level component code (cfr. Section 4.3). This node-level code employs the
CrimeSPOT prototype implementation that was discussed in this appendix.
In this section, we will show what this node-level code looks like, or, how a
component can be implemented by using only the CrimeSPOT language.

When using the CrimeSPOT prototype implementation, a component
can be implemented by extending the CrimeSPOTComponent class. A com-
ponent has to provide an implementation for two methods: the execute()

method, which will be invoked when the component is started, and the
invoke(String,Object[]) method, which is a dispatcher method for dispatch-
ing method names to method invocations. An implementation for the dispatcher
method is required to allow the CrimeSPOT runtime to invoke methods on the
component in the absence of reflection on the SunSPOT platform.6 For every
method that’s invoked from within an interaction rule’s body, there should be
an entry in this dispatcher method.

Listing A.3 depicts an example component’s implementation in Java. This
component publishes temperatureReading facts and reacts to adjustHeating

facts by steering its associated heater accordingly.

6Because interaction rules are added to the CrimeSPOT runtime at runtime, the methods
to invoke from within these rules’ bodies are also only known at runtime. Dynamically invoking
methods at runtime requires some form of reflection, which is not available on the SunSPOT
platform.
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1 public class ExampleComp extends CrimeSPOTComponent {

2 public ExampleComp () { super("Example Component"); }

3
4 public void execute () {

5 processExpression("temperatureReading(Celsius =?temp)@[factExpires(Seconds =600)," +

6 "to(MAC=\" any \")]" +

7 " <- ?temp is getTemperature ()@[renewEvery(Seconds =600)].");

8
9 registerRule("adjustHeating(Level =?h)",this.adjustHeater );

10 }

11
12 private Action adjustHeater = new Action () {

13 public void activated(TypedObject arguments) { /* adjust heater */ }

14 public void deactivate(TypedObject arguments) { /* reset heater */ }

15 };

16
17 public Attribute invoke(String method , Object [] args){

18 if(method.equals("getTemperature__"))

19 return getTemperature ();

20 else

21 return ExpressionFactory.attribute("ERROR: Method not in the dispatcher!");

22 }

23 }

Listing A.3: Macro-CrimeSPOT’s compilation target: a CrimeSPOT Component in
Java

Note that, because the getTemperature() method is invoked from within an
interaction rule’s body, there’s an entry for this method in the dispatcher
method. Its implementation, however, is not required in this class. The
getTemperature() method is part of the predefined I/O methods provided by
the CrimeSPOTComponent class. Other predefined I/O methods are: getMac(),
getLight(), getAcceleration() and turnOnLeds(amount,color).

For a component of a Macro-CrimeSPOT application, both the execute

and invoke methods are implemented by Macro-CrimeSPOT’s precompiler.
However, to allow a Macro-CrimeSPOT programmer to initialize her compo-
nent using Java logic, the initialize() method can be overridden in a Java
code block. This method is invoked whenever a component is started.

A.5 Conclusion

In this appendix, we presented the most important aspects of the CrimeSPOT
prototype implementation7 by discussing the highlights of its three layers. For
the Inference Layer, CRIME’s Inference Engine (i.e., a Rete engine) was partly
reused, yet also extended. We covered the most important extensions, which
were required for CrimeSPOT’s time-related functionality (i.e., fact expiration,
match expiration and match verification) and for propagating the results of
method invocations through the Rete network. The Reification Layer was
entirely built from scratch. The most notable aspects of this layer were the
special purpose Rete networks for implementing CrimeSPOT’s meta-facts.
Finally, we also discussed the interface for the Infrastructure Layer’s Middleware
Bridge. This interface should be implemented for specific event-based WSN
middleware in order to use the CrimeSPOT prototype on top of it. As an

7The source code can be consulted at http://soft.vub.ac.be/amop/crime/sunspot.

http://soft.vub.ac.be/amop/crime/sunspot


APPENDIX A. CRIMESPOT PROTOTYPE IMPLEMENTATION 102

example, we showed how the Middleware Bridge can be instantiated for the
LooCI event-based component middleware.

Next to discussing the CrimeSPOT prototype implementation, we also
showed how this prototype can be used. While implementing a CrimeSPOT
component is simple, the implementation of the dispatcher method can be con-
sidered cumbersome. However, using Macro-CrimeSPOT and its accompa-
nying precompiler relieves a programmer from this burden.

In the next appendix, we will evaluate our CrimeSPOT prototype imple-
mentation in terms of memory footprint, network overhead and performance.



B
Evaluating the CrimeSPOT Prototype

Having explained the CrimeSPOT prototype implementation, we will now
give a preliminary evaluation of its overhead. All required experiments were
conducted on standard SunSPOT motes (180MHz ARM9 CPU, 512KB RAM,
4MB Flash, SQUAWK VM version ’RED-100104’) running the LooCI middle-
ware version 1.0 beta (20101011).

B.1 Memory Footprint

We measured CrimeSPOT’s memory footprint both in terms of ROM and
RAM.

Table B.1 summarizes the results for the ROM usage. Clearly, the

LooCI CrimeSPOT Average Component
ROM 52,14kB 406,66kB 1,99kB

Table B.1: Memory Footprint (ROM)

CrimeSPOT implementation consumes a considerable amount of Flash mem-
ory (i.e., 9,7% of the SunSPOT’s Flash). We expected this result as our pro-
totype implementation includes the CRIME implementation which is not yet
entirely cleaned up and optimized for use on sensor motes with small Flash
memory. Further cleaning up the implementation is left for future work. How-
ever, like the LooCI middleware, the CrimeSPOT prototype has been included
in the SunSPOT library and hence should never be remotely deployed using
the LooCI gateway. Thereby, we avoided long component deployment delays.
The CrimeSPOT components on the other hand, which have to be remotely
deployed, have a minimal footprint. By taking the average of the sizes of our
example applications’ components, we ended up with an average component size
of 1,99kB.

103
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SunSPOT App LooCI Comp CrimeSPOT Comp
RAM 43,28kB 119,57kB 131,96kB
∆ 43,28kB 76,29kB 12,39kB

Table B.2: Memory Footprint (RAM)

Table B.2 summarizes some RAM measurements. We verified the RAM
usage by creating a SunSPOT application, a LooCI component, and a
CrimeSPOT component, which all did nothing but outputting the RAM usage
after a garbage collection. Since a CrimeSPOT component is actually a LooCI
component, it comes as no surprise that running one with an empty Rule- and
Fact Base doesn’t introduce a lot of RAM overhead. A running CrimeSPOT
system only consumes an additional 12,39kB of RAM when compared to a
dummy LooCI component, bringing the total RAM usage to 131,96kB.

Since these RAM measurements only give an indication of the CrimeSPOT
RAM usage at initialization time, we performed two additional experiments for
measuring the RAM usage after adding to the Fact- and Rule Base, respectively.

Figure B.1: Fact Base Size vs RAM Usage

Figure B.1 shows the RAM usage versus the amount of facts in the Fact
Base. For this experiment, we asserted facts with two attributes each; one
random Number between 0 and 50, and a constant Text value. This simulates
a Fact Base filled with numerical sensor readings which have an additional
description, a plausible scenario for CrimeSPOT components. In addition,
we installed a rule with a matching condition that measured the RAM usage
upon triggering. We kept asserting new facts until running out of memory. The
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results are not very surprising: every asserted fact consumed an average of 3kB
RAM and we were unable to assert more than 102 facts. However, these results
clearly emphasize the importance of keeping the Fact Base clean (e.g., by using
the subsumes and drop meta-facts).

1 Rule 2 Rules 3 Rules 10 Rules
RAM 168,43kB 199,98kB 230,36kB 443,85kB

Table B.3: Memory Footprint (RAM) vs. Amount of rules

Table B.3 shows the RAM usage versus the amount of rules in the Rule Base.
Since our example applications’ rules have at most six conditions, we filled our
Rule Base with distinct variants of the rule shown in Listing B.1 until running
out of memory.

1 fact(A=?x, B=?y, C=?z)

2 <- c1(A=?x, B=?y, C=?z), c2(A=?x, B=?y, C=?z),

3 c3(A=?x, B=?y, C=?z), c4(A=?x, B=?y, C=?z),

4 c5(A=?x, B=?y, C=?z), c6(A=?x, B=?y, C=?z).

Listing B.1: Artificial rule for the RAM usage experiment

The artificial rule more or less represents a worst-case scenario in terms of
memory consumption, as the body is quite large and the corresponding Rete
network is therefore too. Furthermore, since all conditions are distinct, there’s
no reuse of filter nodes in the network. As shown in the results, the rule con-
sumes around 30,5kB of RAM, and we were unable to instantiate it more than
ten times. We attribute this considerable amount of memory consumption to
the fact that the prototype implementation is not yet entirely cleaned up and
optimized. Even though none of our example applications employed ten rules,
and the average amount of conditions in their rules was smaller than six, the
results of this experiment indicate considerable room for improvements, which
are left for future work.

B.2 Network Overhead

A CrimeSPOT component doesn’t introduce a lot of network overhead when
compared to a regular LooCI component. Only two forms of network overhead
can be identified: overhead in the publication of mapped facts, and overhead
due to the publication of retraction events.

When publishing mapped facts, the predefined LooCI event payload is ex-
tended with the fact ID and -destination (i.e., the target MAC address and
component ID). These extra fields are introduced for fact identification and
unicast publication purposes, respectively. However, since the fact ID is only
an integer, we consider this addition as a minimal overhead.

The remote retraction of published facts upon retracting them in the sender’s
Fact Base can also be observed as network overhead. However, the events pub-
lished to retract published facts are restricted to a minimum. A retraction event
doesn’t carry the entire fact to be retracted, but only the data required for iden-
tifying that fact and its destination (i.e., the fact identifier and its destination
MAC address and component ID). Furthermore, the publication of a retraction
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event only occurs when the retracted fact has not yet expired, as this expiration
would’ve also occurred at the CrimeSPOT components who received the fact.

B.3 Performance

To verify the performance of the CrimeSPOT prototype, we measured the
time required for the work to be performed upon event reception. This section
illustrates the computational overhead introduced by our prototype implemen-
tation.

When the received event entails the assertion of a fact, the event has
to be transformed to a fact and the drop and subsumption meta-facts have to
be verified before the fact can be asserted in the Fact Base. The average time
required between receiving an event and asserting the associated fact is shown
in Table B.4. For simplicity, we assumed the absence of matching drop and
subsumption meta-facts. As the event transformation process is different for an

Encoded fact Mapped fact
Time (ms) 80,33 34,22

Table B.4: Average time required before a fact will be asserted in the Fact Base,
after receiving the corresponding event

event containing an encoded fact (i.e., the fact’s textual representation, e.g.,
fact(Number=1, Text="a description")), and a mapped event, we timed
both. In this experiment, the event’s corresponding fact to be asserted sim-
ulates a sensor reading or a typical application-fact; it has two attributes: a
Number and a Text. We repeated the experiment ten times and ended up with
an average delay of 80,33ms before asserting an encoded fact, and an average
delay of 34,22ms before asserting a mapped fact. As expected, processing an
event containing an encoded fact consumes more time as the complex textual
representation has to be parsed before the corresponding fact can be asserted.
The processing of mapped events is more efficient as a predefined event signa-
ture is typically small and the parsing is less complex (i.e., obtaining the fields
from the event, and creating the corresponding fact suffices).

The presence of matching drop or subsumption meta-facts also introduces
computational overhead. However, these meta-facts’ bodies (i.e., the values of
their When attribute) are almost completely verified before receiving a fact.
When a newly received fact matches a meta-fact, the only work left to do is to
join the token encapsulating this fact with the tokens for the meta-fact’s body
(i.e., in the join node that joins the Inference Layer’s Rete network with the
Reification Layer’s network), which requires extra time linear in the amount
of tokens for the body. In case there’s a satisfied drop meta-fact, no further
work is required and the fact is immediately dropped. In case there’s a satisfied
subsumption meta-fact, extra time will be required for retracting each subsumed
fact.

To give an indication of the time required between the assertion of a fact
and the activation of a rule, we re-used the artificial rule from Listing B.1. This
rule is quite complex as it has six conditions and each condition shares variables
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with all other conditions, requiring all these variables to be checked within the
join nodes in the rule’s RETE network. In the experiment, a matching fact was
present for conditions c2 to c6, and we measured the time between the assertion
of a matching c1 fact and the activation of the rule (i.e., the assertion of the fact
from the rule’s head). This simulates a worst-case scenario for this rule as the
filter node for c1 is at the top of the RETE-network representing the rule, and
the assertion of a matching c1 fact will thus introduce the most work (i.e., the
token in which it is encapsulated will have to be propagated all the way from the
top to the bottom of the RETE-network, passing every join node). We repeated
this experiment ten times and ended up with an average delay of 141,20ms. It
must be noted that this average delay is only valid in this scenario. The real
delay between asserting a matching fact and activating a rule depends on that
rule’s complexity, on the presence of matching facts for its other conditions,
and on the amount of other rules with a condition matching the asserted fact
preceding that rule in the Rule Base.

When the received event entails the retraction of a fact, the corre-
sponding fact has to be looked up in the Fact Base before it can be retracted,
requiring constant time (i.e., an average of 28ms in our experiments).

To give an indication of the time required between the retraction of a fact
and the deactivation of a rule, we performed about the same experiment as for
the assertion of a fact. The rule from Listing B.1 was installed, a matching fact
is present for all conditions, the rule has been activated, and we measured the
time between retracting the matching c1 fact and the deactivation of the rule
(i.e., the retraction of the fact from the consequence). For the same reasons
as mentioned earlier, this experiment represents a worst-case scenario for this
complex rule (i.e., the token has to propagate from the top to the bottom of
the network). After repeating the experiment ten times, we ended up with
an average delay of 188,90ms, which is surprisingly about 47ms higher than
the delay introduced between asserting a matching c1 fact and activating the
rule. Since fact retraction involves more or less the same processing as fact
assertion, we attribute this difference to the fact that removing data from the
data-structures employed within the RETE implementation, which is required
upon fact retraction, is less efficient than adding data, which is required upon
fact assertion. For the same reasons as discussed earlier, it must be noted that
this average delay between retracting the fact and deactivating the rule is only
valid in this scenario.

B.4 Conclusion

This appendix presented the preliminary evaluation of our CrimeSPOT proto-
type implementation. Since this implementation is not yet entirely cleaned up
and optimized, we believe that the current results look quite promising. In the
future, we expect to improve on these results by further reducing the memory
footprint in terms of ROM and RAM requirements. Furthermore, additional op-
timizations and hardware advances could also improve the overall performance
of our language.
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