
Concepts of Programming p. 1

Chapter 1:�Introduction to programming

Computational processes

Computer science is the study of computational processes. A process is an
entity that exhibits a specific behaviour over time. In computational
processes however, time advances in discrete steps. Science in general
provides a mechanism for describing the behaviour of a process using some
language. Describing a computational process involves specifying how it
evolves during its successive discrete time steps. This is generally called
programming and the language used is called a programming language. Typically,
the behaviour of a computational process can be simulated using some machine
to interpret the program describing it.

Consider a simple computational process that consists of evaluating an
arithmetic expression:

(4+1)*2/5

Typically we will be using a pocket calculator:

7 8 9
4 5 6
1 2 3
ccccllll 0

+
-
*
/

0000000

=

to interpret a program

ccccllll 14 + * 2 / 5 =

expressed as an acceptable sequence of buttons to be pressed. In doing so we
respect the language that the calculator accepts; hence we can simulate the
computation by entering this program on the calculator to obtain its value:

Concepts of Programming p. 2

0000002

Computer science gives a lot of attention to the expressiveness of
programming languages. Typically, we are interested in describing as wide a
range of processes as possible while using a language which is as simple as
possible. In this chapter we will introduce a simple yet powerful language
called Pico1 to help us explore the concept of computation.

Interpretation of programs

We will first focus on the inner workings of a computer, that is a machine
capable of simulating a computational process by interpreting a program that
describes it. In order to separate the different concerns, we will view a
computer as consisting of three collaborating components:

print
eval

read

The core of the computer is the evaluator eval which maps expressions onto
their values:

eval : { expression }  ∅ { value }

The evaluator is the actual embodiment of the meaning that must be
attributed to a program. We will use the two terms expression and value to
refer to the machine’s internal representation of a program and to the result
of its interpretation. In the next chapter we shall see that values are
exactly those expressions that are neutral to the eval function. The read and
print components map text onto expressions and values onto text:

read : { character }  ∅ { expression }

print : { value }  ∅ { character }

1 pico stands for 10-12 and hence very small; the name has no other meaning

Concepts of Programming p. 3

In doing so, we distinguish between how we as human beings represent
information —using strings of characters from some alphabet— and how this
is done by the machine performing the actual simulation.

In the real world, a computer is not an abstract concept but a physical entity
that is itself —strangely enough— a computational process. A pocket
calculator for instance contains a minuscule electronic device that is driven
by a behaviour as laid down in some program. This leads us to the slightly
surprising consideration that any computer that we are physically confronted
with sits at the bottom of a tower of machines:

c-program

eval

printread

eval

printread

eval

printread

language = electronics, optics,…

language = microcode

language = c

Every level consists of a read-eval-print machine (REP for short) capable of
interpreting a program in a particular language. In modern personal computers
we can easily distinguish a tower consisting of three tiers of processes:

• a machine which is described by a geometrical pattern etched into the
silicon surface of a microchip; this machine accepts programs typically
accessible via languages such as Basic, C or Pascal

• a machine which is described by the composition of electronic switches
built out of a large number of transistors; this machine accepts
programs written in the language of digital logic

• a machine which is described by the physical laws that govern the
behaviour of semiconductor devices.

Each of these three tiers has changed over time and will continue to do so. At
one time a typical computer consisted of vacuum tubes wired together in an
organised way and governed by how electrons behave in a vacuum when exposed
to an electrical field. Future generations of computers will probably exploit

Concepts of Programming p. 4

the behaviour of photons inside optical conduits. These examples go to show
that it is necessary to make abstraction of the physical implementation of
computational devices and to concentrate on the computational processes
themselves.

Metacircularity

Programming is the preferred road to understanding computational processes.
In order to build programs one has to know the language that is to be used;
the most productive approach to do so is understanding the evaluation
mechanism introduced in the previous section.

Computer science regularly uses metacircularity to define and hence to
understand some computational mechanism. In this context metacircularity
means that the same language is used to describe both a computational
process and the REP machine used to simulate it. The prefix meta refers to
the fact that we use a program that manipulates programs; circularity means
that the same language is used on both levels. We will regularly use the
qualification meta-level and base-level to make the distinction between these
two levels.

Metacircularity is of course a theoretical concept but it enables us to study
computational processes using a one-tier tower of evaluators. In the next
chapter we shall formally define the programming language called Pico in
exactly this fashion: each and�every instance of a Pico-expression will be
defined by a Pico-program capable of computing its value.

pico-program

eval

printread

In order to prime our knowledge, we will use the rest of this chapter to give
an informal introduction to the language Pico.

Pico basics

In this chapter we will ignore the exact structure of Pico expressions and
values and only use their textual representations as accepted and generated
by the read and print components. This textual representation has been

Concepts of Programming p. 5

chosen to be as close as possible to conventional notation from calculus,
taking into account the limitations on text formats imposed by personal
computers and pocket calculators.

Central to the evaluation of Pico programs is the notion of a dictionary. In
the schematic below, a dictionary is represented by a double-entry book-like
structure that can be consulted, modified and extended by the eval component.

eval

printread

The dictionary binds values to variables. As before, a value is the result
obtained when an expression is evaluated; a variable is a new concept: it is an
name that may be used within a Pico-program. It enables us to identify and
reference values as they are computed.

Examples of variable names are:

Prime * Divide_by_2

Examples of values as generated by the print component are

123 4.75 "Monday" [1,2,3] <function f>

The exact syntax of variables or values is not relevant at this point.

A dictionary functions as a kind of memory for a computational process. It is
generally used to store values identified by the name they are bound to and to
retrieve or even change these values as time evolves.

The various operations on dictionaries will be formally defined in the course
of next chapter.

Concepts of Programming p. 6

Numbers, fractions and text

We will start by having a look at the simplest kinds of expressions: numbers,
fractions and text. When submitted to the Pico machine, these expressions
—sometimes called literals— are identical to their values. For instance:

REP(123) ≡ 123

REP(4.75) ≡ 4.75

REP(“Monday”) ≡ Monday

While the meaning of numbers or fractions is obvious, the notion of text
deserves some explanation. Text is the mechanism used to introduce symbolic
—as opposed to numeric— values; any sequence of keystrokes2 delimited by
either apostrophes (‘) or quotes (“) is acceptable as text. Programmers usually
have text in their programs to represent symbolic data or to interact with
the outside world using symbols whenever numbers are not sufficient; in this
case the print component strips the delimiters from the text value.

Grammatical rules

In Pico, syntax is kept to a strict minimum. Actually, in addition to the
syntax of numbers, fractions and text, only 3x3 = 9 rules need to be
memorised in order to master Pico’s essential syntax:

variable
definition

variable
assignment

variable
reference

table
definition

table
assignment

table
indexation

invocation : expression

invocation := expression

name[expression]name

invocation

function
definition

function
assignment

function
application

name(expression, ...)

2 actually excluding apostrophe or quote depending on the delimiters used

Concepts of Programming p. 7

This table lists the possible invocations —references, applications and
indexations— from left to right; from top to bottom is listed how these
invocations can be used inside an expression. Each of the nine combinations
has a unique label that will be used throughout the rest of this text.

We shall now proceed by describing the meaning of these grammatical rules in
an informal way.

Variable definition

The first expression type we will look into is the one allowing us to introduce
—we say define— new variables. We are required to state a variable name and
an expression which is used to compute a value to be bound to this name. The
colon between the name and the expression is a necessary hint for Pico to
interpret this expression as a variable definition:

As an example consider the following:

pi: 4*arctan(1)

Its evaluation appends an entry for the variable pi and the value 3.14159…
to the current dictionary. The value of a variable definition is identical to
the value of the expression following the colon.

Variable reference

Once a new variable has been introduced by means of a variable definition, we
are able to reference it:

The value of a variable reference is the value bound to the variable name in
the dictionary. Therefore the following:

pi

name : expression

name

Concepts of Programming p. 8

should result in the retrieval of the value 3.14159… computed in the previous
paragraph. In the absence of a dictionary entry for the variable name an
error is generated; in case the same name is used for several variables, the
most recent version is used.

Variable assignment

An existing variable can at all times be bound to a new value by means of a
variable assignment:

The following:

pi := 3.14159265358979

will result in the originally computed value of pi to be replaced by a
—possibly— more accurate approximation of π. Clearly, a variable assignment
can only take place if the variable has been defined previously; if this is not
the case, an error is generated; in case the same name is used for several
variables, the most recent version is used.

Using variables

Consider the following transcript, resulting from an interaction with a Pico-
machine:

pi: 4*arctan(1)
:3.14159
x: pi
:3.14159
zero:= 0
undefined identifier: zero
x:= 0
:0
abc: xyz
undefined identifier: xyz tra

ns
cri

pt

name := expression

Concepts of Programming p. 9

A line preceded by a colon is the actual output from the print component. We
can see how the variable pi is computed as an approximation to π, and then
used to initialise a variable x. Assigning the value 0 to a variable zero fails
because zero hasn’t been defined yet; the same operation applied to x
succeeds. Finally, defining the variable abc fails because the expression to
the right of the colon references a non-existent variable xyz. Note that as
each of the valid expressions is entered, a value is printed out; the effects
on the current dictionary are only noticeable through the availability of new
variables as the evaluation proceeds.

Function definition

Functions can be defined by using the colon to affix a function prescription
to a function invocation. A prescription is a valid expression used to specify
the future behaviour of the function; the invocation must specify the
function name and a parameter list consisting of any number of parameter
names3 separated by comma’s and delimited by ordinary parentheses.

The following example is a valid function definition:

f(x,y,z): x*(y+z)

We can easily see that a function named f is introduced featuring three
parameters called x, y and z. The prescription states that an application of
this function will add the values bound to y and z and return this sum
multiplied by the value of x. Pico comes with most of the essential functions
already defined; these will be enumerated in later paragraphs. Actually, a
function definition introduces a new variable in the current dictionary;
instead of a number, fraction or text, a value representing a function (or
function for short) is bound to this variable. Functions have no grammatical
representations, which is why the print component displays the value of f4 as
follows:

<function f>

3 Until further notice parameters are limited to names
4 Native functions such as sqrt are printed as <native function sqrt>

name(name,...): expression

Concepts of Programming p. 10

Function application

Any function bound to a variable in the current dictionary is candidate to be
applied:

An application identifies the function by name and further specifies a number
of arguments separated by comma’s and delimited by ordinary parentheses. Any
valid expression can be used as argument; their number should correspond to
the number of parameters of the function bound to the variable named in the
application.

Consider as an example the following function application:

f(1+2,3,2*2)

which our intuition tells us should produce the value 21. In the next chapter
the mechanism of function application will be described formally; for the time
being we will limit ourselves to an informal introduction.

Function application starts by looking up the function name in the dictionary;
if it isn’t found or if its value is different from a function, an error is
generated. In the other case the values of arguments are computed and
temporarily —that is for the duration of the function application— bound to
the corresponding parameters, after which the value of the prescription is
computed and returned.

f(x,y,z): x*(y+z)
:<function f>
f(1+2,3,2*2)
:21
g(1,2,3)
undefined identifier: g
pi(1,2,3)
not a function: pi
f(1,2)
non-matching argument list: f tra

ns
cri

pt

name(expression,...)

Concepts of Programming p. 11

In the preceding transcript various transactions involving function
application are illustrated. Note that it is impossible to apply a function
unless it has been properly defined with the correct number of parameters.

Function assignment

Any previously defined function is accessible via the variable that its name
refers to. This variable —and any other variable for that matter— can be
changed through ordinary variable assignment or through function assignment:

The effect is identical to that of function definition except for the fact
that no new variable is introduced. Note that any previous value —function or
otherwise— is discarded.

At this stage function assignment is not really an essential feature of Pico.
Nevertheless, in order to illustrate future use, the more adventurous reader
is invited to examine the following transcript:

q(z): { q(y):= z:=z+y; q(z) }
:<function q>
q(10)
:20
q(11)
:31
q(5)
:36 tra

ns
cri

pt

Note that the definition of the function q contains a prescription that
starts by redefining itself and then applying the new definition of q to the
original parameter z (the curly braces and the semicolon serve to group
multiple expressions, and will be defined later on). Hence the first application
changes the definition of q to:

q(y):= z:=z+y

and therefore returns the value 20. The next two applications q(11) and
q(5) however, use this redefined version of q. The interesting part about

name(expression,...):= expression

Concepts of Programming p. 12

this example is the use of z as a kind of memory for the function q making it
behave like an accumulator.

Table definition

Pico allows values to be combined into tables. Tables —very similar to vectors
from mathematics— are defined by using an indexed invocation:

Tables are named and this name is used to define a variable in the current
dictionary. The square brackets are a hint needed by Pico to indicate that a
table is considered; they delimit a size. Any expression with a non-negative
number value can be used as a valid table size. The freshly defined variable
will be bound to a table, that is a sequence of value slots. The number of slots
is defined by the indicated size (and might be zero). Each slot can hold an
arbitrary value, which is initially set to a newly computed value of the
expression to the right of the colon. Therefore, the following expression:

T[10]: 0

introduces a variable named T bound to a table containing ten slots each
containing the value 0. The following transcript illustrates a more
sophisticated use of tables:

T[10]: 0
:[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
n: 5
:5
P[n]: n:=n-1
:[4, 3, 2, 1, 0] tra

ns
cri

pt

Note that the value of a table definition is the table itself; its slots are
displayed by the print component as a list delimited by square brackets and
separated by comma’s. Also note that the slot values of P are computed from
left to right using the expression n:=n-1, starting with the value 5 for n.

name[expression]: expression

Concepts of Programming p. 13

Table indexation

Every variable bound to a table may be indexed:

The name identifies the variable while the expression should have a number
value that is compatible with the size of the table that the variable is bound
to. The result is the value contained within the slot indexed by the value of
the expression (it should range from one to the size of the table).

The following transcript illustrates the use of indexation:

n: 20
:20
k: 1
:1
p[n]: k:=2*k
:[2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096, 8192, 16384, 32768,
65536, 131072, 262144, 524288, 1048576]
log2(x,m): if(x<p[m],m,log2(x,m+1))
:<function log2>
log2(1000,1)
:10
log2(5000,1)
:13 tra

ns
cri

pt

First of all a table p is created containing the first 20 positive integer
powers of 2. Note that the value of p is printed out in the prescribed format.
Next a function log2 is defined taking two parameters x and m. This function
traverses p in order to find the first slot p[m] that contains a value smaller
than x. Note that log2 keeps applying itself to the same value of x and the
next integer value of m in order to perform this traversal. The function if is
one of the predefined functions that will be explained in the coming
paragraphs; intuitively it uses the validity of x<p[m] to select either the
value of m or the value of log2(x,m+1).

The transcript demonstrates that log2 correctly computes the (rounded)
logarithm of base 2 of the numbers 1000 and 5000.

name[expression]

Concepts of Programming p. 14

Table assignment

Tables bound to variables can have a slot value changed by a table assignment:

The name should refer to a variable that has a table bound to it in the
current dictionary. The value of the expression between square brackets must
be a number compatible with the size of the table and will result in the index
of a slot. The value of this slot will be replaced by the value of the
expression on the right-hand side; the updated table will be returned as the
value of the table assignment.

{ Months[12]: 30;
 Months[1]:= 31;
 Months[2]:= 28;
 Months[3]:= 31;
 Months[5]:= 31;
 Months[7]:= 31;
 Months[8]:= 31;
 Months[10]:= 31;
 Months[12]:= 31 }
:[31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

tra
ns

cri
pt

In the above transcript table assignment is used to initialise a table Months
holding the number of days in each of the twelve months. Note that the table
index —ranging from 1 through 12— identifies the month.

Operators

Functions with names consisting of the following characters:

! # $ % ^ & * + - * / \ | < > = ~

are called operators. They can be used to define, apply or assign functions.

name[expression]:= expression

Concepts of Programming p. 15

For instance:

$(p,q): if(p>q,p,q)

!(z): if(z<0,-z,z)

define perfectly valid functions that can be used in the regular way:

$(!(a),!(b))

resulting in maximum value of the absolute values of a and b. It would
however be much more convenient to use standard operator notation:

!a $!b

Pico supports operator notation as a (non essential) extension of its syntax:

tra
ns

cri
pt

p$q: if(p>q,p,q)
:<function $>
!z: if(z<0,-z,z)
:<function !>
a: -121
:-121
b: 99
:99
!a $!b
:121

Calculus teaches us that infix and prefix notation involving operators
requires precedence rules and a means to change these rules by using
parentheses. We refer to the next chapter for a strict definition of these
rules. For the moment, it is sufficient to use an intuitive approach to
operators and their relative precedence.

Concepts of Programming p. 16

Arithmetic functions

Pico comes with the standard complement of native arithmetic functions and
operators for addition, subtraction, multiplication, division and
exponentiation. The following transcript illustrates the use of the two native
additive operators:

x:1
:1
+x
:1
-x
:-1
x+5
:6
6-x
:5 tra

ns
cri

pt

numerical identity

numerical negation

numerical sum

numerical difference

Note that both the + and the - operator can be used as unary and binary
operator. The multiplicative operators *, /, //, \\ and ^ are always binary:

tra
ns

cri
pt

x:2
:2
x*3
:6
9/x
:4.500000
9//x
:4
9\\x
:1
x^x
:4.000000

numerical product

numerical division

integer division

integer modulus

exponentiation

A number of rules apply to the types of arguments of these operators:

• the arguments of *, /, and ^ are restricted to numbers and fractions

• the arguments of // and \\ are restricted to numbers

Concepts of Programming p. 17

• the second argument of /, // and \\ cannot be zero

• the first argument of ^ cannot be negative

These rules are illustrated by the following transcript:

1/0
zero division: /
2.5//1.5
argument type conflict: //
1\\0
zero division: \\
-2^0.5
negative argument: ^ tra

ns
cri

pt

Transcendental functions

Pico is equipped with a standard set of native transcendental functions, that
is the functions readily available on most pocket calculators. A first
sequence consists of the three basic trigonometric functions and their
inverse:

x:3.14159265358979/4
:0.785398
sin(x)
:0.707107
cos(x)
:0.707107
tan(x)
:1
arcsin(1)
:1.5708
arccos(1)
:0
arctan(1)
:0.785398 tra

ns
cri

pt

sine

cosine

tangent

arc sine

arc cosine

arc tangent

Note that arguments of sin, cos and tan as well as values returned by
arcsin, arccos and arctan are expressed in π-radials. Moreover, the
arguments of arcsin and arccos are restricted to the interval [-1, 1].

Concepts of Programming p. 18

The next sequence consists of the sqrt, exp and log functions:

x:3.14159265358979/4
:0.785398
sqrt(x^2)
:0.785398
exp(2)
:7.38906
log(7.38906)
:2.00000 tra

ns
cri

pt

square root

Euler-function

natural logarithm

The argument of the sqrt function cannot be negative; the argument of the
log function is required to be strictly positive.

Logical functions

The next family of native functions introduce logic into Pico. First of all, two
values true and false are introduced to represent the two logical values:

true
:<native function true>
false
:<native function false>
true('ok','ko')
:ok
false('ok','ko')
:ko tra

ns
cri

pt

true(p,q) ⇒ p

false(p,q) ⇒ q

Note that true and false are functions, or rather native functions as
indicated by the behaviour of the print component. Both true and false take
two arbitrary arguments; true however ignores the second argument and
returns the value of the first argument while false ignores the first
argument and returns the value of the second argument. At this point we do
not know how to make a function ignore an argument; this will be explained in
the next chapter.

Concepts of Programming p. 19

Armed with true and false we can build the three basic logical predicates
and, or and not. These predicates both take and return logical values and
obey the following set of rules:

• and(p, q) is only true if both p and q are true

• or(p, q) is only false if both p and q are false

• not(p) is only true if p is false

The following three transcripts enumerate the possible combinations of
applying and, or and not to true and false:

and(true,true)
:<native function true>
and(true,false)
:<native function false>
and(false,true)
:<native function false>
and(false,false)
:<native function false>

tra
ns

cri
pt

and(p,q) ⇒
p(q,false)

or(true,true)
:<native function true>
or(true,false)
:<native function true>
or(false,true)
:<native function true>
or(false,false)
:<native function false>

tra
ns

cri
pt

or(p,q) ⇒
p(true,q)

not(true)
:<native function
false>
not(false)
:<native function true> tra

ns
cri

pt not(p) ⇒
p(false,true)

These constitute so-called truth tables and completely define the behaviour
of the three logical predicates. Are also included: their definition in terms of

Concepts of Programming p. 20

the functional behaviour of the two logical values5. Again, the reader is
invited to explore these definitions or else wait until the next chapter for a
much more rigorous treatment of this matter. We will use this logic system
to explore the concept of control in Pico programs.

Relational functions

Three native binary operators <, > and = are available in Pico to compare
numerical or textual values. The rules are the following:

• the two arguments are both either numbers, fractions or a mixture; in
this case both numerical values are compared according to the standard
sequencing of numbers

• the two arguments are both text; in this case both textual values will be
compared according to the lexicographic ordering of the alphabet of
characters

In order to compare arbitrary values, —that is numbers, fractions, text,
functions and tables— a generic operator equivalent is provided. This
operator checks for exact identity of the two arguments; for a detailed
specification we again refer to the next chapter.

In all cases the resulting value will be either true or false, as illustrated
by the following transcript:

123<456
:<native function true>
1.23>4.56
:<native function false>
1.0=1
:<native function true>
'abc'='def'
:<native function false>
'abc'>'def'
:<native function false>
'abc'<'def'
:<native function true>
equivalent(123,'abc')
:<native function false>

tra
ns

cri
pt

numerical
comparison

textual
comparison

generic
comparison

5 Actually, this definition of a logic system is due to Alonzo Church, an American

mathematician who established a formal system supporting functions, called the λ-calculus,
in the early thirties —long before computers came into being.

Concepts of Programming p. 21

Communication functions

Pico also provides means for communication between a running program and the
outside world. Typically the function display allows any value to be sent to
the transcript —typically a computer screen— while the function accept
retrieves a fragment of text —typically from a keyboard. The following
transcript illustrates the use of the display function:

display('abc',123)
:abc123
display(3.14159265358979)
:3.14159
display(true)
:<native function true>
display(' x ',eoln,'xxx',eoln,' x ')
: x
:xxx
: x

tra
ns

cri
pt

Note that display can take any number of arguments. We do not know yet
how to define a function that behaves in this way; again we refer to the next
chapter for more details. Also note that a native variable eoln is available:
whenever displayed, the value bound to eoln generates a line break in the
text printed to the transcript.

The accept function is illustrated in the following transcript:

accept() 123
:123
accept() 123.45
:123.45
accept() abc
:abc
pi:accept() 3.14159
:3.14159
pi
:3.14159 tra

ns
cri

pt

Concepts of Programming p. 22

The function accept takes no arguments; whenever applied, it produces some
audio prompt —represented by the bell symbol— to warn that input is
required. Evaluation is then resumed after the input is terminated —indicated
by for instance an enter-key on the computer keyboard. The value of the
accept function is the text representing the entered string of characters.
Note that the result is text, even if only digits were entered. Converting
text consisting of digits into a number will be discussed in one of the
following paragraphs.

Text functions

Pico proposes a set of native functions to manipulate text:

t:'abcdef'
:abcdef
explode(t)
:[a, b, c, d, e, f]
implode(['x', 'y', 'z'])
:xyz
'hokus'+'pokus'
:hokuspokus
size('hokus'+'pokus')
:10 tra

ns
cri

pt
join characters

join text

isolate characters

text size

The functions explode and implode convert text to and from a table with
slots containing its individual characters —as text values of length one. The
operator + is extended to accept two text values as arguments and serves to
join these into one text value. Finally, the size function takes a textual
argument and returns the number of characters that it consists of.

Composition function

It is often necessary to assemble multiple expressions into one composite
expression, for instance when the prescription for a function definition
cannot be stated in one simple expression. Pico provides the function begin
as an answer to this need.

As shown by the following transcript, the begin function behaves as follows:

• at least one argument must be provided

• the arguments are evaluated from left to right

• the value of the last argument serves as final value

Concepts of Programming p. 23

begin(display('name?'),
 name: accept(),
 eoln+'You are '+name)
:name? Napoleon
:You are Napoleon
{ display('name?');
 name: accept();
 eoln+'You are '+name }
:name? Bonaparte
:You are Bonaparte tra

ns
cri

pt

The transcript also illustrates a non-essential syntax for an application of
begin:

begin(a,b,…,z) ≡ {a;b;…;z}

The begin arguments are simply delimited by curly braces and separated by
semicolons. Practice has shown that large Pico programs become much more
readable and easier to debug whenever this alternate representation is used.

The begin function is extremely useful for introducing nested definitions.
For instance:

f(x):{a:x;a}

features a variable definition of a that is valid during an application of f and
has no effect otherwise. This is an effective means for hiding specifics about
the elaboration of a function. In complex problems this enhances the
legibility of programs.

Selection function

One of the most important native functions provided by Pico is the if
selection function. The if function6 takes three arguments, the first of
which must have a true or false value7, depending on which either the second

6 The if is the Pico counterpart of the curly braces used in mathematics to list alternatives.
7 Actually, in the next chapter we will see that any function with a behaviour similar to
true and false will do

Concepts of Programming p. 24

or the third argument will be evaluated. Pasted to the transcript is a first
hint of a way to express a definition of the if function: it suffices to apply
the value of the first argument to the two other arguments. For a formal
elaboration we refer to the next chapter.

x:123
:123
y:456
:456
if(x>y,x,y)
:456
if(x>y,x-y,y-x)
:333
if(x\\2=0,display('even'),display('odd'))
:odd
display(if(x\\2=0,'even','odd'))
:odd

tra
ns

cri
pt

if(cond,then,else)
⇒

cond(then,else)

Loop functions

Pico provides three native loop functions: while, until and for. These are
used to evaluate some expression iteratively; the only difference between
these three loop functions lies with start and stop criteria for the iterative
process. while, until and for closely reflect how loops are performed in
the majority of programming languages; we will make relatively little use of
them at this stage, which is why their behaviour is only superficially sketched
here. In the next chapter all three will be formally defined.

k:1000
:1000
log2:0
:0
while((k:=k//2)>0,log2:=log2+1)
:9 tra

ns
cri

pt

The preceding transcript illustrates how the native while function is used
to compute the truncated logarithm with base 2 of the number 1000. The
function while takes two arguments; the first one should have a logical
value. For as long as this value remains true, the second argument keeps on

Concepts of Programming p. 25

being evaluated. In this example, the expression log2:=log2+1 is evaluated
9 times, because that is the number of steps it takes for k:=k//2 to become
zero.

{ p:1; q:1; r:0 }
:0
until(p>100000000,{r:=p+q;q:=p;p:=r})
:102334155
p/q
:1.61803

tra
ns

cri
pt

The preceding transcript illustrates how the native function until is used
to compute the first Fibonacci8 number exceeding 100000000.

The function until takes two arguments; the first one should have a logical
value. The second argument keeps on being evaluated until this value becomes
false. In this example, the expression {r:=p+q;q:=p;p:=r} is actually
evaluated 38 times for p to reach the value 102334155. This transcript
concludes by computing p/q which is an approximation for the golden ratio9.

The following transcript illustrates how the native function for is used to
compute the tenth power of the number 3:

x:1
:1
for(n:1,n:=n+1,not(n>10),x:=3*x)
:59049
3^10
:59049

tra
ns

cri
pt

The function for takes four arguments; the third one should have a logical
value. For as long as this value remains true, the fourth argument keeps on
being evaluated. This is similar to the while function; however, the other
two arguments provide additional features. The first argument is evaluated
once before the loop is started, while the second argument is evaluated at the

8 In this text, Fibonacci numbers (Fn)n are defined as Fn = Fn-1 + Fn-2 with n>1 and F1 = F0 = 1
9 The golden ratio is defined as (1+√5)/2 = lim(Fn / Fn-1) for n→∞

Concepts of Programming p. 26

conclusion of each iteration step. In this example, this mechanism is used to
define a counter, that is a variable n counting the number of iterations and
used to decide that the loop should stop after exactly 10 iterations. Note
that the transcript checks the correctness of this loop against the standard
computation 3^10.

Table functions

Pico provides a number of shortcuts to work with tables. First of all, there
exists a native function tab that can be used to create and initialise table
values with. It will take any number of arguments, evaluate these and insert
the resulting values in the successive slots of a newly created table. In the
transcript below, the tab function is used to set up a table holding the text
values of the five vowels a, e, i, o and u. The variable t bound to this table is
then used in a for loop to decide whether a character o accepted from the
keyboard is indeed a vowel. Note that the native function size —introduced
in the paragraph on text functions— is extended to return the number of
slots in a table.

t:tab('a','e','i','o','u')
:[a, e, i, o, u]
z:accept() o
:o
for(i:1,i:=i+1,not(i>size(t)),
 if(t[i]=z,
 display(z,' is a vowel'),
 eoln))
:o is a vowel
:
t:=['a','e','i','o','u']
:[a, e, i, o, u] tra

ns
cri

pt

In analogy to the begin function, a non-essential syntax for an application
of tab has been defined:

tab(a,b,…,z) ≡ [a,b,…,z]

The tab arguments are simply delimited by square brackets and separated by
comma’s, again for reasons of convenience in handling larger programs.

Concepts of Programming p. 27

Type functions

By now it is fairly clear that Pico values are partitioned into a number of
distinct groups, called types. A value belongs to exactly one type and can
never switch from one type to another. On the other hand, simply reading the
text of a program is generally not sufficient to determine the type of the
values that will be bound to the various variables and parameters used in the
program. For instance:

if(a=0, x:=1, x:='one')

will assign either a number or a text value to the variable x, depending on the
value for a retrieved from the current dictionary. As it is, the value of a
could have been set using a totally unpredictable function, such as accept.
The only way therefore to determine the types of values manipulated by a
program consists of evaluating the program.

Pico provides a number of native functions to identify the types of values as
they are computed in a program:

is_number(1)
:<native function true>
is_fraction(2.4)
:<native function true>
is_text('abc')
:<native function true>
is_table([1,2,3])
:<native function true>
is_function(+)
:<native function true>
is_void(void)
:<native function true> tra

ns
cri

pt

The functions is_number, is_fraction, is_text, is_table and
is_function generate either true or false depending on whether the value
of their single argument is a number, a fraction, a text, a table or a function.
The function is_void is used to determine whether the value of the
argument is void; this value, accessible through the native variable void, is
the only value of a type distinct from the five others, and is generally used
to indicate the absence of value. Examples will be given in the next chapter.

Concepts of Programming p. 28

Conversion functions

The last group of native functions is used in Pico programs to perform
conversions, that is, starting from a given value of a certain type generating
an associated value of another type. These are the rules:

• the function trunc generates a number value corresponding with the
truncation of the number or fraction value of the argument

• the function char generates a text value containing the character
representation corresponding with the number value of the argument10

• the function ord generates a number value corresponding with the ordinal
of the character held in the text value of the argument

• the function number will —if possible— generate a number or fraction
value from the text value of the argument; if not, the value of void is
returned

• the function abs generates a numerical value corresponding with the
absolute value of the number or fraction value of the argument

• the function text generates a text value corresponding with the number,
fraction or text value of the argument

trunc(1.2)
:1
char(97)
:a
ord('A')
:65
number('123')/2
:61.5
abs(-123)
:123
'n = '+text(123)
:n = 123 tra

ns
cri

pt

integer part

ordinal->text

text->ordinal

text->number

absolute value

textual value

Note that typically a combination of accept and number will be used to
retrieve numerical values from a keyboard.

10 In the next chapter we will cover the Pico alphabet and the ordinal value of each character

Concepts of Programming p. 29

The greatest common divisor

Let us consider a task to be performed using Pico: we want to establish a
general function that is capable of computing the greatest common divisor
(gcd for short) of two positive integers.

In order to solve this problem, we draw upon the following recurrence
relationship from discrete mathematics:

gcd(p,q) =

gcd(p-q,q) if p>q>0
gcd(p,q-p) if q>p>0
p if p=q>0

{
which states that the gcd of two distinct positive integers equal the gcd of
the smallest and the difference between the greatest and the smallest11. We
can immediately transform this property into a computational process, using
the combination of recursive function application and a selection:

a:121
:121
b:33
:33
gcd(x,y):if(x>y,
 gcd(x-y,y),
 if(x<y,
 gcd(x,y-x),
 x))
:<function gcd>
gcd(a,b)
:11 tra

ns
cri

pt

The prescription of the function gcd(x,y) specifies that either
gcd(x-y,y), gcd(x,y-x) or x is evaluated, depending on the relative values
of x and y. This is obtained through a careful application of two nested
references to the native if function. Since at each recursive step, the values
of the arguments to gcd become smaller and smaller, we will eventually reach
the gcd —which might be 1.

11 A much more efficient recurrence relationship involving remainders is not considered here

Concepts of Programming p. 30

Factorials

Let us try and repeat this approach in order to compute factorials:

fac(n) =
n*fac(n-1) if n>1
1 if n≤1 {

This recurrence relationship can again readily be transformed into a Pico
function:

fac(n): if(n>1,n*fac(n-1),1)
:<function fac>
fac(10)
:3628800

tra
ns

cri
pt

In the above transcript, the function application fac(10) will result in 9
recursive applications, ending when n reaches 1. Backtracking from this level,
the necessary arithmetic is performed to compute 10! = 3628800.

Trying this out for other values of the argument, we eventually run into
trouble:

fac(12)
:479001600
fac(13)
number too large: *

tra
ns

cri

We must never forget that in the physical world, somewhere in our tower of
REP-machines there is a level at which we will encounter constraints on the
values that we use in our programs. In this case we violated a rule stating
that numbers cannot exceed the range [-1073741824, 1073741823]12.

12 The Pico machine used to generate the transcript uses 31 binary digits to represent a

number; hence -230 ≤ number < 230

Concepts of Programming p. 31

Fibonacci numbers

The existence of physical limits to the magnitude of numbers should not
detract us from trying to solve yet another problem: computing Fibonacci
numbers (see the paragraph on loops). We again consult mathematics on the
lookout for a suitable recurrence relationship:

fib(n) =
fib(n-1)+fib(n-2) if n>1
1 if n≤1{

which we can readily transform into a Pico function:

fib(n):if(n>1,fib(n-1)+fib(n-2),1)
:<function fib>
fib(5)
:8

tra
ns

cri

Inspecting the function fib we might conclude that a lot of superfluous work
is going on. For instance: fib(5) calls upon the computation of fib(4) and
fib(3) and fib(4) calls upon the computation of fib(3) and fib(2)
therefore fib(3) is computed twice! Actually, every function application of
fib to a number greater than 1 generates two new applications. This
indicates a kind of chain reaction where every recursive step doubles the
number of computations.

This behaviour is confirmed by an experiment:

tra
ns

cri
pt

fib(10)
:89
fib(20)
:10946
fib(30)

SSSSTTTTOOOOPPPP

Concepts of Programming p. 32

We actually have to pull the plug13 on the evaluator after 10 minutes have
passed by without any result.

This illustrates the difference between the approach involving a recurrence
relationship and our approach involving a Pico program. While mathematics is
concerned with definitions and properties, we also have to take the explicit
behaviour of our computational process into account14.

In order to construct a more appropriate program to compute Fibonacci
numbers, we start by examining the computational process that goes on in our
own head:

value 1 1 2 3 5 8

count 5 4 3 2 1 0

We start with the first two Fibonacci numbers and count steps while adding
together two successive numbers to generate the following one. In contrast,
our program performs the following action:

8 = 5 + 3

= (3 + 2) + (2 + 1)

= [(2 + 1) + (1 + 1)] + [(1 + 1) + 1]

= {[(1 + 1) + 1] + (1 + 1)} + [(1 + 1) + 1]

which is of course excessively cumbersome. Let us therefore try to adapt our
program to our own way of dealing with this computation:

13 Actually, we use an escape key on the keyboard of our personal computer
14 This illustrates the difference between the concerns of mathematics and computer

science or the difference of the what vs. the how of computational problems.

Concepts of Programming p. 33

fib(p,q,r):if(r>1,
 fib(q,p+q,r-1),
 q)
:<function fib>
fib(1,1,5)
:8
fib(1,1,10)
:89
fib(1,1,20)
:10946
fib(1,1,30)
:1346269 tra

ns
cri

pt

The new definition of the function fib is slightly more complicated than
before: we have to provide parameters p and q to hold two successive
Fibonacci numbers and a parameter r to hold a counter. We can easily identify
the following progression of applications of fib:

fib(1,1,5) ∅ fib(1,2,4) ∅ fib(2,3,3) ∅ fib(3,5,2) ∅ fib(5,8,1) ∅ 8

indicating that the time consumed by our computational process is
proportional to the index n of the required Fibonacci number. In our original
program the time was proportional to 2n .

Quadratic equations

We will finish this chapter with a last example: finding the real roots of a
quadratic equation ax2+bx+c = 0. We will start by considering the case where a
equals 0:

L(b,c):
 { display('solution: ');
 if(b=0,
 if(c=0,'IR','none'),
 -c/b) }
<function L>
L(0,0)
solution: IR
L(1,2)
solution: -2
L(0,1)
solution: none tra

ns
cri

pt

Concepts of Programming p. 34

The preceding transcript contains the definition of a function L(b,c) that
solves this particular case.

The general case can then be treated as follows:

Q(a,b,c):
 if(a=0,
 L(b,c),
 { D: b^2-4*a*c;
 display('solution: ');
 if(D<0, display('none'),
 if(D=0,-b/(2*a),
 [(-b-sqrt(D))/(2*a),
 (-b+sqrt(D))/(2*a)])) })
:<function Q>
Q(1,0,0)
:solution = 0.000000
Q(1,2,1)
:solution = -1.000000
Q(1,-4,3)
:solution = [1.000000, 3.000000]
Q(0,0,0)
:solution = IR tra

ns
cri

pt
The function Q(a,b,c) defers to L whenever a is zero; in the other case a
discriminant D is computed and depending on its value the existence of a
double root -b/2a or two distinct roots (-b ±  D)/2a is reported.

Conclusion

We have made an informal introduction of the language Pico. We have covered
the various values —number, fraction, text, function and table— and the
various grammatical constructs —references, applications, indexations— and
their definition or assignment.

This gives us a sufficient picture of Pico so as to use it as meta-level
language for the specification of a machine to interpret base-level programs
also written in Pico. This will be the subject of the next chapter.

