Declarative semantics for incomplete information:
completing incomplete programs :mantis
n

can no longer express be discussey) ﬁal lause v

characteristic
of indefinite clauses

problem

which had two minimal models

definite clause
containing not

first model is minimal model of general clause
to prove that

someone is a
bachelor, prove
that he is a man

and an adult, and
prove that he is not
a bachelor

second model is minimal model of general clause

Declarative semantics for incomplete information:
completing incomplete programs

A program P is “complete” if for every (ground) fact f,

either P E f or P E f unique
minimal

, , model
Transform an incomplete program into a complete one,

°E that captures the intended meaning of the original program.

closed world assumption predicate completion

ok for general clauses

traightf d
straighttorwar (with negation in body)

ok for definite clauses may lead to inconsistencies if
(without negation) the program is not stratified

possible transformations

Completing incomplete programs: everything that is not

known to be true,

closed world assumption must be false

\L do not say something is not true,
g simply say nothing about it

Completing incomplete programs: everything that is nof

known to be true,

closed world assumption must be false
CWA(P) = P U {-A|AcBp A PiA] the claste “false :-A” s only true
under interpretations in which A

is false

CWA-complement of a program P (i.e, CWA(P)-P):
explicitly assume that every ground atom A that
does not follow from P is false

Completing incomplete programs:
closed world assumption - example

only the black atoms are relevant
for determining whether an

r r ' (eter pCIul) i“'Le"Pl'ei“Clﬁon Is a model of every
B likes(pete spete) likes (p ’] - f y clan
P ’

student_of (peter,peter)
student_of (paul, peter)

i ter,paul)
ul,peter), likes (pe ’ . ter)
models S:ujen:_ﬁ EEZUI : Ee ter), likes (peter,paul), likes (peter, pe
student_

student_of(Paul,PeteP),likes(peter,quiié) there are sfll 4 orange
student_of (peter,peter), likes (peter,p atoms remaining which can

each be added (or not)

freely to the above
. | Y
in total: 3*2”4=48 models for such a simple program! interpretations

likes (peter,paul)

PFA student_of (paul,peter)

Completing incomplete programs:
closed world assumption - example

P likes(peter,S) :- student_of(S,peter).
student_of (paul,peter).

Bp {likes(peter,peter),likes(peter,paul),
likes (paul, peter), likes (paul, paul),
student_of (peter,peter),student_of (peter,paul),
student_of (paul,peter),student_of (paul,paul)}

pr A Llikes (peter,paul)
student_of (paul, peter)

CWA(P) likes(peter,S) :- student_of (S,peter).
student_of (paul,peter). is a complete program:

:= student(paul,paul). every ground atom from Bp
:— student (peter,paul).

:— student (peter,peter). | hasonly 1 model: {student_of(
:— likes(paul,paul). which is declared the inten
:— likes(paul,peter). (also obtain
:— likes(peter,peter).

Completing incomplete programs:
closed world assumption - inconsistency

when applied to :ndeﬁnite
| "t and general clauses
i :i:::ti?;qgnormal(X) :— bird(X). g

Br {bird(tweety),abnormal (tweety), flies (tweety)}
P

' ' tweety)}
bird(tweety), flies(
models Ebir\d(tweetg),abhor‘mdl(tlllee'tg)} es (tueaty)]
{bird (tweety), abnormal (tweety), flies (tw

PFA bird(tweety)

A(P) bird(tweety). . | |
CWALP) flies (X);abnormal (X) :— bird(X)
:—abnormal (tweety) .

:—flies (tweety)

CWA(P) is inconsistent

no longer has a model because, in order for the second

clause to be true under an interpretation, its head needs to be
frue given that its body is already true due to the first clause

Completing incomplete programs:
predicate completion - idea

regard each clause as part of the eir Q,,d_complefing
complete definition of a predicate

only clause defining likes/2:
P

its completion:

vXvS likes(X,S)—X =peterastudent(S,peter)

in clausal form:

Comp(P)

Completing incomplete programs:
predicate completion - algorithm

. add literals
1 ensure each argument of each clause head is a distinct variable Var=Term 1o body

use disjunction in implication’s
body if there are multiple clauses
for a predicate

5 if there are several clauses for a predicate,
combine them into a single formula

vXvY likes(X,Y)— X=peterrstudent_of(Y,peter))

vXvY student_of(X,Y)— X=paulrY=peter it a predicate without
definition is used in g
3 turn the implication into an equivalence body (e.g. p/1),

add vX —.p(X)
vXvY likes(X,Y)— X=peterastudent_of(Y,peter))

vXvY student_of(X,Y) & X=paulrY=peter

Clausal Logic:

4 convert to clausal form

Completing incomplete programs:
predicate completion - algorithm

3 turn the implication into an equivalence

vXvY likes(X,Y)— X=peterastudent_of(Y,peter))
vXvY student_of(X,Y) & X=paulrY=peter

4 convert to clausal form

X=peter:-likes(X,S).
student_of (S,peter):-likes(X,S).

X=paul :-student_of (X, VY) .

if a predicate without
definition is used in q

bOdy (eg p/"),
add vX —.p(X)

Clausal Logic:

. an “almost equi:ralanr” sot’of :lausas.
conversion from first-order predicate logic (6)

for definite clauses,
CWA(P) and Comp(P)

have same model

Y=peter:—-student_of (X,V¥). has the single model
{student_of(paul,peter), likes(peter,paul)}

|10

Completing incomplete programs:
predicate completion - existential variables

if a predicate without
definition is used in g
3 turn the implication into an equivalence oy leg fo

add vX —.p(X)

careful with variables in a body that do not occur in the head

vXvY ancestor(X,Y)~ (parent(X,Y) v
(3Z parent(X,Z)rancestor(Z,Y))))

use second form because
all clauses must have the

same head
vXvYVZ ancestor(X,Y)—parent(X,Z) nancestor(Z,Y)

vZ:q+p(Z) vXvY ancestor(X,Y)+ 3Z parent(X,Z)rancestor(Z,Y))
vZ:q v -p(Z)
q Vv vZ:-p(Z)

q viZ:p(Z)

Completing incomplete programs:
predicate completion - existential variables

3 turn the implication into an equivalence

vXvY ancestor(X,Y)~ (parent(X,Y) v
(3Z parent(X,Z)rancestor(Z,Y))))

Clausal Logic:

4 convert to clausal form

parent (X,VY);parent (X,pa(X,¥Y)) :—ancestor (X, V).
parent (X,Y);ancestor (pa(X,¥Y),Y) :—ancestor (X,VY).

Skolem functor
vX3Y : loves(X,Y)
vX:loves(X,person_loved_by(X))

aaaaaaaaaaaaaa

Completing incomplete programs:
predicate completion - negation

1 ensure each argument of each clause head is a distinct variable

5 if there are several clauses for a predicate,
combine them into a single formula

vX bird(X) < X=tweety.

vX flies(X) « bird(X)r~abnormal(X) it a predicate without
definition is used in g
3 turn the implication into an equivalence body (e.g. p/1),

add vX -p(X
vX bird(X) < X=tweety. PX)

vX flies(X) < bird(X)A-abnormal(X).

vX =~abnormal(X)

Completing incomplete programs:
predicate completion - negation

if a predicate without
definition is used in a

bOdy (eg p/]),
3 turn the implication into an equivalence

vX bird(X) & X=tweety.

vX flies(X) < bird(X)A-abnormal(X).

vX ~abnormal(X)

Clausal Logic:

st order sentence, there exists
an “almost equivalent” set of clauses.

conversion from first-order predicate logic (6)

4 convert to clausal form

X=tweety:-bird(X).

] has the single model
bird(X):—flies(X).

flies(X),abnormal (X). {bird(tweety), flies(tweety]}
¢ ’
:—abnormal (X) .

Completing incomplete programs: Comp(P) is

inconsistent for

predicate completion - inconsistency - certain unstratified P

if a predicate without
definition is used in q

3 turn the implication into an equivalence body (e.g. p/1),
add vX —.p(X)
vX wise(X) < ~teacher(X)

vX teacher(X) & X = peter A wise(peter) Clovsl Logic

. an “almost equivalent” set of clauses.
conversion from first.order predicate logic (6)

4 convert to clausal form

:—wise (X), teacher (X).

X=peter :-teacher (X) .
wise (peter) :—teacher (X).

inconsistent!

Completing incomplete programs: = ifPis stratified then

Comp(P) is consistent

Sh’dﬁﬁed programs sufficient but not Necessary:

there are non-stratified p’

! s for
which Comp(P) is consis

tent

organize the program in layers (strata);
do not allow the programmer to negate a predicate
& that is not yet completely defined (in a lower stratum)

A program P is stratified if its predicate symbols can be partitioned into disjoint
sets So, . . ., Sn

such that for each clause p(...) « Lj,...,Li where p € Sk, any literal L; is such that
if Li =q(...) then geSou...uSk

if Li ==q(...)then qeSou...uSk-1

Completing incomplete programs:
soundness result for SLDNF-resolution

P +sione g = Comp(P) F g

completeness result only holds for a subclass of programs

