
Declarative semantics for incomplete information:
completing incomplete programs

married(X); bachelor(X) :- man(X), adult(X).
man(john). adult(john).

can no longer express

which had two minimal models
{man(john),adult(john),married(john)}
{man(john),adult(john),bachelor(john)}
{man(john),adult(john),married(john),bachelor(john)}

characteristic
of indefinite clauses

ge
ne

ra
l c

la
us

es
pr

ob
le

m

first model is minimal model of general clause

married(X) :- man(X), adult(X), not bachelor(X).

second model is minimal model of general clause

bachelor(X) :- man(X), adult(X), not married(X).

to prove that
someone is a

bachelor, prove
that he is a man

and an adult, and
prove that he is not

a bachelor

definite clause
containing not

semantics and proof theory for
the not in a general clause will

be discussed later NOW

1

Declarative semantics for incomplete information:
completing incomplete programs

Transform an incomplete program into a complete one,
that captures the intended meaning of the original program.

A program P is “complete” if for every (ground) fact f,
either P ⊧ f or P ⊧ ¬f unique

minimal
model

closed world assumption predicate completion

po
ss

ib
le

 tr
an

sf
or

m
at

io
ns

ok for definite clauses
(without negation)

ok for general clauses
(with negation in body)

straightforward

may lead to inconsistencies if
the program is not stratified

2

Completing incomplete programs:
closed world assumption

everything that is not
known to be true,

must be false

do not say something is not true,
simply say nothing about it

motivation: in general, there are

more false statements that can be

made than true statements

3

Completing incomplete programs:
closed world assumption

everything that is not
known to be true,

must be false

4

CWA(P) = P ∪ {:-A|A∈BP ∧ P⊭A}

CWA-complement of a program P (i.e, CWA(P)-P):
explicitly assume that every ground atom A that

does not follow from P is false

the clause “false :-A” is only true under interpretations in which A
is false

Completing incomplete programs:
closed world assumption - example

5

likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).

P

likes(peter,paul)
student_of(paul,peter)

models

BP {likes(peter,peter),likes(peter,paul),
 likes(paul,peter),likes(paul,paul),
 student_of(peter,peter),student_of(peter,paul),
 student_of(paul,peter),student_of(paul,paul)}

{student_of(paul,peter),likes(peter,paul)}
{student_of(paul,peter),likes(peter,paul),likes(peter,peter)}
{student_of(paul,peter),likes(peter,paul),
 student_of(peter,peter),likes(peter,peter)}
...

in total: 3*2^4=48 models for such a simple program!

only the black atoms are relevant for determining whether an interpretation is a model of every ground instance of every clause

there are still 4 orange
atoms remaining which can

each be added (or not)
freely to the above

interpretations

P ⊧ A

Completing incomplete programs:
closed world assumption - example

6

likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).

P

likes(peter,paul)
student_of(paul,peter)

BP {likes(peter,peter),likes(peter,paul),
 likes(paul,peter),likes(paul,paul),
 student_of(peter,peter),student_of(peter,paul),
 student_of(paul,peter),student_of(paul,paul)}

P ⊧ A

CWA(P) likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).
:- student(paul,paul).
:- student(peter,paul).
:- student(peter,peter).
:- likes(paul,paul).
:- likes(paul,peter).
:- likes(peter,peter).

is a complete program:
every ground atom from BP

is assigned true or false
has only 1 model: {student_of(paul,peter),likes(peter,paul)}which is declared the intended model of the program (also obtained as the intersection of all models)

Completing incomplete programs:
closed world assumption - inconsistency

7

bird(tweety).
flies(X);abnormal(X) :- bird(X).

P

BP {bird(tweety),abnormal(tweety),flies(tweety)}

CWA(P) bird(tweety).
flies(X);abnormal(X) :- bird(X).
:-abnormal(tweety).
:-flies(tweety)

CWA(P) is inconsistent
no longer has a model because, in order for the second clause to be true under an interpretation, its head needs to be true given that its body is already true due to the first clause

when applied to indefinite
and general clauses

bird(tweety)P ⊧ A

models {bird(tweety),flies(tweety)}
{bird(tweety),abnormal(tweety)}
{bird(tweety),abnormal(tweety),flies(tweety)}

Completing incomplete programs:
predicate completion - idea

8

regard each clause as part of the
complete definition of a predicate

only clause defining likes/2:

likes(peter,S) :- student(S,peter).

∀X∀S likes(X,S)↔X =peter∧student(S,peter)

its completion:

in clausal form:

likes(peter,S) :- student(S,peter).
X=peter :- likes(X,S).
student(S,peter) :- likes(X,S)

turn implications (if) into
equivalences (iff) by completing

clauses (with their and-only-if part)

P

Comp(P)

Completing incomplete programs:
predicate completion - algorithm
likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).

1 ensure each argument of each clause head is a distinct variable

likes(X,S) :- X=peter,student_of(S,peter).
student_of(X,Y) :- X=paul,Y=peter

add literals
Var=Term to body

2 if there are several clauses for a predicate,
combine them into a single formula

use disjunction in implication’s body if there are multiple clauses
for a predicate

∀X∀Y likes(X,Y)← X=peter∧student_of(Y,peter))

3 turn the implication into an equivalence

∀X∀Y likes(X,Y)↔ X=peter∧student_of(Y,peter))

if a predicate without
definition is used in a

body (e.g. p/1),
add ∀X ¬p(X)

4 convert to clausal form

∀X∀Y student_of(X,Y)← X=paul∧Y=peter

∀X∀Y student_of(X,Y) ↔ X=paul∧Y=peter

9

Completing incomplete programs:
predicate completion - algorithm

3 turn the implication into an equivalence

∀X∀Y likes(X,Y)↔ X=peter∧student_of(Y,peter))

if a predicate without
definition is used in a

body (e.g. p/1),
add ∀X ¬p(X)

4 convert to clausal form

∀X∀Y student_of(X,Y) ↔ X=paul∧Y=peter

likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).

likes(peter,S):-student_of(S,peter).
X=peter:-likes(X,S).
student_of(S,peter):-likes(X,S).
student_of(paul,peter).
X=paul:-student_of(X,Y).
Y=peter:-student_of(X,Y).

10

has the single model
{student_of(paul,peter), likes(peter,paul)}

for definite clauses,
CWA(P) and Comp(P)

have same model

careful with variables in a body that do not occur in the head

Completing incomplete programs:
predicate completion - existential variables

3 turn the implication into an equivalence

if a predicate without
definition is used in a

body (e.g. p/1),
add ∀X ¬p(X)

ancestor(X,Y):-parent(X,Y).
ancestor(X,Y):-parent(X,Z), ancestor(Z,Y).

∀X∀Y∀Z ancestor(X,Y)←parent(X,Z)∧ancestor(Z,Y)

∀X∀Y ancestor(X,Y)↔ (parent(X,Y) ∨

 (∃Z parent(X,Z)∧ancestor(Z,Y))))

∀X∀Y ancestor(X,Y)← ∃Z parent(X,Z)∧ancestor(Z,Y))∀Z:q←p(Z)
∀Z:q ∨ ¬p(Z)
q ∨ ∀Z:¬p(Z)
q ∨∃Z:p(Z)

use second form because
all clauses must have the

same head

11

Completing incomplete programs:
predicate completion - existential variables

3 turn the implication into an equivalence

∀X∀Y ancestor(X,Y)↔ (parent(X,Y) ∨

 (∃Z parent(X,Z)∧ancestor(Z,Y))))

12

4 convert to clausal form

ancestor(X,Y):-parent(X,Y).
ancestor(X,Y):-parent(X,Z),ancestor(Z,Y).
parent(X,Y);parent(X,pa(X,Y)):-ancestor(X,Y).
parent(X,Y);ancestor(pa(X,Y),Y):-ancestor(X,Y).

Skolem functor
∀X∃Y : loves(X,Y)

∀X:loves(X,person_loved_by(X))

Completing incomplete programs:
predicate completion - negation

13

bird(tweety).
flies(X):-bird(X),not(abnormal(X)).

1 ensure each argument of each clause head is a distinct variable

bird(X):-X=tweety.
flies(X):-bird(X),not(abnormal(X)).

2 if there are several clauses for a predicate,
combine them into a single formula

∀X bird(X) ← X=tweety.
∀X flies(X) ← bird(X)∧¬abnormal(X)

3 turn the implication into an equivalence

if a predicate without
definition is used in a

body (e.g. p/1),
add ∀X ¬p(X)

∀X bird(X) ↔ X=tweety.

∀X flies(X) ↔ bird(X)∧¬abnormal(X).

∀X ¬abnormal(X)

Completing incomplete programs:
predicate completion - negation

14

bird(tweety).
flies(X):-bird(X),not(abnormal(X)).

3 turn the implication into an equivalence

if a predicate without
definition is used in a

body (e.g. p/1),
add ∀X ¬p(X)

∀X bird(X) ↔ X=tweety.

∀X flies(X) ↔ bird(X)∧¬abnormal(X).

∀X ¬abnormal(X)

4 convert to clausal form

bird(tweety).
X=tweety:-bird(X).
flies(X);abnormal(X):-bird(X).
bird(X):-flies(X).
:-flies(X),abnormal(X).
:-abnormal(X).

has the single model
{bird(tweety),flies(tweety)}

Completing incomplete programs:
predicate completion - inconsistency

15

wise(X):-not(teacher(X)).
teacher(peter):-wise(peter).

3 turn the implication into an equivalence

if a predicate without
definition is used in a

body (e.g. p/1),
add ∀X ¬p(X)

∀X wise(X) ↔ ¬teacher(X)

∀X teacher(X) ↔ X = peter ∧ wise(peter)

4 convert to clausal form

wise(X);teacher(X).
:-wise(X),teacher(X).
teacher(peter):-wise(peter).
X=peter:-teacher(X).
wise(peter):-teacher(X).

inconsistent!

Comp(P) is
inconsistent for

certain unstratified P

Completing incomplete programs:
stratified programs

16

organize the program in layers (strata);
do not allow the programmer to negate a predicate
that is not yet completely defined (in a lower stratum)

A program P is stratified if its predicate symbols can be partitioned into disjoint
sets S0, . . . , Sn
such that for each clause p(...) ← L1,...,Lj where p ∈ Sk , any literal Lj is such that
 if Lj =q(...) then q∈S0∪...∪Sk
 if Lj =¬q(...)then q∈S0∪...∪Sk−1

if P is stratified then
Comp(P) is consistent

sufficient but not necessary: there are non-stratified P’s for which Comp(P) is consistent

Completing incomplete programs:
soundness result for SLDNF-resolution

17

P ⊦SLDNF q ⇒ Comp(P) ⊧ q

completeness result only holds for a subclass of programs

