
Declarative semantics for incomplete information:
completing incomplete programs

married(X); bachelor(X) :- man(X), adult(X).
man(john). adult(john).

can no longer express

which had two minimal models 
{man(john),adult(john),married(john)}
{man(john),adult(john),bachelor(john)}
{man(john),adult(john),married(john),bachelor(john)}

characteristic 
of indefinite clauses
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first model is minimal model of general clause

married(X) :- man(X), adult(X), not bachelor(X).

second model is minimal model of general clause

bachelor(X) :- man(X), adult(X), not married(X).

to prove that 
someone is a 

bachelor, prove 
that he is a man 

and an adult, and 
prove that he is not 

a bachelor

definite clause 
containing not

semantics and proof theory for 
the not in a general clause will 

be discussed later NOW

1



Declarative semantics for incomplete information:
completing incomplete programs

Transform an incomplete program into a complete one, 
that captures the intended meaning of the original program.

A program P is “complete” if for every (ground) fact f, 
either P ⊧ f or P ⊧ ¬f unique 

minimal 
model

closed world assumption predicate completion
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ok for definite clauses 
(without negation)

ok for general clauses 
(with negation in body)

straightforward

may lead to inconsistencies if 
the program is not stratified
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Completing incomplete programs:
closed world assumption

everything that is not 
known to be true, 

must be false

do not say something is not true, 
simply say nothing about it

motivation: in general, there are 

more false statements that can be 

made than true statements
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Completing incomplete programs:
closed world assumption

everything that is not 
known to be true, 

must be false
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CWA(P) = P ∪ {:-A|A∈BP ∧ P⊭A}

CWA-complement of a program P (i.e, CWA(P)-P): 
explicitly assume that every ground atom A that 

does not follow from P is false

the clause “false :-A” is only true under interpretations in which A 
is false



Completing incomplete programs:
closed world assumption - example
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likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).

P

likes(peter,paul)
student_of(paul,peter)

models

BP {likes(peter,peter),likes(peter,paul),
 likes(paul,peter),likes(paul,paul),
 student_of(peter,peter),student_of(peter,paul),
 student_of(paul,peter),student_of(paul,paul)}

{student_of(paul,peter),likes(peter,paul)}
{student_of(paul,peter),likes(peter,paul),likes(peter,peter)}
{student_of(paul,peter),likes(peter,paul),
 student_of(peter,peter),likes(peter,peter)}
...

in total: 3*2^4=48 models for such a simple program! 

only the black atoms are relevant for determining whether an interpretation is a model of every ground instance of every clause

there are still 4 orange 
atoms remaining which can 

each be added (or not) 
freely to the above 

interpretations 

P ⊧ A



Completing incomplete programs:
closed world assumption - example

6

likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).

P

likes(peter,paul)
student_of(paul,peter)

BP {likes(peter,peter),likes(peter,paul),
 likes(paul,peter),likes(paul,paul),
 student_of(peter,peter),student_of(peter,paul),
 student_of(paul,peter),student_of(paul,paul)}

P ⊧ A

CWA(P) likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).
:- student(paul,paul).
:- student(peter,paul).
:- student(peter,peter).
:- likes(paul,paul). 
:- likes(paul,peter).
:- likes(peter,peter).

is a complete program: 
every ground atom from BP 

is assigned true or false
has only 1 model: {student_of(paul,peter),likes(peter,paul)}which is declared the intended model of the program (also obtained as the intersection of all models)



Completing incomplete programs:
closed world assumption - inconsistency 
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bird(tweety).
flies(X);abnormal(X) :- bird(X).

P

BP {bird(tweety),abnormal(tweety),flies(tweety)}

CWA(P) bird(tweety).
flies(X);abnormal(X) :- bird(X).
:-abnormal(tweety).
:-flies(tweety)

CWA(P) is inconsistent
no longer has a model because, in order for the second clause to be true under an interpretation, its head needs to be true given that its body is already true due to the first clause

when applied to indefinite 
and general clauses

bird(tweety)P ⊧ A

models {bird(tweety),flies(tweety)}
{bird(tweety),abnormal(tweety)}
{bird(tweety),abnormal(tweety),flies(tweety)}



Completing incomplete programs:
predicate completion - idea
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regard each clause as part of the 
complete definition of a predicate

only clause defining likes/2:

likes(peter,S) :- student(S,peter).

∀X∀S likes(X,S)↔X =peter∧student(S,peter)

its completion:

in clausal form:

likes(peter,S) :- student(S,peter).
X=peter :- likes(X,S).
student(S,peter) :- likes(X,S)

turn implications (if) into 
equivalences (iff) by completing 

clauses (with their and-only-if part)

P

Comp(P)



Completing incomplete programs:
predicate completion - algorithm
likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).

1 ensure each argument of each clause head is a distinct variable 

likes(X,S) :- X=peter,student_of(S,peter).
student_of(X,Y) :- X=paul,Y=peter

add literals 
Var=Term to body

2 if there are several clauses for a predicate, 
combine them into a single formula 

use disjunction in implication’s body if there are multiple clauses 
for a predicate

∀X∀Y likes(X,Y)← X=peter∧student_of(Y,peter)) 

3 turn the implication into an equivalence

∀X∀Y likes(X,Y)↔ X=peter∧student_of(Y,peter)) 

if a predicate without 
definition is used in a 

body (e.g. p/1), 
add ∀X ¬p(X)

4 convert to clausal form 

∀X∀Y student_of(X,Y)← X=paul∧Y=peter

∀X∀Y student_of(X,Y) ↔ X=paul∧Y=peter
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Completing incomplete programs:
predicate completion - algorithm

3 turn the implication into an equivalence

∀X∀Y likes(X,Y)↔ X=peter∧student_of(Y,peter)) 

if a predicate without 
definition is used in a 

body (e.g. p/1), 
add ∀X ¬p(X)

4 convert to clausal form 

∀X∀Y student_of(X,Y) ↔ X=paul∧Y=peter

likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).

likes(peter,S):-student_of(S,peter).
X=peter:-likes(X,S).
student_of(S,peter):-likes(X,S).
student_of(paul,peter).
X=paul:-student_of(X,Y).
Y=peter:-student_of(X,Y).
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has the single model 
{student_of(paul,peter), likes(peter,paul)}

for definite clauses, 
CWA(P) and Comp(P) 

have same model



careful with variables in a body that do not occur in the head

Completing incomplete programs:
predicate completion - existential variables

3 turn the implication into an equivalence

if a predicate without 
definition is used in a 

body (e.g. p/1), 
add ∀X ¬p(X)

ancestor(X,Y):-parent(X,Y).
ancestor(X,Y):-parent(X,Z), ancestor(Z,Y).

∀X∀Y∀Z ancestor(X,Y)←parent(X,Z)∧ancestor(Z,Y)

∀X∀Y ancestor(X,Y)↔ (parent(X,Y) ∨

                                 (∃Z parent(X,Z)∧ancestor(Z,Y))))

∀X∀Y ancestor(X,Y)← ∃Z parent(X,Z)∧ancestor(Z,Y))∀Z:q←p(Z)
∀Z:q ∨ ¬p(Z)
q ∨ ∀Z:¬p(Z)
q ∨∃Z:p(Z)

use second form because 
all clauses must have the 

same head
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Completing incomplete programs:
predicate completion - existential variables

3 turn the implication into an equivalence

∀X∀Y ancestor(X,Y)↔ (parent(X,Y) ∨

                                 (∃Z parent(X,Z)∧ancestor(Z,Y))))
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4 convert to clausal form 

ancestor(X,Y):-parent(X,Y).
ancestor(X,Y):-parent(X,Z),ancestor(Z,Y).
parent(X,Y);parent(X,pa(X,Y)):-ancestor(X,Y).
parent(X,Y);ancestor(pa(X,Y),Y):-ancestor(X,Y).

Skolem functor
∀X∃Y : loves(X,Y)

∀X:loves(X,person_loved_by(X))



Completing incomplete programs:
predicate completion - negation
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bird(tweety).
flies(X):-bird(X),not(abnormal(X)).

1 ensure each argument of each clause head is a distinct variable 

bird(X):-X=tweety.
flies(X):-bird(X),not(abnormal(X)).

2 if there are several clauses for a predicate, 
combine them into a single formula 

∀X bird(X) ← X=tweety.
∀X flies(X) ← bird(X)∧¬abnormal(X)

3 turn the implication into an equivalence

if a predicate without 
definition is used in a 

body (e.g. p/1), 
add ∀X ¬p(X)

∀X bird(X) ↔ X=tweety. 

∀X flies(X) ↔ bird(X)∧¬abnormal(X).

∀X ¬abnormal(X)



Completing incomplete programs:
predicate completion - negation
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bird(tweety).
flies(X):-bird(X),not(abnormal(X)).

3 turn the implication into an equivalence

if a predicate without 
definition is used in a 

body (e.g. p/1), 
add ∀X ¬p(X)

∀X bird(X) ↔ X=tweety. 

∀X flies(X) ↔ bird(X)∧¬abnormal(X).

∀X ¬abnormal(X)

4 convert to clausal form 

bird(tweety).
X=tweety:-bird(X).
flies(X);abnormal(X):-bird(X). 
bird(X):-flies(X).
:-flies(X),abnormal(X).
:-abnormal(X).

has the single model 
{bird(tweety),flies(tweety)}



Completing incomplete programs:
predicate completion - inconsistency
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wise(X):-not(teacher(X)).
teacher(peter):-wise(peter).

3 turn the implication into an equivalence

if a predicate without 
definition is used in a 

body (e.g. p/1), 
add ∀X ¬p(X)

∀X wise(X) ↔ ¬teacher(X)

∀X teacher(X) ↔ X = peter ∧ wise(peter)

4 convert to clausal form 

wise(X);teacher(X).
:-wise(X),teacher(X).
teacher(peter):-wise(peter).
X=peter:-teacher(X).
wise(peter):-teacher(X).

inconsistent!

Comp(P) is 
inconsistent for 

certain unstratified P



Completing incomplete programs:
stratified programs
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organize the program in layers (strata);
do not allow the programmer to negate a predicate 
that is not yet completely defined (in a lower stratum)

A program P is stratified if its predicate symbols can be partitioned into disjoint 
sets S0, . . . , Sn 
such that for each clause p(...) ← L1,...,Lj where p ∈ Sk , any literal Lj is such that 
  if Lj =q(...) then q∈S0∪...∪Sk 
  if Lj =¬q(...)then q∈S0∪...∪Sk−1

if P is stratified then 
Comp(P) is consistent

sufficient but not necessary: there are non-stratified P’s for which Comp(P) is consistent



Completing incomplete programs:
soundness result for SLDNF-resolution
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P ⊦SLDNF q ⇒ Comp(P) ⊧ q

completeness result only holds for a subclass of programs


