Declarative
Programming

These slides are based on:

Acknowledgements

slides by Prof. Dirk Vermeir for the same course

hitp://tinf2.vub.ac.be/” dvermeir/courses/logic_programming/Ilp.pdf

slides by Prof. Peter Flach accompanying his book “Simply Logical”
http://www.cs.bris.ac.uk/ ™ flach/SL/slides/

slides on Computational Logic by the CLIP group
http://clip.dia.fi.upm.es/ " logalg/

http://clip.dia.fi.upm.es/~logalg/
http://clip.dia.fi.upm.es/~logalg/
http://www.cs.bris.ac.uk/~flach/SL/slides/
http://www.cs.bris.ac.uk/~flach/SL/slides/
http://tinf2.vub.ac.be/~dvermeir/courses/logic_programming/lp.pdf
http://tinf2.vub.ac.be/~dvermeir/courses/logic_programming/lp.pdf

Practicalities

course material exam

) WKLY PROFESTIONAL COMPUTIVNG

oral test with

: individual
Simpty written preparation :
| Loaical Declarative programming
a J Programming about thec.)ry and oroject
exercises
i 2
II Peter Flach averaged, unless one <7
website exercises
http://soft.vub.ac.be/~ cderoove/ S sessions

declarative programming/ start 6th of October at IG

http://soft.vub.ac.be/~cderoove/declarative_programming/
http://soft.vub.ac.be/~cderoove/declarative_programming/
http://soft.vub.ac.be/~cderoove/declarative_programming/
http://soft.vub.ac.be/~cderoove/declarative_programming/

Dictionary

dudl, Dictionary | Thesaurys

Apple Wikipedia
de-clar-a-tive

| di’kle(a)rativ; -klar-|

adjective

statement,

2 Computing denoting high gramming languages that can b
used to solve problems with oyt requirin

g the programmer to spec;
4N exact procedure to he followed,

-level pro

noun

4 Statement in the form of a declaration_
* Grammar a3 declarative Sentence or phrage,

DERIVATIVES
deocla.r-a-ﬁve-ly adverh

—_—

Problem solving strategy

Declarative

Habitat Monitoring using Sensor Network

gather sensor readings

route through network while adjusting
averages and count

power-efficiently and fault tolerantly

SELECT region,
CNT (occupied),
AUG (sound)

FROM sensors

GROUP BY region

HAVING AUG (sound) > 200

EPOCH DURATION 1@s

XWT

program transformations

if($condition$) {
x = $expris;

else {
x = Pexpr2$;

£;$ = $condition$? Pexpri$: $expr2$;

Jetbrain’s SSR

identifying XML elements
/bookstore/book [price>35.00] /title

< /bookstore/book [position()<3]
O
gz count(//a [ehref]
//img[not (Palt)]
positioning GUI widgets
<{Shell>
<Shell .layout>
<FillLayout/>

</Shell.layout>
{Button text="Hello, world!">

</Button> I
</She11> q so o0

General-purpose declarative programming:
logic formalizes human thought process

%

classical logic

Aristotle likes cookies
Plato 1s a friend of anyone who likes cookies
Plato 1s therefore a friend of Aristotle

formally

al : likes(aristotle, cookies)

a2 : vX likes(X, cookies) — friend(plato, X)
tl :friend(plato,aristotle)

T [al,a2] +~ t1i

]
General-purpose declarative programming: ,
logic assertions as problem specification r

extensionally

Peano gt (@) A nat(s(@)) » nat(s(s@))) » . . .
encoding

natural
numbers

nat (@) x

intensionall
vX ¢ nat(X) — nat(s(X))) intensionatly

v (le(@,X)) A

o %Y (le(X,¥) — le(s(X),s(¥))

add vX (nat(X) — add(@, X, X))
v’,Y,2 (add(X, ¥, Z) - add(s(X), VY, s(2)))

prod vX (nat(X) - mult(@, X, 8)) A
v, Y, Z, W (mult(X,Y,W) A addW,¥Y,Z) — mult(s(X),¥,Z2))

squares X, Y (nat(X) A nat(¥) A mult(X,X,¥) — square(X,¥))

wanted VX wanted(X) «
(¥ nat(¥) A le(¥,s(s(s(s(s(@)))))) A square(Y, X)))

8

squares of natural numbers < to 5

General-purpose declarative programming:
proof procedure as problem solver

& is

r

Assuming the existence of a mechanical proof procedure,
a new view of problem solving and computing is possible
[Greene in 60’s]

1 2 3
program proof specify the problem by means query the proof procedure for
procedure once of logic assertions answers that follow from the
assertions

query answer

L

r

which logic which proof procedure

General-purpose declarative programming:
logic and proof procedure

performance

concurrency, memoization ..
soundness

are all provables true

completeness

can all trues be proven

10

mmin9:
: rogra

ose declarative p

rp

ql-pU .

Gener Iew

historical overv

4 .

¢

tion
pr esolu
Green® n: linear !
Robinso
(early) Ko alsk;- procedural INterp lation Of Horp Clauge logic Reaqg
if81 and 2ang .. and n s

to SOlve (e Cu) A g lve(xecute) 5, and 5, and,... 5,

(early) Co e r: sp Cigl €d the re Prover (e rtr n) e bedoling thep ocC durg|

mterpretatio P g (Pr ra ation tLogiqu)

N the US.: - Xt- nerationA lang d9es” of the tim
dlfficult fo co rof
(Iate) D.H r velo
Very efficieny (

General-purpose declarative programming:
historical overview

Many commercial CLP systems with fielded applications.

Extensions to full higher order, inclusion of functional programming, ...
Highly optimizing compilers, automatic parallelism, automatic debugging.
Concurrent constraint programming systems.

Distributed systems.

Object oriented dialects.

Applications

Natural language processing
Scheduling/Optimization problems
Al related problems

(Multi) agent systems programming.
Program analyzers

12

Representing
Knowledge

relations among
underground stations

o ErriEnRN
Oxforq

o Circus
Bong o

Street
Tottenham
Court Road
Green O .
Park Piccadily |
Circus Leicester
Quare
Chal’ing
Cross

represented by predicates

predicate symbol

ternary connected/3:

binary nearby/2:

argument terms

nearby (bondstreet, oxford_circus)

|3

CENTRAL

connected (bond_street,oxford_circus,central)

Representing Knowledge:
base information

logic predicate connected/3
implemented through logic facts

connected (bond_street,oxford_circus,central).
connected(oxford_circus, tottenham_court_road, central).
connected (bond_street, green_park, jubilee).

connected (green_park,charing_cross, jubilee).

connected (green_park,piccadilly_circus,piccadilly).

JUBILEE BAKERLOO NORTHERN

Circus CENTRAL

O O PICCADILLY
reen i
are

VICTORIA

logic facts describe a
relation extensionally
(i.e., by enumeration)

connected(piccadilly_circus, leicester_square,piccadilly).

connected (green_park,oxford_circus,victoria).
connected (oxford_circus,piccadilly_circus,bakerloo).

connected(piccadilly_circus,charing_cross,bakerloo).

connected (tottenham_court_road, leicester_square,northern).

| 4

Representing Knowledge:

uppercase=variable

derived information omercase~constan dent
indepe" en
in rule e
logic predicate nearby/2 vor'm‘::z;f o able Xin e ?

implemented through logic rules

conclusion of rule premises of rule

logic rules describe a
relation intensionally

“Two stations are nearby
if they are on the same
line with at most one
other station in between”

compare with an extensional description through logic facts:

Answering Queries:
base information

matching query predicate against a compatible
logic fact yields a set of variable bindings

predicate logic variables as
symbol argument terms
query
answer
answer

compatible
facts

Answering Queries:
derived information

query
matching query predicate with the conclusion of a
compatible rule:

yields:

the original query can premise of compatible rule
therefore be answered by
answering:

matching new predicate against a compatible logic fact
yields:

final
answer

Answering a Query
= constructing a proof for a logic formula

logic rule (with variables

? - nearby(tottenham_court_road, W) renamed for uniqueness)

nearby(X1,Y1) :- connected(X1,Y1,L1)
{ X1=tottenham_court_road, Yi=W }

?— connected (tottenham_court_road, W,L1) logic fact

connected (tottenham_court_road, leicester_square)
{ W=leicester_square,L1=northern}

answer

Answering Queries:
involving recursive rules

reachable(X,Y) :— connected(X,VY,L). VCToRA
reachable (X,Y) :- connected(X,Z,L), reachable(Z,VY).

:—reachable (bond_street, k) reachable (X1,Y1) :- connected(X1,Z21,L1),

reachable (Z1,Y1).
* {X1=bond_street, Y1=W}
:—connected (bond_street,Z1,L1),
reachable (Z1, W) connected(bond_street, oxford_circus,central).
-E * {Z1=oxford_circus, Ll=central}
o= .
S g s :—-reachable (oxford_circus, W) reachable (X2,Y2) :-connected (X2,22,L2),
o = 0 I reachable (22,Y2).
E U O {X2=oxford_circus, Y2=W}
£ € € \/
2 3 a :—connected (oxford_circus,22,L2),
5 reachable 522, W) connected (oxford_circus, tottenham_court_road,central).
+ {z2=tottenham_court_road, L2=central}
:-reachable (tottenham_court_road, W)
I reachable (X3,Y3) :- connected(X3,Y3,L3).
7 {X3=tottenham_court_road, Y3=W}
:—connected (tottenham_court_road, W,L3)
I connected (tottenham_court_road, leicester_square,northern)
* {W=1leicester_square, L3=northern}
[]

19

wiliari Ig
Cross

S3|PLIDA JusiayIp
suoiyooi|ddp a|n. juaisyyip

Prolog’s Proof Strategy: T
resolution principle T Doem s

to solve a query
find a compatible rule such that a matches a;

and solve

gives ua procedural interpretation to formulas logic programs

Prolog =
programmation
en logique

20

Prolog’s Proof Strategy:

based onp rOOf b yr er tation oo

7o nearby (N, charing cross)

assume the formula (query) is false
and deduce a contradiction

the query

is answered by reducing

“empty rule”:

premises are always true
conclusion is always false

to a contradiction

in that case, the query is said “to succeed”

21

ubi

e

/ parent(C;P) %= mother (C,P).
Prolog’s Proof Strategy: parent (§,P) = father (C,P).
SeGrChlng fOl' d prOOf father(c?oerj,pqul).
father (jolienjypaul)«
father (l1iesbeth,paul).
?- parent (X,paul)
barent (C1,P1) i mother(C1,P J/ parent (C1,P1) :- father(Ci,P1)
choice
{C1=X, paul=P1} point {C1=X, paul=P1}

?—- mother (Cl,paul)

blocked as there
are no matches

Prolog uses depth-first search to find a proof. When blocked or more answers
are requested, it backtracks to the last choice point. Of multiple conditions, the
left-most is tried first. Matching rules and facts are tried in the given order.

JUBILEE BAKERLOO NORTHERN

CENTRAL

Representing Knowledge:
compound terms

PICCADILLY

VICTORIA

route (tottenham_court_road, route(leicester_square, noroute))

route
tottenham_court_road route
leicester_square noroute

23

JUBILEE BAKERLOO NORTHERN

CENTRAL

Representing Knowledge:
compound terms

PICCADILLY

VICTORIA

reachable (X, Y, noroute) :— connected(X,VY,L).

reachable (X, Y,route(Z,R)) :- connected(X,Z,L), /™fey,
reachable (Z,Y,R) . log;. e in ,
Pl'ogram ,egU/ Qr

m
do not differ syntactically from predicates, gl
but can be used as their arguments

?- reachable (oxford_circus,charing_cross,R).

answer { R = route(tottenham_court_road,
route (leicester_square,noroute)) }

answer { R = route(piccadilly_circus,noroute)}
{ R = route(piccadilly_circus,
answer route (leicester_square,noroute))}

24

Representing Knowledge: e,

- S (e Ta;
lists Saq, r, 17

Q
d qul)

J

list functor

car | head / \ cdr | tail list notations
a .
b .
/ \ empty list
< []

compound term notation

25

Representing Knowledge:

lists

arbitrary
length

even
length

odd
length

list([]).
list([First|Rest]) :— list(Rest).

evenlist([]).

JUBILEE BAKERLOO NORTHERN

CENTRAL

PICCADILLY

VICTORIA

evenlist([First,Second|Rest]) :- evenlist(Rest).

oddlist ([One]).

oddlist([First,Second|Rest]) :— oddlist(Rest).

oddList([First|Rest]) :- evenlist(Rest).

26

Representing Knowledge:
lists

reachable (X, Y, []1) :— connected(X,Y,L).

reachable (X, Y, [Z|R]) :— connected(X,Z,L),
reachable (Z,Y,R).

JUBILEE BAKERLOO NORTHERN

CENTRAL

PICCADILLY

VICTORIA

?- reachable (oxford_circus,charing_cross,R)

answer { R= [tottenham_court_road, leicester_square] }
answer { R =[piccadilly_circus] }
answer { R =[piccadilly_circus, leicester_square] }

?- reachable (X, charing_cross, [A,B,C,D])

from which X can we reach charing_cross via
4 successive intermediate stations A,B,C,D

27

lllustrative Logic Programs:
list membership

anonymous variable:
use when you do not care about
the variable’s binding

member (X, [X]_]1).
member (X, [_|Taill) :— member (X, Tail).
?- member (X, [1,2,3])
answers {X=1} {Xx=2} {Xx=3}
72— member (h(X), [f(1),g(2),h(3)])
answer {X =3}
?- member (1, [])

query fails (the empty list has no members)
28

lllustrative Logic Programs:
list concatenation

append([],Ys,VYs).
append ([X|Xs],VYs, [X|Z2s]) :— append(Xs,Ys,Zs).

S
-g ?- append([a,b,c], [d,e,f], Result)
..g_ answer { Result = [a,b,c,d,e, f]}
& 5 ?7- append(Left, Right, [a,b,c])
6ﬁa$9 £
\000&0&&@@ 5 answer { Left = [a,b,c,d,e, f], Right= []}
] £
X 2 -
Qo"&\O Q‘o 7 answer { Left = [a]l, Right= [b,c]}
N o
%g\p\ H -
= answer { Left = [a,b], Right= [c]}
3
answer { Left = [a,b,c], Right= []}

29

lllustrative Logic Programs:
basic relational algebra

union r-union_s(Xi, ..., %Xn) = r(Xi, ...,%n).
r_union_S X1y e« eyXn) = S(KiyeoeyXn).

intersection r_meet_s(Xiy...yXn) = P(Xiyeee9®n)y S(XiyeeeyXn).

cartesian product rox_s(Xi, ooy Ky Knrty oo os Xnen) im P (K, oo, %),
S (Xm+1, e o oy Xm+n) 3

projection riz(Xi,X3) :— r(Xi,X2,%X3).

selection ri1(X1,X2,X3) :— r(Xi,%X2,X3), smith_or_jones(Xi).
smith_or_jones(smith).
smith_or_jones (jones) .

natural join _join_ X2 s (X1,%2y « « «yXny Y1y oo e¥n) = P (X1, X2...s%n),
S(XZ,VI, .oo,Vn)
30

lllustrative Logic Programs:
deterministic finite automaton

list of symbols Xs

accept(Xs) :- initial(Q), accept(Xs,Q). accepted in state Q

O
v

60
W
N

accept([],Q) :—= final(Q).
accept([X|Xs],Q) :- delta(Q,X,Ql), accept(Xs,Ql).

RS

o

transition from state Q to -
?— accept([a, b, a, b, b]).
state Q1 consuming X = o

answer {}

accepting

q] ?- accept([a, b]).

N b
q0 >
x fail
query fails
b (ab)*b
q2

?7—- accept(Xs).

initial (qe). .g) answer { Xg = b] }
final (ql). S answer { Xs = [a,b,b] }
c
delta(q@,b,ql). & answer { Xs = [a,b,a,b,b] }

del ta(g®,a,g2).
del ta(g2,b,g@) .

[The Art of Prolog, Sterling&Shapiro]

31

lllustrative Logic Programs:
deterministic finite automaton

e NO * decprogl_dfa.pl M

accept(Xs) :- initial(Q), accept(Xs,Q).
accept([1,Q0) :- final(Q).
accept([XIXs],Q) :- delta(Q,X,Q1), accept(Xs,Q1).

initial(g®).
final(ql).|

delta(q@,b,ql).
delta(q@,a,q2).
delta(q2,b,q0).

e/

-:--- decprogl_dfa.pl All (6,10) (Prolog[SWI])
?- % /Users/cderoove/decprogl_dfa.pl compiled 0.00 sec, 3,512 bytes
true.

7- accept([b]).
true

?- accept([a,b]).

false.
7- accept(Xs). -
Xs = [b] ; |
Xs = [a, b, b] ; '
Xs = [a, b, a, b, b] ; '
Xs » [a. b, a,b:a,b, b : !
Xs = [a, b, a, b, a, b, a, b, b] : !
Xsow oo b a-b: g ay boak..] 3 ij
Xs: = [a; b, a;b, a, b;:a; b, al::.] A
v

1:**- *prolog* 57% (15,0) (Inferior Prolog: run)

32

demo time

lllustrative Logic Programs:
non-deterministic finite automaton

CPSC312/CPSC312/Lecture/LectureHTML/CS312 10.html#11]

for free
because of
backtracking over
choice points

ql

o

= answer
(ab)*(ab|b) 3

O

o

query fails

o) answer

=

S answer

c

®

@ answer

note that is accepted, but not generated ... more about

the limitations of the proof procedure later

33

http://www.cse.buffalo.edu/faculty/alphonce/.OldPages/CPSC312/CPSC312/Lecture/LectureHTML/CS312_10.html#11
http://www.cse.buffalo.edu/faculty/alphonce/.OldPages/CPSC312/CPSC312/Lecture/LectureHTML/CS312_10.html#11
http://www.cse.buffalo.edu/faculty/alphonce/.OldPages/CPSC312/CPSC312/Lecture/LectureHTML/CS312_10.html#11
http://www.cse.buffalo.edu/faculty/alphonce/.OldPages/CPSC312/CPSC312/Lecture/LectureHTML/CS312_10.html#11

[The Art of Prolog, Sterling&Shapiro]

lllustrative Logic Programs:
non-deterministic pushdown automaton

from state Q with stack S to state Q1
with stack S1 consuming X

input symbols are pushed
transition for palindromes of even length: abba

transition for palindromes of odd length: madam

symbols are popped and compared with input

34

list used as stack

palindrome recognizer

X pushed
on stack

variable X
substitutes for q
concrete symbol 1!

X popped off stack

