
A Method for Reducing Arbitrary Source Code Complexity
in Reusable Embedded Systems Code

The Frame Technology Idiom

Thomas Patzke
Thomas.Patzke@IESE.Fraunhofer.de
Fraunhofer IESE, Kaiserslautern, Germany
Product Line Architectures Department

page 2/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Joseph von Fraunhofer (1787 - 1826)

Researcher
discovery of “Fraunhofer Lines“
in the sun´s spectrum

Inventor
new methods of lens processing

Entrepreneur
head of royal glass factory

page 3/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Institute for Experimental Software Engineering
Mission & Role

•  Advance the state-of-the art in software &
system engineering

•  Promote the importance of empirically based
software and system engineering

•  Provide innovative and value-adding customer
solutions with measurable effects

page 4/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Outline

•  Problem

•  Approach

•  Variability Mechanisms

-  Frame Technology

•  Outlook

“Much of the complexity that [the software developer]
 must master is arbitrary complexity” [Brooks]

page 5/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Problem

•  Implementations produced for reuse in practice often fail
to be reused in the long term

-  Increasing effort for adding new features (Bosch, Ricoh)

-  Reconfiguration takes too long (POSCO)

•  Goals with product line engineering
-  Improved reuse across the entire SE lifecycle
-  Cost-effective software construction
-  Code reuse in many family members (space dimension)

-  Reusability over long periods (time dimension)

•  Effect: higher effort than expected in all areas
-  Application engineering
-  PL Maintenance (defect removal)
-  PL Evolution (scope changes)

page 6/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Reasons for High Implementation Effort
•  Lack of architectural compliance
•  Fear of efficiency penalties

•  Unnecessary complexity in evolving PL code
-  Violations of SW evolution laws [Lehman]

ž Continuing change vs. lack of continuous adaptation
ž  Increasing complexity vs. insensibility to simplicity
ž Feedback system vs. lack of feedback

-  Factors in Embedded Systems
ž High technical complexity [Royce]
ž Long-living

-  Effort = f(Code Complexity due to variability mgmt.)
ž Maintainability Index MI = f (Cycl. Cplx., LOC) [SEI]

ž Product Complexity CPLX [Boehm]

ž  Industrial studies: effort = f (LOC3) [PutnamMyers92]

page 7/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Complexity Triggers in Practice

•  Short-term convenience

-  Obsolete features are not removed
-  Large-scale code duplication

-  Re-development instead of reuse

•  Change-resistance
-  Establishment of variability management monocultures

•  Mistakes are not undone properly
-  Because they are detected too late
-  E.g. inappropriate variability mechanism selection

page 8/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Approach

•  I provide a new complexity-aware PL-impl. method

-  Instead of describing the artifact (PL code), it
guides the developer in the construction process (product/
process duality, backtrack-minimizing sequences)
 [Alexander, Leyton, Simon]

-  Aim: code complexity optimization
 by balanced variability mechanism selection

•  Expected benefit: 20% complexity growth reduction
 compared to an adhoc approach

cplx

t / evol. steps

page 9/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Similar Work
•  Variability Mechanisms [CzarneckiEisenecker00,SvahnbergBosch05]

-  They just catalog what works theoretically and generally, I focus on practical mechanisms for
Embedded Systems development

-  I discuss mechanism consequences and interdependencies

•  Practical PL Method [Coplien98, Krueger07, Bassett97]

-  They propose design/implementation mappings only; I consider a wider context:
existing code, mechanisms, tools; developer experience, organizational issues, …

-  I propose to gradually optimize existing variability mechanisms, if the need arises

•  Continuous Evolution [Alexander02, Fowler98]

-  I developed an extensive catalog of elementary PL evolution scenarios
-  Artifacts are never seen as ‘finished’
-  I consider more than refactorings: construction-time behavior-extending transformations

•  Complexity/Simplicity [Alexander02, Simon62]

-  I explicitly focus on maintaining simplicity
-  Goal: ease-of-reuse with ‘just enough’ complexity

•  Measurement [SEI, McCabe, Levenshtein, Kolmogorov]

-  My focus: construction behavior, not execution behavior
-  Relevant to PL testing

page 10/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Approach

PL Spec(t),
PL Impl(t)

PL Impl(t+1) Method & Tool
(viewpoint: developer)

PL Spec(t+1)

Variability
Mechanisms

Complexity PL Evolution
Scenarios

Iterative Process:
1 Iteration =
1 PL Evolution Scenario

page 11/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Building Block #1: Variability Mechanisms

PL Spec(t),
PL Impl(t)

PL Impl(t+1) Method & Tool
(viewpoint: developer)

PL Spec(t+1)

Variability
Mechanisms

Complexity PL Evolution
Scenarios

page 12/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Variability Mechanisms in Embedded Systems (C/C++)

•  Cloning!

•  Conditional Execution

•  Polymorphism

•  Late Module Binding

•  Conditional Compilation

•  Aspect-Orientation

•  Frame Technology

Pattern-language-like description of 5 actively used mechanisms,
1 (over-) hyped and 1 advanced one:

page 13/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Variability Mechanism Pattern Template

Name short name, for reference

Intent concise description of purpose

Motivation example scenario from emb.sys.PLI

Applicability context in which pattern helps most

Structure structural view of code organization

Participants explanation of structure elements

Dynamics dynamic view of code organization

Consequences positive and negative effects

Implementation specific details and variants

Sample Code code fragments from real projects

Known Uses independent applications

Related Mechanisms similar alternatives

page 14/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Example: Frame Technology (FT) – Origin and Concepts
Invented by Paul Bassett for Cobol code reuse in the late 70s
Aggressive reuse mechanism (typ. 90% reuse, empirically shown)
Reuse ≠ Use (-as-is) => duality

properties of use: functionality, efficiency, ease-of-use
reuse properties: generality, compactness, adaptability

Separation of
construction semantics (for reuse) from
execution semantics (for use; includes compilation etc.)

First-class elements: defaults (negative variabilities)
primary mechanism: default text overriding
optimizes the number of variable parts

Reuse layers make different degrees of similarity explicit
Support for open & closed parameters of variation

open ones facilitate unanticipated evolution

page 15/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

FT - Structure

Construction
Interpreter

Execution
Interpreter

Reuse hierarchy
of text modules

Construction time Execution time

Executable modules

some common text
VP vp_name
default text
VP_END
more common text

ADAPT module 1
OVERRIDE vp_name
alternative text

module 1

module 2

fp module 1

<<reuses>>

some common text
default text
more common text

fp module 2
some common text
alternative text
more common text

more context-specific
more reusable

page 16/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

FT - Intent

Decompose textual information according to
its stability over time, so that modules which need to change
less frequently become nearly independent of modules that
evolve more often.

Frame Technology facilitates to keep source code localized which
shares the same change rate, especially in cases where
otherwise the programming language syntax would enforce this
code to crosscut several modules.

page 17/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

FT - Motivation

Wireless sensor node product line
for ambient assisted living,
implemented in C & Assembler

•  Variability across language boundaries, different C dialects

•  Variability in Makefiles and documentation

•  Variability in two dimensions
-  across space (different products)

-  across time (evolution)

page 18/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

FT - Applicability

•  to modularize co-evolving code parts which cannot be easily
extracted into a single module using C/C++ programming
language mechanisms

•  to manage alternative variabilities independently

•  to manage variability in multi-language source code or other
textual product line artifacts

•  to provide a global point of modification and configuration of
variabilities

•  to highlight product-specifics and hide sameness

•  to provide variability at several levels of scale

page 19/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

FT - Consequences

+ Module organization in reuse hierarchies, according to stability
over time

+ Resource efficiency-invariance

+ Feature addition and removal are equally supported

+ Support for unpredicted changes (through open parameters)

+ Minimal refactoring overhead

- The code must be available (gray-box reuse)

page 20/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Conclusion & Outlook

•  From a developer’s perspective, the practical problem is to
manage code complexity in evolving PL-implementations

•  My approach aims at repeatable and cost-effective complexity
management

•  Frame technology concepts reduce variability management
complexity

•  Ongoing work: method refinement
-  Evolution scenarios

-  Complexity measurement

-  Complexity growth prediction

page 21/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Extra Slides

page 22/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Example: Conditional Compilation

1 Intent Decouple common from variable source code, so that the variable code is highlighted, and can be
automatically included or excluded from compilation. CC allows you to manage optional or
alternative variable code next to common code, without introducing new modules.

2 Motivation
3 Applicability 1) small crosscutting f., 2) no effect on existing prod., 3) developm. & production code coupling
4 Structure

5 Participants
(& Responsi-
 bilities)

1) Source Code Modules (transceiver.h/.c): a) contain common & var. parts, b) serve as PP input
2) Config. Module (Makefile): a) configures product, b) make conf. persistent, c) …
3) Macro Definition (-DHAS_ACKNOWLEDGE): …
4) - 8) …

6 Dynamics

7 Conse-
quences

+ emphasizes var. parts; + allows var. parts to crosscut at arbitrary boundaries;
+ no efficiency penalties; o limited support for defaults; - couples common & var. parts;
- closed parameters only; - no compiler error handling; - exponential growth of possibilities;
- no inconsistency check; - no black-box component support

8 Implemen-
tation

1) Macro Definition: (Makefile: -D/-U vs. config. headers), 2) Macro Usage (#ifdef/#if/…),
3) Defaults/ neg. variabilities, 4) Evolution (versioning idiom), 5) Optimizations,
6) Macro Naming (conventions), 7) Tools (ifnames, diff, ifdef-mode, autotools, M4)

9 Sample Cod. Versioning idiom for different SDCC compiler versions
10 Known Uses Coplien (#ifdef DEBUG), Labrosse (µC/OS-II conventions), open-source-idiom (config.h), …
11 Related P. Cloning (ch.2):…, Cond. Execution (ch.3):…, Late Module Binding (ch.5):…, FT (ch.8):…

Sensor node transceiver pseudocode before and after adding an optional variability

Dependencies among common & variable source code, configuration etc.

Behavior of structural artifacts

page 23/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

PL Spec(t),
PL Impl(t)

PL Impl(t+1) Method & Tool
(viewpoint: developer)

PL Spec(t+1)

Variability
Mechanisms

Complexity PL Evolution
Scenarios

page 24/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Basic Product Line Evolution Scenarios (covered by PL
specification)

Change Feature
Binding Time

Add Optional
Feature

Make Common
Feature Optional

Add Alternative
Feature

Make Alternative
Feature Optional

Remove
Feature

x y

Modify
Feature

x y xy
Merge Variable
Spatial
Features

xy x y

Split Variable
Spatial Feature

x x+Δ y

Merge Temporal
Features

x x x’
Split Temporal
Feature

Make Alternative
Features
Coexisting

Make Coexisting
Features Alternative

Legend
Feature

Composed-of

Optional

Alternatives

Coexiting Poss.

page 25/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Scenario Example: Add Optional Feature

Developer sub-activities:

0. Verify Specification Assumptions
(Does the code already implement a similar feature?)

1.  Create New Feature (yet without considering variability
management => treat feature as commonality; unit-test)

2.  Identify Variation Points (Do they have procedural
boundaries? Degree of crosscutting?)

3.  Select Variability Mechanism
(without refactoring the existing code too much)

•  Measure effects (verify simplicity)

•  Optimize (e.g. introduce defaults, merge variation points)

4.  Create Configuration (focus: automated product creation)

page 26/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

PL Spec(t),
PL Impl(t)

PL Impl(t+1) Method & Tool
(viewpoint: developer)

PL Spec(t+1)

Variability
Mechanisms

Complexity PL Evolution
Scenarios

page 27/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Measurement Goal Categories

•  Economy: evolving reusable code with modest
effort (not just applying techniques)

•  Simplicity: consciously implementing just what
is necessary, but not more
(e.g. leaving out not-yet-needed variation points)

•  Correctness: not realizing less than specified
(e.g. omitting a required variability)

•  Evolvability: ease-of-reuse over time
(continuous, not just one-time reuse)

•  Configurability: ease-of product instantiation
(e.g. optimizations by defaults or VP reductions)

page 28/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Complexity Measurement (Ongoing Case Study)

Task: Perform the same PL evolution scenario
1. Use ‘cup’ reference product, add optional energy mgmt. feature
2. Add ‘stick’ product
3. Add ‘presence sensor’ product
4. Add optional time awareness feature
5. Change energy management feature

 for these mechanism selections:
a. Cloning only, b. Conditional Compilation only, etc., vs.
z. Varying, dependent on current state

Complexity quantification:
Product-based: cplx1(t)=f(impl(t-1),spec(t))
(idea: optimize the 3 reuse properties, measuring LOC, vCT(g),
#mechanisms, #VPs, mechanism appropriateness for scenario,…)

 Process-based: cplx2 ~ min. #steps
(idea: find a sufficiently small sequence of operations to transform
one PL impl. to another, using the basic change operations
addition, removal, substitution -> Levenshtein Distance)

page 29/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Tool Support

Features
•  Assistance for performing the method sub-steps

in the right order (dialog-based), includes generic PL
evolution scenarios

•  Variability mechanism browser for traversing the
pattern language (HTML- or PDF-based)

•  Complexity calculator (semi-automatic, with simple
parser (line ctr.,ifnames), similarity tester)

•  Logging facility for activities, temporary states &
complexities

•  Time support (conceptual backtracking &
what-if-evaluation)

Technology: Eclipse, Jython, PLY

page 30/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Generic Selection Model

1 next step:
(two evolution
 possibilities)

2 next steps:
time

3 next steps: sub-decision

nested sub-decisions

undoing

growth Legend:

Method Inputs
Decision
Selection Range

page 31/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Selection Model Example
Ad-Hoc With Method

t0

t1

t2

Cloning

Cloning
no selection

…

…
Cond.Comp.

Cloning

…

t3

Cloning

Conflict

uncontrolled
backtracking

…

tn

.

.

. …
controlled,
minimal backtracking

Context 1: PL Code
& Spec: Add Opt. F.

Context 2:…

Context 3:…

Conflict

page 32/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Measurement Goal Example

Analyze the implementation of SW systems / PLs
for the purpose of improving
with respect to the simplicity
from the viewpoint of the SW developer as producer

Question sub-categories: encapsulation, coupling,
binding times, specification- and code-focus

Uniform metrics: X=1-A/B, 0≤X≤1, 1 better
e.g.: A=#(unnecessary late bindings), B=#bindings

page 33/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

Implementation Steps We Controlled in Practice

back

Ricoh-ICS Bosch-EB

page 34/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

CC Motivation: Example Pseudocode

file name before after

transceiver.h …
extern bool acknowledged;
void send(char*);
…

#if HAS_ACKNOWLEDGE==1
extern bool acknowledged;
#endif
void send(char*);

transceiver.c void send(char* msg) {
 initialize transmission
 acknowledged=false;
 for n iterations {
 send message
 if acknowledge received
…

void send(char* msg) {
 initialize transmission
#if HAS_ACKNOWLEDGE==1
 acknowledged=false;
#endif
 for n iterations {
 send message
#if HAS_ACKNOWLEDGE==1
 if acknowledge received
…

Makefile …
…
CFLAGS+= -DHAS_ACKNOWLEDGE=1
…

back

page 35/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

CC Structure

back

page 36/20

SVPP’08, Brussels
August 9, 2008

Copyright © Fraunhofer IESE 2008

Reducing Arbitrary Product Line Implementation Complexity

CC Behavior

back

