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Roadmap

>  Intro — Model-centric development
>  Self-describing systems (Magritte)
>  Fine-grained, unanticipated adaptation (Reflectivity)
>  Bridging static and dynamic views (Hermion)
>  Tracking change (Object flow)
>  Scoping change (Changeboxes)
>  Bringing models to code (Embedding DSLs)
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Team — scg.unibe.ch

Magritte Lukas Renggli

Reflectivity Marcus Denker

Hermion David Röthlisberger

Object Flow Adrian Lienhard

Changeboxes Pascal Zumkehr

Embedding DSLs Lukas Renggli

Other topics … Tudor Gîrba,  
Adrian Kuhn, Toon Verwaest
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Software inevitably changes, but …

most programming 
languages and IDEs 

inhibit change rather 
than support it!
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(Some) dimensions of change

scope

granularity

timescale

>  (Re-)configuration
>  Bug fixes
>  Refactoring
>  New functionality
>  Bridging versions
>  Dynamic aspects
>  Instrumentation
>  Run-time adaptation
>  …
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Not model-driven, but model-centric

meta-model

model

"the real world"

meta-meta
model

M0

M1

M2

M3
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Not static, but context-aware
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Magritte



[Yoder et al, 2001] Architecture and design of adaptive object models
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Magritte — meta-descriptions enable dynamic 
change
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How to change a running system?

Arbitrary granularity

Unanticipated
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Geppetto — dynamic adaptation through partial 
behavioural reflection

Partial behavioural reflection

“Evil twin”



17

Reflectivity and Geppetto
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Context

Reflection can be scoped
 to the base level
(or to the meta-level …)
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Hermion — combining static and dynamic 
information in the IDE
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Enriching source artifacts with dynamic 
information
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How to track down defects when the offending 
context is gone?
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Object Flow Analysis

Use first-class aliases to track object flow



25

A back-in-time VM with object flow analysis
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Selective memory

Remember only what is needed!
>  record aliases and past states as regular objects 
>  GC forgets them when no longer needed 
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Changeboxes — encapsulate and manage 
change in a running system
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Changeboxes in a nutshell
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Embedding Domain Models in Code

13.32

Make DSLs first
 class citizens of

 their host language





Conclusions
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Systems that support change need to be 
model-centric and context-aware

Scope changes to: 
• base/meta levels
•  individual clients
• …

First-class meta-descriptions
High-level, fine-grained reflection
Run-time annotations
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Where do we go from here?

From model-centric to virtual worlds?


