
SVPP — 2008-08-09

Model-Centric Software Adaptation

Oscar Nierstrasz

Software Composition Group
scg.unibe.ch



2

Roadmap

>  Intro — Model-centric development
>  Self-describing systems (Magritte)
>  Fine-grained, unanticipated adaptation (Reflectivity)
>  Bridging static and dynamic views (Hermion)
>  Tracking change (Object flow)
>  Scoping change (Changeboxes)
>  Bringing models to code (Embedding DSLs)



3

Roadmap

>  Intro — Model-centric development
>  Self-describing systems (Magritte)
>  Fine-grained, unanticipated adaptation (Reflectivity)
>  Bridging static and dynamic views (Hermion)
>  Tracking change (Object flow)
>  Scoping change (Changeboxes)
>  Bringing models to code (Embedding DSLs)



4

Team — scg.unibe.ch

Magritte Lukas Renggli

Reflectivity Marcus Denker

Hermion David Röthlisberger

Object Flow Adrian Lienhard

Changeboxes Pascal Zumkehr

Embedding DSLs Lukas Renggli

Other topics … Tudor Gîrba,  
Adrian Kuhn, Toon Verwaest



5

Software inevitably changes, but …

most programming 
languages and IDEs 

inhibit change rather 
than support it!



6

(Some) dimensions of change

scope

granularity

timescale

>  (Re-)configuration
>  Bug fixes
>  Refactoring
>  New functionality
>  Bridging versions
>  Dynamic aspects
>  Instrumentation
>  Run-time adaptation
>  …



7

Not model-driven, but model-centric

meta-model

model

"the real world"

meta-meta
model

M0

M1

M2

M3



8

Not static, but context-aware



9

Roadmap

>  Intro — Model-centric development
>  Self-describing systems (Magritte)
>  Fine-grained, unanticipated adaptation (Reflectivity)
>  Bridging static and dynamic views (Hermion)
>  Tracking change (Object flow)
>  Scoping change (Changeboxes)
>  Bringing models to code (Embedding DSLs)



10

Magritte



[Yoder et al, 2001] Architecture and design of adaptive object models





13

Magritte — meta-descriptions enable dynamic 
change



14

Roadmap

>  Intro — Model-centric development
>  Self-describing systems (Magritte)
>  Fine-grained, unanticipated adaptation (Reflectivity)
>  Bridging static and dynamic views (Hermion)
>  Tracking change (Object flow)
>  Scoping change (Changeboxes)
>  Bringing models to code (Embedding DSLs)



15

How to change a running system?

Arbitrary granularity

Unanticipated



16

Geppetto — dynamic adaptation through partial 
behavioural reflection

Partial behavioural reflection

“Evil twin”



17

Reflectivity and Geppetto



18

Context

Reflection can be scoped
 to the base level
(or to the meta-level …)



19

Roadmap

>  Intro — Model-centric development
>  Self-describing systems (Magritte)
>  Fine-grained, unanticipated adaptation (Reflectivity)
>  Bridging static and dynamic views (Hermion)
>  Tracking change (Object flow)
>  Scoping change (Changeboxes)
>  Bringing models to code (Embedding DSLs)



20

Hermion — combining static and dynamic 
information in the IDE



21

Enriching source artifacts with dynamic 
information



22

Roadmap

>  Intro — Model-centric development
>  Self-describing systems (Magritte)
>  Fine-grained, unanticipated adaptation (Reflectivity)
>  Bridging static and dynamic views (Hermion)
>  Tracking change (Object flow)
>  Scoping change (Changeboxes)
>  Bringing models to code (Embedding DSLs)



23

How to track down defects when the offending 
context is gone?



24

Object Flow Analysis

Use first-class aliases to track object flow



25

A back-in-time VM with object flow analysis



26

Selective memory

Remember only what is needed!
>  record aliases and past states as regular objects 
>  GC forgets them when no longer needed 



27

Roadmap

>  Intro — Model-centric development
>  Self-describing systems (Magritte)
>  Fine-grained, unanticipated adaptation (Reflectivity)
>  Bridging static and dynamic views (Hermion)
>  Tracking change (Object flow)
>  Scoping change (Changeboxes)
>  Bringing models to code (Embedding DSLs)



28

Changeboxes — encapsulate and manage 
change in a running system





30

Changeboxes in a nutshell



31

Roadmap

>  Intro — Model-centric development
>  Self-describing systems (Magritte)
>  Fine-grained, unanticipated adaptation (Reflectivity)
>  Bridging static and dynamic views (Hermion)
>  Tracking change (Object flow)
>  Scoping change (Changeboxes)
>  Bringing models to code (Embedding DSLs)



32

Embedding Domain Models in Code

13.32

Make DSLs first
 class citizens of

 their host language





Conclusions



35

Systems that support change need to be 
model-centric and context-aware

Scope changes to: 
• base/meta levels
•  individual clients
• …

First-class meta-descriptions
High-level, fine-grained reflection
Run-time annotations



36

Where do we go from here?

From model-centric to virtual worlds?


