
Copyright ©2008 Gertrud&Cope

Variability: What’s new?

Jim Coplien

Gertrud&Cope

Mørdrup, Denmark

Copyright ©2008 Gertrud&Cope

Background

•  ECE / CS Background, University of
Wisconsin

•  Ph.D. @ VUB, 2000

•  Bell Labs: development, tech transfer,

1979 - 1990

•  Bell Labs Research, 1990 - 2000

 Domain Engineering, Multiparadigm
Design, Architecture Patterns,
Organizational Patterns

•  Academics at NCC, UMIST, Adelaide

Copyright ©2008 Gertrud&Cope

Today…

•  Independent researcher & consultant

•  Gertrud&Cope, Mørdrup, Denmark

  http://www.gertrudandcope.com

  Large variety of in-house research programs

with partners

•  ScrumHouse

  Research with DKU on cultural mappings

  Lean Architecture, anti-TDD

  http://www.scrumorgpatterns.com

•  Joint research with Trygve Reenskaug on
DCI architecture

•  Pattern research with Aalborg University

•  Working on a new book

Copyright ©2008 Gertrud&Cope

Variability stuff

•  Early work in object-oriented
design

•  Commonality /variability
correspondences in problem/
solution domain

•  Patterns — software and real
architecture

Copyright ©2008 Gertrud&Cope

What does a programming
language express?

•  Programming languages have “features”

•  Features express semantics important to

model building

•  These features are:

 Logical (the logic of problem solving)

 Structural (the structure of systems)

•  They express design models

 Discovery is 30% - 50%

 Coding is only 5%

Copyright ©2008 Gertrud&Cope

The basic cognitive models

• Human minds see patterns

•  Patterns can be characterized as:

 The same thing again and again

 Recurring commonality

 Recurring variability

 e.g. writing out a check

Copyright ©2008 Gertrud&Cope

What is programming?

1.  Model building

•  Most of a program doesn’t solve a problem

but models the environment

•  The model is a context for problem solving

2.  Problem solving

•  The goal: To turn around solutions fast

Copyright ©2008 Gertrud&Cope

Levels of Purposefulness

•  A checkbook programming language

  Structure: Like my checkbook

  Problems: writing checks, reconciliation

•  Excel

  Structure: Ledger accounting

  Problems: many, including checks/reconciliation

•  OOPLs

  Structure: Many, including ledger accounting

  Problems: many…

•  FORTRAN

  Structure: Algorithms

  Problems: Algorithm problems

Copyright ©2008 Gertrud&Cope

For any language

Domain Expressiveness ("Narrowness")

Cost of change
within structure

Cost of domain
structure changes

Copyright ©2008 Gertrud&Cope

The only constant is change

• We can predict very mature domains

•  Experience suggests that we’re bad at this

• Why?

 Good domain analyses take >6 months

 Today’s agile markets expect >2 releases

every six months

 There is rarely enough time to design a

language that captures the domain just right

Copyright ©2008 Gertrud&Cope

Horrors! Going to a general-
purpose language?

• Domain specific languages express
commonalities and variations, too

•  Concept starter sets [Simos1996]

•  Remarkably small!

 Structure

 Behavior

 Name

 . . . .

Copyright ©2008 Gertrud&Cope

Text Buffer Variability Table

Parameters of

Variability Meaning Domain Binding
Default /

Technique

Output Type

Character Set

Working Set
Management

Debugging Code

The formatting of
text lines is sensi-
tive to the output
medium
Different buffer
types support
different character
sets

Different applications
need to cache dif-
ferent amounts of
memory
Debug in-house
only, but keep tests
in source code

Database,
RCS, TTY,
UNIX file

ASCII,
EBCDIC,
FIELDATA

Whole file,
whole page,
LRU, fixed

Debug,
production

Run

Compile

Compile

Compile

UNIX File

ASCII

Whole file

None

TextBuffer: Common Structure and Behavior

Copyright ©2008 Gertrud&Cope

Text Buffer Transformational
Analysis

Parameters of
Variability Meaning Domain Binding

Default /
Technique

Output Type
Structure,
Algorithm

Character Set

Non-structural

Working Set
Management
Algorithm

Debugging Code
Code
Fragments

The formatting of
text lines is sensi-
tive to the output
medium
Different buffer
types support
different character
sets

Different applications
need to cache dif-
ferent amounts of
memory
Debug in-house
only, but keep tests
in source code

Database,
RCS, TTY,
UNIX file

ASCII,
EBCDIC,
FIELDATA

Whole file,
whole page,
LRU fixed

Debug,
production

Run

Compile

Compile

Compile

UNIX File
Virtual
Functions

ASCII
Templates

Whole file
Inheritance

None
#ifdef (from
Negative variability
Table)

TextBuffer: Common Structure and Behavior

Copyright ©2008 Gertrud&Cope

Transformational Analysis Table

Commonality Variability Binding Instantiation C++ Feature

Anything other
than algorithm
structure

Source N/a Template

Fine algorithm Compile N/a #ifdef

Function
Name and
Semantics

Fine or gross
algorithm

Compile N/a Overloading

Value of State Run Time Yes Struct, simple
types

A small set of
values

Run time Yes Enum

Data
Structure

Types, values
and state

Source Yes Template

Value of State Source No Module

Value of State Source Yes struct, class

Data Structure
and State

Compile Optional Inheritance

Compile Optional Inheritance

Related
Operations
and Some
Structure

Algorithm,
Data Structure
and State Run Optional Virtual

Functions

Copyright ©2008 Gertrud&Cope

For Java

Commonality Variability Binding Instant-
iation Java Feature

Anything other
than algorithm
structure

Source N/a Generic

Fine algorithm Compile N/a #ifdef

Function
Name and
Semantics

(forced to be
within a

class scope) Fine or gross
algorithm

Compile N/a Overloading
(restricted to non-
built-in operations)

Value of State Run Time Yes struct, simple
types

A small set of
values

Run time Yes enum

Data
Structure

(class) Types,
values and
state

Source Yes Generic

Value of State Source No Module

Value of State Source Yes struct, class

Data Structure
and State

Compile Optional Inheritance

Compile Optional Inheritance

Related
Operations
and Some
Structure

Algorithm,
Data Structure
and State Run Optional Virtual Functions

Copyright ©2008 Gertrud&Cope

For C#

Commonality Variability Binding Instant-
iation C# Feature

Anything other
than algorithm
structure

Source N/a Generic

Fine algorithm Compile N/a Tag parameters

Function
Name and
Semantics

(forced to be
within a

class scope) Fine or gross
algorithm

Compile N/a Overloading

Value of State Run Time Yes struct, simple
types

A small set of
values

Run time Yes enum

Data
Structure

(class) Types,
values and
state

Source Yes Generic (but no
operators)

Value of State Source No static class

Value of State Source Yes struct, class

Data Structure
and State

Compile Optional Inheritance

Compile Optional Inheritance

Related
Operations
and Some
Structure

Algorithm,
Data Structure
and State Run Optional Virtual Functions

Reenskaug’s DCI demonstrates that standard
OO captures behavior variability

Methodful Roles

Identifiers and
M

ethodless R
oles

C
la

ss
es

Use
Case

Copyright ©2008 Gertrud&Cope

Industrial experience

•  Good languages take time

•  A compiler/translator is the trivial part

  Uniform debugger that maintains intentionality at run time

  Configuration management / impact-of-change analysis tools

  Documentation support tools (as Rational Rose does to link Java with UML)

  Compatible/uniform type system (CLR equivalent)

  Re-factoring tools, source browsers, code optimizers…

  Field update tools / strategies

  Language training materials, language reference documentation

  Data persistence framework for language data elements

  Line coverage testing tools

  Unit testing frameworks (à la xUnit)

  Language-oriented editor (in the sense that most modern editors “understand”

Java)

  Reusable (!) libraries of code written in the DSL (?!!)

•  Learning curve rises with number of languages

•  DSLs are brittle unless very-well designed

Copyright ©2008 Gertrud&Cope

A recent client

… but they have architecture rot, loss of conceptual
integrity, 15-layer Java inheritance, and training latencies

Copyright ©2008 Gertrud&Cope

Client conclusions

• DSLs help coding tremendously

 Reduce turnaround cycles from hours to

seconds

• DSLs increase the discovery costs

 Lack of inter-domain reasoning: too many
DSLs

 Lack of architectural vision — even though all
DSLs share a common, rich type system
analogous to the CLR

Copyright ©2008 Gertrud&Cope

DSLs that survive

•  AuditDraw

 … but long-term experience was

questionable

•  Voice XML

 W3C standard for ACDs

 thriving, but took ten years to refine

•  yacc, bison, excel

 culturally universal

Copyright ©2008 Gertrud&Cope

Other important findings

• Domain analysis is good, but vulgar
programming languages are enough for
implementation (down to C!)

•  Leveling continues to be a crucial problem

• Heterogeneous environments struggle to

thrive

• DSLs are a cynical form of employee

retention

Copyright ©2008 Gertrud&Cope

In conclusion

•  The future belongs to well-designed low-
level general-purpose languages

•  A handful of DSLs will still find a place

• DSL creation is a discipline

•  You still need good architecture, and that

addresses the lion’s share of development
cost

• Don’t trust a language hacked together in
a few weeks

