
A Semantics for Context-oriented Programming with Layers

Dave Clarke Ilya Sergey
Katholieke Universiteit Leuven, Heverlee, Belgium
{dave.clarke,ilya.sergey}@cs.kuleuven.be

Abstract
Context-oriented programming (COP) is a new program-
ming approach whereby the context in which expressions
evaluate can be adapted as a program runs. COP provides
a degree of flexibility beyond object-oriented programming,
while arguably retaining more modularity and structure than
aspect-oriented programming. Although many languages ex-
ploring the context-oriented approach exist, to our knowl-
edge no formal type-sound dynamic semantics of these lan-
guages exists. We address this shortcoming by providing a
concise syntax-based formal semantics for context-oriented
programming with layers, as witnessed by ContextL, Con-
textJ*, and other languages. Our language is based on Feath-
erweight Java extended with layers and scoped layer activa-
tion and deactivation. As layers may introduce methods not
appearing in classes, we also give a static type system that
ensures that no program gets stuck (i.e., there exists a bind-
ing for each dispatched method call).

1. Introduction
Context-oriented programming is a new programming ap-
proach whereby the context in which expressions evaluate
can be adapted as a program runs. It can be characterized as
possessing the following facets:

Context-dependent evaluation The interpretation of pro-
gramming language statements (e.g., method dispatch)
depends upon the context in which they are evaluated;

Explicit context The notion of context is an explicit concept
in the programming language; and

Context manipulation Context may be explicitly manipu-
lated during the execution of the program.

In the approaches to context-oriented programming based
on layers, as witnessed by ContextL, ContextJ*, and other

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
COP’09 July 7, 2009, Genova, Italy
Copyright © 2009 ACM 978-1-60558-538-3/09/07. . . $10.00

class Actor {

void act() {

...

without(Logging) { stealth(); }

}

}

layer Logging {

class Actor {

void act() {

proceed();

println("Acted");

}

}

}

...

with (Logging) { (new Actor()).act(); }

Figure 1. Context-oriented Programming

languages [6, 9, 16, 2], context is explicitly represented as
named layers. During program evaluation these layers can
be activated and deactivated using the with(l) and without(l)
scoping constructs, respectively.

The example in Figure 1 illustrates the ideas. Layer
Logging alters the behaviour of the Actor method act().
It prints out a logging message and delegates to the initial
act() method via the proceed() statement. The original
act() method deactivates the Logging layer to avoid log-
ging of the stealth() method call.

The paper makes the following contributions:

• A concise. syntax-directed dynamic semantics for a
context-oriented programming language. The seman-
tics are presented as an extension to Featherweight Java
(without inheritance or subtyping), by adding layers,
layer activation, layer deactivation, and layer delegation.

• A static type system which ensures that a well-typed
binding exists for every dispatched method.

2. ContextFJ
ContextFJ (Figure 2) extends Featherweight Java [7] with-
out inheritance with constructs for expressing layer-based
context-oriented programming.

Class Definition
C ::= class C{C f ;K M}

Constructor
K ::= C (C f){this.f = f ; }

Method Definition
M ::= C [Ψ] m(C x){return t; }

Method Assumptions
Ψ ::= ε | MT,Ψ

Method Types
MT ::= (m,C0) 7→ [Ψ]C → C • L

Prohibited Layers
L ::= a set of layer names | > (∀L.L ⊆ >)

Layer Definition
L ::= layer l {B}

Method Bindings
B ::= (m,C0) 7→M

Terms
t ::= x | t.f | t.mL(t) | new C(t)

| with(l)t | without(l)t | proceed(t)

Values
v ::= new C(v)

Evaluation Contexts
E[] ::= [] | E[[].f] | E[[].mL(t)]

| E[v.mL(v, [], t)] | E[new C(v, [], t)]
| E[with(l)[]] | E[without(l)[]]

Figure 2. ContextFJ Syntax. Note that the term proceed(t)
may only appear within the body of a method in a layer
definition. In addition, the subscript L on method invocations
t.mL(t) is usually used during reduction but may appear in
the actual program text. Method assumptions Ψ only contain
method types of the form C → C • L.

Classes and constructors are as in Featherweight Java, al-
though all inheritance related constructions have been re-
moved. Methods have an additional annotation indicating
which methods are invoked within the method and not de-
fined in some appropriate class, and thus need to be satisfied
by some layer. These will be explained in detail in a moment.

Next we define a collection of named layers. Each layer
consists of a name and a map from tuples of a method name

and a class name, (m,C), to a method definition. The layer
name is used to activate and deactivate the layer.

Terms consist of variables and field lookup, as usual.
Method invocation is generalized slightly to the form t.mL(t),
where label L is a set of so-called excluded layers. When
dispatching m, a binding from a layer in set L cannot be
selected. Note that the programmer would write t.m(t), as
normal, which corresponds to t.m∅(t) in the formalism.

Three new terms have been added to the language to deal
with layer activation and deactivation, and for delegating to
an earlier activated layer. The term with(l)t activates layer
l for the duration of the evaluation of expression t. The
term without(l)t deactivates layer l for t. The expression
proceed(t) delegates the current call to a previously acti-
vated layer containing the current method, ignoring all acti-
vations of the layer, which it was invoked from. proceed may
only appear in the body of methods appearing in a layer.

The most general form of the method type is as follows,
though this form is not always used in its full generality:

MT ::= (m,C0) 7→ [Ψ]C → C • L

where

• m is a method’s name; C0 is a receiver class type; C are
parameter types; and C is the result type;

• L is the set of excluded layers, namely the layers in which
this method cannot be dispatched to. That is, a binding
for method (m,C0) cannot be taken from some layer in
L. These layers are the ones excluded by without(−) or
already visited when doing delegation via proceed.

• Ψ is a set of method assumptions, namely the methods
used by this method, excluding methods appearing in
classes. These ‘missing’ methods must be provided by
some active layer when the method is invoked. These
method assumptions have the form: (m,C0) 7→ C →
C •L, which states that a methodm of type C → C from
class C0 is called within the given method. L indicates
the layers excluded for the m method lookup. In other
words, all with(l) statements, such thet method m is
defined for class C0 in l will be ignored for l ∈ L during
such a lookup.

In a number of situations, a less general method type is
used. Methods defined in layers will have types of the form
[Ψ]C → C, thus with an empty set of excluded layers, which
we omit for the sake of brevity. Methods defined in classes
have types of the form [Ψ]C → C•>. The top element of the
excluded layers set is a technical trick so that only one rule
for method invocation is required. Assumed methods, such
as those appearing in Ψ, are supposed to be resolved by the
dynamic context. Their types are of the form: C → C • L.
Finally, types of methods provided by a layer have the form
C → C.

3. Dynamic Semantics
We introduce the necessary auxiliary notions to define the
dynamic semantics. The standard notion of evaluation con-
text [14], which is an expression with a single hole in it, is
used to define the reduction rules by capturing the notion
of the ‘next subterm to be reduced.’ We write E[t] for the
ordinary term obtained by filling the hole in E with t.

The following collects the methods, (m,C) pairs, defined
in a layer:

Definition 1 (Layer domain). Given layer l {B}. Define:

dom(l) = {(m,C0) | (m,C0) 7→M ∈ B}.

The following function computes the methods available
in an evaluation context (at the hole), accounting for meth-
ods excluded by without(l) statements.

Definition 2 (Bound Methods).

BML([]) = ∅
BML(E[[].f])
BML(E[[].m(t)])
BML(E[v.m(v, [], t)])
BML(E[new C(v, [], t)])

 = BML(E)

BML(E[with(l)[]]) =

 BML(E), if l ∈ L
BML(E) ∪ dom(l),

otherwise
BML(E[without(l)[]]) = BML∪{l}(E)

The following function computes the layers excluded by
without(−) in some evaluation context:

Definition 3 (Excluded Layers).

XL([]) = ∅
XL(E[[].f])
XL(E[[].m(t)])
XL(E[v.m(v, [], t)])
XL(E[new C(v, [], t)])
XL(E[with(l)[]])

 = XL(E)

XL(E[without(l)[]]) = {l} ∪ XL(E)

It’s important to note, that the evaluation semantics we
present is syntax-directed, i.e., the order of layer activa-
tions is defined by the structure of the reduction context
surrounding term to be reduced. The innermost with(−) or
without(−) statement takes effect before outer ones. Any
with(−) or without(−) statements occurring in method bod-
ies are analyzed only after the body is substituted. So, at the
moment of method invocation, the set of activated layers of
the appropriate context is fixed. The lookup functions for
methods in both layers and classes and for fields are given in
Figure 3.

Figure 4 contains the reduction rules for ContextFJ.
Rules (E-With) and (E-Without) discard a layer acti-
vation or deactivation when the wrapped expression finishes

Method body lookup in layer

layer l {B}
(m,C0) 7→ C [Ψ] m(C x){return t; } ∈ B

lmbody(l,m,C0) = (x, t)

Method body lookup in class

class C {C f ; K M}
B [Ψ] m(B x){return t; } ∈M

mbody(m,C) = (x, t)

Field lookup

class C {C f ; K M}
fields(C) = C f

Figure 3. Lookup definitions

evaluating. Rule (E-ProjNew) is field access. Both rules
(E-InvkLayer) and (E-InvkClass) handle method calls.
Rule (E-InvkLayer) finds the first available layer, l, con-
taining a binding for method m of class C, from the inside
out, which is not excluded by a without(−) clause or the
set L of already visited layers. In addition to substituting the
arguments and this, the call to proceed within the method
body t is replaced with a call to the same method, except
that dispatching the method will skip the present layer l as
well as layers in L. This is how proceed is modelled: it in-
vokes the first layer not excluded; this layer is then excluded
by subsequent calls to proceed. Rule (E-InvkClass) states
that if the method is not found in a layer, then it is selected
from the appropriate class body.

4. Static Semantics
Before presenting the typing rules, we present some aux-
iliary definitions in Figure 5. These definitions rely on the
following notion of assumption dominance, which captures
that if we are able to satisfy a ‘greater’ assumption set, then
we are able to satisfy ‘lesser’ one also.

Definition 4 (Assumptions dominance (�)).

Φ � Ψ ⇔ ∀(m,C0) 7→ C → C • L ∈ Φ·
∃(m,C0) 7→ C → C • L′ ∈ Ψ s.t L ⊆ L′

The key novelty here is in the definitions of mtype. First
lookup is performed in the class of the receiver of a method,
and then in the assumption set.

In Figure 6 we describe typing rules for methods, lay-
ers and classes. All other typing rules, such as (T-Var),
(T-Field) and (T-New) are straightforward adaptions of
Featherweight Java [7], and are thus omitted.

Rules (T-Class) and (M OK in C), for methods ap-
pearing in classes, are standard. The rule (T-Layer) en-

(E-WITH)

E[with(l)v]→ E[v]

(E-WITHOUT)

E[without(l)v]→ E[v]

(E-INVKLAYER)

lmbody(l,m,C) = (x, t)
(m,C) /∈ BML(E′) l /∈ XL(E′)

E[with(l)E′[(new C(v)).mL(u)]]→
E[with(l)E′[{x 7→ u, proceed 7→ this.mL∪{l}, this 7→ new C(v)}t]]

(E-PROJNEW)

fields(C) = C f

E[(new C(v)).fi]→ E[vi]

(E-INVKCLASS)

(m,C) /∈ BML(E) mbody(m,C) = (x, t)
E[new C(v)).mL(u)]→ E[{x 7→ u, this 7→ new C(v)}t]

Figure 4. Reduction rules

(override(m, C0, [Φ]C → C))

mtype(m,C0, ∅) = [Ψ]C → C
implies C = D, C = D and Φ � Ψ

override(m,C0, [Φ]D → D)

(mtype-class)

CT (C) = class C {C f ;K M}
E [Φ] m(E x){ return t; } ∈M

mtype(m,C,Ψ) = [Φ]E → E • >

(mtype-assumptions)

m is not defined in C
(m,C) 7→ E → E • L ∈ Ψ

mtype(m,C,Ψ) = E → E • L

Figure 5. Overriding and Method type lookup

sures that all methods are well-defined, and there are no con-
tradictions among their method assumption sets with respect
to method signatures. The rule (M OK in l) for typing a
method in a layer performs a substitution of this.m{l} for
proceed in order to check the method. This amounts to say-
ing the assumptions for this method will require a method of
the same type to dispatch proceed to.

Expression typing is based on the standard typing envi-
ronment Γ, which is a set of bindings from term variables to
types, but also a set of method assumptions Ψ. The typing
rules for expressions are listed in Figure 7. Rule (T-Invk)
searches for the type of the method m in both Ψ and C0.
The methods required by this method need to be recorded
in Ψ (second last premise). The final premise allows the ex-
cluded layer set for this method to grow, meaning the envi-
ronment needs to work harder to find a suitable method (this
is sound).

The rule for with(−) requires a few auxiliary notions.
provides(l) gives the types of the methods defined in layer l
and requires(l) gives the assumptions of all methods defined
in l.

Definition 5. provides(l) and requires(l) Given layer l {B}.
Define:

provides(l) =
{

(m,C0) 7→ C → D
| (m,C0) 7→ D m[Ψ](C x){...} ∈ B

}
requires(l) =

⊎
{Ψ | (m,C0) 7→ D m[Ψ](C x){...} ∈ B}

where

∅]Ψ = Ψ
((m,C) 7→ . . . • L,Φ)]Ψ =

(m,C) 7→ . . . • (L ∪ L′),
(Φ] (Ψ/(m,C) 7→ . . .)

if (m,C) 7→ . . . • L′ ∈ Ψ
(m,C) 7→ . . . • L,Φ]Ψ

otherwise

The auxiliary function ‖ · ‖ erases all assumptions and
excluded layers from a method type:

‖(m,C0) 7→ [Ψ]C → C • L‖ ::= (m,C0) 7→ C → C

Now in the rule (T-With) the wrapped expression t is
typed in an environment where the provided methods of
the layer, provides(l), are available (Φ). In addition, the
required methods must appear in the context surrounding
the entire expression (Ψ) which provides all of the required
methods used by the layer and the unsatisfied assumptions
of expression t.

The rule (T-Without) modifies the assumption set to
exclude all methods occurring in the excluded layer l from
Ψ. This is achieved using the following definition:

Definition 6. Layer exclusion from assumptions

εel = ε
((m,C) 7→ X • L,Ψ)el =

(m,C) 7→ X • L ∪ {l}, (Ψel)
if (m,C) ∈ dom(l)

(m,C) 7→ X • L, (Ψel)
otherwise

(T-CLASS)

K = C(C f){ this.f = f ; }
M OK in C

class C { C f ; K M } OK

(T-LAYER)

layer l {B} B OK in l
∀Φ1,Φ2 ∈ {Φ | (m,C0) 7→ C m [Φ](C x){. . .} ∈ B}

((n,D) 7→ E → E • L1 ∈ Φ1 and (n,D) 7→ F → F • L2 ∈ Φ2)
implies E = F and E = F

layer l {B} OK

(M OK in C)

CT (C) = class C { . . . }
Ψ; (x : C, this : C) ` t0 : D

D m[Ψ](C x){ return t0; } OK in C

(B OK in l)

layer l {. . .}
Ψ] provides(l); (x : C, this : C0) ` {proceed 7→ this.m{l}}t0 : C

override(m,C0, [Ψ]C → C)
(m,C0) 7→ C m[Ψ](C x){ return t0; } OK in l

Figure 6. Typing methods, layers and classes

(T-Invk)

Ψ; Γ ` t0 : C Ψ; Γ ` t : C
mtype(m,C,Ψ) = [Φ]C → D • L′

Φ � Ψ L ⊆ L′
Ψ; Γ ` t0.mL(t) : D

(T-With)

(Ψ,Φ); Γ ` t : C layer l {B} ‖Φ‖ ⊆ provides(l)
requires(l) � Ψ ∀((m,C0) 7→ C → D • L ∈ Φ) · l /∈ L

Ψ; Γ ` with(l)t : C

(T-Without)

Ψ; Γ ` t : C Ψ′ = Ψel
Ψ′; Γ ` without(l)t : C

Figure 7. (Selected) Expression typing

5. Discussion
The present approach groups the assumptions/requirements
of a layer at the granularity of a layer. This means that when
a method from a layer is used, all assumptions of the layer
need to be satisfied for the program to type check. Indeed,
simply activating a layer without even using it imposes such
a requirement. A more fine grained approach would involve
collecting the method calls which are actually made within
an expression and recording only those per method and only
requiring that the methods actually used from an active layer
need to have an appropriate binding.

The course-grained approach is more modular, in the
sense that small changes to code do not necessitate changes
to the interface of layers. The fine-grained approach is more
precise and does not require activating layers which will not
be used just to satisfy the type checker.

We expect that much of our annotations can be inferred,
resulting in a significantly simpler system for a programmer
to use.

6. Related Work
Our dynamic semantics draws heavily from the semantics
of dynamic binding [8, 11]. These models do not have
without(−). Furthermore, their type system does not ex-

clude failure of dynamic binding due to a missing binding.
The semantics of proceed adapts ideas from Schippers et
al [15], although our approach does not use the notions of
heap and stack, and we provide a type system.

Our type system heavily drew inspiration from Contex-
tual Modal Type Theory [12], which had neither proceed nor
without(−). In particular, our method types [Ψ]C → C re-
semble contextual modal types.

The calculus of evolving objects [3] gives a foundational
account of highly dynamic systems. Their setting is quite
different from ours and our dynamic semantics is signifi-
cantly simpler. Quite a few programming languages have
concepts similar to layers and dynamic binding. These in-
clude Haskell’s implicits [10], Clojure [5], Scala’s implicits
[13], and Groovy’s [9] and Objective C’s [4] categories. Due
to space limitations we cannot give a detailed comparison.

7. Conclusion and Future Work
This paper presented the first type-sound semantic for a
context-oriented language with layers. The semantics is
based on Featherweight Java and the type system ensures
that all dispatched methods find an appropriate binding ei-
ther in some layer or in the original collection of classes.

Syntax Bound parameters

∆ ::= l = B
B ::= p = e
v ::= λx.e | x
e ::= v | p | e e | with(l)e | without(l)e

E[] ::= [] | E[[] e] | E[v []] | E[with(l)[]]
| E[without(l)[]]

BPL([]) = ∅
BPL(E[[] e]) = BPL(E)
BPL(E[v []]) = BPL(E)

BPL(E[with(l)[]]) =

 BPL(E) if l ∈ L
BPL(E) ∪ dom(∆(l))

otherwise
BPL(E[without(l)[]]) = BPL∪{l}(E)

Excluded layers Reduction rules

XL([]) = ∅
XL(E[[] e])
XL(E[v []])
XL(E[with(l)[]])

 = XL(E)

XL(E[without(l)[]]) = {l} ∪ XL(E)

E[(λx.e) v] → E[e[v/x]]
E[with(l)v] → E[v]

E[with(l)E′[p]] → E[with(l)E′[e]]

if

 p /∈ BP∅(E′[])
l /∈ XL(E′)
e = ∆(l)(p)

E[without(l)v] → E[v]

Figure 8. Contextλ

Directions for future work include extending the core lan-
guage to incorporate inheritance and subtyping, including
inheritance between layers, and considering adding depen-
dencies between the layers, such as that one layer requires
another (kind of) layer to be present, or that two layers can
never be active at the same time.

One of the main problems to address is ambiguity, which
occurs because there may be multiple candidate methods
available: does a less specific method in a closer layer take
precedence over a more specific method?

A. Contextλ
For reference and comparison, Figure 8 presents the dy-
namic semantics for context-oriented λ-calculus without
proceed. The combination of proceed and closures causes
problems, and is addressed by Clarke et al. [1].

References
[1] Dave Clarke, Pascal Costanza, and Éric Tanter. How should

context-escaping closures proceed? Submitted to COP2009,
2009.

[2] Pascal Costanza and Robert Hirschfeld. Language constructs
for context-oriented programming: an overview of contextl.
In DLS ’05: Proceedings of the 2005 symposium on Dynamic
languages, pages 1–10, New York, NY, USA, 2005. ACM.

[3] Mariangiola Dezani-Ciancaglini, Paola Giannini, and Oscar
Nierstrasz. A Calculus of Evolving Objects. In MPOOL’08,
2008. http://www.di.unito.it/ dezani/papers/dgn.pdf.

[4] Andrew Duncan. Objective- C Pocket Reference. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 2002.

[5] Rich Hickey. The Clojure programming language. In
DLS ’08: Proceedings of the 2008 symposium on Dynamic
languages, pages 1–1, New York, NY, USA, 2008. ACM.

[6] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz.
Context-oriented programming. Journal of Object Technol-
ogy, March-April 2008, ETH Zurich, 7(3):125–151, 2008.

[7] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: A Minimal Core Calculus for Java and
GJ. In ACM Transactions on Programming Languages and
Systems, pages 132–146, 1999.

[8] Oleg Kiselyov, Chung chieh Shan, and Amr Sabry. Delimited
dynamic binding. SIGPLAN Not., 41(9):26–37, 2006.

[9] Guillaume Laforge. Groovy: An agile dynamic language for
the Java Platform, 2008.

[10] Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark
Shields. Implicit parameters: Dynamic scoping with static
types. In POPL, pages 108–118, 2000.

[11] Luc Moreau. A syntactic theory of dynamic binding. Higher-
Order and Symbolic Computation, 11:727–741, 1998.

[12] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka.
Contextual modal type theory. ACM Trans. Comput. Logic,
9(3):1–49, 2008.

[13] Martin Odersky. The Scala Language Specification. Available
from http://www.scala-lang.org/, 2004.

[14] Benjamin C. Pierce. Types and programming languages.
MIT Press, Cambridge, MA, USA, 2002.

[15] Hans Schippers, Dirk Janssens, Michael Haupt, and Robert
Hirschfeld. Delegation-based semantics for modularizing
crosscutting concerns. SIGPLAN Not., 43(10):525–542,
2008.

[16] Eddy Truyen. Dynamic and Context-Sensitive Composition
in Distributed Systems. PhD thesis, K.U.Leuven, Belgium,
November 2004.

