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Abstract The increasing interest in open source software has led to the emer-
gence of large language-specific package distributions of reusable software li-
braries, such as npm and RubyGems. These software packages can be sub-
ject to vulnerabilities that may expose dependent packages through explicitly
declared dependencies. Using Snyk’s vulnerability database, this article em-
pirically studies vulnerabilities affecting npm and RubyGems packages. We
analyse how and when these vulnerabilities are disclosed and fixed, and how
their prevalence changes over time. We also analyse how vulnerable packages
expose their direct and indirect dependents to vulnerabilities. We distinguish
between two types of dependents: packages distributed via the package man-
ager, and external GitHub projects depending on npm packages. We observe
that the number of vulnerabilities in npm is increasing and being disclosed
faster than vulnerabilities in RubyGems. For both package distributions, the
time required to disclose vulnerabilities is increasing over time. Vulnerabilities
in npm packages affect a median of 30 package releases, while this is 59 re-
leases in RubyGems packages. A large proportion of external GitHub projects
is exposed to vulnerabilities coming from direct or indirect dependencies. 33%
and 40% of dependency vulnerabilities to which projects and packages are ex-
posed, respectively, have their fixes in more recent releases within the same
major release range of the used dependency. Our findings reveal that more
effort is needed to better secure open source package distributions.
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1 Introduction

Due to the increasing popularity and use of open source software (OSS), a large
number of OSS ecosystems have emerged, containing huge collections of inter-
dependent software packages. These ecosystems are usually supported by large
communities of contributors, and can be considered as software supply chains
formed by upstream transitive dependencies of packages and their downstream
dependents. Typical examples of such ecosystems are package distributions for
specific programming languages (e.g., npm for JavaScript, PyPI for Python,
RubyGems for Ruby), totalling millions of interdependent reusable libraries
maintained by hundreds of thousands of developers, and used by millions of
software projects in a daily basis.

Given the sheer size of package distributions, combined with their open
source nature, many packages are being affected by known or unknown vul-
nerabilities. Since package distributions are known to form huge and tightly
interconnected dependency networks [1], a single vulnerable package may po-
tentially expose a considerable fraction of the package dependency network to
its vulnerabilities [2]. This exposure does not even stop at the boundaries of
the package distribution, since dependent external software projects may also
become exposed to these vulnerabilities [3]. According to a study carried out
by Snyk [4], one of the leading companies in analysing and detecting software
vulnerabilities in Node.Js and Ruby packages, 77% of the 430k websites run
at least one front-end package with a known security vulnerability in place.

This exposure of software to vulnerabilities in its dependencies is con-
sidered as one of the OWASP top 10 application security risks [5]. There
are many examples of such cases. For example, in November 2018 the widely
used npm package event-stream was found to depend on a malicious pack-
age named flatmap-stream 1 containing a Bitcoin-siphoning malware. The
event-stream package is very popular getting roughly two million downloads
per week. Just because it was used as a dependency in event-stream, the
malicious flatmap-stream package was downloaded millions of times since its
inclusion in September 2018 and until its discovery and removal.

The main objective of this paper is therefore to empirically analyse and
quantify the impact of vulnerabilities in open source packages, on transitively
dependent packages that are shared through the same package distribution as
well as on external projects distributed via GitHub that rely on such pack-
ages. We conduct our study on two different package distributions, npm and
RubyGems. All along our research questions, we compare between the results
found in these two package distributions. More specifically, we answer the
following research questions:

– RQ0: How prevalent are disclosed vulnerabilities in npm and
RubyGems packages? This preliminary research question explores the
dataset of vulnerabilities extracted from Snyk’s database and provides in-
sights about their characteristics and evolution over time.

1 https://github.com/dominictarr/event-stream/issues/116

https://github.com/dominictarr/event-stream/issues/116
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– RQ1: How much time elapses until a vulnerability is disclosed? By
answering this question for both npm and RubyGems, security researchers
in these ecosystems will be able to assess how quick they are in finding
and disclosing vulnerabilities. Users of these two ecosystems will be able to
know which community has active security researchers which will eventu-
ally help them to assess their trust on the third-party packages they depend
on.

– RQ2: For how long do packages remain affected by disclosed vul-
nerabilities? Package dependents will gain insights about the number of
dependency releases they should expect to be affected by a newly disclosed
vulnerability and how many more releases are going to be affected by the
same vulnerability even after its disclosure. The answer to this question
will also help dependents to know to which type of package releases (i.e.,
major, minor or patch) they should update to have their dependency vul-
nerabilities fixed.

– RQ3: To what extent are dependents exposed to their vulnerable
dependencies? Vulnerable dependencies can expose their dependents to
vulnerable code that might lead to security breaches. We will identify all
direct and indirect vulnerable dependencies that are exposing packages
and external GitHub projects, and characterize their vulnerabilities. In
this and the next two research questions we study dependents as if they
were deployed on 12 January 2020 (i.e., the snapshot of the vulnerability
dataset).

– RQ4: How are vulnerabilities spread in the dependency tree? The
answer to this question will inform us how deep in the dependency tree we
can find vulnerabilities to which packages and external GitHub projects are
exposed. This helps us to quantify the transitive impact that vulnerable
packages may have on their transitive dependents.

– RQ5: Do exposed dependents upgrade their vulnerable depen-
dencies when a vulnerability fix is released? We will quantify how
much dependent packages and dependent external GitHub projects would
benefit from updating their dependencies for which there is a known fix
available. We will also report on the number of vulnerable dependencies
that could be reduced by only doing backward compatible updates.

– RQ6: To what extent are dependents exposed to their vulnerable
dependencies at their release time? We will identify the dependencies
that were only affected by vulnerabilities disclosed before each dependent’s
release time. Answering this research question will help us to assess whether
developers are careful about incorporating dependencies with already dis-
closed vulnerabilities.

The remainder of this article is structured as follows: Section 2 discusses
related work and highlights the differences to previous studies. Section 3 ex-
plains the research method and the data extraction process, and presents a
preliminary analysis of the selected dataset. Section 4 empirically studies the
research questions for the npm and RubyGems package distributions. Section 5
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highlights the novel contributions, discusses our findings, and outlines possible
directions for future work. Section 6 discusses the threats to the validity of this
work and Section 7 concludes.

2 Related work

2.1 Terminology

This section introduces the terminology used throughout this article. All main
terms are highlighted in boldface.

Package distributions (such as npm and RubyGems) are collections of
(typically open source) software packages, distributed through some package
registry. Each of these packages has one or more releases. New releases of a
package are called package updates.

Each package release is denoted by a unique version number. The version
number reflects the sequential order of all releases of a package. Semantic ver-
sioning, hereafter abbreviated as semver2, proposes a multi-component ver-
sion numbering scheme major.minor.patch[-tag] to specify the type of changes
that have been made in a package update. Backward incompatible changes
require an increment of the major version component, important backward
compatible changes (e.g., adding new functionality that does not affect exist-
ing dependents) require an increment of the minor component, and backward
compatible bug fixes require an increment of the patch component.

The main purpose of package distributions is to facilitate software reuse.
To do so, a package release R can explicitly declare a dependency relation
to another package P . R will be called a (direct) dependent of P , while P
will be called a (direct) dependency of R. Dependency relations come with
dependency constraints that specify which releases of the dependency P
are allowed to be selected for installation when R is installed. Such constraints
express a version range. For example, constraint <2.0.0 defines the version
range [0.0.0, 2.0.0), signifying that any release below version 2.0.0 of the
dependency is allowed to be installed. The highest available version within
this range will be selected for installation by the package manager. Combin-
ing semver with dependency constraints enables maintainers of dependents
to restrict the version range of dependencies to those releases that are ex-
pected to be backward compatible [6]. For exemple, a dependency relation in
an npm release R could express a constraint ^1.2.3 to allow the version range
[1.2.3,2.0.0) of backward compatible releases. In RubyGems, dependency
constraint ~>1.2 would allow the version range [1.2.0,2.0.0) of backward
compatible releases.

The collection of all package releases and their dependencies in a package
distribution forms a package dependency network. A release R is an indi-
rect dependent of another release D if there is a chain of length 2 or longer

2 See https://semver.org

https://semver.org
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between them in the dependency network. Conversely D will be called an in-
direct dependency of R. We will refer to the union of direct and indirect
dependents (respectively, dependencies) of a release as transitive depen-
dents (respectively, dependencies) of that release.

In the context of this paper and more specifically in RQ3 to RQ6, we only
study the vulnerabilities coming from dependencies used in the latest release
of each package in npm and RubyGems. Because of this, we will occasionally
use the term package to refer to the latest release of a dependent package. By
abuse of terminology we declare a package to be a (direct/indirect) dependent
of P if its latest available release depends (directly or indirectly) on P .

Not only packages can depend on other packages within a package depen-
dency network, but the same is true for external projects that are developed
and/or distributed outside of the package distribution (e.g., on GitHub). By
extension of the term dependent package, we use the term dependent project
to refer to a GitHub repository containing an external software project that
(directly or indirectly) depends on one of the packages of the considered pack-
age distribution. For example, the project Atom 3 is a dependent of npm
package mocha 4. Similarly, Discourse 5 is a dependent project of RubyGems
package json 6.

A vulnerability is a known reported security threat that affects some re-
leases of some packages in the package distribution. The packages will be called
vulnerable packages and their affected releases will be called vulnerable
releases. The package’s vulnerability is fixed as soon as a package update
that is no longer affected by the vulnerability becomes available. A vulner-
able dependency is a vulnerable release that is used as a dependency by
another package or project (directly or indirectly). Vulnerable dependencies
can expose their dependents to the vulnerability. We refer to those as ex-
posed dependents. We can distinguish between directly exposed dependents
(if a direct dependency is vulnerable) and indirectly exposed dependents (if
an indirect dependency is vulnerable). To distinguish between dependent re-
leases and dependent projects that may be exposed, we use the terms exposed
package (release) and exposed project, respectively.

2.2 Package dependency networks

Software dependency management and package dependency networks have
been subject to many research studies for different software ecosystems. Wit-
tern et al. [7] examined the npm ecosystem in an extensive study that covers
package descriptions, the dependencies among them, download metrics, and
the use of npm packages in publicly available repositories. One of their findings
is that the number of npm packages and their updates is growing superlinearly.

3 https://github.com/atom/atom/blob/master/package.json
4 https://www.npmjs.com/package/mocha
5 https://github.com/discourse/discourse/blob/master/Gemfile
6 https://rubygems.org/gems/json

https://github.com/atom/atom/blob/master/package.json
https://www.npmjs.com/package/mocha
https://github.com/discourse/discourse/blob/master/Gemfile
https://rubygems.org/gems/json
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They also observed that packages are increasingly connected through depen-
dencies. More than 80% of npm packages have at least one direct dependency.
Kikas et al. [8] analysed the dependency network structure and evolution of
the JavaScript, Ruby, and Rust package distributions. One of their findings is
that the number of transitive dependencies for JavaScript has grown by 60%
in 2016. They also found that the negative consequences of removing a popu-
lar package (e.g., the left-pad incident 7) are increasing. In a more extensive
study, Decan et al. [9] empirically compared the impact of dependency issues in
the npm, CRAN and RubyGems package distributions. A follow-up study [1]
expanded this comparison with four more distributions, namely CPAN, Pack-
agist, Cargo and NuGet. They observed important differences between the
considered ecosystems that are related to ecosystem specific factors. Similarly,
Bogart et al. [10] performed multiple case studies of three software ecosys-
tems with different tooling and philosophies toward change (Eclipse, CRAN,
and npm), to understand how developers make decisions about change and
change-related costs and what practices, tooling, and policies are used. They
found that the three ecosystems differ significantly in their practices, policies
and community values. Gonzalez-Barahona et al. [11–14] introduced the no-
tion of technical lag to quantify the degree of outdatedness of packages and
dependencies, along different dimensions, including time lag, version lag and
vulnerability lag.

2.3 Security vulnerabilities

Software vulnerabilities are discovered on a daily basis, and need to be iden-
tified and fixed as soon as possible. This explains the many studies conducted
by software engineering researchers on the matter (e.g., [15–19]). Several re-
searchers observed that outdated dependencies are a potential source of secu-
rity vulnerabilities.

Cox et al. [20] analysed 75 Java projects that manage their dependencies
through Maven. They observed that projects using outdated dependencies
were four times more likely to have security issues and backward incompat-
ibilities than systems that were up-to-date. Gkortzis et al. [21] studied the
relationship between software reuse and security threats by empirically inves-
tigating 1,244 open-source Java projects to explore the distribution of vulner-
abilities between the code created by developers and the code reused through
dependencies. Based on a static analysis of the source code, they observed
that large projects are associated with a higher number of potential vulnera-
bilities. Additionally, they found that the number of dependencies in a project
is strongly correlated to its number of vulnerabilities. Massacci et al. [22] inves-
tigated whether leveraging on FOSS Maven-based Java libraries is a potential
source of security vulnerabilities. They found that small and medium libraries
have disproportionately more leverage on FOSS dependencies in comparison

7 https://github.com/left-pad/left-pad/issues/4
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to large libraries. They also found that libraries with higher leverage have
1.6 higher odds of being vulnerable in comparison to the libraries with lower
leverage.

Ponta et al. [23] presented a code-centric and usage-based approach to
detecting and assessing OSS vulnerabilities, and to determining their reacha-
bility through direct and transitive dependencies of Java applications. Their
combination of static and dynamic analysis improves upon the state of the art
which commonly considers dependency meta-data only without verifying to
which dependents the vulnerability actually propagates. The Eclipse Steady
tool instantiates the approach, and has been shown to report fewer false pos-
itives (i.e., vulnerabilities that do not really propagate to dependencies) than
earlier tools. In a similar vein, Zapata et al. [24] carried out an empirical study
that analysed vulnerable dependency migrations at the function level for 60
JavaScript packages. They provided evidence that many outdated projects are
free of vulnerabilities as they do not really rely on the functionality affected by
the vulnerability. Because of this, the authors claim that security vulnerability
analysis at package dependency level is likely to be an overestimation.

Decan et al. [2] conducted an empirical analysis of 399 vulnerabilities re-
ported in the npm package dependency network containing over 610k JavaScript
packages in 2017. They analysed how and when these vulnerabilities are dis-
closed and to which extent this affects directly dependent packages. They did
not consider the effect of vulnerabilities on transitive dependents, nor did they
study the impact on external GitHub projects depending on npm packages.
They observed that it often takes a long time before an introduced vulnerabil-
ity is disclosed. A non-negligible proportion of vulnerabilities (15%) are con-
sidered to be more risky because they are fixed only after public announcement
of the vulnerability, or not fixed at all. They also found that the presence of
package dependency constraints plays an important role in vulnerabilities not
being fixed, mainly because the imposed constraints prevent fixes from being
installed.

Zimmermann et al. [25] studied 609 vulnerabilities in npm packages, pro-
viding evidence that this ecosystem suffers from single points of failure, i.e.,
a very small number of maintainer accounts could be used to inject malicious
code into the majority of all packages (e.g., the event-stream incident 8). This
problem increases with time, and unmaintained packages threaten large code
bases, as the lack of maintenance causes many packages to depend on vulnera-
ble code, even years after a vulnerability has become public. They studied the
transitive impact of vulnerable dependencies, as well as the problems related
to lack of maintenance of vulnerable packages.

Alfadel et al. [26] carried out a study on 550 vulnerability reports affecting
252 Python packages from PyPI. They found that the number of vulnerabil-
ities disclosed in Python packages increases over time, and some take more
than 3 years to be disclosed. Meneely et al. [27] inspected 68 vulnerabilities
in the Apache HTTP server and traced them back to the first commits that

8 https://www.theregister.com/2018/11/26/npm_repo_bitcoin_stealer/

https://www.theregister.com/2018/11/26/npm_repo_bitcoin_stealer/
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contributed to the vulnerable code. They manually found 124 Vulnerability-
Contributing Commits (VCCs). After analyzing these VCCs, they found that
VCCs have more than twice as much code churn on average than non-VCCs.
They also observed that commits authored by new developers have more
chances to be VCCs than other commits.

Prana et al. [28] analysed vulnerabilities in open-source libraries used by
450 software projects written in Java, Python, and Ruby. Using an indus-
trial software composition analysis tool, they scanned versions of the sample
projects after each commit. They found that project activity level, popularity,
and developer experience do not translate into better or worse handling of de-
pendency vulnerabilities. As a recommendation to software developers, they
highlighted the importance of managing the number of dependencies and of
performing timely updates.

Pashchenko et al. [17] studied the over-inflation problem of academic and
industrial approaches for reporting vulnerable dependencies in OSS software.
After inspecting 200 Java libraries they found that 20% of their dependencies
affected by a known vulnerability are not deployed, and therefore, they do not
represent a danger to the analyzed library because they cannot be exploited
in practice. They also found that 81% of vulnerable direct dependencies may
be fixed by simply updating to a new version. In our article, we follow the
procedure recommended by Pashchenko et al. [17] by only focusing on run-
time dependencies which are essential for deployment.

2.4 Novelty of our contribution

The empirical study proposed in this article expands upon previous work in
different ways. We conduct a quantitative comparison of vulnerabilities in both
the npm and RubyGems package dependency networks based on a more recent
dataset of packages and their vulnerabilities (2020). We study the impact of a
large set of 2,786 vulnerabilities, of which 2,118 for npm and 668 for RubyGems
while grouping them by their severity levels. We also consider dependencies
of external GitHub projects on vulnerable npm and RubyGems packages. For
the latter, we are the first to study the prevalence, disclosure and fixing time
of their vulnerabilities. When studying the impact of vulnerable packages on
their dependents, we do not only focus on direct dependencies, but also con-
sider the indirect ones. For those indirect dependencies we study the evolution
and spread of vulnerable indirect dependencies at different levels in the depen-
dency tree. Finally, we are the first to compare the vulnerability of packages
distributed via package distributions with the vulnerability of GitHub projects
that use these packages. Such a comparison is important since packages are
supposed to be reused as libraries, their maintainers are supposed to be more
careful than developers of external projects that just depend on these reusable
libraries and that are much less likely to have other projects depending on
them. We are also the first to report results on how vulnerability disclosure
time duration is evolving over time.
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3 Dataset

This paper analyzes the Common Vulnerabilities and Exposures (CVE9) af-
fecting the npm and RubyGems distributions of reusable software packages.
Both package distributions are well-established and mature (RubyGems was
created in 2004 and npm in 2010) and both recommend semver for pack-
age releases [6]. Due to an important difference in popularity of the targeted
programming language (JavaScript and Ruby, respectively), the number of
packages distributed through npm is an order of magnitude higher than the
number of packages distributed through RubyGems. We focus on these package
distributions because they have a community that is actively looking for and
reporting vulnerabilities. The vulnerabilities in both distributions are reported
and tracked by well-known Central Numbering Authorities (CNA).

3.1 Vulnerability dataset

To detect vulnerabilities in npm and RubyGems packages we rely on a database
of vulnerability reports of third-party package vulnerabilities collected by the
continuous security monitoring service Snyk 10. We received a snapshot of
this vulnerability database on 17 April 2020. This snapshot contained 2,874
vulnerability reports for the considered package distributions, of which 2,188
for npm and 686 for RubyGems. The higher number of reported vulnerabilities
for npm can be explained by the higher number of packages contained in it.

Each vulnerability report contains information about the affected package,
the range of affected releases, the severity of the vulnerability as reported by
Snyk’s security team, its origin (i.e., the package distribution), the date of
disclosure, the date when it was published in the database, the first fixed ver-
sion (if available), and the unique CVE identifier. Figure 1 shows an example
of a vulnerability report of the popular RubyGems package rest-client 11.
Vulnerability reports for npm packages contain similar information.

Vulnerability name: Malicious Package
Severity: critical
Affected package: rest-client
Affected versions: >=1.6.10, <1.7.0.rc1
Package manager: RubyGems
Disclosure date: 2019-08-19
Publication date: 2019-08-20
Version with the first fix: 1.7.0.rc1
CVE identifier: CVE-2019-15224

Fig. 1 Excerpt of vulnerability report for RubyGems package rest-client.

9 cve.mitre.org
10 https://snyk.io/vuln
11 https://snyk.io/vuln/SNYK-RUBY-RESTCLIENT-459900

cve.mitre.org
https://snyk.io/vuln
https://snyk.io/vuln/SNYK-RUBY-RESTCLIENT-459900
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3.2 Dependency dataset of packages and external projects

Using version 1.6.0 of the libraries.io Open Source Repository and Dependency
Dataset [29] that was released on 12 January 2020, we identified all package
releases in the npm and RubyGems package distributions. As this dataset
was released three months before the snapshot date of the Snyk vulnerability
database (17 April 2020), it does not contain releases that are affected by vul-
nerabilities disclosed after 12 January 2020. We therefore ignore these releases
in our analysis.

We also identified all external projects hosted on GitHub and referenced in
libraries.io dataset as depending on npm or RubyGems packages. Repositories
of these projects do not correspond to the development history of any of the
considered packages, and are not forked from any other repository. This way
we ensure that packages and external projects are mutually exclusive, and we
avoid considering the same projects multiple times in the analysis.

A manual analysis revealed that libraries.io is not always accurate about
the dependencies used by external projects. More specifically, we occasionally
observed a mix between run-time and development dependencies for projects
that use npm, i.e., dependencies that are declared as development dependencies
in the project’s repository in GitHub are reported as run-time dependencies in
libraries.io. Because of this inaccuracy, we only relied on libraries.io to identify
the names of the most starred projects, i.e., those who received 90% of all stars
within the same ecosystem (npm or RubyGems). Overall, the selected GitHub
projects received 5.37M stars out of 5.96M. The minimum number of stars
found in the resulting dataset was 62. Afterwards, to determine the npm and
RubyGems package dependencies for these projects, we extracted and analysed
their package.json and Gemfile from GitHub, which are the files in which the
dependency metadata is stored for the respective package distributions.

As older package releases are more likely to be exposed to vulnerable pack-
ages than recent versions [20, 30], this might bias the analysis results. We
therefore decided to focus only on the latest available version of each consid-
ered package, and on the snapshot of the last commit before 12 January 2020
of each considered external GitHub project. We also decided to focus only on
packages and external projects with run-time dependencies, thereby ignoring
development and optional dependencies. Run-time dependencies are needed
to deploy and run the dependent in production, while development dependen-
cies are only needed while the dependent is being developed (e.g., for testing
dependencies). We ignore the latter in our study because they are unlikely to
affect the production environment [17].

Based on all of the above, we selected the latest available releases in li-
braries.io of 842,697 packages (748,026 for npm and 94,671 for RubyGems)
and 24,593 external projects hosted on GitHub (13,930 using npm packages
and 10,663 using RubyGems packages) with run-time dependencies. Figure 2
shows the evolution over time of the cumulative number of packages (left y-
axis) and external projects (right y-axis) considered in this study, grouped by
package distribution.
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Fig. 2 Evolution of the cumulative number of packages (straight lines, using the scale on
the left y-axis) and external GitHub projects (dotted lines, using the scale on the right
y-axis) for npm and RubyGems

Using the dependency constraint resolver proposed in [6], which supports
several package distributions, we determined the appropriate version of pack-
ages to be installed for each dependent according to the constraints for its
run-time dependencies. As some constraints may resolve to different versions
at different points in time, we use the libraries.io snapshot date as the resolu-
tion date. This implies that we study vulnerabilities in packages and external
projects as if they were installed or deployed on 12 January 2020.

Having determined the versions of all direct dependencies, we turn to the
indirect ones. All considered npm packages have a total of 68,597,413 depen-
dencies of which 3,638,361 are direct (i.e., 5.3%), while all RubyGems packages
have 1,258,829 dependencies of which 224,959 are direct (i.e., 17.9%). The con-
sidered external projects have 2,814,544 npm dependencies of which 147,622
are direct (i.e., 5.2%), and 544,506 RubyGems dependencies of which 101,079
are direct (i.e., 18.6%). We observe that RubyGems packages and external
projects have more than thrice as many direct dependencies as npm packages
and external projects. This is in line with the observations made by Decan et
al. [6]. Figure 3 shows the evolution over time of the cumulative number of di-
rect and indirect dependencies for package latest releases and external projects
considered in this study, grouped by package distribution.

4 Empirical Analysis

Using the datasets of Section 3, this section answers the research questions in-
troduced in Section 1. For RQ0 to RQ2, we present statistical analyses based
on the affected npm and RubyGems package releases according to the vulner-
ability dataset. For RQ3 to RQ6 we study the impact of affected releases on
exposed packages and exposed projects that directly or indirectly depend on
them.

As part of the statistical analyses, we use the non-parametric Mann-Whitney
U test to compare various types of distributions without assuming them to
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Fig. 3 Monthly evolution of the cumulative number of direct and indirect dependencies for
packages (top figure) and external projects (bottom figure) for npm and RubyGems.

follow a normal distribution. The null hypothesis H0 states that there is no
difference between two distributions. We set a global confidence level of 95%,
corresponding to a significance level of α = 0.05. To achieve this overall confi-
dence, the p-value of each individual test is compared against a lower α value,
following a Bonferroni correction12. If the null hypothesis can be rejected,
we report the effect size with Cliff’s delta d, a non-parametric measure that
quantifies the difference between two populations beyond the interpretation of
p-values. Following the guidelines of Romano et al. [31], we interpret the effect
size to be negligible if |d| ∈ [0, 0.147[, small if |d| ∈ [0.147, 0.33[, moderate if
|d| ∈ [0.33, 0.474[ and large if |d| ∈ [0.474, 1].

We use the technique of survival analysis [32] to estimate the probability
that an event of interest will happen. Survival analysis creates a model esti-
mating the survival rate of a population over time until the occurrence of an
event, considering the fact that some subjects may leave the study, while for
others the event of interest might not occur during the observation period. We
rely on the non-parametric Kaplan-Meier statistic estimator commonly used
to estimate survival functions.

All code used to carry out this analysis is available in a replication pack-
age 13.

12 If n different tests are carried out over the same dataset, for each individual test one
can only reject H0 if p < 0.05

n
. In our case n = 48, i.e., p < 0.001.

13 https://github.com/AhmedZerouali/vulnerability_analysis

https://github.com/AhmedZerouali/vulnerability_analysis
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4.1 RQ0: How prevalent are disclosed vulnerabilities in npm and RubyGems
packages?

This research question aims to characterise the vulnerability dataset of Sec-
tion 3.1, its evolution over time as well as the number of package releases
affected by these vulnerabilities. After the identification of package releases
and dependencies in Section 3.2, we found that 88 vulnerabilities do not affect
any package release that is used as a dependency. Therefore, our final dataset
contains 2,786 vulnerabilities, of which 2,118 directly affecting npm packages
and 668 directly affecting RubyGems packages.

Figure 4 depicts the number of considered vulnerabilities in this study,
and the proportion of low, medium, high or critical severities for each package
distribution. We observe that most of the vulnerabilities are of medium or high
severity (76% for npm and 89% for RubyGems). We also observe that npm has
nearly thrice as many critical vulnerabilities as RubyGems. Another difference
is that npm has more high vulnerabilities than medium ones, while the inverse
is true for RubyGems. The collected vulnerabilities affect 1,672 npm and 321
RubyGems packages. The oldest vulnerability in npm was disclosed in June
2011, whereas the oldest one in RubyGems was disclosed in August 2006. We
also found that 1,175 (42%) of the vulnerabilities did not have any known fix,
of which 1,058 from npm and 117 from RubyGems.

Finding the reasons behind the observed differences between both ecosys-
tems in terms of number, severity, and types of vulnerabilities (see Table 2) can
be hard. Each package distribution has its own tools, practices and policies [33]
as well as differences in topological structure of the dependency network and
size and growth of the ecosystem [1]. Both package distributions also focus
on different programming languages. Figure 4 therefore does not normalize
against the size of each ecosystem. The proportion of vulnerable packages is
0.22% for npm while it is 0.4% for RubyGems, even though npm is 8 times
larger than RubyGems.
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Figure 5 depicts the evolution over time of the cumulative number of vul-
nerabilities (straight lines) grouped by severity, and their corresponding af-
fected packages (dotted lines). The y-axis scale for npm is different from the
one for RubyGems because more vulnerabilities have been reported for npm.
The number of reported vulnerabilities and thereby affected packages increases
for both npm and RubyGems over time. We also see that before 2017, the
number of medium vulnerabilities was higher than the number of high vulner-
abilities in npm. Since 2016 and until 2018, the number of high vulnerabilities
started increasing following a different trend.

A similar trend can be observed for the critical vulnerabilities in 2019.
This means that proportionally speaking, the severity of npm vulnerabilities
tends to increase over time, while such an observation cannot be made for
RubyGems.
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Fig. 5 Temporal evolution of the cumulative number of disclosed vulnerabilities (straight
lines) and the corresponding number of affected packages (dotted lines) per severity.

Looking at ALL vulnerabilities we can see an exponential growth in the
number of npm vulnerabilities, while RubyGems shows a linear growth rate.
This is statistically confirmed by a regression analysis using linear and expo-
nential growth models. The R2 values reflecting the goodness of fit are summa-
rized in Table 1. 14 For both vulnerabilities and affected packages, npm follows
an exponential growth while RubyGems follows a linear one. The exponential
growth of npm is in line with the exponential growth of its total number of
packages [1]. Given that npm is by far the largest package distribution avail-
able15, it is considerably more likely to contain reported vulnerabilities. npm’s
popularity may attract more malicious developers on the one hand, that want
to exploit vulnerabilities contained in some of its packages, and on the other
hand it may attract more security researchers that aim to find and report
vulnerabilities before they can be exploited.

14 R2 ∈ [0, 1] and the closer to 1 the better the model fits the data.
15 According to libraries.io, in May 2021, npm contained 1.79M packages compared to

“only” 173K packages in RubyGems.
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Table 1 R2-values of regression analysis on the evolution of the number of vulnerabilities
and affected packages.

npm RubyGems
# vulns # packages # vulns # packages

linear 0.85 0.84 0.94 0.93
exponential 0.96 0.97 0.90 0.90

For each vulnerability report in the vulnerability dataset, we identified the
affected range of releases of the specified package in our package dataset. Here
too we relied on the constraint parser proposed in [6]. While the vulnerability
dataset corresponds to a relatively low number of vulnerable packages (see
above), the majority of their releases is in fact affected: 67.4% (i.e., 43, 330
out of 64, 236) for npm and 63.8% (i.e., 11, 488 out of 17, 987) for RubyGems.
89.9% of these affected releases (comprising both npm and RubyGems) con-
cern vulnerabilities of either medium severity (52.9%) or high severity (37%
high). Regardless of their severity, 57.3% and 27.8% of all npm and RubyGems
vulnerabilities are affecting more than 90% of the releases of their correspond-
ing packages. Most of these vulnerabilities (85.6% and 62.9%, respectively)
are open ones that do not have any fix. Focusing only on fixed vulnerabilities,
this proportion decreases to 16.2% and 12.5% for npm and RubyGems vulner-
abilities affecting more than 90% of their package releases, respectively. This
means, for the clients of these packages, that they should be using the latest
available releases, especially the clients of npm packages.

Table 2 shows the top ten vulnerability types affecting npm and RubyGems
packages, with the number of vulnerabilities of each type grouped by severity.
We observe that the most prevalent vulnerability type is Malicious Package
and Cross-site Scripting (XSS) found in 19.3% of all npm vulnerability reports,
and 17.4% of all RubyGems vulnerability reports. We observe that npm and
RubyGems packages are exposed to similar vulnerabilities but with different
occurrences. Some vulnerability types seem to affect JavaScript packages more
than Ruby packages, e.g., Malicious Package and Directory Traversal.

The number of reported vulnerabilities is increasing exponentially for npm
and linearly for RubyGems. The relative proportion of high and critical vul-
nerabilities seems to increase over time. Two out of three releases of vul-
nerable packages are affected by at least one vulnerability for both ecosys-
tems. The types of most prevalent vulnerabilities differ between npm and
RubyGems.

4.2 RQ1: How much time elapses until a vulnerability is disclosed?

Delayed fixing of security vulnerabilities puts software packages and their de-
pendents at risk as it lengthens the window that hackers have to discover and
exploit the vulnerability. Unknown vulnerabilities may linger and remain to be
present in more recent releases of a vulnerable package, exposing the depen-
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Table 2 Top ten vulnerability types affecting npm and RubyGems packages, with the num-
ber of vulnerabilities of each type grouped by severity (C = critical, H = high, M = medium,
L = low).

npm vulnerability types #vulns C H M L
Malicious Package 410 345 64 1 0
Directory Traversal 331 5 297 28 1
Cross-site Scripting 322 15 55 245 7
Resource Downloaded over Insecure Protocol 154 0 145 8 1
Regular Expression Denial of Service 138 0 57 50 31
Denial of Service 91 5 52 32 2
Prototype Pollution 77 1 38 36 2
Command Injection 57 0 20 34 3
Arbitrary Code Execution 44 11 24 7 2
Arbitrary Code Injection 36 7 9 20 0

RubyGems vulnerability types #vulns C H M L
Cross-site Scripting 116 0 6 108 2
Denial of Service 54 1 18 34 1
Arbitrary Command Execution 47 2 29 16 0
Information Exposure 40 1 6 27 6
Arbitrary Code Execution 27 2 16 9 0
Man-in-the-Middle 26 0 3 22 1
Malicious Package 19 18 1 0 0
Cross-site Request Forgery 18 0 4 14 0
SQL Injection 18 1 11 6 0
Directory Traversal 16 0 5 10 1

dents of an entire release range for a substantial amount of time. For example,
in January 2021, a vulnerability named “Baron Samedit” was discovered in
the popular Linux package sudo 16. This vulnerability allowed local users to
gain root-level access and was introduced in the sudo code back in July 2011,
effectively exposing all releases during the past decade and therefore millions
of deployments.

RQ1 aims to study how much time it takes until a vulnerability is dis-
covered. Since it is not possible to accurately know when a vulnerability was
actually discovered, we rely instead on the vulnerability disclosure date as a
proxy for the discovery date and we study the time needed before a lingering
vulnerability gets disclosed.

Usually, when a vulnerability is discovered, a CVE identifier will be re-
served for it so it can be uniquely identified later. These CVE IDs can be
reserved by a Central Numbering Authorities (CNAs) that have the prior-
ity to reserve CVE IDs from MITRE 17. Snyk, GitHub and HackerOne are
examples of such CNAs. To study the disclosure time in more detail, we in-
spected MITRE using the CVE identifiers we obtained for the vulnerabilities
in our vulnerability dataset. We extracted the reservation date and CNA of
each CVE and found that only 1,487 vulnerabilities (55%) have a CVE linked
to them. 820 of them were disclosed before the CVE reservation date, 639

16 https://snyk.io/vuln/SNYK-DEBIAN9-SUDO-1065095
17 https://cve.mitre.org/cve/request_id.html

https://snyk.io/vuln/SNYK-DEBIAN9-SUDO-1065095
https://cve.mitre.org/cve/request_id.html
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were disclosed after that date, and 100 vulnerabilities had a disclosure date
that coincided with the CVE reservation date. We found many organizations
responsible for reserving the CVEs of vulnerabilities in npm and RubyGems
packages, including Red Hat, Microsoft and GitHub. The top three of CNAs
with the most CVEs was HackerOne, Mitre and Snyk for npm, and Mitre, Red
Hat and HackerOne for RubyGems.

For all vulnerabilities, we computed the disclosure lag, i.e., the number of
days between the first affected release and the vulnerability disclosure date.
Figure 6 shows the evolution over time of the disclosure lag distribution,
grouped by CNA. A gap can be observed between 2018 and 2020 for RubyGems
- NO CVE because during this period we did not find any disclosed vulnera-
bility for RubyGems with the NO CVE id. The disclosure lag tends to increase
in both package distributions, implying that recently reported vulnerabilities
take longer to disclose than older ones. This trend can be observed for all
CNAs. We also observe a longer disclosure lag for RubyGems vulnerabilities
than for npm ones. Comparing between CNAs, Figure 6 also reveals that some
CNAs tend to disclose and report vulnerabilities faster than others.

To make a fair comparison, we decided to focus on recent vulnerabilities
that have been disclosed in the last three years, i.e., after 2017-04-17. In ad-
dition, we focus only on vulnerabilities that have been disclosed in packages
that received at least one update in the last two years. Indeed, since inactive
packages have less maintenance activity, it would be unfair to compare vulner-
abilities disclosed in these packages with vulnerabilities of packages receiving
continuous maintenance, including vulnerability inspection. This led us to con-
sider only 1,276 vulnerabilities (45.8%) for RQ1 and RQ2. Figure 7 shows the
proportion and number of vulnerabilities kept after this filtering. Compared
to the unfiltered set in Figure 5 there is a considerably higher proportion of
critical vulnerabilities.

Figure 8 shows the cumulative proportion of disclosed vulnerabilities and
their disclosure lag, grouped by severity level. For npm, we observe that critical
vulnerabilities are the fastest to disclose. It only takes 3.1 months to disclose
50% of all critical vulnerabilities, while it takes respectively 49.3, 49.3 and
44.5 months to disclose 50% of all low, medium and high vulnerabilities. For
RubyGems, the disclosure lag seems to depend much less on its severity level.
Using log-rank tests for both package distributions, we could only confirm a
statistically significant difference for the comparisons with critical vulnerabil-
ities in npm (e.g., critical vs high). For all other comparisons in RubyGems,
the null hypothesis stating that there is no difference in disclosure lag could
not be rejected.

Disregarding the severity status, vulnerabilities have a lower disclosure lag
for npm than for RubyGems (in npm it takes 31.5 months to disclose 50% of
all vulnerabilities compared to 84.4 months for RubyGems). To statistically
confirm this observed difference in disclosure lag, we carried out a Mann-
Whitney U test. The null hypothesis could be rejected with a large effect size
(|d| = 0.53), statistically confirming that vulnerabilities take longer to disclose
for RubyGems than for npm. This could also be observed when grouping the
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Fig. 6 Evolution of the vulnerability disclosure lag distribution in npm and RubyGems,
grouped by CVE Central Numbering Authority. The shaded areas represent the interval
between the 25th and 75th percentile.

analysis by CNA. Possible explanations for this finding may be that npm has
better security detection tools and more security researchers than RubyGems.
We found that vulnerabilities of npm packages were disclosed by 635 security
researchers and communicated to MITRE via 21 CNAs, while RubyGems vul-
nerabilities were disclosed by 236 security researchers and communicated to
MITRE via 17 CNAs.

Redoing the same analysis for inactive libraries, we found that it took 24.8
and 34.3 months to disclose 50% of the vulnerabilities in inactive npm and
RubyGems packages, respectively. To compare between inactive and active
packages, we carried out Mann-Whitney U tests. We could only find a statisti-
cally significant difference with a large effect size (|d| = 0.48) in favor of active
packages when doing the comparison for RubyGems. This means that, for
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Fig. 7 Proportion and number of vulnerabilities after filtering out old vulnerabilities and
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RubyGems, vulnerabilities of inactive packages took less time to be disclosed
than those of active packages.

Since Malicious Package vulnerabilities are intentionally injected in the
form of new updates or packages, we compared them to other vulnerabilities
and expected them to be disclosed faster. Indeed, we found that 50% of the
Malicious Package vulnerabilities in npm are disclosed within 12 days, while
those of RubyGems are disclosed within 35 days. Carrying out Mann-Whitney
U tests between Malicious Package vulnerabilities and other vulnerabilities,
we could only find a statistically significant difference with a small effect size
(|d| = 0.25) in favor of non-Malicious Package vulnerabilities when doing the
comparison for npm. This means that, for npm, Malicious Package vulnera-
bilities are disclosed faster than other vulnerabilities.
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In npm, critical vulnerabilities are disclosed faster. Vulnerabilities in npm are
disclosed faster than in RubyGems. It takes 2.3 and 7 years to disclose half
of the vulnerabilities lingering in npm and RubyGems packages, respectively.
The vulnerability disclosure lag has been increasing over time in both package
distributions. In npm, Malicious Package vulnerabilities are disclosed faster
than other vulnerability types.

4.3 RQ2: For how long do packages remain affected by disclosed
vulnerabilities?

RQ1 studied the disclosure lag between the first package release affected by
a vulnerability and the moment this vulnerability was disclosed. RQ2 investi-
gates the time that a vulnerability remains in a package until its fix (1) since
the first affected release and (2) since the disclosure time. Case (1) refers to
the number of days between the release date of the first affected release and
the release date of the first package update that is no longer affected by the
vulnerability, while case (2) refers to the number of days between the disclo-
sure date of the vulnerability and the release date of the first package update
that is no longer affected by the vulnerability. This analysis is relevant since
the longer a package remains affected, the longer it will remain a source of
vulnerabilities to potential users and dependents. The latter will be obliged
to rely on vulnerable package releases as long as the package maintainers did
not release a package update that fixes the vulnerability. This also harms the
package dependency network since if a vulnerability fix is being delayed, more
and more dependents may potentially make use of the vulnerable package or
may become potentially exposed through transitive dependencies. The later
a fix becomes available, the more difficult it becomes for all dependents to
update their transitive dependencies.

RQ2 uses the same filtered dataset as RQ1, ignoring inactive packages
and focusing only on recent vulnerabilities. In addition, we exclude Malicious
Package vulnerabilities since they are known to be fixed in a different way,
most frequently by simply removing the malicious package (release) from the
registry.

The analysis of RQ2 will be subdivided into three parts: RQa
2 a character-

isation of the type of versions in which vulnerabilities are fixed; RQb
2 the time

between the first affected release and the fix; and RQc
2 the time between the

vulnerability disclosure and the fix.

RQa
2 Version types in which vulnerabilities are fixed.

Relying on the semver specification [6,34], we studied the package release
version (i.e., patch, minor or major) that fixes a vulnerability. The purpose is to
determine whether there is a relation between the severity of the vulnerability
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and the version type of the first release that included a fix. According to
semver , patch releases are the most likely candidates for vulnerability fixes.

As both npm and RubyGems promote and encourage the use of semver ,
we expect to find most of their vulnerable packages to be fixed in a patch
release. Figure 9 presents stacked bar plots showing the proportion of fixed
vulnerabilities per severity, grouped by the version type of the first unaffected
release.18 Our expectations are confirmed, since the majority of vulnerabilities
are fixed in patch releases. Disregarding the severity level, 65% of the vulnera-
bilities were fixed in patch releases, 22.2% in minor releases and only 12.8% in
major releases. The severity of a vulnerability does not seem to play a major
role in the version type of the release that contains its fix. An exception are
the low vulnerabilities in RubyGems: in contrast to npm, they do not seem to
be considered as important, as they are fixed more often in minor and major
releases that incorporate other types of changes as well.
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Fig. 9 Proportion of fixed vulnerabilities per severity, grouped by version type of the first
unaffected release.

65% of all disclosed vulnerabilities are fixed in patch releases. Low severity
vulnerabilities in RubyGems are fixed less often in patch releases. The sever-
ity of a vulnerability does not seem to have an impact on the first release
type in which the vulnerability is fixed.

RQb
2 Time between the first affected release and the fix.

Since many vulnerabilities in our dataset did not yet receive a fix (128 out of
693 for npm, and 9 out of 143 for RubyGems), we used a survival analysis [32]
to estimate the probability over time for the event “vulnerability is fixed” with
respect to the date of the first affected release, and grouped by severity type.
Figure 10 shows the Kaplan-Meier survival curves for this analysis. For npm,
the confidence intervals of all survival curves overlap, suggesting that there
is no difference in the time to fix a vulnerability since its first appearance

18 We implicitly assume here that the first unaffected release is the one containing the fix.



22 Ahmed Zerouali et al.

depending on the severity of the vulnerability. A similar observation can be
made for RubyGems, with the exception of low severity vulnerabilities that
seem to be fixed considerably faster than any of the other severity types. It
takes only 22 months to fix 50% of all low vulnerabilities in RubyGems, while
this is 81, 99 and 74 months for, medium, high and critical vulnerabilities.
However, log-rank tests did not allow us to confirm any statistical differences
between severity levels for any package distribution.

When ignoring the severity level, however, a log-rank test could confirm
a statistically significant difference in fixing time (since the first affected re-
lease) between npm and RubyGems. Vulnerabilities in npm have a considerably
smaller fixing time. For example, half of all vulnerabilities in npm are fixed
after 55 months, while it takes 94 months in RubyGems.
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Fig. 10 Survival probability for event “vulnerability is fixed” since the first affected release.
The shaded colored areas represent the confidence intervals (α = 0.05) of the survival curves.

The fairly long observed time between the first affected release and the fix
suggests that vulnerabilities affect many releases before they are fixed. Indeed,
focusing only on vulnerabilities that have received a fix, an npm vulnerability
affects a median of 30 package releases before it is fixed. While for RubyGems,
it affects a median of 59 releases. The boxen plots of Figure 11 show how
many releases of a vulnerable package are affected by each severity level. We
observe that the number of affected releases per vulnerable package is quite
high. We also observe that for RubyGems, low severity vulnerabilities affect
less releases than other vulnerabilities. This is in line with the observations
made in Figure 10.

Disclosed vulnerabilities in npm take a considerably shorter time to fix since
the first affected release. Half of all disclosed npm vulnerabilities take 55
months to fix since their introduction, compared to 94 months for disclosed
RubyGems vulnerabilities. As a consequence, the impact of vulnerabilities is
higher for RubyGems, affecting a median of 59 package releases compared to
30 package releases for npm.
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Fig. 11 Boxen plots of the distribution of the number of affected releases of vulnerable
packages in npm and RubyGems, grouped by severity.

RQc
2 Time between the vulnerability disclosure and the fix.

It is important to fix vulnerabilities rapidly after their discovery, and especially
after they have been publicly disclosed. If a vulnerability is publicly disclosed
before a fix is available, more attackers will know about it and will be able to
exploit it. Hence, when an open source vulnerability is reported to a security
monitoring service, it is usually first disclosed privately in order to give the
maintainers time to fix it before it is made public. For example, when Snyk
receives a report about a vulnerable package, it informs the package main-
tainers and gives them 90 days to issue a remediation of the vulnerability.
An extension can be granted at the maintainers’ request, depending on the
severity of the discovered vulnerability. To investigate whether maintainers fix
their vulnerabilities within 90 days, we computed the time difference between
the vulnerability fix date and the date when it was disclosed 19. We found
a significant proportion of vulnerabilities that exceeded this 90 day period:
17.8% for npm and 10% for RubyGems.

According to a survey carried out by Snyk in 2017, “34% of maintainers
said they could respond to a security issue within a day of learning about it,
and 60% said they could respond within a week” [4]. Our own quantitative
observations align with this claim: For npm, 36.9% of all vulnerabilities with
a known fix were fixed within a day and 54.4% were fixed within a week, while
for RubyGems 46.2% were fixed within a day and 63% were fixed within a
week. Overall, 38.9% of all vulnerabilities with a known fix were fixed within
a day, and 56.3% were fixed within a week after their disclosure.

For npm, 17.8% of the fixed vulnerabilities needed more than 90 days after
their disclosure to be fixed, while this proportion is 10% for RubyGems.
38.9% of all fixed vulnerabilities were fixed within a day, and 56.3% were
fixed within a week after their disclosure.

19 This analysis included Malicious Package vulnerabilities
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4.4 RQ3: To what extent are dependents exposed to their vulnerable
dependencies?

We have so far only studied vulnerable package releases. RQ3 focuses on pack-
ages as well as external projects that may be exposed to a vulnerability within
their direct or indirect dependencies. This exposure may lead to a security
breach if the affected functionality of the vulnerable dependency is being used.
RQa

3 will study the exposure of the latest package releases to direct or indi-
rect vulnerable dependencies, whereas RQb

3 will study the exposure of external
projects to such vulnerable dependencies.

RQa
3: To what extent are packages exposed to their vulnerable de-

pendencies?

For all 842,697 of the latest package releases available in the npm and RubyGems
snapshots, we determined the direct and indirect dependencies by resolving
their dependency constraints. We narrowed down the analysis to those depen-
dencies that are referenced in the vulnerability dataset. 42.1% of all considered
npm packages (315,315 out of 748,026) and 39% of all considered RubyGems
packages (36,957 out of 94,671) were found to have at least one vulnerable
direct or indirect dependency in their latest release. More specifically, 15.7%
of npm latest releases and 17.8% of RubyGems latest releases are directly
exposed, while 36.5% of npm releases and 27.1% of RubyGems releases are in-
directly exposed 20. This is in line with the findings of Zimmerman et al. [25]
reporting that up to 40% of all packages depend on code with at least one
publicly known vulnerability.

More than 15% of the (latest) dependent package releases are exposed to
vulnerable direct dependencies. 36.5% of npm and 27.1% of RubyGems lat-
est package releases are exposed to vulnerabilities coming from vulnerable
indirect dependencies.

Vulnerable direct dependencies. We found only a small minority of di-
rect dependencies (i.e., package releases on which at least one other package
directly depends) to be vulnerable (because they contain at least one vulnera-
bility). Of all 3,638,361 dependencies considered for npm, only 154,455 (4.2%)
are vulnerable; and of all 224,959 dependencies considered for RubyGems,
only 20,336 (9%) are vulnerable. Figure 12 shows the distribution, per sever-
ity category, of the number of vulnerable package releases found among the
direct dependencies in npm and RubyGems. We observe that medium and high
severity vulnerabilities are the most common among vulnerable dependencies.
We also observe that vulnerable dependencies in RubyGems tend to be more
often of medium severity than in npm (blue boxen-plot), and less often of
high severity (orange boxen-plot). To statistically confirm these observed dif-
ferences between npm and RubyGems, we carried out Mann-Whitney U tests

20 The two categories of directly and indirectly exposed package releases are non-exclusive.
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to compare the number of vulnerabilities per severity type. The null hypoth-
esis could be rejected for all comparisons. However, the effect size (shown in
Table 3) was negligible for all comparisons, except for the category of high
severity vulnerabilities where a moderate effect size was reported. Disregard-
ing the severity category, the effect size was small in favour of npm, suggesting
that direct dependencies in npm tend to have more vulnerabilities.
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Fig. 12 Boxen plots showing the distribution of the number of vulnerabilities in vulnerable
direct dependencies of the npm and RubyGems snapshots, grouped by severity.

Table 3 Mean and median number of vulnerabilities found in direct dependencies, in ad-
dition to effect sizes and their directions when comparing npm and RubyGems dependency
vulnerabilities.

npm RubyGems
direction |d| effect size

mean median mean median

low 1.07 1 1.02 1 > 0.05 negligible
medium 2.55 1 2.73 2 < 0.06 negligible
high 2.32 2 1.81 1 > 0.39 moderate
critical 1.17 1 1.04 1 > 0.11 negligible
all 2.22 1 1.98 1 > 0.16 small

RubyGems has more than twice the proportion of vulnerable direct depen-
dencies than npm (9% compared to 4.2%). On the other hand, direct depen-
dencies in npm tend to have more vulnerabilities than direct dependencies
in RubyGems.

Vulnerable indirect dependencies. Releases may also be exposed indirectly
to vulnerable dependencies. 1,225,724 out of the 64,959,052 indirect dependen-
cies in npm (1.9%) are vulnerable; whereas a much higher proportion of 65,090
out of 1,033,870 indirect dependencies in RubyGems (6.3%) are vulnerable.
Figure 13 shows the distribution, per severity category, of the number of vul-
nerable package releases found among the indirect dependencies for npm and
RubyGems. Similar to Figure 12, medium and high severity vulnerabilities are
the most common. We also observe a higher number of vulnerabilities for each
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severity level for npm. Mann-Whitney U tests comparing the distributions be-
tween npm and RubyGems confirm a statistically significant difference. The
effect sizes for low, medium, high and critical vulnerabilities are small to mod-
erate in favor of npm (see Table 4). Disregarding the severity category, the
effect size is small (i.e., |d| = 0.32).

Table 4 Mean and median number of vulnerabilities found in indirect dependencies, in
addition to effect sizes and their directions when comparing npm and RubyGems dependency
vulnerabilities.

npm RubyGems
direction |d| effect size

mean median mean median
low 1.95 1 1.08 1 > 0.43 moderate
medium 3.53 2 2.77 1 > 0.32 small
high 3.41 2 2 2 > 0.27 small
critical 1.33 1 1.12 1 > 0.15 small
all 3.08 2 1.94 1 > 0.32 small
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Fig. 13 Boxen plots showing the distribution of the number of vulnerabilities in vulnerable
indirect dependencies of the npm and RubyGems snapshots, grouped by severity.

The proportion of vulnerable indirect dependencies for RubyGems (6.3%) is
more than three times higher than for npm (1.9%). On the other hand, for
each severity, vulnerable indirect dependencies in npm have more vulnera-
bilities than in RubyGems.

Vulnerabilities of all transitive dependencies. Considering both direct
and indirect dependencies, we investigate whether the number of dependency
vulnerabilities is related to the date when the studied package was released.
Figure 14 visualises the monthly evolution of the distribution of the number
of dependency vulnerabilities for all packages released during that month. In
general, we observe that for both ecosystems, the number of vulnerabilities
decreased over time, in the sense that more recent packages are exposed to less
vulnerabilities coming from their dependencies than older packages. However,
we notice that the number of vulnerabilities for npm was increasing over time
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until 2014 (i.e., dashed line in red), after which it started decreasing. This
coincides with the time when npm introduced the permissive constraint caret
(∧) as default constraint for npm dependencies instead of the more restrictive
constraint tilde (∼). Caret accepts new patch and minor releases to be installed
while tilde only accepts new patches. This means that packages with permissive
dependency constraints are exposed to less dependency vulnerabilities than
those with restrictive constraints. Intuitively, permissive constraints accept
wider ranges of releases than restrictive ones and thus they provide more
opportunities to install dependencies with fixed vulnerabilities.
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Fig. 14 Monthly evolution of the distribution of the number of vulnerabilities coming from
transitive dependencies of all studied packages. The shaded areas correspond to the interval
between the 25th and 75th percentile.

Older packages are exposed to more vulnerabilities coming from their de-
pendencies than recent ones. The introduction of the permissive dependency
constraint caret in npm led to have packages with less vulnerable transitive
dependencies.

Exposed packages. Only 849 vulnerable packages used as dependencies (667
for npm and 182 for RubyGems) are responsible for all exposed packages. This
means that 60.1% and 43.3% of vulnerable packages in npm and RubyGems
is never used as a dependency, as the number of vulnerable packages we orig-
inally found is 1,672 for npm and 321 for RubyGems. Moreover, only a small
subset of the used vulnerable packages is responsible for most of the vulner-
abilities found among direct and indirect dependencies. In fact, 90% of the
vulnerabilities found in npm dependencies come from 50 packages only. For
RubyGems this subset is even smaller with only 20 packages responsible for
90% of the vulnerabilities.

Starting from a unique vulnerable package that is used as a dependency,
we quantify the number of dependent packages that are directly or indirectly
exposed to a vulnerability because of it. Figure 15 shows the distribution, re-
vealing that considerably more packages are indirectly exposed to vulnerabili-
ties. The median number of packages that is directly exposed to one vulnerable
package is 11 for npm and 12 for RubyGems, while it is about twice as high
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for indirect exposures (26 for npm and 21.5 for RubyGems). We carried out
Mann-Whitney U tests to confirm that the distribution for indirectly exposed
packages is higher than for directly exposed packages between the distribu-
tions. The null hypothesis could only be rejected for npm with a small effect
size (|d| = 0.19). Without distinguishing between direct or indirect dependen-
cies, one single vulnerable package is responsible for exposing a median of 21
and a maximum of 213,851 (67.8%) npm packages, and a median of 19 and a
maximum of 22,233 (60.2%) RubyGems packages, respectively.
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Fig. 15 Distribution of the number of exposed npm and RubyGems packages affected by
a given vulnerable package.

A limited set of vulnerable packages is responsible for most of the vulnera-
bilities exposed through dependencies. One single vulnerable package can be
responsible for exposing two thirds of all dependent latest package releases.

RQb
3: To what extent are external projects exposed to their vulnerable

dependencies?

The main purpose of package managers such as npm and RubyGems is to fa-
cilitate depending on packages. Therefore, not only packages but also external
projects can be exposed to the vulnerabilities of their dependencies. We intu-
itively expect external projects to be more exposed to vulnerabilities through
their dependents than packages distributed through the package manager, as
the maintainers of the latter intend their packages to be depended on.

For the 24,593 collected external projects (see Section 3.2) we searched
for all dependencies referenced in the vulnerability dataset. We found 79%
external projects for npm (11,003 out of 13,930) and 74.1% for RubyGems
(7,901 out of 10,663) with at least one direct or indirect vulnerable dependency.
More specifically, for npm 47% of all external projects are directly exposed
and 70.4% are indirectly exposed; whereas for RubyGems 54% of all external
projects are directly exposed and 66.4% are indirectly exposed 21.

21 The two categories of directly and indirectly exposed projects are non-exclusive.
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About half of all external projects (47% for npm and 54% for RubyGems)
are exposed to vulnerabilities coming from vulnerable direct dependencies.
About two thirds of all external projects (70.4% for npm and 66.4% for
RubyGems) are exposed to vulnerabilities coming from vulnerable indirect
dependencies.

Vulnerable direct dependencies of external projects. Out of 147,622 of
the direct dependencies of external projects on npm packages, 11,969 (8.1%)
are vulnerable. Out of 101,079 of the direct dependencies of external projects
on RubyGems packages, 11,034 (10.9%) are vulnerable. Figure 16 shows the
distribution of the number of vulnerabilities affecting direct dependencies of
external projects. Similar to what we observed for RQa

3 , medium and high
severity vulnerabilities are the most common among direct dependencies, and
dependencies on npm packages tend to have higher numbers of vulnerabili-
ties than dependencies on RubyGems packages. Table 5 shows the mean and
median number of vulnerabilities caused by direct dependencies, grouped by
severity. We performed Mann-Whitney U tests to compare the number of vul-
nerabilities in project dependencies between npm and RubyGems. We found
statistically significant differences for all compared distributions but the effect
size was negligible, with one exception: a moderate effect size was found for
highly vulnerable dependencies.
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Fig. 16 Boxen plots showing the distribution of the number of vulnerabilities found in vul-
nerable direct npm and RubyGems dependencies of GitHub projects, grouped by severity.

Table 5 Mean and median number of vulnerable dependencies, in addition to effect sizes
and their directions, for direct dependencies of GitHub projects on vulnerable npm and
RubyGems packages.

npm RubyGems
direction |d| effect size

mean median mean median
low 1.16 1 1.03 1 > 0.11 negligible
medium 2.96 2 2.80 2 < 0.05 negligible
high 2.80 2 1.78 1 > 0.33 moderate
critical 1.17 1 1.07 1 > 0.09 negligible
all 2.60 2 2.27 1 > 0.06 negligible
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8.1% of the direct dependencies of external projects on npm are vulnerable,
while this is 10.9% for RubyGems. npm-dependent projects have more highly
vulnerable direct dependencies than RubyGems-dependent projects.

Vulnerable indirect dependencies of external projects. Out of 2,666,922
indirect dependencies of external projects on npm packages, 87,062 (3.2%)
are vulnerable. Out of 443,427 indirect dependencies of external projects on
RubyGems packages, 46,682 (10.5%) are vulnerable. Figure 17 shows the dis-
tribution of the number of vulnerabilities affecting indirect dependencies of ex-
ternal projects. Similar to Figure 16, medium and high severity vulnerabilities
are the most common. We observe that indirect dependencies on RubyGems
tend to be more often of medium severity than indirect dependencies on npm
packages, while the latter tend be more often of low severity. Mann-Whitney
U tests comparing the distributions between npm and RubyGems confirmed
a statistically significant difference. Regardless of the severity level we found
a small effect size (|d| = 0.15) in favour of npm dependency vulnerabilities
(see Table 6). Per severity levels, we only found a non-negligible effect size
for critical severity vulnerabilities in favour of RubyGems (|d| = 0.25) (i.e.,
RubyGems projects have more critical vulnerabilities coming form indirect de-
pendencies than npm projects), and for low severity vulnerabilities in favour of
npm (|d| = 0.71). The negligible effect size for medium severity vulnerabilities
is in favour of RubyGems (|d| = 0.1), while for high severity vulnerabilities it
is in favour of npm (|d| = 0.09).

Table 6 Mean and median number of vulnerable dependencies, in addition to effect sizes
and their directions, for indirect dependencies of GitHub projects on vulnerable npm and
RubyGems packages.

npm RubyGems
direction |d| effect size

mean median mean median
low 2.88 2 1.05 1 > 0.71 large
medium 6.56 4 12.36 5 < 0.1 negligible
high 6.2 4 4.55 3 > 0.09 negligible
critical 1.4 1 1.67 2 < 0.25 small
all 5.16 3 5.74 2 > 0.15 small

Only 3.2% of the indirect npm dependencies of external projects are vulnera-
ble, while this is more than three times higher (10.5%) for RubyGems. Disre-
garding severities, external projects for npm have more vulnerabilities com-
ing from vulnerable indirect dependencies than for RubyGems. RubyGems
external projects have more critical vulnerabilities coming from vulnerable
indirect dependencies than npm external projects, while the latter have more
low severity vulnerabilities.



On the Impact of Security Vulnerabilities in Dependency Networks 31

npm RubyGems
0

10

20

30

40

nu
m

be
r o

f v
ul

ne
ra

bi
lit

ie
s low

medium
high
critical

Fig. 17 Distribution of the number of vulnerabilities found in vulnerable indirect npm
and RubyGems dependencies of GitHub projects, grouped by severity.

Vulnerabilities of all transitive dependencies. Figure 18 visualises the
monthly evolution of the distribution of the number of dependency vulnerabil-
ities for all external projects that have their last commit during that month.
Similar to Figure 14, we observe that more recently active projects are exposed
to less vulnerabilities coming from their dependencies. Also, we can again see
the impact of the introduction of the caret (∧) dependency constraint in npm
in 2014 (left figure).
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Fig. 18 Monthly evolution of the distribution of the number of vulnerabilities coming from
transitive dependencies of all studied external projects. Time points refer to the project’s
last commit date, i.e., each project is considered only once. The shaded areas correspond to
the interval between the 25th and 75th percentile.

More recently active external projects are exposed to fewer vulnerabilities
coming from their dependencies than older ones. The introduction of the
permissive dependency constraint caret in npm seems to have led to less
vulnerable dependencies in external projects.

Exposed external projects. Only 560 (28%) vulnerable packages (400 for
npm and 160 for RubyGems) are responsible for all exposed external projects.
This is less than the number we found for exposed packages in RQa

3 , most
likely because we studied fewer external projects than (internal) packages.
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Similar to Figure 15, we analysed how many external projects are exposed
to vulnerabilities because of a single vulnerable package. Figure 19 shows the
distribution of the number of projects that are directly or indirectly exposed to
one unique vulnerable package. We observe that there are considerably more
indirectly exposed projects than direct ones. The median number of projects
that one vulnerable npm package directly exposes is 4, while for indirect expo-
sure it is 12. The median number of projects that one vulnerable RubyGems
package directly exposes is 8, while for indirect exposure it is 12.

We carried out Mann-Whitney U tests between the distributions of direct
and indirect dependency vulnerabilities exposing external projects. The null
hypothesis could only be rejected in the case of npm comparison with a small
effect size (|d| = 0.27) in favor of indirectly exposed projects. Without dis-
tinguishing between direct or indirect dependencies, we found that one single
vulnerable package is responsible for exposing a median of 8 and a maximum
of 7,506 (68.2%) projects on vulnerable npm dependencies; while a median
of 13.5 and a maximum of 5,270 (49.4%) projects is exposed to vulnerable
RubyGems dependencies.
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Fig. 19 Distribution of the number of exposed npm and RubyGems projects that one single
vulnerable package is affecting.

Only 28% of all vulnerable packages are responsible for all vulnerabilities of
exposed external projects. One single vulnerable package can be responsible
for exposing 68.2% of all exposed projects that use npm, and 49.4% of all
exposed projects that use RubyGems.

4.5 RQ4: How are vulnerabilities spread in the dependency tree?

RQ3 revealed that dependents are considerably more often indirectly exposed
to vulnerabilities than directly. With RQ4, we want to know how deep in the
dependency tree we can find vulnerabilities to which packages and external
projects are exposed. This allows us to quantify the transitive impact that
vulnerable packages may have on their (transitive) dependents. In an earlier
study focusing on the package dependency networks of 7 different package
distributions (including npm and RubyGems), Decan et al. [1] analysed the
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prevalence of indirect dependencies. They observed that more than 50% of
the top-level packages22 in npm have a dependency tree depth of at least 5,
whereas for the large majority of top-level packages in RubyGems this was
3 or less. As a result, npm appears to be potentially much more subject to
deep vulnerable dependencies. RQ4 aims to quantify this claim, focusing on
the latest package releases in RQa

4 and external projects in RQb
4.

RQa
4: How are vulnerabilities spread in the dependency trees of pack-

ages?

We computed the number of vulnerabilities at each depth for all vulnerable
(direct or indirect) dependencies. Figure 20 shows the distribution of the num-
ber of vulnerabilities in dependencies, grouped by dependency depth. The first
level (corresponding to direct dependencies) and the second level (dependen-
cies of dependencies) have higher numbers of vulnerabilities. The number of
vulnerabilities decreases at deeper levels, as a consequence of the fact that
there are fewer releases with deep dependency trees. Statistical comparisons
confirmed, with non-negligible effect sizes, that more shallow levels correspond
to higher numbers of vulnerabilities. Nevertheless, vulnerabilities do remain
present at the deepest levels. For example, we could find at least one vul-
nerable dependency at depth 16 for npm package formcore that is indirectly
exposed to a vulnerability in package kind-of, and at depth 10 for RubyGems
package erp inventory that is indirectly exposed to a vulnerability in package
rack.

The vulnerable packages used as dependencies in npm with the high-
est number of vulnerabilities are node-sass, lodash and minimist, while for
RubyGems they are nokogirl, activerecord and actionpack. Unsurprisingly, we
found the same set of vulnerable dependencies and vulnerability types reoc-
curring at deeper dependency levels. The most prevalent vulnerability type
for npm was Prototype Pollution (PP), while for RubyGems dependencies it
was Denial of Service (DoS) (see Table 2 for an overview of the most common
vulnerability types).

The number of dependency vulnerabilities for the latest package releases de-
creases at deeper levels of the dependency tree. Yet, vulnerable dependencies
continue to be found at the deepest levels. The same vulnerability types can
be found at all dependency tree levels.

We also studied how deep in the dependency tree a vulnerability can reach
by identifying for each exposed package the maximum dependency depth where
a vulnerable dependency could be found (Figure 21). For npm, the number of
exposed packages increases from the dependency depth 1 (direct dependencies)
to depth 4 and then starts to decrease. For RubyGems, the numbers start to
decrease starting from depth 1. This implies that npm packages are more
susceptible to indirect vulnerable dependencies at deeper dependency levels.

22 Top-level packages are packages that do not have any dependent packages themselves.
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Fig. 20 Distribution of the number of vulnerabilities found in all (direct and indirect)
dependencies of npm and RubyGems latest package releases, grouped by dependency tree
depth.

This seems to be in line with the findings of Decan et al. [1] mentioned at the
beginning of this research question.
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Fig. 21 Number of exposed npm and RubyGems latest package releases and their maximum
dependency depth.

npm packages are more likely than RubyGems packages to be exposed to
vulnerabilities deep in their dependency tree.

RQb
4: How are vulnerabilities spread in the dependency trees of ex-

ternal projects?

To gain more insights about the prevalence of vulnerabilities at different depths
in the dependency tree of external projects depending on npm or RubyGems
packages, we computed the number of vulnerabilities found at each depen-
dency depth. Figure 22 shows the distribution of the number of vulnerabilities
in dependencies, grouped by dependency depth. From the second level on-
wards, the number of vulnerabilities starts to decrease with increasing levels
of depth. As for RQa

4 , statistical comparisons confirmed, with non-negligible
effect sizes, that more shallow levels correspond to higher numbers of vulner-
abilities. Yet, vulnerabilities continue to remain present at the deepest levels.
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For example, we could find at least one external project with a vulnerable de-
pendency at depth 14 on npm package kind-of, and one external project with
a vulnerable dependency at depth 7 on RubyGems package nokogiri. We also
observe that external projects for RubyGems and npm have the same median
number of dependency vulnerabilities at depths 2 and 3, while starting from
level 4 we observe the same trend as in Figure 20. The reason for this differ-
ence at shallow depths (compared to what we saw in RQa

4) is because external
projects depending on RubyGems tend to include more direct dependencies
than normal RubyGems packages.
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Fig. 22 Distribution of the number of vulnerabilities found in all (direct and indirect)
dependencies of npm and RubyGemsGitHub projects, grouped by dependency depth.

Starting from depth 2, the number of vulnerable dependencies for external
projects decreases as the depth within the dependency tree increases. Yet,
vulnerable dependencies are still found at the deepest levels.

We also analysed how far in the dependency tree a vulnerability can reach.
Figure 23 shows the number of exposed external projects with the maximum
depth at which we found at least one vulnerable dependency. We observe
that for both npm and RubyGems, the number of exposed external projects
increases from the first level (direct dependencies) until the fourth and third
levels, respectively, and then starts decreasing. Comparing this finding with
Figure 21 in RQa

4 , we observe that RubyGems projects are more susceptible
to having vulnerable dependencies at deeper levels than RubyGems packages.

External projects dependent on RubyGems are more likely to be exposed to
vulnerabilities deep in their dependency tree than external projects for npm.

4.6 RQ5: Do exposed dependents upgrade their vulnerable dependencies
when a vulnerability fix is released?

57.8% of the vulnerabilities in our dataset (i.e., 1,611 to be precise) have a
known fix. With RQ5 we aim to quantify how much dependent packages and
dependent external projects would benefit from updating their dependencies
for which there is a known fix available. Upgrading their dependencies to more
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Fig. 23 Number of exposed external projects for npm and RubyGems and their maximum
dependency depth, grouped by dependency tree depth.

recent releases will reduce their exposure to vulnerabilities. First, we start by
exploring how many vulnerable dependencies have known vulnerability fixes.
Table 7 shows the proportion of direct and indirect dependencies that are only
affected by vulnerabilities that have a known fix. We observe that for the large
majority of the vulnerable dependencies, fixes are available (more than 90%
for npm and more than 60% for RubyGems). npm indirect dependencies have
more fixed vulnerabilities than direct ones, while for RubyGems we observe
the inverse. We also observe that fewer affected RubyGems dependencies have
fixes available than npm dependencies. These results show that most of the
vulnerable dependencies could be made safe if the maintainers of the dependent
packages or projects would choose the appropriate non-vulnerable version of
their dependencies.

Table 7 Proportion of vulnerable dependencies (for packages and external projects) having
a known fix.

packages projects
direct indirect direct indirect

npm 90.0 96.9 92.5 97.1
RubyGems 85.2 66.7 90.0 76.0

Updating a dependency is not always easy, especially when maintainers of
dependent projects or packages would be confronted with breaking changes.
For example, if a package release or external project uses a dependency that
resolves to version 1.1.0 while a vulnerability fix exists in 1.2.0 then the expo-
sure to the vulnerability can be removed by only doing a minor version update
of the dependency. On the other hand, if a package release or external project
uses a dependency that resolves to version 1.1.0 while a vulnerability fix ex-
ists in 2.0.0, then one would need to update to a new major version. If the
dependency is adhering to semver , then the second but not the first kind of
dependency update would require updating the dependent’s implementation
according to backwards incompatible changes. We therefore verified whether it
would be possible for dependent latest package releases and external projects
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to avoid vulnerabilities by only updating their vulnerable dependencies to a
higher version within the same major version range that is currently in use.
Focusing only on direct dependencies, 32.8% of the vulnerabilities affecting
direct dependencies of latest package releases and 40.9% of the vulnerabilities
affecting direct dependencies of external projects, could be avoided by making
backward compatible dependency updates. For indirect dependencies, 22.1%
of the vulnerabilities affecting indirect dependencies of latest package releases
and 50.3% of the vulnerabilities affecting indirect dependencies of external
projects, have a fix within the major version range that is currently in use.
We also found that 5.4% of the exposed latest package releases and 5% of the
exposed external projects could be made completely vulnerability-free by only
making backward compatible dependency updates to their vulnerable direct
dependencies.

Vulnerability fixes are available for the large majority of vulnerable depen-
dencies. Around one out of three dependency vulnerabilities to which the
latest package releases or external projects are exposed, could be avoided
if software developers would update their direct dependencies to more re-
cent releases within the same major release range. Performing backward
compatible updates to vulnerable direct dependencies could make 5.4% of
the exposed packages and 5% of the exposed external projects completely
vulnerability-free.

4.7 RQ6: To what extent are dependents exposed to their vulnerable
dependencies at their release time?

RQ3, RQ4 and RQ5 studied vulnerabilities of dependencies used in dependent
packages and external projects as if they were deployed on 12 January 2020.
This led us to consider all vulnerabilities already disclosed and reported in
Snyk’s dataset. RQ6 investigates if dependents were already incorporating de-
pendencies with disclosed vulnerabilities at their release time. To do so, we first
need to resolve dependency constraints used in package releases and external
projects at the time of their release. Then, we identify dependencies affected
by disclosed vulnerabilities only. For example, the latest version of the pack-
age node-sql 23 was released on August 2017 while depending on the package
lodash 24. If we resolve the used version of lodash on August 2017, we find
that it was 4.1.0 which is affected by the vulnerability CVE-2019-10744 25.
However, at the version release date in 2017, this vulnerability was not dis-
closed yet and thus the developers of sql-node could not do anything about it.
Answering this research question will help us to assess how careful developers
are when incorporating dependencies with already disclosed vulnerabilities.
Therefore, we will only focus on direct dependencies.

23 https://www.npmjs.com/package/sql
24 https://www.npmjs.com/package/lodash
25 https://nvd.nist.gov/vuln/detail/cve-2019-10744

https://www.npmjs.com/package/sql
https://www.npmjs.com/package/lodash
https://nvd.nist.gov/vuln/detail/cve-2019-10744
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RQa
6: To what extent are packages exposed to their vulnerable de-

pendencies at their release time?

For all 842,697 of the latest package releases available in the npm and RubyGems
snapshots, we determined their direct dependencies by resolving their depen-
dency constraints at their release time. We narrowed down the analysis to
those dependencies that are referenced in the vulnerability dataset. 6.8% of
all considered npm latest package releases (50,720 out of 748,026) and 6.2%
of all considered RubyGems latest package releases (5,896 out of 94,671) were
found to have, at their release dates, at least one direct dependency affected
by at least one vulnerability that is already disclosed.

Moreover, of all 3,638,361 direct dependencies considered for npm packages,
only 58,184 (1.6%) were affected by vulnerabilities disclosed before the latest
package release in which the dependencies are incorporated. For RubyGems,
of all 224,959 direct dependencies, only 6,410 (2.8%) were affected. Table 8
shows more details about the number of disclosed vulnerabilities found in
direct dependencies.

Comparing these results to RQa
3 , we can clearly see that at their creation

dates, the latest package releases were exposed to fewer disclosed vulnerabil-
ities than on 12 January 2020 (the dataset snapshot date). Moreover, more
than half of the package releases that are exposed to vulnerabilities via their
dependencies at the snapshot date, were not exposed to any disclosed vulner-
abilities when they were created.

Table 8 Mean and median number of disclosed vulnerabilities found in direct dependencies
at the package release creation date, in addition to effect sizes and their directions when
comparing npm and RubyGems dependency vulnerabilities.

npm RubyGems
direction |d| effect size

mean median mean median

low 1.04 1 1.03 1 > 0.01 negligible
medium 1.96 1 1.49 1 > 0.1 negligible
high 1.72 1 1.27 1 > 0.2 small
critical 1.07 1 1 1 > 0.07 negligible
all 1.76 1 1.36 1 > 0.1 negligible

At their release dates, RubyGems latest package releases had proportionally
more vulnerable direct dependencies than npm (2.8% compared to 1.6%).
More than half of the latest package releases that are exposed to vulnerabil-
ities via their dependencies at the observation date, were not exposed to any
disclosed vulnerabilities when they were first created.
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RQb
6: To what extent are external projects exposed to their vulnerable

dependencies at the date of their last commit?

For all 24,593 external projects that make use of npm and RubyGems pack-
ages, we determined their direct dependencies by resolving their dependency
constraints at their release time. 22.1% of all considered external projects for
npm (3,077 out of 13,930) and 33.9% of all considered external projects for
RubyGems (3,619 out of 10,663) were found to have, at their last commit date,
at least one direct dependency affected by at least one vulnerability that is
already disclosed.

Out of 147,622 of the direct dependencies of external projects on npm
packages, only 4,600 (3.1%) were affected by vulnerabilities disclosed before the
date of the last commit. For RubyGems, of all 101,079 direct dependencies of
external projects, only 5,264 (5.2%) were affected. Table 9 shows more details
about the number of disclosed vulnerabilities found in direct dependencies.

Table 9 Mean and median number of disclosed vulnerabilities found in direct dependencies
of GitHub external projects at their last commit dates, in addition to effect sizes and their
directions.

npm RubyGems
direction |d| effect size

mean median mean median

low 1.16 1 1.02 1 > 0.12 negligible
medium 2.29 1 1.65 1 > 0.14 negligible
high 1.88 1 1.38 1 > 0.17 small
critical 1.13 1 1.07 1 > 0.04 negligible
all 2.01 1 1.55 1 > 0.11 negligible

Comparing these results to RQb
3, we observe that, at the time of their

last commit, GitHub external projects were exposed to a lesser number of
disclosed vulnerabilities than at the dataset snapshot date (i.e., 12 January
2020). Moreover, more than half of the GitHub projects that make use of
npm packages and are exposed to vulnerabilities via their dependencies at
the snapshot date, were not exposed to any disclosed vulnerabilities when
they were first created. This is different for GitHub projects that make use
of RubyGems packages, since only one third of the projects that are exposed
to vulnerable dependencies at the snapshot date were not exposed to any
vulnerability at the time of their last commit.

At the time of their last commit, GitHub external projects that make use of
RubyGems packages had proportionally more vulnerable direct dependencies
than projects with npm dependencies (33.9% compared to 22.1%). Half of the
external projects with npm dependencies that are exposed to vulnerabilities
at the observation date, were not exposed to any disclosed vulnerability at
the time of their last commit, while this is only one third for projects with
RubyGems dependencies.
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5 Discussion

This section discusses our findings and their implications for developers, se-
curity researchers and package managers. It provides insights specific to npm
and RubyGems, as well as some challenges that need to be overcome to better
secure open source package distributions.

We start our exposition with the vulnerable packages in each package distri-
bution (Section 5.1), continue with the ramifications of how direct and indirect
dependents are exposed to these vulnerabilities (Section 5.2) and end with a
discussion about comparing different package distributions (Section 5.3).

5.1 Vulnerable packages

In a comparative study of package distributions (for the observation period
2012–2017), Decan et al. [1] observed that both npm and RubyGems have
an exponential increase in their number of packages. The monthly number of
package updates remained more or less stable for RubyGems, while a clear
growth could be observed for npm. RQ0 builds further upon that work by
analysing and comparing how vulnerable packages are in each package distri-
bution using Snyk’s dataset of vulnerability reports.

A first observation was that npm has more vulnerabilities affecting more
packages than RubyGems. We posit that this is due to the popularity of npm
that exposes the package distribution considerably more to attackers and at-
tracts more security researchers. At the time of writing this article, the num-
ber of packages distributed through npm is an order of magnitude higher than
those distributed through RubyGems. In fact, we found that npm has more
security researchers that disclose vulnerabilities than RubyGems. Based on
the adage “Given enough eyeballs, all bugs are shallow” [35], the community
of package repositories should invest in organizing bug bounty programs to
attract more security researchers [36] that may help to discover hidden vul-
nerabilities. This will also help to reduce the vulnerability disclosure gap (see
RQ1).

Challenge: How to incite more security researchers to inspect open source
packages for vulnerabilities?

Let us now focus on vulnerability reports with the vulnerability type Ma-
licious Package. It is the most prevalent vulnerability type for npm packages.
Even though most packages suffering from this vulnerability will eventually
be removed from the package distribution, previous studies [37] and experi-
ments [38] have shown that this type of vulnerability can be very dangerous.
npm has 410 packages corresponding to the Malicious Package vulnerability,
while RubyGems has only a mere 19 vulnerabilities of this type.

The second most common vulnerability in npm is Directory Traversal, a
vulnerability allowing an attacker to access arbitrary files and directories on
the application server. This vulnerability could also be classified under two
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other types of attacks, namely Information Exposure and Writing Arbitrary
Files. For RubyGems, we found Information Exposure as the 4th ranked vul-
nerability type, probably because its contributors prefer to report Directory
Traversal under the more general category of Information Exposure vulnera-
bilities.

Recommendation: Malicious packages are more prevalent in npm than
RubyGems. npm users should be aware of the common strategies of mali-
cious packages like Typosquatting [37].

42% (1,175) of the reported vulnerabilities in the dataset did not have any
known fix. We can exclude from them 406 unfixed Malicious Package vulner-
abilities (389 for npm and 17 for RubyGems) that can ultimately be fixed by
simply removing the package or the affected releases from the distribution.
This leaves us with 669 vulnerabilities different from the Malicious Package
type that affect all recent releases of npm packages in which they were discov-
ered, and 100 such vulnerabilities for RubyGems packages. Users of package
distributions should be aware of whether package managers incorporate and
mark the vulnerable packages and their releases in their registries. Having
such information in package managers will help developers and users to decide
which releases they should depend upon. It will also simplify the work of tools
like Dependabot 26 and Up2Dep [39] that try to find and fix insecure code of
used dependencies. Such tools should also be aware that not all vulnerabilities
are in MITRE or NVD 27 since we found that 45% of all vulnerabilities do not
have a CVE reserved for them. Many of the vulnerability threats and their
information are shared through social media channels (e.g., Reddit, Twitter,
Stack Overflow, etc) [40]. Therefore, other vulnerability databases, security
advisories and issue trackers might help these tools to extend their reach to
vulnerabilities that are not in NVD.

Recommendation: Package managers can help developers by marking vul-
nerable package releases in their registries.

To offer more secure packages, all known vulnerabilities should be fixed,
discovered and disclosed rapidly. Unfortunately, many vulnerabilities remain
undisclosed for months to years, providing attackers plenty of time to search
for flaws and develop exploits that can harm millions of users of these pack-
ages. For npm, we observed that critical vulnerabilities were disclosed more
rapidly, while for RubyGems we did not observe a relation to the severity of
the vulnerability. Software package maintainers should invest more effort in
keeping their packages secure, especially those packages that are frequently
used as dependents of other packages or external projects, in order to reduce
the transitive exposure to vulnerabilities. They should be supported in this
task by additional static and dynamic application security testing tools, per-
haps tailored to the characteristics of packages and libraries. For instance,

26 https://dependabot.com/
27 https://nvd.nist.gov/

https://dependabot.com/
https://nvd.nist.gov/
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there is typically no single method that can serve as the entry point for a
whole-program analysis.

Moreover, the longer a vulnerability lasts, and the more releases are affected
by it, the more likely it becomes that someone will unknowingly use a vulnera-
ble release. Registries of snapshot-based deployments such as Docker Hub that
are attracting more and more popularity exacerbate this problem [13, 41] as
users might unknowingly reuse images that wrap vulnerable package releases.
Unfortunately, the majority of the vulnerabilities in npm and RubyGems pack-
ages are fixed within several years after their first introduction leaving most
of the package releases affected. However, after their disclosure, vulnerabilities
seem to be fixed after a short time. Only about one out of five vulnerabil-
ities takes more than 3 months to be fixed, which is the deadline given by
Snyk to maintainers before publishing a reported vulnerability publicly. This
means that most of the maintainers are willing to fix vulnerabilities as soon
as possible after disclosure.

Challenge: A vulnerability can stay hidden in a package for years and it
affects most of its previous releases before it is finally fixed. Effective static
and dynamic analysis tools should emerge to support security researchers
in finding vulnerabilities.

5.2 Dependents exposed to vulnerabilities

RQa
3 investigated how packages are exposed to vulnerable dependencies. To

this end, we studied the latest release of each package available in the con-
sidered snapshot of each package distribution. Since previous studies [13, 42]
showed that less recent releases of a package tend to be more vulnerable, we
expect to find more vulnerable dependencies if we would study all package
releases rather than only the latest one. The results of RQa

3 revealed that
only a small set of vulnerable packages is responsible for a large number of
vulnerable dependencies. Moreover, RQa

4 showed that these vulnerable depen-
dencies can often be found deep in the dependency tree, making it difficult
for dependents to cope with them. Several very popular packages that are
used by many dependents have been affected by vulnerabilities, leading to a
vulnerability exposure in thousands of transitively dependent packages.

Recommendation: Package maintainers should inspect not only direct,
but also indirect dependencies, since vulnerabilities are often found deep in
the dependency chain.

Challenge: How can the community help to secure popular packages, that
are present in many dependency chains?

Another factor behind this vulnerability exposure is that most of the re-
ported vulnerabilities do not have a lower bound on affected releases. They
are found to affect all package releases before the version in which the vul-
nerability was fixed, yielding a wide range of vulnerable package releases. For
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example, according to Snyk, the critical vulnerability CVE-2019-10744 affects
all releases before version 4.17.12 of the popular package lodash 28. However,
maintainers of lodash showed vigilance since this vulnerability was fixed ex-
actly 13 days after its disclosure. Users of package distributions therefore have
an important responsibility in keeping the ecosystem in a healthy shape by
keeping their own dependencies up to date. However, managers of package dis-
tributions can share this responsibility by raising awareness of the importance
of keeping dependencies to popular packages up to date. Maintainers of those
popular packages can participate as well by informing their dependents when-
ever vulnerabilities are discovered and fixes become available in newer versions,
and maintainers of dependents that should actually update their dependencies
to those fixed releases.

Recommendation: Package developers should be aware that disclosed vul-
nerabilities frequently affect all previous releases of a package. This kind of
vulnerabilities can be prioritized since all dependents of the package will be
impacted.

Challenge: How often should one inspect previous releases for a vulnerabil-
ity that is disclosed in a recent release, and how accurate is this information
in vulnerability report databases? [27, 43, 44]

The analysis of RQb
3 revealed that external projects hosted on GitHub,

containing software that is not distributed via the package distributions, are
exposed to high numbers of vulnerabilities coming from transitive dependen-
cies caused by a small set of vulnerable packages. Package dependents should
rely on tools like npm audit to run security checks and be warned about such
vulnerable dependencies. We also noticed that many npm vulnerabilities are
coming from duplicated dependencies across the dependency tree. Dependents
should reduce the number of duplicated npm dependencies – especially vulner-
able ones – by sharing the common dependencies using commands like npm
dedupe 29 available for npm. In a similar vein, dependents should check for
bloated vulnerabilities which are not necessary to build or run the dependent
software and remove them. This may reduce the number of vulnerable depen-
dencies and their vulnerabilities. In fact, previous studies about dependencies
in Maven showed that 2.7% and 57% of direct and transitive dependencies of
Maven libraries are bloated [45].

Recommendation: npm dependents should reduce the relatively large
number of vulnerable indirect dependencies by eliminating duplicate package
releases.

We found that about 40% of the packages and 70% of the external projects
have at least one vulnerable transitive dependency. This does not necessarily
mean that the dependents are at risk and affected by the vulnerabilities of their
dependencies. Many of the vulnerabilities will only affect the functionalities

28 https://nvd.nist.gov/vuln/detail/cve-2019-10744
29 https://docs.npmjs.com/cli/v7/commands/npm-dedupe

https://nvd.nist.gov/vuln/detail/cve-2019-10744
https://docs.npmjs.com/cli/v7/commands/npm-dedupe
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that are not actually used by the dependent [46]. When fixing vulnerabili-
ties coming from dependencies, developers should prioritize vulnerabilities by
identifying the ones that are actually exposing their software by distinguish-
ing between effective and ineffective functionalities used from dependencies.
However, there are many cases where it is not necessary to use the vulnerable
dependency to be affected by its vulnerability, e.g., Prototype Pollution 30 and
Malicious Package vulnerabilities [38]. For this reason, it is important to know
about all vulnerabilities coming from both direct and indirect dependencies
and then decide whether they are exposing the dependent software or not.

Recommendation: Indirect dependencies come with a high number of vul-
nerabilities, especially in npm. Dependents should reduce the number and
depth of their indirect dependencies or monitor them alongside the direct
ones.

Verifying direct dependencies for effective functionalities could be done by
the developers of software dependents, while this could be difficult to do with
transitive dependencies. Developers of package and project dependents may
rely on Software Composition Analysis (SCA) tools to check transitive de-
pendencies for vulnerabilities affecting their used dependency functionalities.
They can also combine SCA tools to identify and mitigate the maximum num-
ber of vulnerabilities. In fact, previous studies have shown that SCA tools vary
in their vulnerability reporting [47].

Recommendation: Package dependents should rely on available tools to
run security checks and be warned about vulnerable dependencies and their
fixes.

Challenge: Should developers be warned about all disclosed vulnerabilities
of their dependencies or only about vulnerabilities affecting the functional-
ities they use? [17, 23, 46].

RQ5 highlighted that most of the vulnerabilities exposing dependent pack-
ages and projects have a known fix, implying that by updating their vulnerable
dependencies, dependents might avoid those vulnerabilities. To keep informed
about new releases that may include vulnerability fixes, dependents can rely
on tools like Dependabot, which creates pull requests to update outdated and
vulnerable direct dependencies to newer and patched releases. It is the re-
sponsibility of package maintainers to keep their own dependencies up to date
so dependent packages and projects can have secure transitive dependencies.
To do so, package dependents can rely on permissive semver constraints [6]
when specifying the dependencies to rely on in manifests like package.json and
Gemfile. This will ensure that dependencies get updated automatically. For
project maintainers, it is possible to use commands like npm update PACKAGE

--depth= DEPTH to update their transitive dependencies and then lock their

30 https://www.whitesourcesoftware.com/resources/blog/

prototype-pollution-vulnerabilities/

https://www.whitesourcesoftware.com/resources/blog/prototype-pollution-vulnerabilities/
https://www.whitesourcesoftware.com/resources/blog/prototype-pollution-vulnerabilities/
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dependencies using lockfiles like package-lock.json 31 and Gemfile.lock 32. An
other option could be to update frequently. There is a big difference between
updating a dependency with a security patch with a change of few lines of
code versus several years worth of code [48]. The analysis of RQ5 showed
that around one in three vulnerabilities might be avoided if every dependent
updated its dependencies to a newer minor or patch increment of the major
release it is already using. This means that many vulnerable dependencies
can be fixed just by modifying the dependency constraints to accept new mi-
nor and patch releases. On the other hand, for vulnerable dependencies for
which the fix requires a major update, maintainers of dependent packages
and projects should be careful as major dependency updates might introduce
breaking changes. Therefore, maintainers of required packages should not only
provide fixes in new major releases but should also attempt to provide these
fixes in older major releases via backports [49]. This way, even dependents that
need to stick to older major releases could still benefit from the backported
vulnerability fix. Perhaps popular packages with a high package centrality [50]
can benefit from community support in bringing such backports to older major
releases.

Recommendation: Packages and external GitHub projects should invest
more efforts in updating their dependencies.

In addition, in RQ2 we found a considerable proportion of vulnerabili-
ties that have been fixed in minor and major releases. We think that pack-
age maintainers should try as much as possible to fix their vulnerabilities in
patch updates or at least in backward compatible releases and follow seman-
tic versioning. If a new package release incorporates breaking changes, then
the major version number should be incremented. This will help developers to
know whether they can update their vulnerable dependencies or not. Previous
studies showed that developers are hesitant to update their vulnerable depen-
dencies because they are afraid that the new releases not only include security
fixes but also bundle them with functional changes. This hinders adoption due
to lack of resources to fix functional breaking changes [39,51].

Recommendation: Vulnerability fixing updates should not include break-
ing changes. If package maintainers can rely on semantic versioning, they
will be able to characterize their package updates, while their dependents
will be able to decide whether they want to update their dependency or not.

Challenge: Is it always possible to incorporate vulnerability fixes within
patch updates?

5.3 Comparing package distributions

31 https://docs.npmjs.com/cli/v7/configuring-npm/package-lock-json
32 https://bundler.io/rationale.html

https://docs.npmjs.com/cli/v7/configuring-npm/package-lock-json
https://bundler.io/rationale.html
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Our analysis revealed many differences between npm and RubyGems. npm
has more reported vulnerabilities than RubyGems, and npm projects exposed
to vulnerabilities have more dependencies. On the other hand, RubyGems has
higher proportions of vulnerable dependencies than npm. It is likely that the
security efforts undertaken by npm –such as its integrated dependency au-
diting tools– are gradually making npm more secure. Still, tooling could be
improved further, as most of the existing tooling relies on dependency meta-
data alone, i.e., available security monitoring tools only rely on dependency
information extracted from manifests like package.json and Gemfile to de-
tect vulnerabilities. Usage-based vulnerability detection tools [23, 25] should
emerge to help developers in identifying which dependency vulnerabilities can
actually be exploited.

Lesson learned: More effort is needed to better secure open source pack-
age distributions. All parties can help including package managers, security
experts, communities and developers.

However, presence or absence of tooling is by no means the only factor that
influences the proportion of vulnerable packages and vulnerable dependencies
in a packaging ecosystem. Decan et al. [1] have shown important differences
in the topological structure and evolution of package dependency networks,
whereas Bogart et al. [33] have shown that each ecosystem uses different prac-
tices and policies of their communities. All these factors are likely to play a
role in vulnerability management.

While this paper focused on npm and RubyGems, Alfadel et al. [26] stud-
ied the PyPI package distribution. Through an analysis of 550 vulnerability
reports affecting 252 Python packages they studied the time to disclose and fix
vulnerabilities in the PyPI package distribution. There are some similarities
between their results and our own observations for npm and RubyGems. For
example, the number of vulnerabilities found in PyPI increases over time and
the majority of those vulnerabilities are of medium or high severity. The most
prevalent vulnerabilities in PyPI are Cross-Site-Scripting (XSS) and Denial
of Service (DoS), which is similar to what we found for RubyGems. Vulner-
abilities in PyPI are disclosed after a median of 37 months, which is similar
to what we found for npm. On the other hand, vulnerabilities in PyPI seem
to take longer to be fixed than those in npm and RubyGems. Since Alfadel et
al. [26] did not study the exposure of dependent packages to vulnerabilities,
we cannot compare PyPI to npm and RubyGems on this aspect.

Challenge: What are the main factors in a packaging ecosystem that play
a role in its security management?

6 Threats to validity

The empirical nature of our research exposes it to several threats to validity.
We present them here, following the classification and recommendations of [52].
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The main threat to construct validity comes from imprecision or incom-
pleteness of the data sources we used to identify vulnerabilities and their af-
fected and exposed packages. We assumed that the Snyk vulnerability database
represents a sound and complete list of vulnerability reports for third-party
packages. This may have led to an underestimation since some vulnerabilities
may not have been disclosed yet and are therefore missing from the database.
Another data source that we relied on is libraries.io. While there is no guaran-
tee that this dataset is complete (e.g., there may be missing package releases),
we did not observe any missing data during a manual inspection of the dataset.
Considering the full set of packages ever released also constitutes a threat to
validity since some of them could have been removed from the package registry
yet are still referenced in libraries.io. To mitigate this threat we sanitised the
dataset by excluding a number of npm packages that were removed from npm.
Examples are the wowdude-x 33 and neat-x packages 34. The only purpose of
these packages was to bundle a large set of run-time dependencies.

As explained in Section 3.1, the vulnerability severity labels are extracted
from Snyk. This data source has its own way of computing the severity of
vulnerabilities. Relying on another data source might have led to different
vulnerability severity results. To understand how different severity labels in
Snyk compare to other sources, we extracted the severity labels for all vulner-
abilities with a CVE from NVD 35. For all 1,487 vulnerabilities (55% of the
entire dataset) that we found with a CVE ID in RQ1, only 1,227 have a sever-
ity label in NVD. 792 (64.55%) of them have the same severity in both Snyk
and NVD. The heatmap of Figure 24 shows the proportion of vulnerabilities
with different severity labels in Snyk and NVD. We observe that 21.68% of
the vulnerabilities have higher severity in NVD than in Snyk, while 13.77% of
the vulnerabilities are more severe in Snyk than in NVD. This confirms that
the findings could differ if another vulnerability data source were to be used.
For example, the observed vulnerabilities exposing package and project depen-
dents could be more severe than what is reported in this paper. Nevertheless,
since many vulnerabilities are not even reported by NVD, we chose for the
pragmatic option to rely on the more complete dataset of Snyk.

We also tried to verify severity labels given by CNAs (i.e., vulnerability
reporters in NVD), but only 42 vulnerabilities contained such labels.

Another threat to construct validity stems from the fact that we found
some packages whose first vulnerable releases were never distributed via the
package manager. For example, the cross-site scripting (XSS) vulnerability
type 36 affects all releases before version 0.4.0 of the npm package wysihtml.
Those releases, including version 0.4.0, were never actually distributed through
npm 37 even though they are present on the package’s GitHub repository 38.

33 https://libraries.io/search?q=wowdude
34 https://libraries.io/npm/neat-106
35 https://nvd.nist.gov/
36 https://snyk.io/vuln/npm:wysihtml:20121229
37 https://www.npmjs.com/package/wysihtml
38 https://github.com/Voog/wysihtml/tags?after=0.4.0

https://libraries.io/search?q=wowdude
https://libraries.io/npm/neat-106
https://nvd.nist.gov/
https://snyk.io/vuln/npm:wysihtml:20121229
https://www.npmjs.com/package/wysihtml
https://github.com/Voog/wysihtml/tags?after=0.4.0
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Fig. 24 Heatmap of the proportion of vulnerabilities that have the same or different severity
labels in Snyk and NVD.

Since our study only focused on vulnerabilities affecting package releases con-
tained in the libraries.io dataset, our results might underestimate the exact
time needed to disclose a vulnerability.

We noticed that many of the reported vulnerabilities affect all package
releases before the version in which the vulnerability was fixed, leading to
a large number of vulnerable package releases. To ascertain that indeed all
package releases before the fix are affected, we contacted the Snyk security
team. They confirmed that they carry out manual inspections of the affected
releases before declaring the set of vulnerable releases in their vulnerability re-
port. However, since many vulnerabilities were not analyzed by Snyk but only
copied from other security trackers, we decided to manually inspect 50 addi-
tional vulnerability reports (25 from npm and 25 from RubyGems), randomly
chosen from the whole set of vulnerability reports that do not have a lower
bound on the range of affected package releases. For each vulnerability, we
manually checked its fixing commit and then verified whether the vulnerabil-
ity was present in the first initial release [53]. Among these 50 cases, we found
8 false positives (4 for each ecosystem), i.e., vulnerability reports in which the
first initial version is claimed to be vulnerable, while it is not. This corresponds
to a confidence interval of 0.81574±0.10356 using Agresti-Coull’s method [54]
with a confidence level of 95%. This manual verification implies that our re-
sults overestimate the actual number of packages and package releases affected
by reported vulnerabilities.

To construct our dataset of vulnerabilities to study in RQ1,2, we have re-
moved vulnerabilities affecting inactive packages and vulnerabilities that have
been disclosed before 2017-04-17. Considering all vulnerabilities of all packages
(i.e., active and inactive) in the analysis might produce different outcomes.

As a threat to internal validity, when studying external GitHub projects
that are not distributed via the package managers, we only focused on those
GitHub projects explicitly mentioned in the libraries.io dataset. These projects
were the most popular ones in terms of number of stars. While one may ar-
gue that this sample is not representative of all external projects depending
on npm or RubyGems packages, the selected projects do have 90% of the



On the Impact of Security Vulnerabilities in Dependency Networks 49

total number of stars attributed to all possible project candidates available
in the libraries.io dataset. We therefore consider the chosen set of GitHub
projects to be representative for most GitHub projects that depend on npm
and RubyGems packages.

As a threat to conclusion validity, we used metadata to identify vulner-
able dependencies. This identification approach assumes that the metadata
associated with the used dependencies (e.g., package, version) and vulnera-
bility descriptions (e.g., affected package, list of affected versions) are always
accurate. These metadata are used to map each package onto a list of known
vulnerabilities that affect it. However, dependents that rely on a vulnerable
package might only access functionality of the dependent package that is not
affected by the vulnerability. Therefore, our results present an overestimation
of the actual risk. Still, we believe in the importance of signalling maintainers
of exposed dependents that they are relying on vulnerable dependencies. It will
be the responsibility of those maintainers to decide whether they are actually
accessing vulnerable code, and to get rid of the vulnerable dependency if this
happens to be the case.

As a threat to external validity, our findings do not generalise to other
package distributions (e.g., Maven Central, CRAN, Cargo, PyPI). However,
the design of our study can easily be replicated for other package distributions
that are known to recommend semver practices.

Another threat to external validity stems from the fact that we relied on
the manifests Gemfile and packages.json instead of the lockfiles Gemfile.lock
and package-lock.json when extracting dependencies used in GitHub projects.
The former are the default manifests that are always present in an npm or
RubyGems project and in which dependencies with their permissive or re-
strictive constraints are declared, while lockfiles list the specific releases of
all dependencies that should be selected to replicate the deployment of the
project. We do not know whether our results would remain the same when
considering the dependencies specified in lockfiles rather than the ones spec-
ified in the manifest of each package. A manifest expresses (through depen-
dency constraints) the set of releases that could be selected when the package
is installed through the package manager. The latter always select the highest
available release satisfying the constraints. As such, it may be the case that
the specific releases pinned in a lockfile do not correspond to the ones that
will be selected by the package manager, potentially leading to a different ex-
posure to vulnerabilities. Although the use of a lockfile allows maintainers to
explicitly select a non-vulnerable release of a package that they know to be
vulnerable, the lockfile prevents from automatically benefiting from a fix in
case the selected, pinned release is vulnerable. On the other hand, nothing
prevents the maintainer from excluding vulnerable releases through appropri-
ate dependency constraints in the package manifest, while still allowing future
security patches to be selected as soon as they become available.
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7 Conclusion

This paper quantitatively analysed and compared how security vulnerabilities
are treated in npm and RubyGems, two popular package distributions known
to recommend the practice of semantic versioning. Relying on the Snyk vulner-
ability database, we studied 2,786 vulnerabilities which affect 1,993 packages
directly. We observed that the number of reported vulnerabilities is increas-
ing exponentially in npm, and linearly in RubyGems. Most of the reported
vulnerabilities were of medium or high severity. We observed that malicious
packages occur much more frequently in npm.

We analyzed the time needed to disclose and fix vulnerabilities and we
found that half of the studied vulnerabilities needed more than two years to
be disclosed, and more than four years to be fixed. Maintainers of reusable
packages should therefore invest more effort in inspecting their packages for
undiscovered vulnerabilities, especially if those packages have a lot of depen-
dents that may get exposed to these vulnerabilities directly or indirectly. Bet-
ter tooling should be developed to help developers in looking for undiscovered
vulnerabilities and fixing them.

By analysing the impact of vulnerable packages on dependent packages and
dependent external projects (hosted on GitHub), we observed that vulnera-
bilities can be found deep in the packages’ and projects’ dependency trees.
Around one out of three packages and two out of three external projects are
exposed to vulnerabilities coming from indirect dependencies. The most preva-
lent vulnerability type that affects npm dependencies is Prototype Pollution,
while for RubyGems dependencies it is Denial of Service.

An important observation is that most of the vulnerabilities affecting de-
pendencies of packages and external projects have known fixes (in the form
of more recent package releases that are no longer vulnerable). Maintainers
of dependents could therefore invest more effort in checking their exposure to
vulnerable dependencies, and in updating their outdated dependencies in order
to reduce the number of dependency vulnerabilities. In contrast, the majority
of the outdated and vulnerable dependencies need to be updated to a new ma-
jor release to avoid the vulnerabilities. We found that around one out of three
vulnerabilities affecting direct dependencies of packages and external GitHub
projects, might be avoided by only making backward compatible dependency
updates.
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10. Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. How to
break an API: Cost negotiation and community values in three software ecosystems. In
Int’l Symp. Foundations of Software Engineering (FSE), pages 109–120. ACM, 2016.

11. Jesus M Gonzalez-Barahona, Paul Sherwood, Gregorio Robles, and Daniel Izquierdo.
Technical lag in software compilations: Measuring how outdated a software deployment
is. In IFIP International Conference on Open Source Systems, pages 182–192. Springer,
2017.

12. Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jesús González-
Barahona. An empirical analysis of technical lag in npm package dependencies. In
International Conference on Software Reuse, pages 95–110. Springer, 2018.

13. Ahmed Zerouali, Tom Mens, Alexandre Decan, Jesus Gonzalez-Barahona, and Gregorio
Robles. A multi-dimensional analysis of technical lag in Debian-based Docker images.
Empirical Software Engineering, 26(2):1–45, 2021.

14. Alexandre Decan, Tom Mens, and Eleni Constantinou. On the evolution of technical
lag in the npm package dependency network. In Int’l Conf. Software Maintenance and
Evolution, pages 404–414. IEEE, September 2018.

15. N. H Pham, T. T Nguyen, H. A Nguyen, X. Wang, A. T Nguyen, and T. N Nguyen.
Detecting recurring and similar software vulnerabilities. In Int’l Conf. Software Engi-
neering, pages 227–230, 2010.

16. Y. Shin, A. Meneely, L. Williams, and J. A. Osborne. Evaluating complexity, code
churn, and developer activity metrics as indicators of software vulnerabilities. IEEE
Transactions on Software Engineering, 37(6):772–787, 2010.

17. Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio Mas-
sacci. Vulnerable open source dependencies: Counting those that matter. In Interna-
tional Symposium on Empirical Software Engineering and Measurement. ACM, 2018.

18. Jukka Ruohonen. An empirical analysis of vulnerabilities in Python packages for web
applications. In International Workshop on Empirical Software Engineering in Practice
(IWESEP), pages 25–30. IEEE, 2018.

19. Bodin Chinthanet, Serena Elisa Ponta, Henrik Plate, Antonino Sabetta, Raula Gaikov-
ina Kula, Takashi Ishio, and Kenichi Matsumoto. Code-based vulnerability detection
in Node. js applications: How far are we? In International Conference on Automated
Software Engineering (ASE), pages 1199–1203. IEEE, 2020.



52 Ahmed Zerouali et al.
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