
107

ECROs: Building Global Scale Systems from Sequential Code

KEVIN DE PORRE, Vrije Universiteit Brussel, Belgium

CARLA FERREIRA, NOVA School of Science and Technology, Portugal

NUNO PREGUIÇA, NOVA School of Science and Technology, Portugal

ELISA GONZALEZ BOIX, Vrije Universiteit Brussel, Belgium

To ease the development of geo-distributed applications, replicated data types (RDTs) offer a familiar pro-
gramming interface while ensuring state convergence, low latency, and high availability. However, RDTs are
still designed exclusively by experts using ad-hoc solutions that are error-prone and result in brittle systems.
Recent works statically detect conflicting operations on existing data types and coordinate those at runtime to
guarantee convergence and preserve application invariants. However, these approaches are too conservative,
imposing coordination on a large number of operations. In this work, we propose a principled approach to
design and implement efficient RDTs taking into account application invariants. Developers extend sequential
data types with a distributed specification, which together form an RDT. We statically analyze the specification
to detect conflicts and unravel their cause. This information is then used at runtime to serialize concurrent
operations safely and efficiently. Our approach derives a correct RDT from any sequential data type without
changes to the data type’s implementation and with minimal coordination. We implement our approach in
Scala and develop an extensive portfolio of RDTs. The evaluation shows that our approach provides perfor-
mance similar to conflict-free replicated data types for commutative operations, and considerably improves
the performance of non-commutative operations, compared to existing solutions.

CCS Concepts: • Computing methodologies→ Distributed computing methodologies; • Software and its

engineering→Automated static analysis; • Theory of computation→Distributed algorithms; •Computer

systems organization→ Availability; Cloud computing.

Additional Key Words and Phrases: replication, data structures, eventual consistency

ACM Reference Format:

Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix. 2021. ECROs: Building Global Scale
Systems from Sequential Code. Proc. ACM Program. Lang. 5, OOPSLA, Article 107 (October 2021), 30 pages.
https://doi.org/10.1145/3485484

1 INTRODUCTION

Geo-replication is a popular technique employed by distributed applications to reduce user-observed
latencies as replicas are geographically closer to the clients. Developers of geo-distributed appli-
cations, however, face a difficult choice between availability and consistency [Brewer 2012, 2000;
Kleppmann 2015]. Ensuring strong consistency requires coordination to enforce a total order of
updates across all replicas. This increases latency, which translates into reduced performance,
and decreased (offline) availability. When adopting weaker consistency guarantees (e.g. eventual
consistency (EC) [Vogels 2009]), replicas can execute operations without coordination. Operations

Authors’ addresses: Kevin De Porre, kevin.de.porre@vub.be, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium, 1050;
Carla Ferreira, NOVA School of Science and Technology, Caparica, Portugal, carla.ferreira@fct.unl.pt; Nuno Preguiça, NOVA
School of Science and Technology, Caparica, Portugal, nuno.preguica@fct.unl.pt; Elisa Gonzalez Boix, egonzale@vub.be,
Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium, 1050.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/10-ART107
https://doi.org/10.1145/3485484

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-5469-1001
https://doi.org/10.1145/3485484
https://orcid.org/0000-0001-5469-1001
https://doi.org/10.1145/3485484

107:2 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix

are propagated in the background, leading to different execution orders at different replicas. This
improves performance at the cost of correctness, as it may introduce (temporary) state divergence
and violate application invariants [Bailis et al. 2014; Brewer 2000].

To ease the development of geo-distributed applications, much work has studied the concept of
a replicated data type (RDT) [Burckhardt et al. 2012; De Porre et al. 2019; Kaki et al. 2019; Shapiro
et al. 2011b]. The goal of an RDT is to expose the same interface as its sequential counterpart and
embed in its implementation mechanisms to enforce correctness. Unfortunately, designing new
RDTs that (1) guarantee state convergence and (2) preserve application invariants is currently
cumbersome and reserved to experts. Although there has been a lot of active research with respect
to RDTs [Almeida et al. 2015; Baquero et al. 2017; Burckhardt et al. 2012; De Porre et al. 2019;
Kermarrec et al. 2001; Shapiro et al. 2011b; Terry et al. 1995], there is no principled approach to turn
existing data types into efficient RDTs [Baquero et al. 2017; Kaki et al. 2018; Weidner et al. 2020].

Much work [Almeida et al. 2015; Baquero et al. 2017; Shapiro et al. 2011b] focuses primarily on
state convergence, relying on mathematical properties to guarantee convergence by design, e.g.
conflict-free replicated data types (CRDTs) rely on commutative operations [Shapiro et al. 2011b].
These approaches tend to be limited in scope (e.g. to a specific data type), and designing new RDTs
is hard, as the implementation must obey those mathematical properties [Weidner et al. 2020].
Bayou [Terry et al. 1995] and Cloud Types [Burckhardt et al. 2012] require programmers to devise
custom merge procedures that deal with conflicts. However, devising correct merge procedures
is a difficult task. Mergeable replicated data types [Kaki et al. 2019] automatically derive merge
procedures from invertible relational specifications that convert the RDT’s state to relations over
sets and back. However, the merge semantics can be hard to customize as they depend on the
set relations being used. De Porre et al. [2019]; Kermarrec et al. [2001] totally order sequential
operations based on semantic information. But finding such a serialization at runtime induces high
latencies and yields poor scalability.
With respect to invariant preservation, much work statically analyzes data types to detect

operations that violate application-level invariants. Balegas et al. [2018, 2015]; Gotsman et al.
[2016]; Kaki et al. [2018]; Li et al. [2012, 2018]; Sivaramakrishnan et al. [2015] start from an existing
RDT and extend them with invariants that are enforced by coordinating unsafe operations, or by
resorting to a stronger consistency model. However, those approaches do not aid with building
correct RDTs which is known to be difficult and error-prone [Baquero et al. 2017; Kaki et al. 2018;
Kleppmann and Beresford 2017]. Hamsaz [Houshmand and Lesani 2019] and Hampa [Li et al.
2020] derive coordination protocols from a data type’s specification. Overall, the aforementioned
approaches tend to be conservative, leading to unnecessary coordination (cf. Section 2.3). This
impacts the latency observed by users and reduces the scalability and availability of the system.

The ECRO Way. Our work rethinks the concept of a replicated data type to provide a principled
approach towards the design and implementation of efficient RDTs with respect for application
invariants. An RDT consists of a sequential data type and a distributed specification describing the
semantics of its operations. The resulting RDT adheres to the provided specification with minimal
coordination. This simplifies the adoption of RDTs as it is possible to convert any sequential
data type into an RDT without having to reason about conflicts and without restrictions on the
operations.
We introduce Explicitly Consistent Replicated Objects (ECROs): RDTs that are derived from

sequential data types, based on a distributed specification that declares the application semantics
by means of invariants over replicated state. ECROs statically detect conflicting operations and
identify solutions beforehand. This information is used at runtime to avoid conflicts by locally
(re-)ordering conflicting operations when possible, and coordinating operations only if correctness

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:3

add(5)
rA

rB

remove(5){ } { }

{ } { 5 }

A
1

A
2

add(5)

B
1

(a) Concurrent operations issued by rA and rB .

add(5)
rA

rB

remove(5)

add(5)

{ } { 5 }

{ } { 5 }

A
1

A
2

B
1

add(5)

B
1

(b) Operation B1 is propagated to replica rA.

add(5)
rA

rB

remove(5)

add(5)

{ }

{ } { 5 }

A
1

A
2

B
1

{ 5 }

add(5)

A
1

add(5)

B
1

reorder B
1
 after A

2

(c) Operation A1 is propagated to replica rB .

add(5)
rA

rB

remove(5)

add(5)

{ }

{ } { 5 }

A
1

A
2

B
1

{ 5 }

add(5)

A
1

remove(5)

A
2

add(5)

reorder B
1
 after A

2

add(5)

B
1

B
1

(d) Operation A2 is propagated to replica rB which

reorders operation B1 to ensure add-wins semantics.

Fig. 1. Reordering operations in a replicated Add-Wins Set ECRO.

cannot be guaranteed otherwise. For example, add(x) and remove(y) operations on a replicated
set do not commute when x = y. To ensure convergence, CRDTs propose special (ad-hoc) set
implementations that make the operations commutative. Other approaches such as Hamsaz would
coordinate adds and removes. In contrast, ECROs locally reorder concurrent adds and removes
such that replicas execute them in the same order. Note that add-wins set semantics can be achieved
by first applying remove operations and only then applying concurrent add operations. ECROs
statically derive this ordering information from the set’s invariants. Figure 1 shows the example of
an Add-Wins Set ECRO which initially is empty {}. In Fig. 1a, replica rA adds 5 to the set (operation
A1) and later removes it from the set (operation A2). Concurrently, replica rB also adds 5 to the set
(operation B1). Operation B1 is concurrent with operations A1 and A2. Then in Fig. 1b, operation B1

is propagated to replica rA which adds 5 to the set. Similarly, in Fig. 1c, operation A1 is propagated
to replica rB which adds 5 to the set. This operation leaves the state unchanged since 5 was already
in the set. When operation A2 is propagated to replica rB (cf. Fig. 1d), rB cannot immediately apply
A2 since removing 5 from the set would violate the desired add-wins semantics. Instead, rB reorders

the concurrent add(5) (operation B1) such that it is executed after remove(5) (operation A2) and
thus guarantees add-wins semantics.

The ECRO approach radically differs from existing approaches in three ways. First, correct RDTs
are derived from sequential data types and their accompanying specification. By decoupling the
data type’s implementation from its distributed semantics we improve the maintainability of RDTs.
For example, one can change the semantics of a replicated set (e.g. add-wins, remove-wins, or last-
writer-wins set) by attaching a different specification to the set. In contrast, related work requires
different, non-trivial implementations as described by Shapiro et al. [2011a]. Second, ECROs totally
order concurrent operations if they do not commute and thus guarantees convergence without
coordination. Similarly, unsafe operations may run concurrently if a safe reordering exists. In
contrast, existing approaches [Balegas et al. 2015; Houshmand and Lesani 2019; Li et al. 2012,
2018, 2020] impose coordination on all non-commutative operations and unsafe operations. Finally,
ECROs ignore causality between unrelated commutative operations while prior works always
execute operations in an order that is compatible with causal order. This increases the flexibility in
the execution of operations, while still enforcing relevant causal dependencies, allowing ECROs to

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

107:4 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix

implement semantics that cannot be achieved in other systems that totally order operations. For
example, add(5) and remove(6) operations are unrelated since they affect different elements. The
causal relation between those operations is thus irrelevant and we can execute these operations in
any order.
In summary, the contributions of this paper are:

• An algorithm to derive ECROs from a sequential data type and its distributed specification,
and proofs of state convergence [Shapiro et al. 2011b] and safety.
• Ordana, a static analysis tool combining a novel safety analysis with existing depen-
dency [Houshmand and Lesani 2019] and commutativity analyses [Balegas et al. 2015]
to detect and solve conflicts using a novel approach that reorders conflicting operations
locally in order to guarantee convergence and preserve invariants without coordination.
• A full-fledged Scala implementation of our approach that includes an extensive portfolio
of RDTs, covering a wide variety of existing RDTs (sets, maps, lists, etc.) as well as new
RDTs. We also build a replicated auction system from sequential data types only, and without
relying on ad-hoc solutions.
• A performance evaluation which shows that ECROs provide latency similar to CRDTs for
commutative operations, and significantly reduce the latency of non-commutative operations
and unsafe operations when compared to RedBlue [Li et al. 2012] and PoR [Li et al. 2018].

Availability. The complete portfolio of RDTs implemented with ECROs and the scripts to repro-
duce the performance evaluation are available in our software artifact at https://doi.org/10.5281/
zenodo.5510036.

2 BUILDING GEO-DISTRIBUTED APPLICATIONS, THE ECROWAY

We now present our novel approach to programming cloud computing applications running on
geo-distributed data centers by means of Explicitly Consistent Replicated Objects (ECROs). We
provide an overview of the ECRO approach, and show how it can be applied to implement replicated
sets and a replicated auction system, and discuss how it differs from state-of-the-art approaches.

2.1 Overview

Figure 2 depicts a high-level overview of the ECRO approach. To build an RDT, programmers
extend sequential data types with a distributed specification defining the data type’s semantics by
means of invariants over replicated state. Together, the sequential data type and its distributed
specification form an ECRO. The state of an ECRO is replicated across machines, each of which is

ECRO Data Type

Data type implementation

Translation
(compilation/interpretation)

Source Code Runtime Representation

Machine 1

Replicated Objects

Machine 2

Replicated Objects

Object’s State

ECRO Replication Algorithm

5 12 8 17

hb hb

co

Add-Wins Set Replica

Object’s State

ECRO Replication Algorithm

5 12 8 17

hb hb

co

Add-Wins Set Replica

Method Call

Propagation

SMT

Solver

Ordana

Analysis

Tool

trait ESet[V] extends ECRO{
// see listing 1
 val set: Set[V]
 def copy(…): …
 def add(…)= …
 def remove(…)= …
 def contains(…)= …}
case class AWSet[V]
(set: Set[V]) extends ESet[V]

object AWSet extends SetSpec{

// see listing 2
 inv = (_: OldState,
 res: NewState) =>
 contains(x, res)))
 }}}

Distributed Specification

 val set:Set[V] val set:Set[V]

Fig. 2. Overview of ECROs.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

https://doi.org/10.5281/zenodo.5510036
https://doi.org/10.5281/zenodo.5510036

ECROs: Building Global Scale Systems from Sequential Code 107:5

1 trait ESet[V] extends ECRO {

2 val set: Set[V]

3 def copy(set: Set[V]): ESet[V]

4 def add(x: V) = copy(set + x)

5 def remove(x: V) = copy(set - x)

6 def contains(x: V) = set.contains(x) }

Listing 1. Sequential set implementation.

1 case class AWSet[V](set: Set[V]) extends ESet[V]

2 case class RWSet[V](set: Set[V]) extends ESet[V]

3 object AWSet {

4 val contains: Relation = ... // see Appendix A.1 in [De Porre et al. 2021]

5 postcondition of add {

6 (old: OldState, res: NewState) =>

7 contains(x, res) /\ contains.copyExcept(old -> res, elem === x) }

8 postcondition of remove {

9 (old: OldState, res: NewState) =>

10 not (contains(x, res)) /\ contains.copyExcept(old -> res, elem === x) }

11 invariant on add {

12 (_: OldState, res: NewState) => contains(x, res)) } }

13 object RWSet {

14 // contains & postconditions same as AWSet

15 invariant on remove {

16 (_: OldState, res: NewState) => not (contains(x, res)))) } }

Listing 2. Add-Wins and Remove-Wins Set ECROs.

said to hold a replica. Programmers interact with ECROs by calling methods on a replica. Method
calls are propagated between replicas using a broadcasting mechanism that guarantees at-least-
once causal delivery. Under these assumptions, the ECRO replication algorithm guarantees safety
and strong convergence. Safety is the property that the replicated state respects the application’s
invariants. Strong convergence [Shapiro et al. 2011b] is the property that correct replicas that
processed the same calls (possibly in a different order) are in equivalent states. Key to guaranteeing
these properties is our analysis tool, called Ordana, that statically analyzes distributed specifications
to detect conflicting operations and find solutions beforehand. At runtime, the ECRO replicas use the
information inferred by Ordana to serialize calls efficiently (i.e. with minimal coordination) while
upholding safety and strong convergence. To this end, every replica keeps a tentative serialization
of the calls which may be affected by concurrent calls. When calls stabilize across all replicas, they
are committed, i.e. they are applied in order on the state before being garbage collected.

2.2 Building Replicated Sets

We now illustrate our approach by means of a set RDT which can be found in many geo-distributed
applications. A set RDT differs from a sequential set as mutiple users may add and remove the same
element concurrently. When these updates have been received by all replicas, the element must be
present in all replicas (add-wins semantics) or absent from all replicas (remove-wins semantics).
Hence, a sequential data type may have several replicated counterparts, each exhibiting different
semantics when facing concurrent operations.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

107:6 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix

ECROs let programmers turn any sequential data type into an RDT by defining the desired
semantics in the data type’s distributed specification. The specification describes the operations that
modify the internal state by means of four components: a context, a precondition, a postcondition,
and an invariant. Each component (cf. Section 3.1) is a function that is parametrized by the data
type’s state(s) and returns a first-order logic formula used by Ordana to analyze the operations.
Listing 2 shows part of the implementation of the add-wins AWSet and remove-wins RWSet ECROs
in Scala1. Both sets extend the ESet trait (shown in Listing 1) which wraps Scala’s built-in immutable
set and offers the typical set operations. The sets’ distributed specifications use an embedded domain
specific language (DSL) that we built for programming with first-order logic (cf. Appendix A in
[De Porre et al. 2021]). By convention, the specification is defined in the class’ companion object.
The postconditions for add(x) and remove(x) state that after adding/removing x, the element is
present/absent from the resulting state res, and that all other elements are unchanged (lines 7
and 10). The AWSet contains an invariant on the add(x) operation to force element x to be present
in the resulting state res and thus guarantees add-wins semantics (lines 11-12). Similarly, the
RWSet contains an invariant on the remove(x) operation to force element x to be absent from the
resulting state and thus guarantees remove-wins semantics (lines 15-16).
This example demonstrates the flexibility of ECROs: to switch between add-wins and remove-

wins semantics, only the invariant defined in the distributed specification was changed (one line
of code). In contrast, state-of-the-art RDT solutions like CRDTs require two different data type
implementations each engineered to yield the desired semantics (cf. Section 6.2.1). Other works,
like RedBlue consistency, do not require changes to the data type but would synchronize all add
and remove operations due to the possibility of an add-remove conflict. As we show in Section 4,
Ordana finds a solution to add-remove conflicts that does not require coordination.

2.3 Building a Geo-Distributed Auction System

We now show how to use the ECRO approach to build a custom RDT for which no ready-made
RDT exists. To this end, we develop a geo-distributed eBay-like auction system akin to the RUBiS
system [Cecchet and Marguerite 2009], where users open auctions, bid on auctions, and close
auctions. RUBiS requires usernames to be unique and each bid must be linked to one existing user.
In an attempt to develop RUBiS, one may compose a set RDT of users with a map RDT from

auction IDs to auctions where an auction consists of a set RDT of bids and an enable-once flag RDT
indicating whether the auction is open or closed. However, state-of-the-art RDT solutions (CRDTs,
Cloud Types, etc.) require programmers to manually uphold application invariants. For example,
two users may concurrently register under the same username, violating one of RUBiS’ invariants.
It is also not clear how to ensure that each bid is linked to one existing user (i.e. referential integrity)
as this would require an atomic update across RDTs.

We now discuss how to implement a replicated RUBiS system starting from a sequential imple-
mentation, using ECROs2. The sequential implementation keeps a set of users and a map from
auction IDs to auctions containing a set of bids, a status (open or closed), and a winner. When a
user bids on an auction, it is added to the set of bids. Bids may only be placed on open auctions.
Listing 3 shows the distributed specification of the placeBid and closeAuction methods. The
precondition of placeBid (line 8 to 10) requires the auction to be open, the user to exist, and the
bid to be bigger than zero. The postcondition of placeBid (line 11 to 14) extends the state with the
new bid and copies all bids from the old state to the new state. The postcondition of closeAuction

1The syntax is simplified for presentation purposes. The complete implementation of the sets is provided in Appendix A.1
in [De Porre et al. 2021].
2The complete implementation of RUBiS is provided in Appendix A.2 in [De Porre et al. 2021].

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:7

1 case class Rubis(users: Set[User], auctions: Map[AID, Auction]) extends ECRO {

2 def placeBid(auctionId: AID, userId: User, price: Int): Rubis = ...

3 def closeAuction(auctionId: AID): Rubis = ...

4 }

5 object Rubis {

6 // for the definition of the relations, see Appendix A.2 in [De Porre et al. 2021]

7 val auction: Relation = ...; val user: Relation = ...; val bid: Relation = ...

8 precondition of placeBid {

9 (state: CurrentState) =>

10 auction(auctionId, Open, state) /\ user(userId, state) /\ (price >> 0) }

11 postcondition of placeBid {

12 (old: OldState, res: NewState) =>

13 old + bid(auctionId, userId, price, res) /\ bid.copy(old -> res)

14 }

15 postcondition of closeAuction {

16 (old: OldState, res: NewState) =>

17 old + auction(auctionId, Closed, res) /\ not(auction(auctionId, Open, res)) /\

18 auction.copyExcept(old -> res, id === auctionId)

19 }

20 }

Listing 3. Distributed specification of an auction system.

(line 15 to 19) puts the auction’s status on closed, states that it can no longer be open, and copies
all other auctions from the old state to the new one.

By statically analyzing the distributed specification, Ordana detects operations that may violate
application invariants. For example, using the precondition of placeBid, Ordana detects that
concurrent placeBid and closeAuction calls may lead to a bid being placed on a closed auction
if a replica applies closeAuction before placeBid. ECROs solve this conflict by imposing an
ordering on the operations (cf. Section 5). In contrast, existing approaches (RedBlue, PoR, Hamsaz,
etc.) coordinate all calls to these operations because of this potential conflict. Clearly, they are
too conservative since only concurrent calls to placeBid and closeAuction that modify the same

auction are conflicting, yet no calls to placeBid and closeAuction are allowed to run concurrently.

2.4 The ECRO Approach

Based on the observation that many conflicts are due to a łbadž ordering of concurrent operations,
ECROs aim to solve those conflicts by reordering the operations, rather than coordinating them.
We briefly categorize conflicts that occur in RDTs and explain how ECROs cope with them.

A first category of conflicts arises when replicas execute non-commutative operations concur-
rently, which are then exchanged and applied in different orders at different replicas, yielding
diverged states. To ensure state convergence, ECROs deterministically order concurrent non-
commutative operations at all replicas. In contrast, existing approaches [Houshmand and Lesani
2019; Kaki et al. 2018; Li et al. 2012, 2018, 2020; Sivaramakrishnan et al. 2015] coordinate these
operations unnecessarily.
A second category of conflicts arises when some operation leads to a state transition, which

makes concurrent operations unavailable in the new state (e.g. closeAuction closes an auction and
may render concurrent placeBid operations unavailable). ECROs solve those conflicts by safely
reordering unavailable operations before transitioning to the new state (e.g. reorder placeBid
before closeAuction), whereas existing approaches coordinate those operations.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

107:8 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix

A third category of conflicts involves numeric invariants. For example, a banking application
may implement the account balance as a non-negative counter (aka a bounded counter). However,
concurrent withdrawals may overdraw the account and reordering the withdrawals does not solve
this problem. For such conflicts, ECROs coordinate the problematic operations, and so does related
work.

A final category of conflicts are due to replicas executing mutually exclusive operations concur-
rently. For example, if usernames must be unique then the registerUser(username) operation
must take a lock on username to avoid that someone else registers the same username concurrently.
These conflicts break invariants and thus require coordination between the operations. Like most
approaches, ECROs coordinate mutually exclusive operations. Some applications may however
allow temporary invariant violations to avoid coordination, and instead, repair the invariant after
the facts [Guerraoui et al. 2016].

3 DERIVING SAFE SERIALIZATIONS FROM DISTRIBUTED SPECIFICATIONS

We previously explained that ECRO replicas compute a serialization of the method calls that respects
application invariants and guarantees strong convergence. Key to efficiently enabling this is a static
analysis that answers four questions:

(1) Which sequential method calls commute?
(2) Which concurrent method calls commute?
(3) When are concurrent method calls safe/unsafe?
(4) If two concurrent method calls are unsafe, does a safe ordering of the calls exist? If yes, which

order?

To answer these questions, we developed Ordana: a static analysis tool that implements three
analyses on distributed specifications. First, a dependency analysis (based on Houshmand and
Lesani [2019]) detects dependencies between sequential method calls3. Second, a commutativity
analysis (based on Balegas et al. [2015]) detects commutativity of concurrent calls. The dependency
analysis and commutativity analysis are combined to detect commutativity of sequential calls.
Finally, a novel safety analysis detects conflicts and finds solutions by reordering calls locally.

Before detailing the analyses, we define the components of an ECRO’s distributed specification.
To this end, we use RUBiS (cf. Section 2.3) as running example.

3.1 The ECRO Distributed Specification

Every ECRO data type consists of two parts: the data type’s implementation and a distributed
specification. The implementation encapsulates replicated state (e.g. class fields) and exposes a
number of methods, some of which mutate the replicated state4. The distributed specification
describes four aspects of every call to a mutating methodm:

Context ctx(m(a),σ) Predicate that is known to be true when the method is first applied (with
arguments a) on the state σ of the origin replica, but need not necessarily be true when applied at
remote replicas. For example, in RUBiS, users can only close auctions that are open. Therefore, if
closeAuction(auction1) is generated in state σ , than auction1 was open in σ (cf. Appendix
A.2 in [De Porre et al. 2021]). However, this does not require auction1 to still be open when
the call is applied at remote replicas, as this would forbid replicas from closing auction1

concurrently.

3Two method calls are sequential if one happened before the other (i.e. one was observed and only then was the other
executed) [Lamport 1978]. If neither call happened before the other, we say that the calls are concurrent.
4Our implementation uses immutable collections. Methods return a modified copy of the state that replaces the old state.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:9

Precondition pre(m(a),σ) Predicate that checks ifm can be called with arguments a on state σ .
Unlike the context, the precondition must be true before applying the call at any replica.

Postcondition post(m(a),σi ,σj) Predicate describing the effects of applyingm with arguments a
on state σi which results in state σj . The predicate is true iff σj contains the effects of applying

m(a) on σi . For the sake of clarity, we may denote this as a state transition σi
m(a)
−−−−→ σj .

Invariant inv(m(a),σi ,σj) Predicate describing the behavior that is expected from (concurrent)
calls to methodm on state σi . The predicate is true iff the result state σj respects the invariants
that are expected from applyingm with arguments a on state σi . For example, we may want bids
on an auction to get through even if the auction is closed concurrently. This can be expressed
as follows:

inv(bid(user ,auction,amount),σi ,σj) =
{

true, if user’s bid ∈ σj
false, otherwise

In the remainder of this section we explain how these four components are used by the various
analyses to answer the aforementioned questions.

3.2 Dependency Analysis

This section details how to detect dependencies between method calls. We borrow the notion of
dependency from Houshmand and Lesani [2019] and tailor it to meet ECROs’ needs. Recall that
users invoke methods on a replica and that method calls are propagated to all replicas. Method
calls are allowed to execute at a replica only if their precondition holds.

Definition 3.1 (Correct call). A call c is correct in a given state σ iff its precondition holds in that
state. Formally, ∀c,σ � correct(c,σ) ⇐⇒ pre(c,σ).

Definition 3.2 (Enabled call). A call c is enabled by a given state σ iff the context of c holds in
σ and c is correct in σ . Formally, ∀c,σ � enabled(c,σ) ⇐⇒ ctx(c,σ) ∧ correct(c,σ). Two calls
c1 and c2 are enabled by a state σ iff both are enabled by σ : ∀c1, c2,σ � enabled(c1, c2,σ) ⇐⇒
enabled(c1,σ) ∧ enabled(c2,σ).

Sequential calls may exhibit dependencies. Intuitively, a call c2 depends on a call c1 that happened
before it if c2 cannot execute before c1.

Definition 3.3 (Independent and dependent calls). Let c1 be a call that is enabled by state σ0, σ1
the state that results from executing c1 on σ0, and c2 a call that is enabled by σ1. We say that
c2 is independent of c1 iff c2 is correct in σ0. Otherwise, c2 depends on c1, written as dep(c2, c1).
Formally, ∀c1, c2 � dep(c2, c1) ⇐⇒ ∃σ0,σ1 � enabled(c1,σ0) ∧ post(c1,σ0,σ1) ∧ enabled(c2,σ1) ∧

¬correct(c2,σ0).

Ordana’s dependency analysis detects potential dependencies between pairs of methods and
determines under which conditions these dependencies occur. Let ⟨m1,m2⟩ be the method pair we
want to analyze. To determine whetherm2 could depend onm1, the analysis checks the satisfiability
of the following formula using an SMT solver:

∃a1,a2 � c1 =m1(a1) ∧ c2 =m2(a2) ∧ dep(c2, c1)

If the formula is unsatisfiable, this constitutes a proof that no call tom2 exists that is dependent
on a call to m1. If it is satisfiable, a counter example exists in which a call to m2 depends on
a call to m1. Ordana then restarts the analysis with equality relations between the methods’
arguments to determine the root cause of this dependency. Although our approach cannot unravel

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

107:10 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix

the cause of all dependencies, it works well in practice since dependencies often occur due to calls
referring to an argument introduced by a previous call. For example, bid(auction2,20) depends
on open(auction1) only when auction2 = auction1.
The dependency analysis returns a function dep :: C × C→ B that takes two calls and returns

true if the first call depends on the second, false otherwise.

3.3 Concurrent Commutativity Analysis

Many RDTs leverage commutativity to ensure state convergence under concurrent method calls,
without coordination. This led researchers to design static analyses capable of detecting methods
that commute when executed concurrently, based on some specification [Balegas et al. 2015;
Dimitrov et al. 2014; Gotsman et al. 2016; Kulkarni et al. 2011; Li et al. 2012].
However, commutativity is a property of method calls, not of concurrency. ECROs leverage

commutativity for both concurrent and sequential calls. In this section, we focus on commutativity
of concurrent calls, Section 3.4 elaborates on commutativity of sequential calls.

Definition 3.4 (Concurrent commutativity). Let σ0 be some initial state, and c1 and c2 two con-

current method calls enabled by σ0. We say that c1 and c2 concurrent commute, written as c1
c
⇌ c2,

iff applying the calls in either order leads to equivalent states. Formally, ∀c1, c2 � c1
c
⇌ c2 ⇐⇒

∀σ0 � enabled(c1, c2,σ0) ∧ ∀σ1,σ2,σ12,σ21 � post(c1,σ0,σ1) ∧ post(c2,σ0,σ2) ∧ post(c2,σ1,σ12) ∧

post(c1,σ2,σ21) =⇒ correct(c2,σ1) ∧ correct(c1,σ2) ∧ σ12 ≡ σ21.

To detect non-commutative method calls, Ordana analyzes all method pairs. For every method
pair ⟨m1,m2⟩, the analysis checks whether two concurrent calls to these methods exist that do not
commute. To this end, it checks the satisfiability of the following formula using an SMT solver:

∃a1,a2 � c1 =m1(a1) ∧ c2 =m2(a2) ∧

∃σ0 � enabled(c1, c2,σ0) ∧

∃σ1 � post(c1,σ0,σ1) ∧ ∃σ2 � post(c2,σ0,σ2) ∧

∃σ12 � post(c2,σ1,σ12) ∧ ∃σ21 � post(c1,σ2,σ21) ∧

¬(correct(c2,σ1) ∧ correct(c1,σ2) ∧ σ12 ≡ σ21)

If the above formula is unsatisfiable, this constitutes a proof that any two concurrent calls tom1

andm2, that are enabled by some initial state σ0, are correct and commute. On the other hand, if it
is satisfiable, concurrent calls tom1 andm2 exist that are not correct (i.e. cannot be applied one after
the other) or do not commute. Ordana then restarts the analysis with equality relations between
the calls’ arguments to determine when this occurs. For example, concurrent bid(auction1,10)
and close(auction2) calls always commute except when auction1 = auction2. The output of
the analysis is a function commutative :: C × C → B that takes two calls and returns true if the
calls concurrent commute, false otherwise.

Fig. 3. State equivalence.

Note that we did not yet define state equivalence because it can
be implemented in several ways. We may introduce a predicate that
tests for state equivalence. However, this requires programmers to
carefully define state equivalence and thus complicates the develop-
ment of ECROs. Instead, Ordana derives state equivalence from the
methods’ postconditions. The states that result from applying the
calls, in different orders, are equivalent iff they preserve the same
effects: σ12 ≡ σ21 ⇐⇒ post(c2,σ1,σ21) ∧ post(c1,σ2,σ12). This is

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:11

shown in Fig. 3, horizontal lines stand for sequential executions. The calls concurrent commute iff
swapping their order leads to the same states (diagonal lines).

3.4 Deriving Sequential Commutativity

Sequential method calls differ from concurrent method calls because they can contain additional
dependencies. If a call c2 depends on a call c1, then it follows that c1 happened before c2 (denoted
c1 ≺ c2). However, the inverse does not hold: causal relations do not necessarily imply dependencies
(e.g. opening and closing different auctions). ECROs leverage this principle and allow sequential
calls to be executed out of order if they commute and are independent; we say that these calls
sequentially commute.

Definition 3.5 (Sequential commutativity). Let c1 and c2 be correct sequential calls such that

c1 ≺ c2. We say that c2 sequentially commutes with c1, written as c2
s
⇌ c1, iff c2 does not depend

on c1 and they concurrent commute, i.e. ∀c1, c2 � c2
s
⇌ c1 ⇐⇒ ¬dep(c2, c1) ∧ c2

c
⇌ c1.

Ordana derives sequential commutativity based on the dependency analysis and the concurrent
commutativity analysis presented in Sections 3.2 and 3.3. Since dependencies between calls are
asymmetric, sequential commutativity is also an asymmetrical relation. The output of Ordana
is a function seqCommutative :: C × C → B that takes two calls and returns true if the first call
sequentially commutes with the second call, false otherwise.

3.5 Safety Analysis

ECROs guarantee that nomethod call leaves the replicas in a conflicting state, i.e. a state that violates
the invariants defined by the data type’s distributed specification. To this end, Ordana implements
a safety analysis that detects pairs of concurrent methods that could infringe invariants (similar
to Balegas et al. [2015]; Gotsman et al. [2016]; Houshmand and Lesani [2019]) and introduces a
novel technique to find solutions to these conflicts without imposing coordination. Before delving
into the analysis, we define safety.

Definition 3.6 (Safe calls). Two concurrent method calls are safe iff applying them in any order
preserves the methods’ preconditions and invariants, otherwise, they are unsafe.

Definition 3.7 (Safe methods). Two methods are safe iff all pairs of correct concurrent calls to
those methods are safe.

Definition 3.8 (Safe serialization). A serialization of correct calls is safe iff all pairs of concurrent
calls are safe or the ordering of concurrent calls preserves their invariants.

To identify unsafe methods, Ordana analyzes the invariants of all method pairs, and checks if
some serialization of concurrent calls to these methods could violate the invariants. Given a method
pair ⟨m1,m2⟩, the safety analysis checks the satisfiability of the following formula:

∃a1,a2 � c1 =m1(a1) ∧ c2 =m2(a2) ∧

∃σ0 � enabled(c1, c2,σ0) ∧

∃σ1 � post(c1,σ0,σ1) ∧ ∃σres � post(c2,σ1,σres) ∧

¬(pre(c2,σ1) ∧ inv(c1,σ0,σres) ∧ inv(c2,σ1,σres))

If the above formula is unsatisfiable, any two calls, c1 to methodm1 and c2 to methodm2, that are
enabled by some initial state σ0 preserve the calls’ preconditions and invariants when applied one
after the other (c1 < c2) on σ0. This constitutes a proof that c1 followed by c2 is a safe serialization. On
the other hand, if the formula is satisfiable, applying c1 and c2 in order on σ0 violates a precondition

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

107:12 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix

or an invariant. Ordana then restarts the analysis with equality relations between the arguments to
determine the cause of the conflict.
The output of the described safety analysis are two functions: restrictions :: C → R and

resolution :: C×C→ {<, >,⊤,⊥}. The former, restrictions, takes a call c and returns a set R of
restrictions. These are all the methods that require coordination because they may violate invariants
when executed concurrently with c and no safe serialization exists. Restrictions correspond to
the locks that the ECRO algorithm takes before executing call c and include the argument of c
that causes the conflict (if detected). Consider again the RUBiS application, concurrent calls to
registerUser may violate the invariant that usernames must be unique. Therefore, the analysis
places a restriction on registerUser that locks the username passed to the call.

The latter function, resolution, takes two concurrent calls and returns ⊤ if the calls are safe. If
the calls (say c1 and c2) are unsafe but a safe serialization exists it will return an ordering of the
calls (c1 < c2 or c1 > c2) that is safe. Otherwise, it returns ⊥ since the calls require coordination, i.e.
restrictions(c1) , ∅ ∨ restrictions(c2) , ∅.

4 EXPLICITLY CONSISTENT REPLICATED OBJECTS

We now formally define ECROs and explain how their replication algorithm uses the information
inferred by Ordana to serialize method calls safely while minimizing coordination.

We represent an ECRO as a tuple ⟨Σ,σ0, M, G, t, F⟩, where Σ is the set of possible states, σ0 is the
initial state, M is the set of methods, G is the object’s execution graph, t is the current topological
order of graph G, and F is the set of functions produced by Ordana (cf. Section 3). The execution
graph G = ⟨C, E⟩ is a labeled directed acyclic graph (DAG) where vertices (C) are method calls, and
edges (E) express relations between calls. The algorithm operates on this graph. In a nutshell, it
considers three types of edges:

happened-before edges (hb-edges) enforce causality. For every pair of causally related calls a
corresponding hb-edge is added to the graph if they do not commute. Causal relations between
sequentially commutative calls are ignored since their order does not affect the outcome.

conflict-order edges (co-edges) enforce the invariants defined in the distributed specification
(i.e. safety). For every two unsafe concurrent calls, the algorithm checks if a safe serialization of
the calls exists. If that is the case, the corresponding co-edge is added between the calls. Consider
again the Add-Wins Set from Section 2.2. The algorithm adds a co-edge from remove(x) to
concurrent add(x) calls sinceOrdana proves that applying remove(x) before add(x) guarantees
add-wins semantics.

arbitration order edges (ao-edges) enforce state convergence. In some cases, concurrent calls
are safe but do not commute. All replicas must execute those calls in the same order to guarantee
strong convergence. Replicas order these calls deterministically by adding an ao-edge between
them, whose direction is based on the globally unique identifiers of the calls.

By combining these three types of edges, any topological ordering of graph G is a safe serialization
that preserves dependencies and guarantees strong convergence. Several topological orders may
exist because the algorithm does not add edges between safe calls that commute. As we prove
in Section 4.2, different topological orderings only interchange commutative calls and thus lead to
equivalent states.

4.1 Replication Algorithm

Algorithm 1 presents an overview of the replication algorithm that is run by each ECRO replica.
When the user invokes a method on a replica, it is handled by the replica’s execute_local function,
and later integrated at remote replicas using the execute_remote function.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:13

Algorithm 1 ECRO replication algorithm main functions

1: ⟨Σ,σ0, M, G, t, F⟩, with G = ⟨C,E⟩ ▷ ECRO’s internal state

2: σ : Σ ▷ object current state σ

3: function execute_local(m(a)) ▷ execution of methodm with parameters a, at origin replica

4: c← ⟨m(a), uniqueId(), timestamp() ⟩ ▷ tag method call with unique id and logical timestamp

5: if restrictions(c) , ∅ then ▷ call c may be unsafe

6: acquire_locks(restrictions(c))

7: C← C ∪ { c } ▷ add call c to the graph vertices

8: for v ∈ C ∧ v , c do ▷ determine relevant hb-edges for call c

9: if not seqCommutative(c, v) then ▷ call c is sequential non-commutative with call v

10: E← E ∪ {⟨v, hb, c⟩} ▷ add hb-edge between call v and call c

11: t← t + c ▷ local call c has no impact on topological order

12: σ ← apply(σ , c) ▷ execute call c on current state σ

13: commitStableCalls() ▷ commits previous calls if there is a single replica

14: propagate(c) ▷ propagation of call c to remote replicas (at-least-once causal delivery)

15: if hasLocks() then
16: wait_ack() ▷ if needed, wait for ack

17: release_locks(restrictions(c))

18: function execute_remote(c) ▷ execution of call c at remote replica

19: C← C ∪ { c } ▷ add call c to the graph vertices

20: for v ∈ C ∧ v , c do ▷ determine relevant edges (relations) for call c

21: if v ≺ c ∧ not seqCommutative(c, v) then ▷ call c is sequential non-commutative with call v

22: E← E ∪ { ⟨v, hb, c⟩} ▷ add hb-edge between call v and call c

23: else if v ∥ c then ▷ call v is concurrent with call c

24: if resolution(c, v) = < then ▷ conflict solved by ordering c before v

25: E← E ∪ { ⟨c, co, v⟩} ▷ add co-edge between call c and call v

26: else if resolution(c, v) = > then ▷ conflict solved by ordering v before c

27: E← E ∪ { ⟨v, co, c⟩} ▷ add co-edge between call v and call c

28: else if resolution(c, v) = ⊤ ∧ ▷ calls c and v are non-conflicting and non-commutative

29: not commutative(c, v) then
30: if Id(c) < Id(v) then ▷ arbitrate a deterministic order based on ids

31: E← E ∪ { ⟨v, ao, c⟩} ▷ add ao-edge between call c and call v

32: else E← E ∪ { ⟨v, ao, c⟩} ▷ add ao-edge between call v and call c

33: t← dynamicTopologicalSort(G) ▷ apply algorithm to subgraph of concurrent calls to c

34: σ ← apply(σ0, t) ▷ execute calls on initial state σ0

35: commitStableCalls() ▷ commit prefix of causally stable calls

Local Method Calls. Upon receiving a local request to execute method m with arguments a,
the execute_local function creates a new call c containing the method and its argumentsm(a),
a globally unique identifier5, and a logical timestamp6. If the call is unsafe, it is coordinated by
acquiring the necessary locks (line 6). The restrictions function (returned by the safety analysis)
leverages the call’s arguments to ensure the right lock granularity. Since c is a new local request,
all calls already contained by the replica’s execution graph happened before c . Thus, call c is added
to the graph and an hb-edge is added between c and every call that does not sequentially commute

5We use Lamport clocks [Lamport 1978] to generate globally unique identifiers as they define a total order of calls.
6Any logical timestamp that can track causality can be used.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

107:14 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix

Algorithm 2 Committing causally stable calls

1: ⟨Σ,σ0, M, G, t, F⟩, with G = ⟨C,E⟩ ▷ ECRO’s internal state

2: function commitStableCalls

3: stablePrefix← true
4: i← 0 ▷ number of causally stable calls

5: while i < |t | ∧ stablePrefix do ▷ iterate over a prefix of stable calls

6: call← t[i]
7: stablePrefix← isStable(call) ▷ determine if the call is stable based on its vector clock

8: if stablePrefix then
9: σ0 ← apply(σ0, call) ▷ update initial state

10: C← C \ { call }
11: E← (E \ in(call)) \ out(call) ▷ remove incoming and outgoing edges

12: i← i + 1
13: t← drop(i, t) ▷ remove the prefix of stable calls from the topological order

with c (line 10); these edges do not affect the topological ordering. Next, local call c is appended
to the end of the current topological order (line 11), c is applied on the current state σ (line 12),
and causally stable calls are committed to keep the graph small (line 13) as will be explained later.
Lastly, the call is propagated to the other replicas and acquired locks are released after receiving
confirmation from remote replicas that the call has been applied (line 17).

Integrating Remote Method Calls. Upon receiving a (safe or unsafe) remote call c , the
execute_remote function adds c to the vertices (line 19) and adds the necessary edges to the
graph (lines 20-32). For calls that happened before c the approach is the same as the one described
before for local calls. For concurrent calls (line 23) we distinguish two cases. In the first case, calls c
and v are unsafe, but a safe serialization exists. The algorithm then uses the resolution function
returned by the safety analysis to determine the direction of the co-edge (i.e. how to order calls,
lines 24-27). In the second case, calls c and v are safe but do not commute (line 28). To ensure
convergence, the function uses the calls’ identifiers to deterministically add an ao-edge between
c and v . A dynamic topological sort is performed on the execution graph to recompute only the
subgraph that changed (line 33); these changes are limited to calls that are concurrent to c . Line
34 updates the state by applying, in order, the calls from the topological order on the initial state.
Finally, on line 35, causally stable calls are committed to keep the execution graph small. Although
not shown in the algorithm, if c is an unsafe call an acknowledgment is sent to the origin replica.

Optimizations. In order to keep the algorithm efficient and avoid replying the entire operation
history for every incoming call, two optimizations were applied to the ECRO algorithm. First,
causally stable calls are committed to keep the graph small, as shown in Algorithm 2. Second,
snapshots of intermediate states are kept to minimize the calls that have to be recomputed. We
now briefly explain how these optimizations work.

A call c is causally stable [Baquero et al. 2017] at a replica r if r knows that all other replicas also
observed c . Causal stability can be derived from the vector clocks carried by calls when they are
propagated to replicas; a call c with vector clock vc is causally stable at replica r , if vc happened
before or is equal to the latest clock received from every other replica7. Based on this observation,
r knows that no more calls that are concurrent to c can arrive. Replicas can thus - locally and
without requiring coordination - commit a prefix of causally stable calls as their positions are

7Replicas can periodically send a no-op to ensure that calls stabilize even if some replicas do not generate calls.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:15

known to be fixed within the serialization. This is described by the commitStableCalls function
in Algorithm 2. The initial state σ0 is updated by applying the longest prefix of stable calls (line 9),
whereafter, those calls and their incoming and outgoing edges can safely be removed from the
graph (line 10 and 11). However, even if replicas commit causally stable calls, they need to replay
the entire serialization of calls to compute the current state (line 34 in Algorithm 1). To address this
issue, replicas take snapshots of intermediate states which enables efficient rollbacks to prior states.
For example, if the topological sort (line 33) results in t = t1.t2 where t1 is unchanged and t2 is the
part of the serialization that changed, then the replicas can roll back to the snapshot of the state
after t1 such that only the calls in t2 need to be replayed8. Note that if there is no snapshot available
that corresponds to the state after t1, the algorithm needs to roll back to an older snapshot (ideally
the one that corresponds to the longest prefix of t1). In ECROs, programmers can configure the
łsnapshot intervalž, i.e. after how many calls a snapshot must be taken. This interval is a trade-off
between latency and memory. The more snapshots replicas take, the less calls they need to replay
but the more memory they use. The less snapshots replicas take, the less memory they consume
but the more calls need to be replayed. We argue that the snapshot interval should be smaller (i.e.
take more snapshots) if operations are costly and bigger if operations are fast.

Cycles. To keep the graph acyclic, we implement an efficient and deterministic approach that
detects and solves cycles. We briefly outline this approach and refer to Appendix B in [De Porre et al.
2021] for the complete specification. If a newly added edge c1 → c2 causes a cycle, at least one path
from c2 to c1 exists. The algorithm computes all paths from c2 to c1 and breaks them by removing
one ao-edge on each path. These edges can be removed without putting convergence at risk as they
impose an artificial ordering between non-commutative calls. Hence, we solved the cycle while
keeping all non-commutative calls ordered. Occasionally, the cycle is caused by a combination
of hb-edges and co-edges. These cannot be removed without violating convergence and safety.
Instead, the algorithm deterministically discards a call that breaks the cycle. Information about
discarded ao-edges and calls is propagated between replicas to ensure that all replicas eliminate the
same ao-edges and/or calls and thus still converge. Note that discarding the operation that causes a
cycle may cause an anomaly observed by a client. Future work could explore alternative ways to
discard operations.

Consistency Guarantees. ECROs guarantee Explicit Consistency [Balegas et al. 2015] which
strengthens eventual consistency with application-level invariants. To this end, Algorithm 1 ensures
that every replica applies a serialization of the calls that respects dependencies between calls, totally
orders non-commutative calls, and upholds application-level invariants.

4.2 Algorithm Correctness

We now prove that ECROs guarantee convergence and safety with respect to the distributed
specification of the data type. Because the replication algorithm does not order pairs of calls
that commute and are safe, several topological orders of the graph may exist. We show that all
topological orderings are safe (Theorem 4.4) and that convergence is guaranteed for replicas that
received the same method calls (Theorem 4.5).

Lemma 4.1. Two replicas of an ECRO that observed the same calls have the same execution graph:

∀r1 = ⟨Σ,σ0, M, G1, t1, F⟩, r2 = ⟨Σ,σ0, M, G2, t2, F⟩�

G1 = ⟨C1, E1⟩ ∧ G2 = ⟨C2, E2⟩ ∧ C1 = C2 =⇒ E1 = E2 =⇒ G1 = G2

8Note that dynamic topological sorting algorithms can return the index of the first change in the topological order such
that we do not have to compute it manually based on the old ordering, which would be costly.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

107:16 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix

Proof. By case analysis on the edges added to the graphs for each call. The complete proof is in
Appendix B.2 in [De Porre et al. 2021]. □

Definition 4.2 (Equivalent serializations). Two serializations t1 and t2 of a set of method calls C
are equivalent iff every pair of non-commutative calls appears in the same order in both t1 and t2:

∀t1, t2 � t1 ≡ t2 ⇐⇒ ∀c1, c2 ∈ C � ¬commutative(c1, c2) =⇒

(t1[c1]< t1[c2] ⇐⇒ t2[c1]< t2[c2]) ∧ (t1[c1]> t1[c2] ⇐⇒ t2[c1]> t2[c2])

where t[c] returns the position of call c in serialization t .

Definition 4.3 (Equivalent replicas). Two replicas r1 and r2 of an ECRO are equivalent iff they
have the same execution graphG (i.e. observed the same calls) and their topological orderings ofG
are equivalent: ∀r1= ⟨Σ,σ0, M, G1, t1, F⟩, r2 = ⟨Σ,σ0, M, G2, t2, F⟩ � r1 ≡ r2 ⇐⇒ G1 = G2 ∧ t1 ≡ t2.

Theorem 4.4. All topological orderings of an execution graph G of an ECRO replica are safe

serializations.

Proof. By induction on the length of the topological ordering.
Base case. In the base case no calls occurred, so the topological ordering is empty and trivially safe.
Induction step. Assume replica r1 has a topological order of dimension n that is safe. If a new call c
is executed at replica r1 two cases are possible: either c is a local or a remote call.

Case 1. If c is a local method call we distinguish two new cases. In the first case, the call is unsafe
and the analysis tells us which method calls are conflicting. Algorithm 1 uses this information to
coordinate the call such that no unsafe call can execute concurrently, thereby guaranteeing safety.
In the second case, we know from the analysis that c is safe with respect to all other possible calls.
Hence, we can execute c and the resulting topological order(s) are safe serializations.

Case 2. If call c was propagated by replica r2, then its execution was locally safe at replica r2. We
distinguish three cases. In the first, the call is unsafe and the analysis did not find a solution. The
originating replica r2 then coordinated the call such that no conflicting call can execute concurrently,
thereby, guaranteeing safety. In the second case, the call is unsafe but the analysis found a solution.
If a conflicting call occurs concurrently to c , all replicas add the same co-edge between those calls.
This co-edge guarantees safety since the analysis proved that this ordering preserves the invariants.
In the third case, the call is safe with regard to all possible correct concurrent calls and thus cannot
violate safety.

We showed that starting from an execution graph with a safe topological order of dimension
n and a new call c , Algorithm 1 builds an expanded graph whose topological order of dimension
n + 1 is also a safe serialization. □

Theorem 4.5. Two ECRO replicas that observed the same calls C converge to equivalent states.

Formally: ∀r1 = ⟨Σ,σ0, M, ⟨C1, E1⟩, t1, F⟩, r2 = ⟨Σ,σ0, M, ⟨C2, E2⟩, t2, F⟩ � C1 = C2 =⇒ r1 ≡ r2

Proof. Since both replicas observed the same calls, we know from Lemma 4.1 that they have the
same execution graph,G1 = G2. This graph is constructed by successive applications of Algorithm 1,
hence, sequential non-commutative calls are ordered by hb-edges and concurrent non-commutative
calls are ordered by co-edges and ao-edges. Any topological ordering of the graph thus maintains
the relative order of non-commutative calls. From Definitions 4.2 and 4.3 it follows that the replicas
converge to equivalent states. The complete proof is in Appendix B.2 in [De Porre et al. 2021]. □

5 IMPLEMENTATION

We now describe our prototype implementation of the ECRO approach in Scala. Ordana, our
analysis tool, consists of two parts, a parser and an analyzer. The parser is based on Indigo [Balegas

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:17

Table 1. Portfolio of ECRO data types and their description.

Data Type Description and distributed semantics

Counter Supports increments and decrements.
EW-Flag Flag that can be enabled and disabled. Guarantees enable-wins semantics in case

the flag is enabled and disabled concurrently.
DW-Flag Similar to EW-Flag but guarantees disable-wins semantics.
AW-Set Wrapper around Scala’s built-in immutable set. Provides add-wins semantics

similar to the OR-Set CRDT [Shapiro et al. 2011a].
RW-Set Similar to AW-Set but provides remove-wins semantics.
AW-Map Wrapper around Scala’s built-in immutable map. Values can be complex objects

and are updated by overriding the key with the new value. Provides add-wins
semantics when the same key is added and removed concurrently, and
last-writer-wins semantics for concurrent adds of the same key.

RW-Map Similar to AW-Map but provides remove-wins semantics when a key is added and
removed concurrently.

Stack Stack allowing push, pop, and top operations. Push operations execute
optimistically and are totally ordered. Pop operations are coordinated in order not
to pop more elements than there are on the stack.

Queue Wrapper around Scala’s built-in immutable queue. Enqueue operations run
optimistically and are totally ordered. Dequeue operations are coordinated to avoid
dequeueing more elements than there are in the queue.

List Provides operations to prepend, insert, and delete elements, and to map a function
over the list.

RUBiS eBay-like auction system similar to the RUBiS benchmark [Cecchet and Marguerite
2009].

et al. 2015] and translates the first-order logic formulas from an ECRO’s distributed specification to
Z3 formulas. The analyzer implements the analyses presented in Section 3, and executes them using
a Java binding for Z3. The results of Ordana are then passed to the ECRO replication algorithm.
The implementation of the replication algorithm uses a dynamic topological sort algo-

rithm [Pearce and Kelly 2006] provided by the JGraphT library9 and takes snapshots of intermediate
states to efficiently roll back concurrent calls when they are reordered. Snapshots are garbage
collected once their state is stable. We also remove calls from the replica’s execution graph once
they are causally stable [Baquero et al. 2017]. This is safe since no more concurrent calls can arrive,
i.e. the order of the call in the serialization is stable across all replicas. We integrated our ECRO
implementation in Squirrel [De Porre and Gonzalez Boix 2019], a distributed in-memory key-value
(DKV) store for Scala. Programmers can implement custom ECROs and store them in Squirrel
which automatically replicates them across all copies of the store and propagates method calls.

5.1 Portfolio of ECRO Data Types

We now present a portfolio of RDTs that we implemented with ECROs and integrated in Squirrel10.
Our portfolio covers existing RDTs (counters, flags, sets, maps, lists), new RDTs for which no prior
(C)RDT design exists as they require coordination (stacks and queues), and a geo-distributed RUBiS

9https://jgrapht.org/
10The complete portfolio of ECROs is included in our software artifact at https://doi.org/10.5281/zenodo.5410793.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

https://jgrapht.org/
https://doi.org/10.5281/zenodo.5410793

107:18 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix

!1: insert(e3, e4)

"init = [e1, e2, e3]

"res = [e1, e2, e3, e4]

R1

R2

!2: delete(e3)

!2: delete(e3) !1: insert(e3, e4)

"init = [e1, e2, e3, e4]

"res = [e1, e2, e4]

"init = [e1, e2, e3]

"res = [e1, e2]

"init = [e1, e2]

pre(!1, "init) = false

Fig. 4. Conflict that requires R2 to reorder the calls.

Table 2. Outcome of Ordana’s safety analysis for RUBiS.

µ(i) = lock(item), µ(u) = lock(user), and pB’ < cA when

auction = auction’.

sellItem sl

storeBuyNow sBN µ(i)
registerUser rU µ(u)
openAuction oA

placeBid pB

closeAuction cA pB′< cA

sl’ sBN’ rU’ oA’ pB’ cA’

application that is built from sequential data types (i.e. without having to devise ad-hoc RDTs).
Table 1 provides an overview of all the data types included in the portfolio, accompanied by a brief
description. Due to space constraints we only elaborate on the list and RUBiS data types; sets have
already been discussed in Section 2.2.

List. The list data type provides methods to prepend elements to the list, insert elements after
other elements in the list, delete elements from the list, and map functions over the list. We added
a precondition to insert to ensure that the element after which to insert (called the reference
element) exists. We also added an invariant to insert to ensure that the inserted element occurs
in the resulting list and is not overwritten by a concurrent map. All methods are allowed to run
optimistically, i.e. they do not require coordination. If two elements are inserted at the same position
concurrently, the algorithm totally orders them across all replicas as those calls do not commute.

Concurrent insertions and deletions may lead to conflicts. Figure 4 shows the case where replica
R1 inserts a new element e4 behind e3 while concurrently replica R2 deletes e3. After exchanging
the calls, R2 cannot insert e4 because e3 is no longer present in the list, thereby violating insert’s
precondition. R2 can solve this conflict by reordering the calls such that e4 is inserted before
deleting e3. As detected by Ordana, this reordering is safe and only needed when deleting the
reference element (e3 in the previous example) of one or more concurrent insertions. Similarly,
map operations are reordered before concurrent insertions in order not to modify newly inserted
elements (as this would violate the invariant of insert).

RUBiS. Our RUBiS data type is the eBay-like auction system introduced in Section 2.3. The RUBiS
ECRO provides methods for registering users, selling items, buying items, opening auctions, bidding
on auctions, and closing auctions. Users must be unique, the stock of an item may not go below
zero, and bids can only be placed on open auctions. Table 2 shows the result of the safety analysis.
The upper triangle of the matrix is omitted as the relations are symmetrical. Most method pairs
are safe (colored green). placeBid and closeAuction, however, do not commute and may lead to
conflicts when a bid is placed on an auction that is closed concurrently (colored orange). Ordana
found a solution to this conflict by ordering placeBid calls before concurrent closeAuction calls,
and can uphold the invariants without coordination. Finally, storeBuyNow and registerUser are
unsafe (colored red) because concurrent calls may lead to a negative stock or duplicate users. These
conflicts cannot be avoided by reordering the calls, hence, ECROs coordinate them. To buy an item
or register a user, the replica must first acquire a lock on the given item or user. This lock only

restricts buying/registering the same item/user concurrently.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:19

6 EVALUATION

We now evaluate our work to check whether the ECRO approach is suitable for building geo-
distributed applications. Throughout this evaluation we assess the practicality and performance of
our approach. We conduct several experiments to answer the following research questions:

RQ1. Do ECROs aid the development of RDTs compared to state-of-the-art approaches?
RQ2. Can the static analyses, described in Section 3 and included in Ordana, be used in practice?
RQ3. Does the ECRO algorithm scale?
RQ4. How do ECRO-enabled geo-distributed applications perform compared to other approaches?

6.1 Methodology

Performance experiments reported in this section were conducted on Amazon EC2 m5.xlarge

virtual machine instances. Each VM has 4 virtual CPUs and 16GiB of RAM. All benchmarks
are implemented using JMH [OpenJDK [n. d.]], a benchmarking library for the JVM that helps
avoiding common pitfalls, such as loop optimizations and dead code elimination [Ponge 2014]. Each
benchmark starts with a warmup phase, followed by the actual measurement phase consisting of
20 iterations. To avoid run-to-run variance we use the default setting of 5 JVM forks, which repeats
the benchmark 5 times in fresh JVMs. This yields a total of 100 samples per benchmark.

6.2 RQ1: Evaluating the Design of RDTs using ECROs

We now evaluate the impact of ECROs on the design and implementation of applications involving
RDTs. We first compare the implementation of replicated sets with ECROs against well-known
CRDT implementations [Shapiro et al. 2011a]. Then, we compare the RUBiS system (cf. Section 2.3)
with ECROs against existing solutions such as PoR [Li et al. 2018] and RedBlue [Li et al. 2012].

6.2.1 Replicated Sets. We now compare the design and implementation of sets implemented with
operation-based CRDTs and ECROs. Operation-based CRDTs split every operation in two phases:
a first phase that prepares a message to be broadcast to every replica including itself (prepare
method), and a downstream phase that applies such incoming messages (downstream method).
Listing 4 shows the implementation of an OR-Set CRDT in Scala, which ensures add-wins

semantics by associating a globally unique tag to every element it adds (lines 5-8). When some
replica removes an element, it tells all replicas to remove only the tags it observed for that element
(line 9). An element is part of the set if its set of tags is non-empty (line 3). Since messages
are delivered in causal order and replicas cannot remove the tags of elements that are added
concurrently, the OR-Set guarantees add-wins semantics.
Providing remove-wins set semantics requires a completely different CRDT implementation.

Listing 5 shows the implementation of a 2P-Set CRDT in Scala, which ensures remove-wins
semantics by keeping two grow-only sets: added and removed (line 1). Elements are added by
adding them to the added set and removed by adding them to the removed set (lines 4 and 6).
An element is considered in the set if it is in the added set and not in the removed set (line 2). A
consequence of this design is that a removed element can never be added again.

With ECROs, developers change the semantics of the set by modifying its specification instead
of its implementation. This enables (1) RDT implementations to be reused, and (2) RDTs can
exhibit different distributed semantics based on the application’s needs, without rethinking the
data type. As shown in Section 2.2, the add-wins and remove-wins set ECROs share the same
sequential implementation (cf. Listing 1) and only differ in their specification (cf. Listing 2): the
former associates an invariant to the add operation that guarantees add-wins semantics, while the
latter associates an invariant to the remove operation that guarantees remove-wins semantics.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

107:20 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix

1 case class Tag[ID](replica: ID, ctr: Int)

2 case class ORSet[V, ID](myID: ID, counter: Int, elements: Map[V, Set[Tag[ID]]]) {

3 def contains(e: V) = elements.getOrElse(e, Set.empty[Tag[ID]]).nonEmpty

4 def prepareAdd(e: V): (V, Tag[ID]) = (e, Tag(myID, counter + 1))

5 def addDownstream(tup: (V, Tag[ID])) = {

6 val (e, tag) = tup; val tags = elements.getOrElse(e, Set())

7 val newCounter = if (tag.replica == myID) tag.ctr else counter

8 ORSet(myID, newCounter, elements + (e -> (tags + tag))) }

9 def prepareRemove(e: V): (V, Set[Tag[ID]]) = (e, elements.getOrElse(e, Set()))

10 def removeDownstream(tup: (V, Set[Tag[ID]])) = {

11 val (e, tags) = tup; val observedTags = elements.getOrElse(e, Set())

12 ORSet(myID, counter, elements + (e -> observedTags.diff(tags)))

13 }

14 }

Listing 4. Implementation of an Observed-Removed Set (OR-Set) CRDT in Scala.

1 case class TwoPSet[V](added: Set[V] = Set(), removed: Set[V] = Set()) {

2 def contains(element: V) = added.contains(element) && !removed.contains(element)

3 def preAdd(element: V) = element

4 def addDownstream(element: V) = TwoPSet(added + element, removed)

5 def preRemove(element: V) = element

6 def remove(element: V) = TwoPSet(added, removed + element)

7 }

Listing 5. Implementation of a Two-Phase Set (2P-Set) CRDT in Scala.

6.2.2 RUBiS. We now compare the implementation of RUBiS with ECROs (cf. Section 2.3) against
its implementation with two state-of-the-art solutions: PoR and RedBlue consistency. We do not
provide code snippets due to space constraints.
RedBlue and PoR require programmers to manually identify all potential conflicts in the appli-

cation and determine restrictions that guarantee state convergence and invariant preservation.
Table 4 shows that RedBlue requires 10 restrictions for the RUBiS system because it coordinates all
unsafe shadow operations. On the other hand, PoR determines only 3 restrictions for RUBiS. ECROs,
instead, automatically derive aminimal set of restrictions based on the results of the safety analysis
shown in Table 2. This results in only two restrictions (also shown in Table 4) because Ordana finds
a solution for the conflict between placeBid and closeAuction as mentioned in Section 5.1.
Sieve [Li et al. 2014] automatically derives the restrictions for RedBlue consistency, based on a

first-order logic specification of the operations. In contrast, ECROs can derive fine-grained restric-
tions thanks to its novel safety analysis and only restricts buying/registering the same item/user
concurrently. Moreover, specifications in Sieve (as well as in other automatic solutions [Balegas
et al. 2015; Gotsman et al. 2016; Kaki et al. 2018; Sivaramakrishnan et al. 2015]) are plain strings
containing first-order logic formulas, while ECROs provide an internal DSL for first-order logic
in Scala. Our DSL simplifies the development of the specifications since (1) it provides support
for common tasks (e.g. copying relations between states, expressing uniqueness constraints), (2)
syntax errors and type errors are caught by the compiler, and (3) programmers can leverage Scala’s
existing abstraction and modularisation mechanisms (e.g. classes, traits, etc.).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:21

Table 3. Average time for Ordana to analyze ECRO specifications on an Amazon EC2 m5.xlarge instance.

Counter EW-Flag DW-Flag AW-Set RW-Set AW-Map RW-Map Stack Queue List RUBiS

Time (ms) 58 67 73 93 95 120 117 199 175 1732 4175

Table 4. Restrictions over the RUBiS operations

enforced by RedBlue and PoR, taken from Li et al.

[2018] and extended with ECROs.

RedBlue consistency PoR consistency
r(registerUser, registerUser) r(registerUser, registerUser)
r(storeBuyNow, storeBuyNow) r(storeBuyNow, storeBuyNow)
r(placeBid, placeBid) r(placeBid, closeAuction)
r(closeAuction, closeAuction)
r(placeBid, closeAuction)
r(registerUser, storeBuyNow) ECRO
r(registerUser, placeBid) r(registerUser, registerUser, <user>)
r(registerUser, closeAuction) r(storeBuyNow, storeBuyNow, <item>)
r(storeBuyNow, placeBid)
r(storeBuyNow, closeAuction)

1.0

1.5

2.0

2.5

3.0

0 25 50 75 100

Graph size

R
e
la

ti
v
e
 l
a
te

n
c
y
 (

lo
w

e
r

is
 b

e
tt
e
r)

Operation delete last map

Fig. 5. Latency of operations on an ECRO list. We

disabled the JIT compiler to better show the impact

of the graph’s size on the ECRO algorithm.

6.3 RQ2: Evaluating Ordana, Our Static Analysis Tool

We now measure the execution time of Ordana on the distributed specification of each data type
in our portfolio of ECROs, presented in Section 5. The results, presented in Table 3, show that
most data types are statically analyzed in less than 200 ms. This results from the fact that their
specifications are rather simple and concise. The execution time for the list data type and RUBiS
applications are considerably higher. For lists, this is due to the complexity of the specification as
operations manipulate next pointers. For RUBiS, the higher execution time comes from the fact
that it has a bigger interface and thus more operations to analyze.

Based on these results, we conclude that Ordana is suited to analyze the distributed specifications
of ECROs, as even the RUBiS application is analyzed in less than 5 seconds. Note that the analyses
run at compile time and only reanalyze the distributed specifications that changed, enabling their
adoption within integrated development environments.

6.4 RQ3: Evaluating the Scalability of the ECRO Algorithm

The ECRO algorithmmaintains a directed acyclic graph of tentative operations.We now evaluate the
scalability of the algorithm with regard to the size of the graph (i.e. the number of causally unstable
operations [Almeida et al. 2015]) for three types of operations: (1) side-effect free operations, (2)
operations that are safe and commute, and (3) unsafe operations that do not commute.

6.4.1 Comparison to Sequential Data Types. We now measure the latency of three operations
(last, delete, and map) on an ECRO list, which tipify the aforementioned types of operations. The
benchmark runs on a single Amazon EC2 m5.xlarge instance and measures the latency of the three
operations on an ECRO list containing 50K elements that is constructed by successive insertions:
insert(e1, e2); insert(e2, e3); ...; insert(en−1, en). We use Scala’s built-in list as baseline and normalize
the measurements. Figure 5 shows the relative latency of each operation.

Last. Returns the last element of the list. Since the operation has no side-effects, it executes
immediately (no need to add it to the graph). As a result, we observe no significant performance
difference compared to Scala’s built-in list; the relative latency is approximately 1.

Delete. Removes the last element of the list. Recall from Section 5 that delete(elem) and
insert(ref, newElem) commute when elem , ref . Since the list is built by successive insertions

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

107:22 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix

openAuction closeAuction placeBid getHighestBid

0 50 10
0

15
0

20
0

25
0 0 50 10

0
15

0
20

0
25

0 0 50 10
0

15
0

20
0

25
0 0 50 10

0
15

0
20

0
25

0

0

10

20

30

Graph size

L
a

te
n

c
y
 (

in
 m

ic
ro

s
e

c
o

n
d

s
) Implementation Ecro Scala

Fig. 6. Latency of RUBiS operations.

add remove contains

0 50 10
0

15
0

20
0

25
0 0 50 10

0
15

0
20

0
25

0 0 50 10
0

15
0

20
0

25
0

0

10

20

30

Graph/Log size

L
a
te

n
c
y
 (

in
 m

ic
ro

s
e
c
o
n
d
s
)

Implementation Crdt Ecro Pure

Fig. 7. Latency of operations on add-wins sets for

ECROs, CRDTs, and pure-op CRDTs.

and this operation deletes the last element en , there are no dependent insert(en, _) operations
in the graph. Hence, delete is safe and commutes with all operations from the graph. The ECRO
algorithm adds the operation to the graph (O(1)) whereafter it executes the operation (lines 7 to 12
in Algorithm 1). As a result, the relative latency is also approximately 1.

Map. Maps a function over all elements of the list and does not commute with the insert
operations that precede it. Algorithm 1 thus adds the operation to the graph (line 7) and adds an
hb-edge between every existing insert operation and the new map operation (lines 8 to 10), before
executing the operation (line 12). As a result, the performance of map decreases with the number
of non-commutative operations in the graph (i.e. the number of edges that must be added).

The results show that ECROs exhibit latency similar to their sequential implementation for side-
effect free operations and commutative operations. For non-commutative operations the latency
decreases with the number of non-commutative operations in the graph. The experiment varied
the size of the graph from 0 to 100 operations. In practice, the graph will rarely contain as much
as 100 operations since the implementation detects causally stable operations and safely removes
them from the graph (cf. Algorithm 2). Causal stability was disabled for this experiment in order to
study the impact of unstable operations on the algorithm.

RUBiS. The previous list benchmark showcased the worst-case performance of the ECRO al-
gorithm since map did not commute with any operation in the execution graph. To get a better
understanding of the algorithm’s scalability we conduct a similar experiment for RUBiS.Wemeasure
the latency of RUBiS operations on an ECRO and compare it to a sequential Scala implementation.
In RUBiS, most operations commute, except when they affect the same auction, e.g. openAuction,
placeBid, and closeAuction. The getHighestBid operation fetches the highest bid for a given
auction and thus has no side-effects. We measure the latency for each of these operations on a
RUBiS system populated with 100 users, 1000 auctions, and 1000 items. Each operation is executed
by a randomly selected user on a random auction.
Figure 6 shows that all operations exhibit constant latencies, with a negligible constant time

difference between ECROs and Scala for mutating operations, which corresponds to the overhead
of the ECRO algorithm. The operations have constant latencies because only a fraction of the
operations affect the same auction (i.e. do not commute). Based on this experiment, we conclude
that the latency of ECRO operations depends on the number of non-commutative operations in the
graph, which in practice is often small, especially if we commit causally stable operations.

6.4.2 Comparison to Existing Set RDTs. We now compare the latency of operations for an add-wins
set built atop ECROs with the OR-Set CRDT [Shapiro et al. 2011a] and the pure op-based add-wins
set CRDT [Baquero et al. 2017]. Recall that add(x) and remove(y) commute, except when x = y.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:23

We vary the size of the execution graph (for ECROs) and log (for pure-op CRDTs) by executing
a random workload before measuring the latency of operations. Figure 7 depicts the results.
The latencies remain constant for all operations of the add-wins set ECRO and the OR-Set
CRDT. The add and remove operations have a negligible constant time difference between those
implementations (less than 0.03ms). In the pure add-wins set CRDT, the latency of operations
is linear to the size of the log. This is because the pure operation-based approach checks new
operations against all operations in the log in order to compact the log, whereas ECROs only check
new operations against non-commutative operations in the graph. When the set’s cardinality
is big enough and the set operations are distributed uniformly across this space, the number of
non-commutative operations is small and thus yields constant latency for ECROs.

6.5 RQ4: Evaluating the Performance of a Geo-Distributed RUBiS Application

Besides the number of non-commutative operations contained by the graph, the performance of the
ECRO algorithm also depends on factors such as the load experienced by the system, the latency
between replicas, etc. We now compare ECROs with PoR and RedBlue on a geo-distributed RUBiS
application by means of a variation on the RUBiS benchmark described by Li et al. [2018].

Setup. The benchmark includes three RUBiS replicas and an independent lock server that coor-
dinates unsafe operations. The RUBiS replicas run on Amazon EC2 m5.xlarge virtual machine
instances located in three geo-distributed data centers (DCs): Paris, Ohio, and Tokyo. The lock
server runs on an m5.xlarge instance located in SÃ£o Paulo.

The DC in Paris measures the latency of operations, while the DCs in Ohio and Tokyo execute an
update-heavy workload consisting of 100 user requests11 per second with 50% reads (side-effect free
operations, e.g. getStatus) and 50% writes (mutating operations, e.g. openAuction). Workloads
are generated randomly from a probabilistic distribution of the operations. Table 5 shows the
latencies and bandwidth between the DCs.

Results. Figure 8 shows the average latency of RUBiS operations as observed by the user at
DC Paris. The getStatus and openAuction operations are safe, hence, they are not coordi-
nated, resulting in low latencies. The storeBuyNow and registerUser operations are unsafe
and require coordination in all implementations (see Table 4), inducing high latencies. Never-
theless, the ECRO implementation reduces latency by more than 10% when compared to PoR
and RedBlue. This speedup comes from the fact that ECROs use fine-grained locks on a single
user/item, whereas PoR and RedBlue use coarse-grained locks on all users/items thereby prevent-
ing any registerUser/storeBuyNow operations from running concurrently. The placeBid and
closeAuction operations exhibit high latencies for PoR and RedBlue because they are unsafe and
require coordination (see Table 4). ECROs do not coordinate these operations because Ordana
found a solution to the conflict, which consists of locally ordering placeBid operations before
concurrent closeAuction operations when they affect the same auction (see Table 2 in Section 5).
As a result, ECROs achieve low latency (less than 1ms).

We performed the same experiment with a read-mostly workload consisting of 1000 user requests
per second with 95% reads and 5% writes. The results are similar and are explained in Appendix C
in [De Porre et al. 2021].

11In this context a user request corresponds to a method call on a replica.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

107:24 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix

0

500

1000

1500

ge
tS

ta
tu

s

op
en

Auc
tio

n

st
or

eB
uy

N
ow

re
gi
st
er

U
se

r

pl
ac

eB
id

cl
os

eA
uc

tio
n

L
a

te
n

c
y
 (

in
 m

s
)

ECRO
PoR
RedBlue

Fig. 8. Average latency of RUBiS operations as observed

by users at DC Paris. Error bars represent the 99.9%

confidence interval.

Table 5. Average round trip latency and band-

width between data centers.

Paris
44.3 us

4.78 Gbps

Ohio
44.4 ms
140 Mbps

66.2 us
4.31 Gbps

Tokyo
122 ms

49.5 Mbps
79.2 ms

77.9 Mbps
56.2 us

4.75 Gbps

SÃ£o Paulo
99.3 ms

61.8 Mbps
66.2 ms

97.5 Mbps
135 ms

46.3 Mbps
100 us

4.38 Gbps
Paris Ohio Tokyo SÃ£o Paulo

500

1000

3000

5000

0.2 10.0 25.0 50.0 75.0 100.0

Operation rate (ops/s)

T
im

e
 t

o
 s

ta
b

ili
ty

 (
in

 m
s
)

placeBid
closeAuction

Fig. 9. Time to stability for placeBid and

closeAuction in function of the rate of opera-

tions in a geo-distributed RUBiS deployment.

6.6 RQ3: Evaluating the Impact of Causally Unstable Operations on Scalability

As mentioned in Section 6.4, the latency of ECRO operations is related to the number of non-
commutative operations in the execution graph. The graph contains tentative operations, i.e.
operations that are not yet causally stable12 and may be reordered due to concurrent operations.

We now turn our attention back to RQ3 and investigate the impact of causally unstable operations
on the scalability of the ECRO algorithm. To this end, we measure the time to causal stability
using the geo-distributed RUBiS deployment from Section 6.5. Recall that the RUBiS ECRO avoids
coordination between the placeBid and closeAuction operations. However, users may close an
auction and concurrently place a bid on that same auction. Upon delivery of the bid, closeAuction
is reverted, the bid is placed, and the auction is closed again. Hence, there is a time window between
closing the auction and declaring the winner, during which new bids may still arrive. Only when
closeAuction becomes causally stable, the replica declares a winner.

Figure 9 shows the time to stability for the placeBid and closeAuction operations in function
of the rate at which replicas generate operations. The time to stability quickly decreases with
the rate of operations because ECROs derive stability from the logical timestamps of incoming
operations. If replicas generate an operation every 5 seconds (0.2 ops/s), it takes on average 5
seconds for any operation to stabilize. When replicas generate 5 operations per second, the time to
stability decreases to 550ms. Further increasing the rate of operations does not decrease the time to
stability due to network latencies, the load experienced by the system, etc.

We conclude that the time to stability is inversely related to the rate at which replicas generate
operations. When the rate is high enough (at least a few operations per second), operations stabilize
faster than a coordinated execution. Indeed, at a rate of 5 ops/s and more, operations stabilize
within 680ms whereas a coordinated execution of placeBid or closeAuction takes at least 880ms
(cf. Fig. 8). In a cloud computing context, we can reasonably assume that data centers are well

12An operation is causally stable [Baquero et al. 2017] at a replica when that replica knows that all other replicas observed it.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:25

interconnected and generate operations regularly. Therefore, operations stabilize quickly and the
replicas’ execution graphs remain reasonably small which yields low latency and good scalability. If
some replicas do not generate operations regularly, the time to stability can be reduced by sending
acknowledgements for incoming operations, or, by having each replica periodically broadcast
its logical clock. For our deployment, replicas could broadcast their clock every 140ms which
corresponds roughly to the maximum latency between our DCs (cf. Table 5).

7 RELATED WORK

Inspired by Terry et al. [1995], our work derives correct and efficient RDTs, starting from sequential
data types and their distributed semantics, without exposing programmers to merge procedures.
Table 6 summarizes how related work guarantees state convergence and preserves application
invariants. Existing approaches guarantee state convergence by coordinating non-commutative
operations, or by resorting to a stronger consistency model. Our approach (last entry in Table 6) is
the only one that does not coordinate non-commutative calls, but instead, deterministically orders
them at each replica, in a way that respects causality between dependent operations. Regarding
application invariants, existing approaches coordinate unsafe operations to avoid conflicts (i.e.
invariant violations) at runtime. In contrast, ECROs allow unsafe operations to run concurrently if
a safe reordering of the calls exists. In what follows, we review related work on static analyses,
replicated data types, and consistency models.

Static analysis techniques. Our static analysis tool, Ordana, incorporates several static analyses.
The first, is a commutativity analysis that detects pairs of non-commutative operations and is
similar to well known analyses described by Balegas et al. [2015]; Dimitrov et al. [2014]; Gotsman
et al. [2016]; Kulkarni et al. [2011]; Li et al. [2012]. The second, is a dependency analysis that detects
dependencies between sequential operations. To this end, it extends the work by Houshmand and
Lesani [2019] by taking into account argument relations which enable the detection of fine-grained
dependencies between operations. The last, is a safety analysis that detects pairs of operations that
may infringe application-level invariants when executed concurrently (similar to [Balegas et al.
2015; Gotsman et al. 2016; Houshmand and Lesani 2019]), and incorporates a novel technique to
find solutions without imposing coordination, based on fast local reorderings of conflicting calls.
Sivaramakrishnan et al. [2015], Gotsman et al. [2016], and Kaki et al. [2018] statically assign a
consistency level to each operation of an RDT. Li et al. [2014] combine static and dynamic analyses to
detect invariant-breaking operations and execute them under strong consistency. These approaches
may strengthen the consistency level of many operations, thereby, increasing the latency of user
requests and deteriorating the scalability and availability of the system. Soethout et al. [2019]
statically detect pairs of events that are always independent and thus do not require coordination
at runtime. Wang et al. [2019] propose replication-aware linearizability, a criterion that enables
sequential reasoning to prove the correctness of CRDT implementations. Nair et al. [2020] focus on
the verification of program invariants for state-based replicated objects. These works verify RDTs
based on some specification but cannot derive correct RDTs from that specification.

Replicated data types. Conflict-free Replicated Data Types (CRDTs) [Shapiro et al. 2011b] are
designed around mathematical properties that guarantee state convergence. These properties
impose restrictions on the state or operations (e.g. commutativity) which hampers the design of
new CRDTs. Several composition techniques have been proposed by Kleppmann and Beresford
[2017]; Meiklejohn and Roy [2015]; Weidner et al. [2020] but none allow arbitrary compositions for
all CRDTs. Cloud Types [Burckhardt et al. 2012] do not impose restrictions on operations but require
user-defined merge functions. Mergeable Replicated Data Types [Kaki et al. 2019] use a three-way
merge function and invertible relational specifications to derive correct merge functions. However,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

107:26 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix

Table 6. Summary of related approaches.

Consistency

Guarantees

State

Convergence

Application

Invariants

CRDTs SEC By design Not supported

Cloud Types EC
Using user-defined merge
procedures

Not supported

Mergeable RDTs SEC

Using a three-way merge
procedure derived from an
invertible relational
specification of the RDT

Not supported

Indigo Hybrid By relying on CRDTs
Coordinate unsafe operations,
or, repair broken invariants
after the facts

CISE Hybrid By relying on CRDTs
Determines consistency models
that avoid the conflict

IPA SEC By relying on CRDTs
Modify operations’
implementation such that
conflicts are avoided

RedBlue & PoR Hybrid
By coordinating
non-commutative ops

Coordinate unsafe operations

Quelea & Q9 Hybrid
Picks weakest consistency
model that guarantees
convergence

Picks weakest consistency
model that upholds
invariants/contract

Hamsaz & Hampa Hybrid
By coordinating
non-commutative ops

Coordinate unsafe operations

ECROs Hybrid
By totally ordering
non-commutative ops

Reorder unsafe operations and
coordinate them if no safe
reordering exists

the aforementioned RDTs do not consider application invariants. Hamsaz [Houshmand and Lesani
2019] and Hampa [Li et al. 2020] statically analyze data types to derive coordination protocols
that guarantee state convergence and preserve invariants. The derived protocols coordinate all
non-commutative and unsafe method calls and are thus more conservative than ECROs. Hampa also
provides recency guarantees. Kermarrec et al. [2001] and De Porre et al. [2019] compute a sequential
execution of the operations that guarantees convergence and preserves invariants. However, they
lack a static analysis to make this efficient. Gallifrey [Milano et al. 2019] proposes orthogonal
replication which decouples the conflict resolution strategy of an RDT from its implementation.
Gallifrey requires programmers to manually define restrictions over the RDT’s operations. In
contrast, our approach automatically derives a suitable coordination protocol from the RDT’s
distributed specification.

Consistency models. Some consistency models [Balegas et al. 2015; Li et al. 2012, 2018; Zhao and
Haller 2018, 2020] allow a combination of weak (commutative) operations and strong (coordinated)
operations. However, they tend to be conservative as they coordinate all unsafe operations. In
contrast, ECROs may avoid coordination by reordering unsafe operations in order not to break
invariants, based on the novel combination of static analyses with our execution model. Several
programming languages and programming models [De Porre et al. 2020; Holt et al. 2016; Köhler
et al. 2020; Milano and Myers 2018; Myter et al. 2018; Zaza and Nystrom 2016] support mixing

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:27

consistency levels safely to some extent. However, there is currently no technique that can au-
tomatically derive commutative operations (or correct merge procedures) from sequential data
types without programmer intervention. Indigo [Balegas et al. 2015] either coordinates unsafe
operations or requires programmers to provide a deterministic and monotonic algorithm to repair
broken invariants. IPA [Balegas et al. 2018] detects operations that break invariants whereafter
programmers must incorporate a suitable conflict resolution and/or coordination technique. While
both, Indigo and IPA, start from existing RDTs providing state convergence (e.g. CRDTs) and extend
them with invariants, the ECRO approach focuses on deriving those RDTs automatically from a
sequential implementation and its accompanying distributed specification.

8 CONCLUSION

We introduce a novel approach to programming geo-distributed applications with Explicitly Con-
sistent Replicated Objects (ECROs). Programmers augment sequential data types with a distributed
specification describing the semantics of operations by means of invariants over replicated state.
Our static analysis tool Ordana analyzes distributed specifications to detect conflicts, unravel their
cause, and find appropriate solutions. This suffices to automatically derive a replicated version of
the data type that guarantees convergence and preserves program invariants efficiently.

We presented a portfolio of ECRO data types that demonstrates the flexibility of our approach as
it does not require user-defined merge procedures nor data type specific modifications to make
operations commute and invariant preserving. Our benchmarks show that ECROs significantly
improve the performance of a geo-distributed RUBiS system, when compared to RedBlue and PoR.
Unsafe operations are coordinated using a fine-grained locking mechanism that reduces contention.
Some conflicts are solved without coordination, reducing latency by several orders of magnitude.

ACKNOWLEDGMENTS

We would like to thank Matteo Marra, Jim Bauwens, and the anonymous reviewers for their
comments which helped improve the paper. Kevin De Porre is funded by an SB Fellowship of the
Research Foundation - Flanders. Project number: 1S98519N. This work was partially supported by
Fundação para a Ciência e a Tecnologia - Portugal (FCT/MCTES) under grants UIDB/04516/2020,
PTDC/CCI-INF/32081/2017, and LISBOA-01-0145-FEDER-032662/PTDC/CCI-INF/32662/2017.

REFERENCES

Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2015. Efficient State-Based CRDTs by Delta-Mutation. In Networked

Systems - Third International Conference, NETYS 2015, Agadir, Morocco, May 13-15, 2015, Revised Selected Papers (Lecture

Notes in Computer Science), Vol. 9466. Springer, 62ś76. https://doi.org/10.1007/978-3-319-26850-7_5
Peter Bailis, Alan D. Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2014. Coordination

Avoidance in Database Systems. Proc. VLDB Endow. 8, 3 (2014), 185ś196. https://doi.org/10.14778/2735508.2735509
Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, and Nuno M. Preguiça. 2018. IPA: Invariant-preserving

Applications for Weakly consistent Replicated Databases. Proc. VLDB Endow. 12, 4 (2018), 404ś418. https://doi.org/10.
14778/3297753.3297760

Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno M. Preguiça, Mahsa Najafzadeh, and Marc Shapiro.
2015. Putting consistency back into eventual consistency. In Proceedings of the Tenth European Conference on Computer

Systems, EuroSys 2015, Bordeaux, France, April 21-24, 2015. ACM, 6:1ś6:16. https://doi.org/10.1145/2741948.2741972
Carlos Baquero, Paulo S. Almeida, and Ali Shoker. 2017. Pure Operation-Based Replicated Data Types. CoRR abs/1710.04469

(2017). arXiv:1710.04469
Eric Brewer. 2012. CAP Twelve years later: How the łRulesž have Changed. Computer 45 (02 2012), 23ś29. https:

//doi.org/10.1109/MC.2012.37
Eric A. Brewer. 2000. Towards robust distributed systems (abstract). In Proceedings of the Nineteenth Annual ACM Symposium

on Principles of Distributed Computing, July 16-19, 2000, Portland, Oregon, USA. ACM, 7. https://doi.org/10.1145/343477.
343502

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

https://doi.org/10.1007/978-3-319-26850-7_5
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.14778/3297753.3297760
https://doi.org/10.14778/3297753.3297760
https://doi.org/10.1145/2741948.2741972
https://arxiv.org/abs/1710.04469
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502

107:28 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix

Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P. Wood. 2012. Cloud Types for Eventual Consistency.
In ECOOP 2012 - Object-Oriented Programming - 26th European Conference, Beijing, China, June 11-16, 2012. Proceedings

(Lecture Notes in Computer Science), Vol. 7313. Springer, 283ś307. https://doi.org/10.1007/978-3-642-31057-7_14
Emmanuel Cecchet and Julie Marguerite. 2009. RUBiS: Rice University Bidding System. http://rubis.ow2.org/.
Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix. 2021. ECROs: Building Global Scale Systems from

Sequential Code (Appendix). http://soft.vub.ac.be/Publications/2021/vub-tr-soft-21-09-appendix.pdf
Kevin De Porre and Elisa Gonzalez Boix. 2019. Squirrel: an extensible distributed key-value store. In Proceedings of the 4th

ACM SIGPLAN International Workshop on Meta-Programming Techniques and Reflection, META@SPLASH 2019, Athens,

Greece, October 20, 2019. ACM, 21ś30. https://doi.org/10.1145/3358502.3361271
Kevin De Porre, Florian Myter, Christophe De Troyer, Christophe Scholliers, Wolfgang De Meuter, and Elisa Gonzalez Boix.

2019. Putting Order in Strong Eventual Consistency. In Distributed Applications and Interoperable Systems - 19th IFIP

WG 6.1 International Conference, DAIS 2019, Held as Part of the 14th International Federated Conference on Distributed

Computing Techniques, DisCoTec 2019, Kongens Lyngby, Denmark, June 17-21, 2019, Proceedings (Lecture Notes in Computer

Science), Vol. 11534. Springer, 36ś56. https://doi.org/10.1007/978-3-030-22496-7_3
Kevin De Porre, Florian Myter, Christophe Scholliers, and Elisa Gonzalez Boix. 2020. CScript: A distributed programming

language for building mixed-consistency applications. J. Parallel Distributed Comput. 144 (2020), 109ś123. https:
//doi.org/10.1016/j.jpdc.2020.05.010

Dimitar I. Dimitrov, Veselin Raychev, Martin T. Vechev, and Eric Koskinen. 2014. Commutativity race detection. In ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June

09 - 11, 2014. ACM, 305ś315. https://doi.org/10.1145/2594291.2594322
Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2016. ’Cause I’m strong enough:

reasoning about consistency choices in distributed systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. ACM,
371ś384. https://doi.org/10.1145/2837614.2837625

Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. 2016. Incremental Consistency Guarantees for Replicated
Objects. In 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,

November 2-4, 2016. USENIX Association, 169ś184. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/guerraoui

Brandon Holt, James Bornholt, Irene Zhang, Dan R. K. Ports, Mark Oskin, and Luis Ceze. 2016. Disciplined Inconsistency
with Consistency Types. In Proceedings of the Seventh ACM Symposium on Cloud Computing, Santa Clara, CA, USA,

October 5-7, 2016. ACM, 279ś293. https://doi.org/10.1145/2987550.2987559
Farzin Houshmand and Mohsen Lesani. 2019. Hamsaz: replication coordination analysis and synthesis. Proc. ACM Program.

Lang. 3, POPL (2019), 74:1ś74:32. https://doi.org/10.1145/3290387
Gowtham Kaki, Kapil Earanky, K. C. Sivaramakrishnan, and Suresh Jagannathan. 2018. Safe replication through bounded

concurrency verification. Proc. ACM Program. Lang. 2, OOPSLA (2018), 164:1ś164:27. https://doi.org/10.1145/3276534
Gowtham Kaki, Swarn Priya, K. C. Sivaramakrishnan, and Suresh Jagannathan. 2019. Mergeable replicated data types. Proc.

ACM Program. Lang. 3, OOPSLA (2019), 154:1ś154:29. https://doi.org/10.1145/3360580
Anne-Marie Kermarrec, Antony I. T. Rowstron, Marc Shapiro, and Peter Druschel. 2001. The IceCube approach to the

reconciliation of divergent replicas. In Proceedings of the Twentieth Annual ACM Symposium on Principles of Distributed

Computing, PODC 2001, Newport, Rhode Island, USA, August 26-29, 2001. ACM, 210ś218. https://doi.org/10.1145/383962.
384020

Martin Kleppmann. 2015. A Critique of the CAP Theorem. ArXiv abs/1509.05393 (2015).
Martin Kleppmann and Alastair R. Beresford. 2017. A Conflict-Free Replicated JSONDatatype. IEEE Trans. Parallel Distributed

Syst. 28, 10 (2017), 2733ś2746. https://doi.org/10.1109/TPDS.2017.2697382
Mirko Köhler, Nafise Eskandani, Pascal Weisenburger, Alessandro Margara, and Guido Salvaneschi. 2020. Rethinking safe

consistency in distributed object-oriented programming. Proc. ACM Program. Lang. 4, OOPSLA (2020), 188:1ś188:30.
https://doi.org/10.1145/3428256

Milind Kulkarni, Donald Nguyen, Dimitrios Prountzos, Xin Sui, and Keshav Pingali. 2011. Exploiting the commutativity
lattice. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI

2011, San Jose, CA, USA, June 4-8, 2011. ACM, 542ś555. https://doi.org/10.1145/1993498.1993562
Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 7 (1978),

558ś565. https://doi.org/10.1145/359545.359563
Cheng Li, João Leitão, Allen Clement, Nuno M. Preguiça, Rodrigo Rodrigues, and Viktor Vafeiadis. 2014. Automating

the Choice of Consistency Levels in Replicated Systems. In 2014 USENIX Annual Technical Conference, USENIX ATC

’14, Philadelphia, PA, USA, June 19-20, 2014. USENIX Association, 281ś292. https://www.usenix.org/conference/atc14/
technical-sessions/presentation/li_cheng_2

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

https://doi.org/10.1007/978-3-642-31057-7_14
http://rubis.ow2.org/
http://soft.vub.ac.be/Publications/2021/vub-tr-soft-21-09-appendix.pdf
https://doi.org/10.1145/3358502.3361271
https://doi.org/10.1007/978-3-030-22496-7_3
https://doi.org/10.1016/j.jpdc.2020.05.010
https://doi.org/10.1016/j.jpdc.2020.05.010
https://doi.org/10.1145/2594291.2594322
https://doi.org/10.1145/2837614.2837625
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/guerraoui
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/guerraoui
https://doi.org/10.1145/2987550.2987559
https://doi.org/10.1145/3290387
https://doi.org/10.1145/3276534
https://doi.org/10.1145/3360580
https://doi.org/10.1145/383962.384020
https://doi.org/10.1145/383962.384020
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1145/3428256
https://doi.org/10.1145/1993498.1993562
https://doi.org/10.1145/359545.359563
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_cheng_2
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_cheng_2

ECROs: Building Global Scale Systems from Sequential Code 107:29

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno M. Preguiça, and Rodrigo Rodrigues. 2012. Making Geo-
Replicated Systems Fast as Possible, Consistent when Necessary. In 10th USENIX Symposium on Operating Systems

Design and Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012. USENIX Association, 265ś278. https:
//www.usenix.org/conference/osdi12/technical-sessions/presentation/li

Cheng Li, Nuno M. Preguiça, and Rodrigo Rodrigues. 2018. Fine-grained consistency for geo-replicated systems. In 2018

USENIX Annual Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018. USENIX Association, 359ś372.
https://www.usenix.org/conference/atc18/presentation/li-cheng

Xiao Li, Farzin Houshmand, and Mohsen Lesani. 2020. Hampa: Solver-Aided Recency-Aware Replication. In Computer Aided

Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I (Lecture

Notes in Computer Science), Vol. 12224. Springer, 324ś349. https://doi.org/10.1007/978-3-030-53288-8_16
Christopher Meiklejohn and Peter Van Roy. 2015. Lasp: a language for distributed, coordination-free programming. In

Proceedings of the 17th International Symposium on Principles and Practice of Declarative Programming, Siena, Italy, July

14-16, 2015. ACM, 184ś195. https://doi.org/10.1145/2790449.2790525
Matthew Milano and Andrew C. Myers. 2018. MixT: a language for mixing consistency in geodistributed transactions.

In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018,

Philadelphia, PA, USA, June 18-22, 2018. ACM, 226ś241. https://doi.org/10.1145/3192366.3192375
MatthewMilano, Rolph Recto, TomMagrino, and Andrew C. Myers. 2019. A Tour of Gallifrey, a Language for Geodistributed

Programming. In 3rd Summit on Advances in Programming Languages, SNAPL 2019, May 16-17, 2019, Providence, RI, USA

(LIPIcs), Vol. 136. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 11:1ś11:19. https://doi.org/10.4230/LIPIcs.SNAPL.
2019.11

Florian Myter, Christophe Scholliers, and Wolfgang De Meuter. 2018. A CAPable distributed programming model. In
Proceedings of the 2018 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on

Programming and Software, Onward! 2018, Boston, MA, USA, November 7-8, 2018. ACM, 88ś98. https://doi.org/10.
1145/3276954.3276957

Sreeja S. Nair, Gustavo Petri, and Marc Shapiro. 2020. Proving the Safety of Highly-Available Distributed Objects. In
Programming Languages and Systems - 29th European Symposium on Programming, ESOP 2020, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture

Notes in Computer Science), Vol. 12075. Springer, 544ś571. https://doi.org/10.1007/978-3-030-44914-8_20
OpenJDK. [n. d.]. JMH - OpenJDK. https://openjdk.java.net/projects/code-tools/jmh/. Accessed: 13-05-2020.
David J. Pearce and Paul H. J. Kelly. 2006. A dynamic topological sort algorithm for directed acyclic graphs. ACM J. Exp.

Algorithmics 11 (2006). https://doi.org/10.1145/1187436.1210590
Julien Ponge. July 2014. Avoiding Benchmarking Pitfalls on the JVM. https://www.oracle.com/technical-resources/articles/

java/architect-benchmarking.html. Accessed: 13-05-2020.
Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011a. A comprehensive study of Convergent and

Commutative Replicated Data Types. Research Report RR-7506. Inria ś Centre Paris-Rocquencourt ; INRIA. 50 pages.
Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. 2011b. Conflict-Free Replicated Data Types. In

Stabilization, Safety, and Security of Distributed Systems - 13th International Symposium, SSS 2011, Grenoble, France, October

10-12, 2011. Proceedings (Lecture Notes in Computer Science), Vol. 6976. Springer, 386ś400. https://doi.org/10.1007/978-3-
642-24550-3_29

K. C. Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declarative programming over eventually consistent
data stores. (2015), 413ś424. https://doi.org/10.1145/2737924.2737981

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju. 2019. Static local coordination avoidance for distributed objects. In
Proceedings of the 9th ACM SIGPLAN International Workshop on Programming Based on Actors, Agents, and Decentralized

Control, AGERE!@SPLASH 2019, Athens, Greece, October 22, 2019. ACM, 21ś30. https://doi.org/10.1145/3358499.3361222
Douglas B. Terry, Marvin Theimer, Karin Petersen, Alan J. Demers, Mike Spreitzer, and Carl Hauser. 1995. Managing Update

Conflicts in Bayou, a Weakly Connected Replicated Storage System. In Proceedings of the Fifteenth ACM Symposium

on Operating System Principles, SOSP 1995, Copper Mountain Resort, Colorado, USA, December 3-6, 1995. ACM, 172ś183.
https://doi.org/10.1145/224056.224070

Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1 (2009), 40ś44. https://doi.org/10.1145/1435417.1435432
Chao Wang, Constantin Enea, Suha Orhun Mutluergil, and Gustavo Petri. 2019. Replication-aware linearizability. In

Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019,

Phoenix, AZ, USA, June 22-26, 2019. ACM, 980ś993. https://doi.org/10.1145/3314221.3314617
Matthew Weidner, Heather Miller, and Christopher Meiklejohn. 2020. Composing and decomposing op-based CRDTs with

semidirect products. Proc. ACM Program. Lang. 4, ICFP (2020), 94:1ś94:27. https://doi.org/10.1145/3408976
Nosheen Zaza and Nathaniel Nystrom. 2016. Data-centric Consistency Policies: A Programming Model for Distributed Ap-

plications with Tunable Consistency. In First Workshop on Programming Models and Languages for Distributed Computing,

PMLDC@ECOOP 2016, Rome, Italy, July 17, 2016. ACM, 3. https://doi.org/10.1145/2957319.2957377

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://www.usenix.org/conference/atc18/presentation/li-cheng
https://doi.org/10.1007/978-3-030-53288-8_16
https://doi.org/10.1145/2790449.2790525
https://doi.org/10.1145/3192366.3192375
https://doi.org/10.4230/LIPIcs.SNAPL.2019.11
https://doi.org/10.4230/LIPIcs.SNAPL.2019.11
https://doi.org/10.1145/3276954.3276957
https://doi.org/10.1145/3276954.3276957
https://doi.org/10.1007/978-3-030-44914-8_20
https://openjdk.java.net/projects/code-tools/jmh/
https://doi.org/10.1145/1187436.1210590
https://www.oracle.com/technical-resources/articles/java/architect-benchmarking.html
https://www.oracle.com/technical-resources/articles/java/architect-benchmarking.html
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/3358499.3361222
https://doi.org/10.1145/224056.224070
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/3314221.3314617
https://doi.org/10.1145/3408976
https://doi.org/10.1145/2957319.2957377

107:30 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix

Xin Zhao and Philipp Haller. 2018. Observable atomic consistency for CvRDTs. In Proceedings of the 8th ACM SIGPLAN

International Workshop on Programming Based on Actors, Agents, and Decentralized Control, AGERE!@SPLASH 2018,

Boston, MA, USA, November 5, 2018. ACM, 23ś32. https://doi.org/10.1145/3281366.3281372
Xin Zhao and Philipp Haller. 2020. Replicated data types that unify eventual consistency and observable atomic consistency.

J. Log. Algebraic Methods Program. 114, 100561. https://doi.org/10.1016/j.jlamp.2020.100561

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

https://doi.org/10.1145/3281366.3281372
https://doi.org/10.1016/j.jlamp.2020.100561

	Abstract
	1 Introduction
	2 Building Geo-Distributed Applications, the ECRO Way
	2.1 Overview
	2.2 Building Replicated Sets
	2.3 Building a Geo-Distributed Auction System
	2.4 The ECRO Approach

	3 Deriving Safe Serializations from Distributed Specifications
	3.1 The ECRO Distributed Specification
	3.2 Dependency Analysis
	3.3 Concurrent Commutativity Analysis
	3.4 Deriving Sequential Commutativity
	3.5 Safety Analysis

	4 Explicitly Consistent Replicated Objects
	4.1 Replication Algorithm
	4.2 Algorithm Correctness

	5 Implementation
	5.1 Portfolio of ECRO Data Types

	6 Evaluation
	6.1 Methodology
	6.2 RQ1: Evaluating the Design of RDTs using ECROs
	6.3 RQ2: Evaluating Ordana, Our Static Analysis Tool
	6.4 RQ3: Evaluating the Scalability of the ECRO Algorithm
	6.5 RQ4: Evaluating the Performance of a Geo-Distributed RUBiS Application
	6.6 RQ3: Evaluating the Impact of Causally Unstable Operations on Scalability

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

