Squirrel: An Extensible Distributed Key-Value Store

Kevin De Porre
Vrije Universiteit Brussel
Brussel, Belgium
kdeporre@vub.be

Abstract

Distributed key-value (KV) stores are a rising alternative to
traditional relational databases since they provide a flexible
yet simple data model. Recent KV stores use eventual con-
sistency to ensure fast reads and writes as well as high avail-
ability. Support for eventual consistency is however still very
limited as typically only a handful of replicated data types
are provided. Moreover, modern applications maintain vari-
ous types of data, some of which require strong consistency
whereas other require high availability. Implementing such
applications remains cumbersome due to the lack of support
for data consistency in today’s KV stores. In this paper we
propose Squirrel, an open implementation of an in-memory
distributed KV store. The core idea is to reify distribution
through consistency models and protocols. We implement
two families of consistency models (strong consistency and
strong eventual consistency) and several consistency proto-
cols, including two-phase commit and CRDTs.

CCS Concepts « Information systems — Key-value
stores; Data replication tools; Distributed database trans-
actions.

Keywords distributed key-value stores, replication, data
consistency, open implementation

ACM Reference Format:

Kevin De Porre and Elisa Gonzalez Boix. 2019. Squirrel: An Extensi-
ble Distributed Key-Value Store. In Proceedings of the 4th ACM SIG-
PLAN International Workshop on Meta-Programming Techniques and
Reflection (META ’19), October 20, 2019, Athens, Greece. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3358502.3361271

1 Introduction

Relational databases are widely used to store and query
structured data. NoSQL databases emerged as they fit semi-
structured and unstructured data. Key-value (KV) stores are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

META 19, October 20, 2019, Athens, Greece

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6985-5/19/10...$15.00
https://doi.org/10.1145/3358502.3361271

21

Elisa Gonzalez Boix
Vrije Universiteit Brussel
Brussel, Belgium
egonzale@vub.be

Application

Replication
Model

Replication
Protocol

Transition rules

Distributed KV Store

Replication Layer

D Tx

SEC :"
P
CRDT | SECRO 2PC [3PC| ...

‘ Communication Layer ‘

Figure 1. Squirrel’s high-level architecture.

a type of NoSQL database that store data as key-value pairs
in an associative array. Traditional KV stores favoured con-
sistency over availability, a consequence of the CAP theo-
rem [4]. Since the appearance of Dynamo [8], most stores
nowadays focus on availability. However, modern applica-
tions no longer exclusively reside on one end of the AP/CP
spectrum [5]. Instead, applications are a mix of strongly con-
sistent parts and highly available parts. Some systems may
even benefit from a dynamic strategy, switching between
consistency models at runtime [9].

Current KV stores do not provide appropriate support for
mixed-consistency applications. They typically support only
one or two consistency models and a few replicated data
types. For instance, Riak, a popular KV store, features high
availability but supports only 6 replicated data types '. This
is problematic because apart from embedding objects within
maps, replicated data types cannot be composed to build
custom ones such as balanced trees.

In this paper, we propose an in-memory distributed KV
store that can be customized to replicate objects under dif-
ferent consistency models. Our concrete implementation in
Scala, called Squirrel, provides an interface containing the
traditional put, get, and delete operations. We showcase
how to extend Squirrel with custom consistency models by
adding support for highly available objects and distributed
transactions. We believe that an open distributed KV store
is key to enable mixed-consistency applications since it pro-
vides the hooks that are needed to plug in new consistency
models and protocols.

2 An Open Distributed KV Store

Figure 1 depicts the architecture of our open implementation
of a distributed KV store. Programmers build their applica-
tions on top of the store which provides a simple API to store

Uhttps://docs.riak.com/riak/kv/2.2.3/developing/data-types.1.html

https://doi.org/10.1145/3358502.3361271
https://doi.org/10.1145/3358502.3361271
https://docs.riak.com/riak/kv/2.2.3/developing/data-types.1.html

META 19, October 20, 2019, Athens, Greece

Communication ReplicationModel <T>

+ broadcast(msg: Message)

+ deliver(msg: Any, to: ActorRef)
Z% + get(key: Key<T>, extra: Any*): Option<T>

+ model: Namespace

+ put(key: Key<T>, value: T, extra: Any")
+ : Key<T>, extra: Any”)

 T. TxProtocol |

+ update(key: Key<T>, modify: T =>T)
+ updateAt<V>(key: Key<T, path: Cursor,
finalPtr: Pointer, modify: V => V)

+ startTransaction(participants: Set<ActorRef>,
protocol: TxProtocol): TID
+ endTransaction(tid: TID)

Figure 2. An overview of Squirrel’s replication models. Pro-
grammers can plug in custom replication models by imple-
menting the abstract ReplicationModel.

and retrieve data. The store is built on top of the replication
layer which determines where to store the data and how to
perform reads and writes. This layer consists of three parts:

Models A replication model dictates the effects of opera-
tions on the data being stored. It essentially prescribes
what to do with the data (e.g. cache on reads) without
specifying how to do it. Therefore, the model distils
an interface that must be implemented. A replication
model may refine the store API and extend it with
additional operations.

Protocols A replication protocol implements the inter-
face of some specific model, i.e. specifies how and
where to replicate data, how to manage replicas, etc.

Transitions Since an object’s consistency requirements
may vary over time [9], transition rules describe how
to switch between models and protocols at runtime.

In this paper we focus on replication models and protocols.
Transition rules are left as future work.

The replication layer is built on top of the communication
layer which reifies two communication primitives: 1) point-
to-point communication with causal, exactly-once delivery,
and 2) causal order broadcast. The causal delivery property
ensures that if a message A could have influenced message
B, all processes receive A before B.

2.1 Squirrel: An Open Distributed KV Store in Scala

We now describe Squirrel, a concrete implementation of an
extensible in-memory distributed KV store that leverages
the extensibility of traits and type members in Scala [15].
Squirrel is built around replication models and protocols,
which are depicted by the UML class diagrams in Figures 2
and 3. Custom replication models implement the abstract
fields and methods (italic font in the class diagram) defined by
the ReplicationModel, using the communication primitives
provided by the Communication trait.

As shown in Figures 2 and 3, Squirrel supports an arbitrary
number of replication models and protocols. Replication mod-
els are actors that implement the basic store functionality
(get, put, and delete) described by the ReplicationModel

22

Kevin De Porre and Elisa Gonzalez Boix

TxProtocol SECProtocol <T, U, E>
+ commit(tid: TID,
participants: Set<ActorRef>,
coordinator: ActorRef)

+ replicate(): () =>T
+ init(id: UniqueAddress): T
+ changes(): T

4‘> + serialise(updates: U): E
JA + deserialise(updates: E): U
+ 2 U, from: Unig, T
T: CvRDT
uT
ET
CvRDT <State>

Figure 3. An overview of Squirrel’s replication protocols.
Programmers can plug in custom replication protocols by
implementing the abstract protocol defined by the model.

trait from Listing 1, which corresponds to the abstract
ReplicationModel class from Figure 2 2. All operations take
a key followed by an arbitrary number of arguments, allow-
ing concrete models to take additional arguments if needed.
Note that keys encode the type of the value. This avoids colli-
sions when objects of different types are added concurrently
with the same name. Collisions between objects of the same
type are solved by merging them.

Squirrel thus acts as a single KV store but is in fact a
collection of stores (one per model). Each model maintains
its own store, which serves as a container for objects shared
under that model, thereby avoiding name clashes between
objects shared under the same key but different models. As
a result, programmers have to specify both a namespace
(identifying the store) and a key (identifying the object) when
reading or writing objects.

1 trait ReplicationModel extends Actor

2 with Communication {

3 type T

4 val model: Namespace

5 def get(key: Key[T], extra: Any«): Option[T]
6 def put(key: Key[T], value: T, extra: Anyx)
7

8

def delete (key: Key[T], extra: Anyx)

Listing 1. Interface for replication models.

2.2 Setting up a KV Store in Squirrel

Listing 2 shows how to set up a distributed KV store and add
a key-value pair under a certain consistency model. First, we
use Akka 3 to set up a regular actor system and configure a
custom cluster comprising several nodes each running an
instance of Squirrel (Line 1). This implies that a Squirrel dis-
tributed KV store crosses machine and network boundaries
since objects can be replicated across machines spanning
several networks. Then on Line 3, we make a new Squirrel
instance, passing along our actor system. Finally, on Lines 4
to 7 we fetch a reference to the store actor and add a Counter

2Some code listings in this paper are simplified for presentation purposes.
3https://akka.io/

https://akka.io/

Squirrel: An Extensible Distributed Key-Value Store

object by sending the Put (key, counter) action wrapped
inside a StoreAction. Upon receiving a StoreAction the
store unwraps the action, which is Put(key, counter),
and forwards it to the store that is responsible for the pro-
vided namespace, in this case SEC_SPACE. That is the names-
pace for objects shared under strong eventual consistency
(SEC) [20], a consistency model that is the focus of Section 3.
val system =
/

val

ActorSystem ("my—system ")
«/
new Squirrel(system)

set up a cluster of machines
squirrel =

val store = squirrel.storeActor

val key = CounterKey("my counter")

val counter = Counter ()

StoreAction (Put(key, counter), SEC_SPACE)

N O G W =

store !
Listing 2. Setting up and using Squirrel.

In the remainder, we describe the implementation of two
custom replication models in Squirrel: SEC in Section 3 and
distributed transactions in Section 4. We also introduce a
privacy extension for replication in Section 5.

3 Strong Eventual Consistency

Strong eventual consistency (SEC) [20] is a variation on
eventual consistency that avoids replica synchronisation by
relying on some mathematical properties. When replicas
shared under SEC receive the same set of operations, possi-
bly in a different order, they are guaranteed to converge. One
way to achieve this is to make all operations commute. Com-
mutativity lies at the basis of (operation-based) conflict-free
replicated data types (CRDTs) [20]. Other work proposed
SECROs [7], an alternative data type ensuring SEC that can
deal with non-commutative operations by keeping a totally
ordered log of operations.

We observe that data types implementing SEC follow sim-
ilar implementation strategies. Operations are first applied
locally, whereafter the update is asynchronously propagated
to the other replicas. How replicas merge incoming updates
depends on the data type. Based on this strategy we imple-
ment a generic replication model for SEC and some protocols
(CRDTs and SECROs) that handle updates in different ways.

3.1 Replication Model for SEC

We now describe a generic replication model for SEC. By
design, the model abstracts five crucial aspects, i.e. how to:

e replicate objects,

o buffer updates,

o serialise/deserialise updates,

e merge incoming updates, and

e reset objects.
The first three aspects are properties of the replication pro-
tocol while the other aspects are defined by the replicated
data type itself. By default, objects are serialised using the
Java serialiser, however, programmers can override specific
hooks to provide custom serialisers.

23

META 19, October 20, 2019, Athens, Greece

Listing 3 shows a skeleton of the replication model for SEC.
Internally, the model maintains a store which is a special
map CRDT (Line 3) allowing arbitrary nesting of replicated
data types (also known as the remove-as-recursive-reset map
CRDT [16]). This CRDT requires, however, that all stored ob-
jects define a reset operation. On Line 4 the model overrides
the abstract type T with a subtype relation, enforcing all ob-
jects shared under this model to implement the SECProtocol
which will be analysed later. The model extends the tradi-
tional API (get, put, and delete) from Figure 2 with two
additional operations: update and updateAt. The former
applies a pure function on an object and yields the updated
object. Similarly, the latter applies a pure function on a nested
object that is identified by a path consisting of three parts:
a key identifying an object O in the store, a path within 0,
and a final pointer to the object %. Recall that stores are ac-
tors, hence, we extend the actor’s receive partial function
to handle Update and UpdateAt messages sent by users of
the store (Lines 17 to 24).

1 type Cursor = Seq[Pointer[Storable]]

2 class SEC extends ReplicationModel {

3 var store: RRMap[String] = RRMap.empty[String]
4 override type T <: SECProtocol

5 override val model: Namespace = SEC_SPACE

6 override def get(key: Key[T], extra: Any«) =
7 Jx o/

8 override def put(key: Key[T], value: T,

9 extra: Anys) = /» «/

10 override def delete(key: Key[T],extra: Any«) =
11 VeV

12 def update (key: Key[T], modify: T=>T) = /«.. =/
13 def updateAt[V <: SECProtocol]

14 (key: Key[T], path: Cursor,

15 finalPtr:Pointer [V], modify: V=>V) = /« ../
16

17 def extension: Receive = {

18 case Update(key, modify, extra @ _») =>

19 update (key, modify, extra:_x)

20 case UpdateAt(key, path, fPtr, modify) =>

21 updateAt(key, path, fPtr, modify)

22 }

23 override def receive: Receive =

24 super.receive orElse extension

25}

Listing 3. Skeleton of the replication model for SEC.

We now turn attention to the actual implementation of
the operations. Listing 4 only shows the implementation of
get, put, and update. The other operations are similar since
they adhere to the aforementioned implementation strategy.

override def get(key: Key[T], extra: Anyx) =
store . get (key)

T,
value)

value:

1

2

3 override def put(key: Key[T],
4 extra: Anyx) = {
5

store =

store + (key,

4 A pointer can be an index in a list, a key in a map, etc.

META 19, October 20, 2019, Athens, Greece

6 replicate (key, value)

7}

8 def update(key: Key[T], modify: T => T) = {
9 val newStore = store.update(key, modify)
10 val value = newStore. get(key). get

11 propagate (key, value)

12}

Listing 4. Operations of the SEC model.

The get operation fetches the value that is associated to
the provided key, from the underlying store. The put opera-
tion adds the key-value pair locally whereafter it replicates
the entry across the cluster. Similarly, the update operation
updates the key-value pair locally, fetches the updated value
and propagates it across the Squirrel cluster.
def replicate (key: Key[T], value: T) = {
val fn = value.replicate ()
val msg = NewReplica(key, fn, selfAddress)
broadcast (msg)

def propagate(key: Key[T], value: T) = {
val updates = value.changes
val str = value.serialise (updates)

1
2
3
4
5}
6
7
8
9 selfAddress)

val msg = StateChange (key, str,
10 broadcast (msg)
1}

Listing 5. Replicating objects and propagating updates.

Listing 5 shows how entries are replicated and updates
are propagated. To replicate an entry, the model calls the
object’s replicate method which is part of the object’s
replication protocol (Section 3.2) and returns a function for
constructing replicas (Line 2). As such, the object does not
need to be serialisable. Instead, the function encloses only
the information that is needed to reconstruct the object.
Lines 3 and 4 wrap the function inside a NewReplica message
that is broadcast to the other nodes of the Squirrel cluster.
Each time an operation is applied on an object, the object’s
protocol stores the update. Periodically, the model fetches
the updates ° (Line 7), serialises them (Line 8) and wraps the
serialised updates inside a StateChange message which is
broadcast over the cluster (Lines 9 and 10).

When these messages arrive at a Squirrel instance, the
replica must be added to the store or the update applied
on a replica. Listing 6 shows how we extend the model’s
receive partial function to handle incoming NewReplica
and StateChange messages.

1 override def receive: Receive =

2 super.receive orElse extension orElse {

3 case NewReplica(key, repBuilder, from) => {
4 val selfAddress =

5 Cluster (context.system).selfUniqueAddress
6 val rep = repBuilder (). init(selfAddress)

7 val map = RRMap.empty[String] + (key, rep)
8 val store = store.merge(map, from)

5An update can be some state, an operation, etc.

Kevin De Porre and Elisa Gonzalez Boix

9 }

10 case StateChange(key, changes, from) => {
11 val oldVal = store.get(key). get

12 val updates = oldVal.deserialise (changes)
13 val newVal = oldVal.merge(updates, from)
14 store = store.update(key, (_: T)=>newVal)
15 }

16 }

Listing 6. Handling incoming replicas and updates.

Upon receiving a NewReplica message, the model con-
structs a new replica using the wrapped function (Line 6),
adds the replica to a fresh map CRDT (Line 7), and merges
that map into the current store (which takes care of con-
flicts in case the entry already exists). Upon receiving a
StateChange message, the model deserialises the changes
and merges them into the object (Lines 12 and 13). How to
merge the changes is defined by the protocol. The updated
object then replaces the old object in the store (Line 14).

3.2 Protocols for SEC

Recall that the replication model for SEC makes abstraction
from five crucial aspects (how to replicate objects, buffer
updates, (de)serialise updates, merge updates, and reset ob-
jects). Objects shared under SEC must provide a concrete
implementation for all aspects by implementing the protocol
shown in Listing 7.

1 trait SECProtocol {

2 type T <: SECProtocol

3 type U; type E;

4 // Properties of the protocol

5 def replicate(): () => T

6 def init(id: UniqueAddress): T

7 def changes(): U

8 def serialise (updates: U): E

9 def deserialise (updates: E): U

10 // Properties of the data type

11 def merge(changes: U, from: UniqueAddress): T
12 def reset(): T
13}

Listing 7. Interface for SEC protocols.

The SECProtocol defines three abstract types (Lines 2
and 3): T is the object’s type and thus must be a subtype of
this protocol, U is the type of updates, and E is the type of
serialised updates. The protocol also defines a number of
abstract methods. The replicate method returns a func-
tion that constructs replicas of this object. The init method
serves to initialise those new replicas with a unique ID, oth-
erwise they still contain the ID of the original object. The
changes method returns the latest updates. The serialise
and deserialise methods lets protocols customise how up-
dates are sent over the network. The merge method takes
some updates, incorporates them in the object, and returns
the updated object. The reset method simulates deletions
by resetting the object to its initial state. In the remainder

Squirrel: An Extensible Distributed Key-Value Store

of this section, we use this protocol to implement two data
types guaranteeing SEC.

3.2.1 CRDT Protocol

We now extend Squirrel with state-based CRDTs [20] by im-
plementing the protocol from Listing 7. State-based CRDTs
are objects whose state form a join semilattice. Updates are
propagated by shipping the CRDT’s entire state to the other
replicas. Incoming states are merged into the local replica by
taking the least upper bound (LUB) of the local and received
state. The merge operation is defined by the data type itself.

1 trait CvRDT extends SECProtocol {

2 type T <: CvRDT; type U = T; type E = T

3 override def replicate() = () => this

4 override def changes(): T = this

5 override def serialise (updts: T): T = updts
6 override def deserialise (updts: T): T = updts
7}

Listing 8. State-based CRDTs.

Listing 8 shows the implementation of the protocol for
state-based CRDTs. replicate yields a closure that returns
the CRDT object itself ¢. The changes method simply returns
the object and no custom serialisation is used. CRDT objects
must thus be serialisable and both abstract type variables U
and E are equal to T, which is the object’s own type.

Note that implementing operation-based CRDTs is simple
as it only requires modifying the changes method to return
the operations instead of the state. Appendix A shows how
we use the CVRDT protocol to implement custom CRDTs.

3.2.2 SECRO Protocol

We now extend Squirrel with SECROs [7], an alternative
data type for SEC. SECROs are objects that keep a totally or-
dered log of operations that respects causality and preserves
application-level invariants specified via preconditions and
postconditions. Operations are added to the local log and
asynchronously propagated to the other replicas that, in turn,
add them to their log, yielding identical logs at all replicas.

1 trait SecroProtocol[State] extends SECProtocol {
2 this: Secro[State] =>

3 type T <: SecroProtocol[State]

4 override type U = Set[Operation[State]]

5 override type E = U

6 var buffer = Set[Operation[State]]()

7 override def changes(): U = {

8 val tmp = buffer

9 buffer = Set[Operation[State]]()

10 tmp

11 }

12 override def serialise (updts: U): E = updts
13 override def deserialise (updts: E): U = updts
14}

Listing 9. State-based CRDTs.

%We rely on Scala’s spores [13] to ensure safe serialisation of closures.

META 19, October 20, 2019, Athens, Greece

Listing 9 shows the implementation of the protocol for SE-
CROs. On Line 4, the abstract type U is assigned the concrete
type Set[Operation[State]] because SECROs propagate
operations on state. Every time an operation executes lo-
cally it is added to a buffer (Line 6). The changes method
on Lines 7 to 11 returns the operations accumulated by the
buffer and clears it. The protocol does not apply a custom
serialisation scheme, therefore, the abstract type E equals
U. The protocol does not implement the replicate method,
leaving the implementation up to the SECROs themselves.
For example, the list SECRO replicates its internal list.

4 Distributed Transactions

We previously focused on strong eventual consistency, a
consistency model that guarantees high availability and low
latency but introduces temporal inconsistencies. We now
focus on models that guarantee strong consistency by means
of distributed transactions.

Applications require distributed transactions to coordinate
updates spanning several participants with ACID guarantees.
Such transactions involve a coordinator and a fixed set of
participants. For each transaction the system undertakes the
following steps:

1. Start transaction

2. Apply tentative updates at the participants

3. End transaction

4. Decide whether to commit or abort the transaction

The first three steps are general, the last step depends on the
atomic commit protocol (e.g. two-phase commit [3]).

In the remainder of this section we extend Squirrel with
transactions, enabling arbitrary atomic commit protocols to
be plugged in. To this end, we implement a new replication
model (i.e steps 1 to 3 from the list above) and abstract the
decision making process into a separate replication protocol.
We then implement two-phase commit and show how to
plug it into our transactional model.

4.1 Transactional Model

Conceptually, the transactional model extends the store with
operations to start and end transactions. The put and delete
operations expect an additional argument, namely the trans-
action id. This id is passed through the method’s extra pa-
rameter which accepts a variable number of arguments.

1 trait Transactional extends ReplicationModel

2 with Coordinator with Participant {

3 type T

4 var store: Store[T] = Map()

5 var tentatives: Map[TID, Store[T]] = Map()

6 override val model: Namespace = Tx _SPACE

7 override def get(
8 key: Key[T],
9

extra: Any=x): Option[T] = /«...+/

10 override def put(
11 key: Key[T], value: T,

META 19, October 20, 2019, Athens, Greece

12 extra: Anys) = /» «/

13 override def delete (

14 key: Key[T],

15 extra: Anys) = /» «/

16 override def receive: Receive =

17 super.receive orElse {

18 case StartTx(participants, protocol) =>
19 startTx (participants , protocol)
20 case EndTx(tid) => endTx(tid)

21 }

22}

Listing 10. Skeleton of the transactional model.

Listing 10 shows the structure of the transactional model.
Every node can be both a participant and a coordinator, there-
fore, Line 2 of the transactional model mixes in functionality
from both the Coordinator and Participant traits.

In this model, the put and delete operations operate on a
tentative copy of the store. The model stores a tentative copy
for each transaction (Line 5). In addition to the traditional
operations, this model provides operations to start and end
transactions (Lines 16 to 21). The actual implementation of
these operations is provided by the Coordinator trait that
is mixed-in (shown in Listing 11).

1 trait Coordinator extends Actor {

2 type T

3 case class Tx(participants: Set[ActorRef],

4 protocol: TxProtocol)

5 var store: Store[T]

6 var transactions: Map[TID, TxDetails] = Map()
7 def startTx(participants: Set[ActorRef],

8 protocol: TxProtocol) = {

9 val tid = id ()

10 val tx = Tx(participants, protocol)

11 transactions += tid —-> tx

12 sender ! NewTransaction(tid)

13 }

14 def endTx(tid: TID) = {

15 transactions.get(tid) match {

16 case None => sender ! UnknownTx(tid)

17 case Some(Tx(participants, protocol)) =>
18 protocol.commit(tid, participants, self)
19 }

20 }

21 def onDecision(tid: TID, decision: Vote) = {
22 val tx = transactions.get(tid). get

23 tx.participants.foreach(p => deliver (msg,p))
24 transactions —= tid

25 }

26}

Listing 11. The transaction coordinator.

Listing 11 shows the functionality for coordinators. The
startTx method takes a set of participants and an atomic
commit protocol as input. The method then generates
a unique ID for the transaction, stores the details of
this transaction in the transactions map, and returns a

26

Kevin De Porre and Elisa Gonzalez Boix

NewTransaction message containing the ID of the newly
created transaction. The endTx method fetches the transac-
tion’s protocol and calls its commit method (see TxProtocol
in Figure 3), thereby initiating the atomic commit protocol.
When the protocol reaches a final decision the coordinator’s
onDecision method is invoked. This method informs all
participants of the final decision (Line 23). Since the commu-
nication layer guarantees eventual delivery we can already
discard the transaction locally (Line 24).

1 trait TxProtocol {

2 def commit(tid:TID, participants:Set[ActorRef],
3 coordinator: ActorRef)

4

}

Listing 12. Interface for transactional protocols.

Listing 12 shows the interface for transactional protocols.
Such protocols implement a commit method that reaches the
participants in an attempt to commit the given transaction.
The final decision (commit or abort) must be reported to the
coordinator which in turn informs the participants.

Finally, Listing 13 shows the implementation of partici-
pants. The participant’s vote method decides to commit or
abort the transaction. The doCommit method replaces the
store by the transaction’s tentative store ’. The doAbort
method discards the transaction locally.

sealed trait Vote
case object Commit extends Vote
case object Abort extends Vote

type T

var store: Store[T]
tentatives: Map[TID,

vote (tid: TID):

var

def

Store [T]]

1
2
3
4
5 trait Participant extends DecisionLogic {
6
7
8
9 /

Vote = */

10 def doCommit(tid: TID) =

11 store = tentatives.get(tid). get

12 def doAbort(tid: TID) = tentatives —= tid
13}

Listing 13. Participant of a transaction.

4.2 Two-Phase Commit

We now showcase how to plug in custom atomic commit
protocols. As an example, we implement the well known
two-phase commit protocol (2PC) [3]. Our implementation
is resilient to arbitrary network failures but cannot cope with
device failures. Robustness against device failures requires
extending the protocol with persistence.
class TwoPC(implicit t:Timeout)
extends TxProtocol {
override def commit(tid:
Set[ActorRef],
ActorRef) = {
ps.map(_ ? Decide(tid))

TID,

1

2

3

4 ps:
5 coordinator:
6 val answerFuts =

"The actual implementation is more complex because the tentative store may
contain stale entries due to overlapping transactions that got committed.

Squirrel: An Extensible Distributed Key-Value Store

7 Future.sequence (answerFuts)

8 .map (answrs => answrs. forall (_ == Commit))
9 .onComplete (_ match {

10 case Success(decision) => {

11 val consensus =

12 if (decision) Commit else Abort

13 coordinator ! Outcome(tid, consensus)
14 }

15 case Failure(_) =>

16 coordinator ! Outcome(tid, Abort)

17 1))

18 }

19 }

Listing 14. Two-phase commit.

Listing 14 shows our implementation of 2PC. The TwoPC
class extends the TxProtocol trait and provides a concrete
implementation of commit. On Line 6, commit asks each
participant to vote on the transaction. If everyone agrees
to commit (Line 8) the protocol commits the transaction
(Lines 10 to 14). However, if some participant votes abort
or the votes do not arrive timely, then the protocol aborts
the transaction (Lines 15 to 17). This implementation always
waits either for all votes to arrive or for the voting phase to
time out. In the actual implementation the protocol aborts
the transaction immediately when receiving an abort vote.

5 Scoped Replicas

To showcase the extensibility of our distributed KV store,
we describe an extension that controls the propagation of
replicated data types. This extension is highly relevant in
the context of the new GDPR legislation. Simply put, per-
sonal data of EU citizens may only be transferred to non-EU
countries if they have an adequate level of protection. Such
restrictions greatly complicate geo-replication.

In this section, we propose a static scoping mechanism for
replicated data as a simple means to control data propaga-
tion. In our model each node owns one or more scopes and
objects belong to exactly one scope. Objects are replicated
only to nodes owning the object’s scope. Likewise, subse-
quent updates are only propagated within the boundaries of
the scope. Note that we deliberately choose static scopes. Al-
lowing scopes to change at runtime quickly leads to privacy
issues, especially in a weakly-consistent setup.

1 akka {

2 actor { provider = "cluster" }

3 cluster { roles = ["scope:EU"] }
4}

Listing 15. Configuring a node with the EU scope.

In Akka, members of a cluster have a “role” property de-
scribing their capabilities. We encode the scopes of a node
in its role property, as shown in Listing 15. Every time a
member joins the cluster, Akka notifies subscribers about
this member and its roles. We use this information to keep

27

META 19, October 20, 2019, Athens, Greece

track of each member’s scopes. When replicating objects or
propagating updates, we only contact members of the scope.

1 trait ScopedProp extends ReplicationModel {
2 val ¢l = Cluster(context.system)

3 val selfScopes = parseScopes(cl.selfMember)
4 var scopes: Map[Member, Set[String]] = Map()
5 var objScopes: Map[Key[T], String] = Map()
6 override def preStart(): Unit = {

7 super.preStart ()

8 cl.subscribe (self ,

9 classOf[ClusterDomainEvent])
10 }

11 override def put(key: Key[T], value: T,

12 extra: Anyx) = {

13 val scope = extra.head.asInstanceOf[String]
14 if (!selfScopes.contains(scope)) {

15 sender ! CreateFailure (key, model)

16 }

17 else {

18 objScopes += key —> scope

19 super.put(key, value, extra.tail)

20 }

21 }

22 override def broadcast(msg: MessageWithKey) ={
23 val scope = objScopes.get(msg.key). get

24 scopes

25 .filter (_._2.contains(scope))

26 .keys.map(getActorRef(_))

27 .foreach(to => deliver (msg, to))

28 }

29 def updateScope(m: Member) = /= +/

30 def receiveClusterEvents: Receive = {

31 case m: MemberEvent => updateScope (m.member)
32 case state: CurrentClusterState =>

33 state .members. foreach (updateScope(_))

34 case _: ClusterDomainEvent => // ignore

35 }

36 override def receive: Receive =

37 receiveClusterEvents orElse super.receive
38}

Listing 16. Implementation of the scoping mechanism.

Listing 16 shows the implementation of the scoping mech-
anism. We override the actor’s preStart hook on Lines 6
to 10 to subscribe to cluster events. The actor’s receive par-
tial function is extended to handle incoming cluster events
(Lines 30 to 37). Each time a new member joins the cluster
we fetch his scopes and add them to the scopes map. We
also override the put operation such that it 1) expects an
additional scope argument (Line 13), 2) authorises the user to
put objects in the provided scope, 3) stores the object’s scope,
and 4) delegates the call to the actual model using super
(Line 19). Finally, the trait overrides broadcast (Lines 22
to 28) such that it fetches the scope of a message and sends
the message only to the members of that scope.

META 19, October 20, 2019, Athens, Greece

The ScopedProp trait presented in this section is designed
to be mixed in after a concrete replication model ®.
1 class ScopedSEC extends SEC with ScopedProp ({
2 override val model: SCOPED_SPACE

3}

Namespace =

Listing 17. Extending SEC with scopes.

Listing 17 uses the ScopedProp trait to define a ScopedSEC
store that extends the store for SEC (from Section 3) with
scopes. Within this newly created store, existing CRDTs and
SECROs can be reused without modifications.

6 Related Work

As argued in the introduction, NoSQL databases typically
only support a few consistency models, e.g. Riak focuses on
SEC and provides only 6 CRDTs which cannot be composed
arbitrarily. Cassandra ?, does allow programmers to fine tune
the consistency and availability of the database by choosing
from a fixed set of consistency levels. In contrast to Squirrel,
programmers cannot implement custom consistency levels.

We focus the discussion of related work on replicated
databases which allow users to choose between consistency
levels for an operation. Examples include DynamoDB [8],
Yahoo PNUTS [6], and CRAQ [21], all of which support
strong and eventually consistent reads. However, users are
limited to the consistency levels provided by the database
and have no means to extend the database as with Squirrel.

Pileus [22] is a replicated KV store that allows program-
mers to declare service level agreements (SLAs) about consis-
tency guarantees and latency requirements. Based on these
SLAs, Pileus dynamically adapts reads to provide an optimal
service. Pileus thus switches between consistency models
implicitly, whereas Squirrel uses explicit transition rules.

Gemini [11] supports RedBlue consistency, a consistency
model where commutative operations are labeled blue, and
others are labeled red. Blue operations are executed under
eventual consistency and red operations are executed under
strong consistency. Due to the commutativity requirement
for blue operations, Gemini’s support for eventual consis-
tency is limited to CRDTs. Sieve [10] improves upon Gemini
by taking into account application semantics when labelling
operations. It also extends the scope of blue operations to
non-commutative operations by turning them into commuta-
tive ones. To this end, programmers pick the CRDT semantics
that suit the operation from a fixed set of semantics. Sieve
does not support custom semantics.

MixT [12] proposes mixed-consistency transactions to
manipulate data with different consistency levels within a
single database transaction. Using information flow analysis
MixT can break down mixed-consistency transactions into
subtransactions for each consistency level and still guarantee
atomicity. Whereas MixT focuses on manipulating data using

8Such that the trait’s super refers to the actual replication model.
“http://cassandra.apache.org

28

Kevin De Porre and Elisa Gonzalez Boix

different consistency levels within one transaction, Squirrel
focuses on supporting arbitrary replication models to coexist
within an application.

Other work on mixed consistency models uses invariants
to classify operations as safe or unsafe [1, 2]. Safe operations
execute fast, whereas unsafe operations are synchronised in
order not to violate application level invariants. These con-
sistency models are currently not supported by Squirrel but
can be added using Squirrel’s metaprogramming constructs.

Actor-based approaches. We now compare Squirrel to
related work on actor languages. Previous work explored an
open implementation of the actor scheduler [17, 18]. Those
approaches focus on the extensibility of scheduling policies
in a concurrent setting. However, distributed concerns such
as the serialisation of objects across actors are not reified,
making it difficult to implement a distributed KV store.

Similar to our work, CAPtain [14] supports both consis-
tency and availability by means of consistent and available
objects. CAPtain’s meta-object protocol (MOP) allows ex-
perts to change the model’s internals, for instance to cus-
tomise replication. However, the granularity of CAPtain’s
MOP is on the level of actors and does not explicitly target
replication. This forces programmers to resort to lower-level
abstractions in order to implement high-level replication
code. In contrast to CAPtain, Squirrel’s replication protocols
are designed specifically for replication. We show that these
protocols ease the development of replicated data types by
adding support for CRDTs and SECROs.

7 Conclusion and Future Work

In this work, we study how to improve the flexibility of in-
memory distributed KV stores with regard to replication and
data consistency. We propose an open implementation of
a distributed KV store featuring a customisable replication
model. Multiple models can coexist, each of which can have
several implementations or “protocols”. Programmers can
also implement their own storable data types.

We prototyped the proposed architecture in Scala, result-
ing in the Squirrel distributed KV store. We validate Squir-
rel’s metaprogramming facilities by implementing strong
eventual consistency and distributed transactions. We also
introduce a scoping mechanism for replicated data types that
requires no modifications to the data types.

Although the envisioned architecture allows programmers
to switch between models and protocols at runtime, the
design and implementation of transition rules which allow
objects to move from one store to another (e.g. from the SEC
store to the transactional store) remains future work.

A An Increment-Only Counter CRDT

Throughout the paper we discussed the replication protocol
for CRDTs. We show how programmers can use this protocol
to implement custom storable CRDTs. As an example we

http://cassandra.apache.org

Squirrel: An Extensible Distributed Key-Value Store

show the implementation of a state-based increment-only
counter (G-Counter) CRDT [19].

O 0 N N U R W N =

DN DN DN NN NN DN o e b b = e e e e
N GhR WN = O 0 0N R W = O

type ID UniqueAddress
@SerialVersionUID (100L)
case class GCounter (
selfID: ID, incs: Map[ID, Int] =
Map (). withDefaultValue (0)) extends CvRDT {
override type T = GCounter
override def init(id: ID) = copy(selfID = id)

def value incs (0)(_ + _)
def increment (): GCounter =
incs.updated (selfID ,
incs (selfID)+1))

from: ID): T = {

copy(incs =

override def merge(that: T,

val mergedIncrements
mergeMaps (this.incs, that.incs)
(_.getOrElse (0) + _.getOrElse(0))
copy(incs = mergedIncrements)
}
private def mergeMaps[K, V]

(ml: Map[K, V], m2: Map[K, V])
(Option[V], Option[V]) => V) = {
val keys ml. keySet ++ m2.keySet
keys.foldLeft (Map.empty[K, V])((map, key)

map + (key —> merge(ml.get(key),

m2. get (key))))

(merge:

=>

Listing 18. A G-Counter CRDT.

Listing 18 shows the implementation of the G-Counter.
In order for the GCounter class to be a state-based CRDT it
extends the CvRDT protocol from Listing 8. The counter main-

tains an incs map that counts the number of increments per
replica. On Line 6 the counter assigns the abstract type T to
the concrete type GCounter. The merge method on Lines 13
to 18 takes the maximum of each entry in its own and the
received increment maps. Instances of the GCounter class
are now storable under the SEC model.

Acknowledgments

Kevin De Porre is funded by an SB Fellowship of the Research
Foundation - Flanders. Project number: 1S98519N.

References
[1] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno

—

[t

Preguica, Mahsa Najafzadeh, and Marc Shapiro. 2015. Putting Consis-
tency Back into Eventual Consistency. In 10th European Conference on
Computer Systems (EuroSys ’15). Article 6, 16 pages.

Valter Balegas, Cheng Li, Mahsa Najafzadeh, Daniel Porto, Allen
Clement, Sérgio Duarte, Carla Ferreira, Johannes Gehrke, Joao Leitao,
Nuno Preguica, et al. 2016. Geo-Replication: Fast If Possible, Consistent
If Necessary. IEEE Data Engineering Bulletin 39, 1 (2016), 12.

Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. 1987.
Concurrency Control and Recovery in Database Systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

29

(4]
(5]

G

—

[7

—

8

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

META 19, October 20, 2019, Athens, Greece

Eric Brewer. 2000. Towards Robust Distributed Systems. In 19th Annual
ACM Symp. on Principles of Distributed Computing (PODC ’00). 7.
Eric Brewer. 2012. CAP Twelve years later: How the Ruleshave
Changed. Computer 45 (02 2012), 23-29.

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam
Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel
Weaver, and Ramana Yerneni. 2008. PNUTS: Yahoo!’s Hosted Data
Serving Platform. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1277-1288.
Kevin De Porre, Florian Myter, Christophe De Troyer, Christophe
Scholliers, Wolfgang De Meuter, and Elisa Gonzalez Boix. 2019. Putting
Order in Strong Eventual Consistency. In Distributed Applications and
Interoperable Systems, José Pereira and Laura Ricci (Eds.). Springer
International Publishing, Cham, 36-56.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s
Highly Available Key-value Store. In 21st ACM SIGOPS Symp. on Oper-
ating Systems Principles (SOSP ’07). 205-220.

Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann.
2009. Consistency Rationing in the Cloud: Pay Only when It Matters.
Proc. VLDB Endow. 2, 1 (Aug. 2009), 253-264.

Cheng Li, Jodo Leitdao, Allen Clement, Nuno Preguica, Rodrigo Ro-
drigues, and Viktor Vafeiadis. 2014. Automating the Choice of Consis-
tency Levels in Replicated Systems. In Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference (USENIX ATC’14).
USENIX Association, Berkeley, CA, USA, 281-292.

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno
Preguica, and Rodrigo Rodrigues. 2012. Making Geo-replicated Sys-
tems Fast As Possible, Consistent when Necessary. In Proceedings of the
10th USENIX Conference on Operating Systems Design and Implementa-
tion (OSDI’12). USENIX Association, Berkeley, CA, USA, 265-278.
Matthew Milano and Andrew C. Myers. 2018. MixT: A Language for
Mixing Consistency in Geodistributed Transactions. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2018). ACM, New York, NY, USA, 226-241.
Heather Miller, Philipp Haller, and Martin Odersky. 2014. Spores:
A Type-Based Foundation for Closures in the Age of Concurrency
and Distribution. In ECOOP 2014, Richard Jones (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 308-333.

Florian Myter, Christophe Scholliers, and Wolfgang De Meuter. 2018.
A CAPable Distributed Programming Model. In Proceedings of the 2018
ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! 2018). ACM,
New York, NY, USA, 88-98.

Martin Odersky and Matthias Zenger. 2005. Scalable Component Ab-
stractions. In Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA °05). ACM, New York, NY, USA, 41-57.

Nuno Preguica. 2018. Conlflict-free Replicated Data Types: An
Overview. arXiv preprint arXiv:1806.10254 (2018).

Aleksandar Prokopec. 2016. Pluggable Scheduling for the Reactor
Programming Model. In Proceedings of the 6th International Workshop
on Programming Based on Actors, Agents, and Decentralized Control
(AGERE 2016). ACM, New York, NY, USA, 41-50.

Christophe Scholliers, Eric Tanter, and Wolfgang De Meuter. 2014.
Parallel Actor Monitors: Disentangling Task-level Parallelism from
Data Partitioning in the Actor Model. Sci. Comput. Program. 80 (Feb.
2014), 52-64.

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski.
2011. A comprehensive study of Convergent and Commutative Repli-
cated Data Types. Research Report RR-7506. Inria — Centre Paris-
Rocquencourt ; INRIA. 50 pages.

META 19, October 20, 2019, Athens, Greece Kevin De Porre and Elisa Gonzalez Boix

[20] Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. Proceedings of the 2009 Conference on USENIX Annual Technical Con-
2011. Conflict-free Replicated Data Types. In 13th Int. Symp. on Sta- ference (USENIX09). USENIX Association, Berkeley, CA, USA, 11-11.
bilization, Safety, and Security of Distributed Systems (S55°11), Xavier [22] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh
Défago, Franck Petit, and Vincent Villain (Eds.). Springer-Verslag, Balakrishnan, Marcos K. Aguilera, and Hussam Abu-Libdeh. 2013.
Grenoble, France, 386-400. Consistency-based Service Level Agreements for Cloud Storage. In

[21] Jeff Terrace and Michael J. Freedman. 2009. Object Storage on CRAQ: Proceedings of the Twenty-Fourth ACM Symposium on Operating Sys-
High-throughput Chain Replication for Read-mostly Workloads. In tems Principles (SOSP ’13). ACM, New York, NY, USA, 309-324.

30

	Abstract
	1 Introduction
	2 An Open Distributed KV Store
	2.1 Squirrel: An Open Distributed KV Store in Scala
	2.2 Setting up a KV Store in Squirrel

	3 Strong Eventual Consistency
	3.1 Replication Model for SEC
	3.2 Protocols for SEC

	4 Distributed Transactions
	4.1 Transactional Model
	4.2 Two-Phase Commit

	5 Scoped Replicas
	6 Related Work
	7 Conclusion and Future Work
	A An Increment-Only Counter CRDT
	Acknowledgments
	References

