
A Generic Replicated Data Type for Strong Eventual Consistency
Kevin De Porre
kdeporre@vub.be

Vrije Universiteit Brussel
Brussels, Belgium

Florian Myter
Vrije Universiteit Brussel

Brussels, Belgium

Christophe De Troyer
Vrije Universiteit Brussel

Brussels, Belgium

Christophe Scholliers
Ghent University
Gent, Belgium

Wolfgang De Meuter
Vrije Universiteit Brussel

Brussels, Belgium

Elisa Gonzalez Boix
Vrije Universiteit Brussel

Brussels, Belgium

ABSTRACT
Conflict-free replicated data types (CRDTs) [7] aid programmers
develop highly available and scalable distributed systems. However,
CRDTs require operations to commute which is not practical. This
means that programmers cannot replicate regular objects without
worrying about concurrency. In this paper, we introduce strong
eventually consistent replicated objects (SECROs), a generic data
type that is highly available and guarantees strong eventual consis-
tency (SEC) without imposing restrictions on its operations.

CCS CONCEPTS
• Software and its engineering → Distributed systems orga-
nizing principles; Consistency;

KEYWORDS
distribution, replicated data types, strong eventual consistency

ACM Reference Format:
Kevin De Porre, Florian Myter, Christophe De Troyer, Christophe Scholliers,
Wolfgang De Meuter, and Elisa Gonzalez Boix. 2019. A Generic Replicated
Data Type for Strong Eventual Consistency. In PaPoC ’19: Workshop on
Principles and Practice of Consistency for Distributed Data, March 25, 2019,
Dresden, Germany. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
During the past decade we observed a shift from strongly consistent
(CP) systems to highly available (AP) systems. A state-of-the-art
approach towards high availability are conflict-free replicated data
types (CRDTs) [7]. CRDTs rely on commutative operations to guar-
antee strong eventual consistency (SEC), a variation on eventual
consistency that avoids the need for synchronisation, yielding high
availability and low latency. However, this forces programmers to
completely rethink data structures such that all operations com-
mute. If the operations cannot be made commutative, programmers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PaPoC ’19, March 25, 2019, Dresden, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

need to manually implement conflict resolution which is error-
prone and results in brittle systems [1, 4, 7].

Other work proposed a hybrid approach that consists of syn-
chronising non-commutative operations as they could lead to con-
flicts [2, 3]. This implies giving up on availability in favour of strong
consistency when necessary.

In this work, we explore a different approach towards high avail-
ability which does not require operations to commute. The key
idea is to find a conflict-free ordering for concurrent - potentially
conflicting - operations. To this end, we rely on application-level
invariants. Similarly to [8], we adhere to the idea that conflict de-
tection and resolution depends on the semantics of the application.

2 OUR APPROACH
We introduce strong eventually consistent replicated objects (SE-
CROs), a novel replicated data type that guarantees SEC and can
be used to build AP systems. Like regular objects, SECROs contain
state in the form of fields, and operations in the form of meth-
ods. In addition, SECROs also contain application-level invariants
employed by the underlying replication protocol.

Since SECROs do not require operations to commute, replicas
may diverge after concurrent operations. The only way to ensure
convergence is to totally order the operations across all replicas.
At first glance, this seems to require synchronisation. However, we
show that it is possible to order the operations asynchronously as
to remain highly available. This implies that replicas may need to
reorder operations in the face of concurrent updates.

Naturally, randomly selecting a total order of operations is not
sensible as it may leave the application in a state that violates
application-level invariants. Instead, SECRO’s replication protocol
computes a total order of operations that upholds all invariants and
respects causality.

From the programmer’s perspective, developers can specify
application-level invariants by means of state validators. A state val-
idator is a declarative rule that is associated to an update operation
and comes in two forms:

Preconditions enforce invariants prior to the execution of the
associated update. Hence, preconditions approve or reject
the state before applying the actual update. In case of a
rejection, the operation is aborted and a different ordering
of the operations will be tried.

Postconditions enforce invariants after the execution of the
associated update. In contrast to preconditions, postcondi-
tions are checked after all concurrent operations complete. As

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

PaPoC ’19, March 25, 2019, Dresden, Germany K. De Porre, et al.

such, postconditions approve or reject the state that results
from a group of concurrent, potentially conflicting opera-
tions. In case of a rejection a different ordering is attempted.

To illustrate SECROs, we implement a collaborative text editor
that represents text documents as a balanced tree of characters to
provide efficient text manipulations. Both, insert and delete work
on the granularity of individual characters. The code snippet below
shows the core of this application in CScript 1, an extension of
JavaScript with a prototype implementation of SECROs.

1 class Document extends SECRO {

2 constructor () {

3 this._tree = new AvlTree ((c1, c2) => c1.id - c2.id);

4 }

5 insertAfter(id, char) {

6 const newId = this.generateId(id),
7 newChar = {char: char , id: newId};

8 this._tree.add(newChar);
9 return newChar;

10 }

11 pre insertAfter(doc , args) {

12 const [id, char] = args;

13 return id === null || doc.containsId(id);

14 }

15 post insertAfter(originalDoc , doc , args , newChar) {

16 const [id, char] = args;

17 return (id === null && doc._tree.contains(newChar)) ||

18 doc.indexOf(id) < doc.indexOf(newChar.id);

19 }

20 delete(id) {

21 return this._tree.remove(id);
22 }

23 post delete(originalDoc , doc , args , res) {

24 const [id] = args;

25 return !doc.containsId(id);

26 }

27 indexOf(id) { /* ... */ }

28 containsId(id) { /* ... */ }

29 generateId(prev) { /* ... */ }

The above code snippet shows that characters are inserted by
adding them to the underlying tree (lines 5 to 10), and deleted by
removing them from the tree (lines 20 to 22). We use a third-party
AVL tree implementation provided by the Closure library 2.

To convert the AVL tree into a SECRO, we associate precondi-
tions and postconditions to the operations. The precondition on
insertAfter (lines 11 to 14) ensures that the reference character
after which to insert the new character exists. The postcondition
on insertAfter (lines 15 to 19) ensures that the newly added char-
acter occurs at the correct position in the resulting tree, i.e. after
the reference character identified by id. According to this post-
condition any interleaving of concurrently inserted characters is
valid. The postcondition on delete (lines 23 to 26) ensures that the
deleted character no longer occurs in the document.

The aforementioned SECRO can be freely replicated and ensures
that the three invariants are respected in the advent of concurrent
operations, and that all replicas eventually converge.

3 SECRO’S REPLICATION PROTOCOL
SECROs propagate update operations to all replicas by means of
an asynchronous broadcasting mechanism. Replicas are tuples
1https://gitlab.com/iot-thesis/framework/tree/master
2https://developers.google.com/closure/library/

(si ,vi ,h) that maintain some state si , a version number vi , and
a sequence of operations called the operation history h. Incoming
operations are inserted in the replica’s operation history. This may
require reordering part of the history.

To reorder its history the replica searches for a total order of the
operations that meets two requirements. First, the order must reflect
the causal relations between the operations. Second, applying the
operations in the given order must uphold all application-level
invariants. This second condition can be checked using the state
validators defined by the programmer. An ordering which respects
the aforementioned conditions denotes a valid execution.

Formally, given a set of update operationsU , the happens-before
relation ≺ induces a partial order between the updates [5]. We
can further restrict this partial order such that the operations do
not violate application-level invariants. This results in a partial
order of the updates O = (U , <) where u1 < u2 ⇐⇒ u1 ≺

u2 ∨ (u1 ∥ u2 ∧ respects_invariants(apply(state, [u1,u2]))) 3.
Finding a valid execution thus boils down to computing a linear

extension O ′ of O . Such a serialisation is a total order O ′ that
respects the partial order O . Our replication protocol guarantees
that all replicas converge towards the same valid execution (eventual
consistency), and that replicas that received the same operations
have identical operation histories (strong convergence).

Unfortunately, finding a valid execution can be costly as it re-
quires executing the history of updates (possibly more than once)
and validating the resulting state. This is problematic when replicas
have big operation histories. To tackle this performance problem,
we introduce a commit operation which allows replicas to clear their
history periodically. The commit operation commits the replica’s
internal state si → si+1. To this end, the replica applies the updates
from the history and takes on this new state si+1 = apply(si ,h). In
addition, commit also increments the replica’s version number and
clears the history: commit((si ,vi ,h)) = (si+1,vi+1, []). We designed
the commit operation to commute. As such it does not require
synchronising the replicas. Instead, commits are propagated in the
background. Performance benchmarks involving commit can be
found in [6].

4 ONGOINGWORK
Although commit improves performance, it restricts the size of
operation histories and thus puts an upper bound on concurrency.
As an example, limiting operation histories to n operations implies
that maximum n concurrent operations are supported.

We are currently working on improving the computation of valid
executions. A possibility is to discover conflict patterns using static
analysis, similar to I-offender sets in [2]. Using these patterns we
could try to infer conflict-free orderings for the different types of
conflicts. This means that at runtime replicas can order concurrent
operations rather then exhaustively searching for a valid ordering.
This may also omit the need for commit.

ACKNOWLEDGMENTS
Kevin De Porre is funded by an SB Fellowship of the Research
Foundation - Flanders. Project number: 1S98519N.

3u1 ∥ u2 denotes two concurrent updates u1 and u2 .

https://gitlab.com/iot-thesis/framework/tree/master
https://developers.google.com/closure/library/

A Generic Replicated Data Type for Strong Eventual Consistency PaPoC ’19, March 25, 2019, Dresden, Germany

REFERENCES
[1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2015. Efficient State-

based CRDTs by Delta-Mutation. In Int. Conference on Networked Systems, Ahmed
Bouajjani and Hugues Fauconnier (Eds.). Springer-Verslag, Agadir, Morocco, 62–
76.

[2] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça,
Mahsa Najafzadeh, and Marc Shapiro. 2015. Putting Consistency Back into Even-
tual Consistency. In 10th European Conference on Computer Systems (EuroSys ’15).
Article 6, 16 pages.

[3] Valter Balegas, Cheng Li, Mahsa Najafzadeh, Daniel Porto, Allen Clement, Sérgio
Duarte, Carla Ferreira, Johannes Gehrke, Joao Leitao, Nuno Preguiça, et al. 2016.
Geo-Replication: Fast If Possible, Consistent If Necessary. IEEE Data Engineering
Bulletin 39, 1 (2016), 12.

[4] Martin Kleppmann and Alastair R Beresford. [n. d.]. A Conflict-Free Replicated
JSON Datatype. IEEE Trans. on Parallel and Distributed Systems ([n. d.]).

[5] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (1978), 558–565.

[6] Kevin De Porre. 2018. CScript: A Distributed Programming Language for Available
and Consistent Sharing of Objects. Master’s thesis. Vrije Universiteit Brussel,
Belgium.

[7] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Conflict-
free Replicated Data Types. In 13th Int. Symp. on Stabilization, Safety, and Security
of Distributed Systems (SSS’11), Xavier Défago, Franck Petit, and Vincent Villain
(Eds.). Springer-Verslag, Grenoble, France, 386–400.

[8] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, and
C. H. Hauser. 1995. Managing Update Conflicts in Bayou, a Weakly Connected
Replicated Storage System. In 15th ACM Symp. on Operating Systems Principles
(SOSP ’95), M. B. Jones (Ed.). 172–182.

	Abstract
	1 Introduction
	2 Our Approach
	3 SECRO's Replication Protocol
	4 Ongoing Work
	Acknowledgments
	References

