
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

SoCRATES - Scala Radar for Test Smells

Jonas De Bleser
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
jonas.de.bleser@vub.be

Dario Di Nucci
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
dario.di.nucci@vub.be

Coen De Roover
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
coen.de.roover@vub.be

Abstract

Test smells are indications of poorly designed unit tests.
Previous studies have demonstrated their negative impact
on test understanding and maintenance. Moreover, surveys
show that developers are not able to identify test smells,
hindering optimal software quality. Automated tools can
aid developers to handle these issues and detect test smells
in the early stage of software development. However, few
tools are publicly available and all of them target JUnit —
the most popular testing framework in Java. To overcome
these limitations, we propose SoCRATES. This fully auto-
mated tool is able to identify six test smells in ScalaTest
which is the most prevalent testing framework in Scala. An
empirical investigation on 164 Scala projects shows that
our tool is able to reach a high precision without sacrificing
recall. Moreover, the results show that Scala projects have
a lower diffusion than Java projects. We make SoCRATES
publicly available as an IntelliJ IDEA plugin, as well as an
open-source project in order to facilitate the detection of test
smells.

Keywords Scala, Software Quality, Test Smells, Tool

1 Introduction

Test code should be carefully designed by following good
programming practices [3, 13]. To this end, van Deursen et
al. [16] introduced test smells for xUnit, a general purpose
framework to test applications. This catalogue takes into
account different types of bad design choices made by de-
velopers during the implementation of single test cases (e.g.,
tests checking several methods of the class to be tested), or
test fixtures (e.g., tests that only access access a part of a
fixture).

Previous studies demonstrated that test smells have a neg-
ative impact on software maintenance [2, 6]. Furthermore,
developers fail to identify their presence [6, 15]. The ma-
jority of these studies concerns the tests written in JUnit
which is the most popular testing framework in Java. De-
spite the introduction and adoption of new programming
languages over the years, there is a lack of replication stud-
ies for these other languages. Scala [10], for instance, has
enjoyed a steady rise in popularity over the past years — and
for distributed systems in particular (e.g., [8, 9]). Some of

Scala’19, July 15–19, 2019, London, United Kindom
2019.

Scala’s characteristics have enabled the design of different
unit test automation frameworks with sometimes unique
features. We believe that these characteristics might impact
our understanding of test smells.
In this paper, we present SoCRATES (SCala RAdar for

TEst Smells), a novel tool that automatically detects six test
smells within Scala software projects. In order to improve
its precision, SoCRATES relies on both syntactic (i.e., ab-
stract syntax trees) and semantic information (i.e., types and
symbols). We conducted an evaluation to verify the ability of
SoCRATES to detect these test smells where we ran it on a
set of 377 test cases and manually compared the results given
by the tool with a manually-built oracle. We observed that
SoCRATES has a precision of 98.94% and a recall of 89.59%
—in line with those achieved by state-of-the-art tools for test
smell detection [1, 12].
Afterwards, we employed SoCRATES in an empirical in-

vestigation on the diffusion of test smells in Scala source
code [5]. The results of this study shows that the majority
of Scala projects are affected by at least one code smell,
but that their diffusion is low across test classes —with Lazy
Test, Eager Test, and Assertion Roulette as the most
prevalent ones.
Tool and Source Code.Wemake our tool publicly available
as an IntelliJ IDEA plugin, and publish the corresponding
source code in an online appendix [4]. The data used in the
experiment can be found in the full paper [5].
Structure of the paper. Section 2 provides a background
on test smells in Scala projects, describing an example of a
detection rule and the corresponding refactoring. Section 3
presents SoCRATES and how to use it, while Section 4 re-
ports a summary of the previous study where we employed
the tool. Finally, Section 5 concludes the paper.

2 Background

This section reports on the definitions of each test smell sup-
ported by SoCRATES. We implemented six out eleven test
smells defined by van Deursen et al. [16], which are the most
prevalent in previous work [1, 2, 6, 7, 11, 12, 14, 15], as well
as added three variations of General Fixture which are
specific to ScalaTest. It is worth considering that in a pre-
vious contribution [5] we transposed the original definitions
to Scala and ScalaTest, defined a static method for their
detection, and proposed the refactoring required to eliminate
them. We considered test cases implemented in ScalaTest,

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Scala’19, July 15–19, 2019, London, United Kindom Jonas De Bleser, Dario Di Nucci, and Coen De Roover

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

because in our previous investigation we found that this
is the most prevalent testing framework for Scala. Never-
theless, the tool is open-source and developers are kindly
invited to submit pull requests with the aim of implementing
additional detection methods.

AssertionRoulette (AR).A test case that containsmore
than one assertion of which at least one does not provide a
reason for assertion failure. This test smell encumbers iden-
tifying which assertion failed and the reason why.

Eager Test (ET).A test case that checks or uses more than
one method of the class under test. It is left to interpretation
which method calls count towards the maximum, but we
consider all methods invoked on the class under test. A solid
principle is that every test case should test only one method
such that the test only fails when the single method fails,
and not because another irrelevant method fails.

General Fixture (GF). A test fixture that is too general.
Ideally, test cases should use all the fields provided by their
fixture. This might be difficult to uphold when the fixture is
shared by several test cases. ScalaTest features no less than
four different means for defining and sharing fixtures. Yet,
the detection method and refactoring for these variations
differ. This smell impacts the maintainability, since remove
fields from the fixture might affect multiple unrelated tests.

Lazy Test (LT). More than one test case with the same
fixture that tests the same method. This smell affects test
maintainability, as assertions testing the samemethod should
be in the same test case. Like Eager Test, the original defini-
tion [16] leaves some details to interpretation. We consider
every call to the class under test as a potential cause of Lazy
Test, irrespective of whether their results are used in an
assertion. The drawback of having this smell implies that
you have to modify multiple tests, instead of a single one.

Mystery Guest (MG). A test case that uses external re-
sources that are not managed by a fixture. A drawback of this
approach is that the interface to external resources might
change over time necessitating an update of the test case, or
that those resources might not be available when the test
case is run, endangering the deterministic behaviour of the
test.

Sensitive Eqality (SE). A test case with an assertion
that compares the state of objects by means of their textual
representation, i.e., by means of the result of toString().
This makes the test vulnerable to small, and irrelevant details
(e.g., spaces).

Along with the definition of these smells, in our previous
contribution [5] we reported: (i) an example instance, (ii)
a static detection method based on the rules introduced by
Bavota et al. [1, 2], and (iii) a refactoring to eliminate the
smell and its negative impact. Only for General Fixturewe

provided four detection methods based on the different im-
plementations of test fixture in ScalaTest: Global Fixture,
Loan Fixture, Fixture Context, andWith Fixture.

For illustration purposes, we report the detection method
and the refactoring for Fixture Context.

Fixture Context: Detection Method. “Fixture con-
text” objects are instances, such as the ones instantiated on
lines 14 and lines 20 of Listing 1, of an anonymous class
that mixes in at least one trait such as RecipeFixture that
provides and initialises fields for the fixture. The body of the
anonymous class itself corresponds to the test case, such as
the assert expressions on lines 16 and 21. Note that multiple
traits can be mixed into the “fixture context” object (e.g., new
X with Y with Z) as required by the fixture for a specific test
case. Fixtures defined in this manner, as expressive it may
be, are still prone to the General Fixture test smell. The
detection rule requires: (i) collecting the fields mixed into
and provided by the “fixture context” object, (ii) verifying
whether every field is referenced in test case (i.e., the body
of the corresponding anonymous class creation expression).

1 class RecipeTestSuiteFCO extends FlatSpec {

2
3 trait RecipeFixture {

4 val ingredients1 =

5 List(Ingredient("Cookie", 100), Ingredient("Milk", 200))

6 val ingredients2 =

7 List(Ingredient("Eggs", 100), Ingredient("Bacon", 200))

8 val cookiesAndMilk =

9 Recipe("Cookies and Milk", ingredients1)

10 val baconAndEggs = Recipe("Eggs", ingredients2)

11 }

12
13 "The recipe" should "have two ingredients (Eggs , Bacon)" in

14 new RecipeFixture {

15 val r = baconAndEggs.names.equals(List("Eggs", "Bacon"))

16 assert(r == true , "...")

17 }

18
19 "The recipe" should "have two ingredients" in

20 new RecipeFixture {

21 assert(cookiesAndMilk.ingredients.size == 2, "...")

22 }

23 }

Listing 1. General Fixture Example.

FixtureContext: Refactoring.The refactoring shown
below in Listing 2 consists of splitting the fixture into mul-
tiple smaller fixtures. A trait can be dedicated to each field,
rendering them easier to compose as needed for individual
test cases.

1 class RecipeTestSuiteFCOR extends FlatSpec {

2
3 trait BaconAndEggsRecipe {

4 val recipe = Recipe("Eggs",

5 List(Ingredient("Eggs", 100), Ingredient("Bacon", 200)))

6 }

7
8 "The recipe" should "have ingredients Eggs and Bacon" in

9 new BaconAndEggsRecipe {

10 assert(recipe.names.equals(List("Eggs", "Bacon")))

11 }

12 }

Listing 2. General Fixture Refactoring.

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

SoCRATES - Scala Radar for Test Smells Scala’19, July 15–19, 2019, London, United Kindom

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

3 SoCRATES

In the following sections we explain how SoCRATES works
internally, as well as its usage, input and output.

3.1 Internal Working of SoCRATES

SoCRATES is implemented in Scala, and extensively uses
the library scala-meta1 (and SemanticDB). The tool takes
a project as input and produces an overview of the detected
test smells according to the test smell detection rules. This
process consists of several steps:

#1: Code Compilation. To precisely detect test smells,
SoCRATES does not only rely on syntactic information (i.e.,
abstract syntax trees), but also on semantic one such as types
and symbols. Therefore, every project must be compiled with
a compiler plugin2 that is copied in the source code of the
target project in background. To generate the SemanticDB,
the sbt semanticdb command is automatically executed
afterwards.

#2: Extraction of Syntactic and Semantic Informa-

tion. After this step SoCRATES builds the class hierarchy by
collecting information of all classes (i.e., their type, their fully
qualified name and their parents) and link them together
by traversing the inheritance chain. This hierarchy will be
used in a later step to determine which test classes use a
ScalaTest specification.

#3: Identification of Test Classes. Each project consists
of production and test classes. This classification is done
based on the typical structure of Scalaprojects that are
build with the Scala Build Tool3 (SBT): all Scala files
in src/main/scala are production classes, while those in
src/test/scala are test classes. Subsequently, we filter the
tests classes to only keep those that really represent a test
class, and not simply an auxiliary class. To this aim, we
rely on the computed class hierarchy to check whether the
test class inherits from a well-known test specification class.
The tool supports most of the specifications from ScalaT-
est: FlatSpec, FunSuite, WordSpec, FunSpec, FreeSpec,
FeatureSpec, PropSpec, and RefSpec. For every specifica-
tion of ScalaTest, we also check some variants: {s}Like,
Async{s} and Async{s}Like where {s} is a specification.
For example, we will also check for the following four specifi-
cations for FunSpec: FunSpec, FunSpecLike, AsyncFunSpec
and AsyncFunSpecLike.

#4: Linking Test Classes to Production Classes. Each
test class targets a specific production class. To identify this
class, we adopted a widely-used practise based on code con-
vention. Given the name of the a test class, SoCRATES re-
moves one of the following suffixes from it: Test, Tests,
TC, TestCase, Spec, Specification, Suite, Prop. Next, it

1https://scalameta.org
2https://gist.github.com/olafurpg/a74404dfee6b3da03892af17357074d9
3https://github.com/sbt/sbt

checks whether such a class with the same name and pack-
age exists. For example, given the ShoppingCartTests test
class in the package be.vub.soft, the suffix Tests is found
and removed from the original name. This results in a pro-
duction class that should exist in the package be.vub.soft
and have the name ShoppingCart. In this example, we link
a production class to a test class if and only if there exists a
production class with the same name and which resides in
the same package. Test class instances are further analysed
to generate the list of test cases.

#5: Test SmellDetection. Finally, test smells are detected
for each test class and and test cases. Indeed, while some test
smells are specific to test classes, most of them are specific
to test cases. The test smell detection methods are imple-
mented by extending the classes TestClassCodeSmell and
TestCaseCodeSmell respectively.

Figure 1. SoCRATES’s Option View

3.2 How to Use SoCRATES

SoCRATES is available as an IntelliJ IDEA plugin that can
be downloaded from the online appendix [4]. The plugin
must be installed before it can be used within a project.
Figure 1 shows the options that can be used to configure
the process. The first option specifies the location of the
rt.jar. This is needed to build the SemanticDB of the Scala
standard library. The second option is the location of the
ivy2 cache. This folder contains all of external dependencies
which are required to successfully compile the project. These
.jar files are required to build the SemanticDB. Multiple
folders can be separated by colons (e.g., path1:path2). The
third option specifies the location of the SBT binary. This
is required as SoCRATES will execute a SBT task that acti-
vates a compiler plugin in the background. The final option
enables the developer to specify custom SBT options. By
default, this includes an increased memory allocation be-
cause building the SemanticDB for a project can require a
significant amount of memory.

3.3 SoCRATES Output

Figure 2 shows the output produced by SoCRATES on a
sample project. It consists of two tables: the first one reports
on the test smells Global Fixture and Eager Test related

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Scala’19, July 15–19, 2019, London, United Kindom Jonas De Bleser, Dario Di Nucci, and Coen De Roover

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

to test classes; while the second one reports on the test smells
related to test cases. The results can be sorted by column
and filtered to quickly investigate whether a given test class
or test cases exhibits test smells.

Figure 2. SoCRATES’ Results View

4 Evaluation

In this section we summarise the empirical validation of So-
CRATES and the empirical study on the test smells diffusion
across Scala projects that we conducted afterwards.
Indeed, our first goal was to assess the ability of the tool

in detecting test smells in Scala projects. To this end, we
manually validated a subset of 377 test cases by comparing
the outcome of the tool and a manual inspection. These test
cases were a statistically significant sample from a dataset
composed of 164 projects. These projects (i) were created on
Github between January 2010 and July 2018, (ii) have test
classes, (iii) use SBT for build automation (required to obtain
semantic information), and (iv) compile without any error.
Table 1 shows the dataset characteristics.

Table 1. Dataset Characteristics.

1st Quartile Mean Median 3rd Quartile Total

of Production Files 25.75 74.79 48.00 86.00 12,266
of Test Files 13.75 35.62 20.50 42.25 5,841
of Production LOC 2,107.25 7,236.02 3,717.50 6,740.25 1,186,708
of Test LOC 1,400.00 3,958.37 1,959.5 4,032.75 649,172
of Test Classes 9.75 29.96 15.50 31.00 4,914
of Test Cases 49.75 149.87 84.50 184.75 24,578

We observed that SoCRATES has a precision of 98.94%
and a recall of 89.59% which is in line with those achieved
by state-of-the-art tools for test smell detection [1, 12]. The
detailed results are reported in Table 2.
We also conducted an empirical study with the goal of

analysing test smell diffusion in open-source Scala systems
for the purpose of increasing the subject diversity among the
existing empirical studies on test smells, and understanding
whether Scala’s testing frameworks —with their unique fea-
ture sets and support for multiple test and fixture definition
styles— impact diffusion, from the perspective of researchers
in and tool builders for software quality.

Table 2. Percentage of Projects, Test Classes, and Test Cases
Exhibiting the Smells along with Precision and Recall of
SoCRATES for each Smell.

Test Smell % per Projects % per Test Class % per Test Case Precision Recall

AR 44.51% 15.97% 12.71% 100.00% 100.00%
ET 51.82% 6.57% . 6.12% 96.49% 66.27%
GF - Type I 10.36% 1.11% 1.22% 96.67% 96.67%
GF - Type II 5.48% 0.38% 0.13% - -
GF - Type III 9.75% 1.62% 1.53% 100.00% 88.87%
GF - Type IV 1.82% 0.28% 0.18% - -
LT 62.19% 11.05% 22.99% 99.44% 75.32%
MG 15.85% 1.95% 1.41% 100.00% 100.00%
SE 13.41% 2.72% 1.12% 100.00% 100.00%

In summary, the results show that:
• 84.14% of the projects are affected by at least one test
smell, only 28.10% of their test classes exhibit them.
Therefore, we conclude that the diffusion of test smells
in Scala projects is not very high with respect to the
one observed in Java projects [1, 2].

• Lazy Test (62.19%), Eager Test (51.82%), and Asser-
tion Roulette (44.51%) are the three most prevalent
test smells across Scala projects, while General Fix-
ture (27.41%), Mystery Guest (15.85%), and Sensi-
tive Eqality (13.41%) are the least prevalent.

5 Conclusion

In this paper, we present SoCRATES— a tool to detect six test
smells in Scala project that use the popular testing frame-
work ScalaTest. Our tool leverages detection rules that are
implemented by means of both syntactic and semantic in-
formation. The former is obtained by traversing source code
with scala-meta, while the latter is obtained by building
SemanticDB and querying types and symbols from it.
We evaluate the detection performances of SoCRATES

with respect to a manually validated oracle and observed
that it is able to achieve high precision and recall. Therefore,
we employ the tool in an empirical study [5] to investigate
the diffusion of test smells across 164 Scala projects. Our
results show that test smells are less diffused in Scala when
used in combination with ScalaTest than in Java tests that
use JUnit.

Wemake SoCRATES publicly available for researchers and
developers, both as an open-source project and as an IntelliJ
IDEA plugin. We encourage users to implement their own
detection rules as SoCRATES is built to be extendable from
the ground up.

References

[1] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia,
and David Binkley. 2012. An empirical analysis of the distribution of
unit test smells and their impact on software maintenance. In Software
Maintenance (ICSM), 2012 28th IEEE International Conference on. IEEE,
56–65.

[2] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia,
and Dave Binkley. 2015. Are test smells really harmful? An empirical

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

SoCRATES - Scala Radar for Test Smells Scala’19, July 15–19, 2019, London, United Kindom

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

study. Empirical Software Engineering 20, 4 (2015), 1052–1094. DOI:
http://dx.doi.org/10.1007/s10664-014-9313-0

[3] Kent Beck. 2003. Test-driven development: by example. Addison-Wesley
Professional.

[4] Jonas De Bleser, Dario Di Nucci, and Coen De Roover. 2019. Appendix:
SoCRATES - Scala Radar for Test Smells. (4 2019). DOI:http://dx.doi.
org/10.6084/m9.figshare.7971014.v2

[5] Jonas De Bleser, Dario Di Nucci, and Coen De Roover. 2019. Assessing
Diffusion and Perception of Test Smells in Scala Projects. In Proceedings
of the 16th International Conference on Mining Software Repositories.

[6] M. Greiler, Arie van Deursen, and M.-A. Storey. 2013. Automated
Detection of Test Fixture Strategies and Smells. In Proceedings of the
International Conference on Software Testing, Verification and Validation
(ICST). 322–331. DOI:http://dx.doi.org/10.1109/ICST.2013.45

[7] Michaela Greiler, Andy Zaidman, Arie van Deursen, and M.-A. Storey.
2013. Strategies for Avoiding Text Fixture Smells During Software
Evolution. In Proceedings of the 10th Working Conference on Mining
Software Repositories (MSR). IEEE, 387–396.

[8] Roland Kuhn, Brian Hanafee, and Jamie Allen. 2017. Reactive design
patterns. Manning Publications Company.

[9] Michael Nash and Wade Waldron. 2016. Applied Akka Patterns: A
Hands-On Guide to Designing Distributed Applications. " O’Reilly Media,
Inc.".

[10] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,
Stphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman,

and Matthias Zenger. 2007. The Scala language specification. (2007).
[11] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano,

Rocco Oliveto, and Andrea De Lucia. 2018. On the diffuseness and
the impact on maintainability of code smells: a large scale empirical
investigation. Empirical Software Engineering 23, 3 (2018), 1188–1221.

[12] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Rocco Oliveto,
and Andrea De Lucia. 2016. On the diffusion of test smells in automat-
ically generated test code: An empirical study. In Proceedings of the 9th
International Workshop on Search-Based Software Testing. ACM, 5–14.

[13] A. Schneider. 2000. JUnit best practices (Java World). DOI:http://dx.
doi.org/javaworld/jw-12-2000/jw-1221-junit.html

[14] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and
Alberto Bacchelli. 2018. On the relation of test smells to software
code quality. In Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME). IEEE.

[15] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano
Di Penta, Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk.
2016. An Empirical Investigation into the Nature of Test Smells. In
Proceedings of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2016). ACM, New York, NY, USA,
4–15. DOI:http://dx.doi.org/10.1145/2970276.2970340

[16] Arie van Deursen, Leon Moonen, Alex Bergh, and Gerard Kok. 2001.
Refactoring Test Code. In Proceedings of the 2nd International Con-
ference on Extreme Programming and Flexible Processes in Software
Engineering (XP). 92–95.

5

http://dx.doi.org/10.1007/s10664-014-9313-0
http://dx.doi.org/10.6084/m9.figshare.7971014.v2
http://dx.doi.org/10.6084/m9.figshare.7971014.v2
http://dx.doi.org/10.1109/ICST.2013.45
http://dx.doi.org/javaworld/jw-12-2000/jw-1221-junit.html
http://dx.doi.org/javaworld/jw-12-2000/jw-1221-junit.html
http://dx.doi.org/10.1145/2970276.2970340

	Abstract
	1 Introduction
	2 Background
	3 SoCRATES
	3.1 Internal Working of SoCRATES
	3.2 How to Use SoCRATES
	3.3 SoCRATES Output

	4 Evaluation
	5 Conclusion
	References

