
AmbientJS

A Mobile Cross-Platform Actor Library for
Multi-Networked Mobile Applications

Elisa Gonzalez Boix1, Kevin De Porre1, Wolfgang De Meuter1, and
Christophe Scholliers2

1 Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
2 Ghent University, St. Pietersnieuwstraat 33, 9000 Gent, Belgium

Abstract. In this paper, we argue that due to technological advances
programmers today are faced with a ninth fallacy of distributed com-
puting: “there is only one fixed application architecture throughout the
lifetime of the application”. Mobile devices are nowadays equipped with
wireless technology which allows them to interact with one another in
both a peer-to-peer way (eg. Wi-Fi-direct, bluethooth,etc.), and via a
server in the cloud. Distributed software engineering abstractions, how-
ever, do not aid the programmer in developing mobile applications which
communicate over multiple networking technologies. This paper intro-
duces AmbientJS, a mobile cross-platform actor library which incorpo-
rates a novel type of remote reference, called network transparent refer-
ences (NTRs), which allows to seamlessly combine multiple application
architectures. We give an overview of the NTR model, detail their im-
plementation in a novel actor library called AmbientJS and assess the
performance of AmbientJS with benchmarks.

1 Introduction

Today we are witnessing a convergence in mobile technology and cloud comput-
ing trends. One the one hand, mobile devices have become ubiquitous. Many of
them have more computing power than high end (fixed) computers developed a
decade ago. Moreover, they are equipped with multiple wireless network capa-
bilities such as cellular network (3G/4G), Wi-Fi, bluetooth, Wi-Fi-direct, and
NFC. As to be expected with any new technology, multiple implementation plat-
forms are currently available (being the most relevant ones Android, and iOS).
Important for the programmer is that each of these platforms have a radically
different programming environment ( e.g., Java in Android, Objective C in iOS).
In order to minimize the software development costs, mobile cross-platform tools
have emerged which allow the programmer to develop applications which can run
on multiple mobile platforms. Many of these mobile cross-platform tools make
use of web-based technologies such as Javascript and HTML5[30]. While these
tools ease the development of certain application aspects like GUI construction,
they still fall short with respect to support for distributed programming.
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In this paper, we focus on a new breed of mobile applications which make
use of both peer-to-peer communication and centralised wireless network access
to coordinate and share data. Such multi-networked mobile application enable
communication over both infrastructure-less networks of mobile devices, and the
cloud. Note that many distributed programming abstractions already abstract
away the details of the underlying network technology. For example, a socket
abstracts the details of communication over a Wi-Fi connection or a bluetooth
connection. However, sockets do not aid the developer in simultaneously using a
Wi-Fi and bluetooth connection and seamlessly switch between them based on
the connectivity. Developing rich mobile applications thus burdens developers
with the following tasks:

– Programmers need to implement a different version of the network layer for
each network technology (Bluetooth, Wi-Fi, 3G, etc).

– Programmers need to adapt the application to support multiple architectures
(peer-2-peer, client-server) depending on the network layer employed.

– Programmers need to write complex failure handling code to be able to
reliably combine multiple network interfaces and application architectures.

To overcome these issues we propose AmbientJS, a mobile cross-platform
development library for multi-networked mobile applications based on the actor
model. In order to be able to seamlessly communicate over multiple networking
technologies, AmbientJS introduces a novel kind of extensible remote object ref-
erence which abstracts over the kind of network interface being used. We call
such object references network transparent references (NTR). As a result, appli-
cations can seamlessly communicate over the cloud or use an infrastructureless
mobile network depending on the underlying available networking technology.
NTRs offer reliable communication and as such, programmers do not need to
manually verify the delivery of each message sent over multiple network inter-
faces. In this paper we argue that the use of NTRs implemented in the Ambi-
entJS middleware greatly simplifies the creation of multi-networked rich mobile
applications.

2 Motivation

Mobile cloud computing was initially employed for applications such as Google’s
Gmail which run on a rich server and the mobile device acts as a thin client
connecting to it via 3G. However, due to the recent availability of networking
capabilities on mobile devices, mobile cloud computing is converging to what we
call rich mobile applications, in which the mobile devices themselves can also act
as service providers and communicate with one another. In this section, we high-
light the need for programming abstractions for rich mobile applications. Based
on the analysis of an illustrative application, we derive a number of software
engineering issues that programmers face when implementing such applications.
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Fig. 1. Coupon Go architectural overview

2.1 Case Study: Coupon Go

We now introduce an industrial case study, called Coupon Go, devised together
with a Brussels Region company specialized in digital vouchers. This application
allows the distribution and redemption of digital, electronic coupons. Figure 1,
provides an architectural overview of the system. As shown in the figure, the
architecture of Coupon Go consists of four different actors:

– Coupon Issuer. The coupon issuer is in charge of the distribution of coupons
to the different users upon request of an advertiser. The issuer maintains the
digital wallets of the customers, and has access to the shopping history of
the customer which can be used for constructing user profiles.

– Customers. The users of the electronic coupon system hold a digital wallet
on their mobile device, which is populated in two ways: (1) users receive a
coupon from the coupon issuer or from a merchant while they are in a shop,
and (2) they can get coupons from other digital wallets, e.g members of the
same family transferring a coupon from one wallet to another one.

– Shops. Shops notify the coupon issuer when customers redeem a valid coupon.
This can happen instantly if there is an internet connection available at the
store, or asynchronously, e.g. at the end of the day with all the sales. Once a
redeemed coupon is accepted by the issuer, the coupon is said to be granted,
and process of repaying the store can be initiated.

– Advertisers. Advertisers request the generation of digital coupons to the
coupon issuer for a specific product or group of products. An advertiser can
also make use of the user profiles constructed by the coupon issuer to allow
for more targeted advertising.

Note that the envisioned electronic coupon system, the digital coupons are first
created by the coupon issuer but customers receive a copy of the coupon which
is stored in their wallet. This provides offline functionality so that coupons can
be validated at stores or transfer between wallets in the absence of an internet
connection.
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2.2 Analysis

The programmer of a rich mobile application is faced with all the traditional
software engineering problems of distributed applications. However, rich mobile
applications like the Coupon Go application exhibit several properties that dis-
tinguishes them from other types of distributed applications.

– First, the entities of the distributed system employ various network tech-
nologies to communicate ( i.e. WPAN, WLAN etc.).

– Second, they combine multiple distributed application architectures within
the same system, i.e. client-server and peer-to-peer.

– Finally, those applications need to be deployed on multiple software plat-
forms e.g. iOS, Android, Windows mobile devices, back-end servers.

This puts extra burden on software developers. As a matter of fact, these prop-
erties act as different dimensions impacting software development.
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Fig. 2. Design Space of Rich Mobile Applications

Figure 2 shows the design space of rich mobile applications. From the point
of view of the software platform, the tools and environments provided by the
different platforms are often not compatible with each other. In many cases the
implementation language itself is different, e.g, Java for Android devices and
Swift for iOS devices. Moving from one platform to another requires program-
mers to rewrite the application from scratch.

From the distributed application architecture perspective, programming a
traditional client-server application is very different from programming a peer-
to-peer application over e.g. Wi-Fi-direct. A peer-to-peer application includes a
discovery process which is not required when contacting a centralised server in
a client-server architecture. When the application is not designed from scratch
with multiple network technologies large portions of the application need to be
rewritten.
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Finally, from the network technology perspective, the networking libraries
available for communicating over a bluetooth connection are very different from
the libraries for creating HTTP request. Again when the application is not writ-
ten with these different application requirements from the start there is a big
impact on the overall architecture of the application when using a different net-
work technology.

2.3 Problem Statement

There is a long history in distributed computing in order to pinpoint appropriate
methodologies and software practices for writing distributed applications. One
particular important seminal article called “the fallacies of distributed comput-
ing” gives an overview of a number of misconceptions that traditional program-
mers have when first implementing a distributed application. These fallacies are:
the network is reliable, latency is zero, bandwidth is infinite, the network is se-
cure, topology doesn’t change, there is one administrator, transport cost is zero
and the network is homogeneous [5].

Traditional distributed applications typically only exhibit one single applica-
tion architecture which does not change during the lifetime of the application.
In a rich mobile application, on the other hand, the kind of architecture evolves
during the applications lifetime depending on the networking technology avail-
able for communication. Moreover, these network architectures can be active
a the same time. For example, a device could communicate with a nearby de-
vice with ad hoc networking technology while communicating with a centralized
server. In our case study, a customer can get coupons directly from a shop or
a nearby digital wallet. However, when that user moves out of direct commu-
nication range, the application can seamlessly switch communication through a
centralized server available on the Internet by 3G or Wi-Fi connection. These
kind of scenarios were not within the reach of everyday mobile applications when
the eight fallacies of distributed computing were conceived. Today, however, ev-
ery mobile device has a multitude of network facilities which can only be put
to good use when developers are given the right software engineering principles.
We argue that due to the technological advances programmer today are faced
with a ninth fallacy when writing rich mobile applications. The ninth fallacy
of distributed computing:

There is only one fixed application architecture throughout the lifetime of
the application.

In the rest of this paper we formulate our answer to tackle this ninth fallacy
of distributed computing under the form of a new distributed library called
AmbientJS. AmbientJS introduces a novel extensible remote object reference
which abstracts over the kind of network interface being used.
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3 AmbientJS

AmbientJS is a mobile cross-platform library for JavaScript specially designed
to ease the development of rich mobile applications. The library embodies the
principles of ambient-oriented programming model from the AmbientTalk lan-
guage[4] and extends them to support multiple distributed application architec-
tures employing different network technologies. The idea of AmbientJS is that
programmers can write their rich mobile applications in JavaScript as one single
application which consists of different actors that can be distributed over mobile
devices (iOS and Android devices). At server side, AmbientJS can be used in
combination with node.js. Communication between different distributed actors
employs a uniform distributed object model which abstracts over the different
networking technologies employed by the application architecture. This includes
direct peer2peer communication and indirect communication through a server.
We will first introduce the general architecture of AmbientJS and then focus on
its programming support.

3.1 AmbientJS General Architecture

In order to deal with the diversity of software platforms, AmbientJS has been
integrated as a JavaScript library to be used on top of mobile cross-platform tech-
nology. However, mobile cross-platforms frameworks are not homogenous. There
exists two big families of approaches: interpreted and hybrid technologies [30].
Nevertheless, AmbientJS has been designed as a mobile cross-platform agnostic
library. This means it can be used on top of the most relevant incarnations of
interpreted and hybrid mobile cross-platform technologies, namely Cordova and
Titanium.

Figure 3 shows the general architecture of AmbientJS which consists of three
main components:

1. AmbientJS’s core which provides distributed programming abstractions on
top of ambient-oriented programming model,

2. the platform bridge which is in charge of loading the right mobile cross-
platform framework, either Titanium or Cordova and dispatches distributed
communication from the core to the corresponding networking layer,

3. the AmbientJS networking layer built in JavaScript which provides ser-
vice discovery and communication services to the core. This layer is imple-
mented on top of the underlying networking libraries for each mobile cross-
platform frameworks (namely, Bonjour and NSD for Titanium, and zeroconf
and Chrome sockets for Cordova).

AmbientJS’s core in turn consists of three cornerstones components:

1. An actor model translating the principles of ambient-oriented programming
to rich mobile applications (explained in section 3.2).
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Fig. 3. Architectural Overview of AmbientJS.

2. A novel object referencing abstraction called Network Transparent Refer-
ences (NTRs ) which abstracts away the complexities of the basic networking
facilities. NTRs are the main abstraction to help developers deal with the
different distributed application architectures as we explain section 3.3.

3. A metalevel interface on which NTRs have been built. The meta-level in-
terface is the key feature in order to allow for extensibility of NTRs as we
explain in section 3.5.

Before delving into each of the main components of AmbientJS’ core, let
us briefly explain the development process of AmbientJS application for each
platform. Titanium applications consists of a number of JavaScript modules in
which GUI and device specific APIs are offered by the platform as JavaScript
modules. AmbientJS applications are just regular Titanium applications which
import the AmbientJS library in their project as shown below.

1 var AmbientJS = require(’js/AmbientJS/AmbientJS’);

2 AmbientJS.online();

3 // ... use AmbientJS ...

AmbientJS is packaged as a third party Titanium plugin which, once loaded,
it can be accessed as any default APIs supported by Titanium (e.g. for GUI con-
struction and accessing phone APIs). In the code snippet, the online function is
called to connect the library to the network and start exporting and discovering
service objects by means of the underlying networking facilities. AmbientJS then
relies on the JavaScript - Java/ObjectiveC bridge from Titanium (marked in grey
in Figure 3) to transform such JavaScript library code into native applications
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in the targeted mobile platform. Note that the same kind of code is required to
load AmbientJS on top of node.js.

In contrast, when using AmbientJS in Cordova, programmers are required
to use an asynchronous programming style since the platform only execute code
upon all required libraries are ready (i.e. when the deviceready is emitted). As
such, when employing AmbientJS in Cordova, programmers need to first register
to the AmbientJSready event as follows:

1 var AmbientJS = require(’./AmbientJS/AmbientJS’);

2 AmbientJS.events.addListener(’AmbientJSready’, function() {

3 // ... use AmbientJS ...

4 });

The AmbientJSready event is emitted once Cordova notifies that Ambien-
tJS is available in the platform. Cordova’s development environment is also
different than Titanium since it expects a HTML5 file for the UI code and a
JavaScript file for the application logic. In AmbientJS, application logic is di-
vided in a number of JavaScript files. It then relies on the Browserify library 3

to create a packaged file used as input to Cordova.

3.2 Ambient-oriented Actor Model

As previously mentioned, AmbientJS incorporates the Ambient-Oriented Pro-
gramming (AmOP) paradigm at the heart of its programming model. The model
advocates a non-blocking communication model to ensure autonomy of devices
in face of partial failures so frequent in a mobile environment. Similar to the
AmbientTalk language, the unit of concurrency and distribution is an actor rep-
resented by an event loop which encapsulates one or more objects. As such,
two objects are said to be remote when they are owned by different actors. All
distributed communication is enqueued in the message queue of the owner of
the object and processed by the owner itself. To this end, AmbientJS reuses
the already existing event loop concurrency from JavaScript. As such, Ambien-
tJS assumes one event loop per device and does not provide dedicated support
to spawn new event loops in the library.

Communication between remote objects happens by means of the so-called
far references. Far references are a special kind of remote object references which
can be only used by sending asynchronous messages. Figure 4 shows the con-
ceptual representation of a far reference with a dashed line. A far reference is
reified into two meta-objects encapsulating all aspects of interactions between
senders and receivers, called a transmitter-receptor pair. Any message sent via
a far reference to an object is first enqueued by the far reference itself (by its
transmitter) which then delivers it to the receiver actor using the underlying
communication channel (depicted with a double line). When the message is re-
ceived at the recipient actor, the receptor will first receive the message on its
mailbox, and further invoke a method on the remote object when appropriate.

3 http://browserify.org
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By manipulating these two metaobjects, developers can handle remote in-
teractions between two objects in a modular way as they encapsulate the whole
distributed behaviour of a remote object and the references that are handed to
client objects. We use them to implement the programming abstractions to sup-
port multiple application architectures in an object-oriented programming style.
We will further explain their API in section 3.5.

Base-level

Meta-level

client 
object service 

object 

Base-level

Meta-level

Actor@VM 1 Actor@VM 2
transmitter receptor

message 
queue

event 
loop

far reference

Conceptual remote reference
Local reference
Communication channel

baselevel object

metalevel object

Conceptual msg 
sent via a far ref
Actual msg sent

Fig. 4. Event loop concurrency in AmbientJS

In AmbientJS, objects are by default passed by far reference to objects owned
by other actors. Objects can also be sent to a different AmbientJS VM by (deep)
copy, which allows the recipient actor to operate on the copy by means of regular
synchronous communication. Like in AmbientTalk, we refer to those objects as
isolates.

3.3 Network Transparent References (NTRs)

As previously mentioned, the only type of communication allowed on far ref-
erences is asynchronous message passing. AmbientJS extends the concept of a
far reference with support for implementing different application architectures
which in turn can use multiple networking technologies. This allows Ambien-
tJS actors to communicate with one another over wireless links or mobile broad-
band access. As such, remote references in AmbientJS abstract the underlying
networking technology being used for communication. Such network transparent
references (NTRs) are resilient to network fluctuations by default.

Basic Network Transparent References. In order to illustrate the workings
of the NTR model consider figure 5. Figure 5(i) shows the far reference model, in
which a conceptual remote reference (dashed arrow) between objects is actually
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implemented by two meta-level objects. Those meta-level objects acts as proxies
at each side of the reference, and enqueue messages sent from client to a service
object over a communication channel. Those communication channels are built
on top of one networking facilities, eg. Wi-Fi. In such a model, if the application
can communicate over different communication channels, programmers needs to
do manual bookkeeping for every far references being created over each network
technology.

Base-level

Meta-level

client object
service object 

Base-level

Meta-level

(i) Far Reference Model

(ii) Network Transparent Reference Model

Base-level
Meta-level

client object service object 

Base-level

Meta-level

wifi
3G

Actor@VM 1 Actor@VM 2

Actor@VM 1 Actor@VM 2

wifi

Fig. 5. Far References vs. Network Transparent References

Figure 5(ii) illustrates the network transparent references model. Instead of
having a network reference per network technology there is conceptually only one
reference. The conceptual far reference abstracts away the network technology
for the programmer. Note that the network transparent reference is a distributed
referencing abstraction which is active at both the sender and receiver. Part of
the difficulty of having multiple references to the same object is to make sure
that messages are not duplicated or lost. Therefore there is a part of the network
transparent reference which is active at the receiver side in order to filter possible
duplicate messages.

A NTR appears as a far reference which enqueues and transmits asyn-
chronous messages sent to the remote object. Unlike normal far references when
a network technology (e.g. bluetooth) is not available, the NTR attempts to
transmit messages sent to it using another networking technology, e.g. 3G. If all
network interfaces are down, the remote reference starts buffering all messages
sent to it. When the network partition is restored at a later point in time, the
NTR flushes all accumulated messages to the remote object in the same order
as they were originally sent. As such, temporary network failures or fluctuations
on the availability of the different network interfaces does not have an imme-
diate impact on the applications’ control flow. In order to distinguish partial
failures from permanent failures the programmer can make use of leasing. The
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inner workings of this leasing mechanism are however, outside of the scope of
this paper.

Network Transparent References over Multiple Network Architec-
tures. When direct communication between two entities is not possible the
traditional way of establishing a communication link with each other is by mak-
ing use of known centralised server. The network architecture of such a dis-
tributed application is quite different from the network architecture used for a
peer-to-peer application. As shown in the Coupon Go scenario both network
architectures are useful during the life time of the application. The situation
where communication is possible both over a centralised server and through
Wi-Fi direct is sketched in figure 6.

Base-level
Meta-level

client object service object 

Base-level

Meta-level

3G
Actor@VM 1

wifi

Actor @Server VM

Actor@VM 2

wifi

Fig. 6. Indirect Network Transparent References

As shown in this figure when adding a centralised sever there is a step increase
in the possible ways packages can travel over the different communication chan-
nels. Important to note is that even in this complex architecture conceptually
there is still only one reference between the distributed objects.

Unfortunately with existing distribution libraries the programmer needs to
completely rewrite his application in order to account for the different ways
that communication can be established. Because the server acts as a broker
between the different communication partners it becomes even more difficult for
the programmer to know exactly from which sender each message comes. For
each exported object there might be multiple incoming links from the server
to the object. Moreover, for each sender there might be multiple ways from
the sender to the sever. The programmer thus manually needs to keep track
of which messages are received in order to avoid executing the same message
multiple times for each communication path. With NTR the programmer does
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not need to be concerned about the details of routing the messages through the
centralised server and can think in terms of the conceptual reference.

3.4 NTRs in Action

To illustrate NTRs and the different distributed programming constructs in Am-
bientJS consider the following code snippet from a rich mobile chat application.

Listing 1: Example use of asynchronous message passing over NTRs

In this application the programmer keeps a list of buddies (buddylist) of
all the available communication partners (line 1). After initialising the library
the programmer registers a callback function to be notified about the discovery
of nearby communication partners (line 5). The wheneverDiscovered function
takes as arguments a string representing the service type and a function serving
as callback. Whenever an actor is encountered in the ad hoc network that exports
a matching object, the callback function is executed. The ntr parameter of the
function is bound to a network transparent reference to the exported messenger
object of another device. This means that while the programmer conceptually
receives one reference there might be multiple underlying network technologies
to the same remote object.

Once the programmer has obtained the network transparent reference he
proceeds by sending a message getName over the NTR (line 7-8). The result of
sending this asynchronous message is a future on which the programmer registers
a callback to receive the reply (line 8-9). When the remote object returns the
result of processing the getName message the callback function is applied and
the return value is bound to the variable reply. The programmer then simply
stores the network transparent reference into the buddy list and uses the name
of the remote buddy as a key (line 10). Note that in a real application care needs
to be taken to make these names unique. This concludes the discovery part of
the chat application.

We now show how programmers can export a local object so that other
mobile phones can discover it. In order to export objects to the network, the
exportAs function is employed. The code snippet below shows how to create an
object which implements a service corresponding to the chat application. Then
we export this object with MESSENGER string as service type so that other devices
in the neighbourhood can discover it (line 5).

Extending the Peer-to-Peer Chat Application to use a Centralised
Server. So far our chat application exhibits a peer to peer architecture. With
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the code provided two phones can already communicate with each other when
they are within direct communication range. However, when the phones are not
in direct communication range, AmbientJS allows the phones to communicate
with each other through a centralised node server. To this end, the programmer
needs to configure a node server so that service objects can also be exported via
an intermediary server in the cloud. The entire code to configure the server is
shown below.

The only change needed at the client side of the application is to add one
line in the configuration object of AmbientJS. For example the following con-
figuration file is sufficient for the clients to be able to connect to the software
languages lab server to discover each other. Because the application was written
with network transparent references there are no further changes necessary to
the application.

3.5 Meta-level Interface

AmbientJS features a meta-level interface inspired by the transmitter-receptor
meta model [10] which reifies the most important aspects of distributed commu-
nication amongst remote objects. As illustrated in figure 4, a remote reference is
represented at the meta level as a pair of metaobjects, named transmitter and
receptor, representing the source and the target of a far reference, respectively.
Transmitter and receptors provide a meta-object protocol (MOP) [15] that al-
lows developers to modify message sending semantics via far references as well
as how references are shared in the network. It has been used to implement
NTRs and provide them as the default kind of communication mechanism in
AmbientJS.

Each service object is bound to at least one receptor. The receptor inter-
cepts each asynchronous message received by its associated service object in a
transparent way. It can then perform actions before or after the service object
sends or receives a message to handle aspects such as persistence, replication,
security, etc. A transmitter, on the other hand, is transparently created on the
client device when a receptor is unmarshalled, and is used to transmit asyn-
chronous messages to the service object (via the receptor). A transmitter can
perform some actions before or after a message send to handle communication
aspects such as providing one-to-many communication, applying delivery guar-
antees, logging successful message sends, etc. In addition, a transmitter exposes
the network connectivity of the physical communication with the device hosting
the service object.
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We now explain the core API exposed by transmitters and receptors and
explain their relevance to implement NTRs.

onReceive(message) This hook allows changing the default behaviour of the
reference when a message is sent to the reference. The default behaviour
at transmitter side is to remove a letter from the far reference’s mailbox
containing the message and receiver, and transmits it. At receptor side, it
makes the service object accept the delivery of an asynchronous message.
We employ this hook to ensure message order and eliminate duplicates at
the receptor side of NTRs.

onPassReference(reference) This hook reifies the act of marshalling objects
when they are passed as argument of a message sent to another actor, or
passed via the service discovery mechanism. It returns either the receptor
or the transmitter to be marshalled instead of this receptor or transmitter.
This hook is employed in NTRs to be able to implement indirect access via
a server.

Programmers can employ such MOP to extend NTRs to support other appli-
cation architectures, or to build other families of referencing abstractions. In the
context of the Coupon Go, we employed such a meta-level interface to implement
different consistency policies for objects distributed between virtual wallets. For
example, we built a single use object to model transferable coupons which can
only be redeemed once, even if they are transferred amongst the wallets of the
members of a family. Listing 1.1 shows a simplification of the implementation of
the reference abstraction allowing for single use objects.

1 function singleUseConsistencyRef(){

2 var receptor = AmbientJS.createReferenceProxy(function(delegate){

3 var blocked = false;

4 this.onReceive = function(msg){

5 if (!this.blocked) {

6 delegate.onReceive(msg);

7 if (msg == "redeem") {

8 this.blocked = true

9 }

10 return true;

11 } else { return false;}

12 }

13 /// rest code

14 }

15 }

Listing 1.1. Creating a custom far reference abstraction for a single use consistency
object.

createReferenceProxy function creates a receptor for a delegate object
(which is passed by parameter). The receptor then mediates all distributed mes-
sage passing and serialization of the delegate object. In this case, the receptor
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keeps a boolean to limit the access to the delegate object after receiving the mes-
sage redeem. To this end, it overrides the onReceive function to block the object
upon reception of the first redeem message. Listing below shows how to use the
newly created receptor for creating a twix coupon object. The code employs
extended version of the createObject function in which we can pass a custom
receptor which will control the reception of messages sent to the twixCoupon

(which acts as the delegate object from the point of view of the receptor).

1 var twixCoupon = AmbientJS.createObject({

2 "getDescription" : function() {...},

3 "getStockCount" : function() {...},

4 "redeem" : function(amount) {...}

5 }, receptor);

4 Developing Applications with AmbientJS

In this section, we describe the implementation of a rich mobile application
developed with AmbientJS. This application is a mobile variant of the well known
arcade game called pong. In our explanation we stress the distributed aspects of
the application and omit the details of the application logic.

4.1 wePong Application

Similar to pong, wePong allows two players to defeat each other by playing table
tennis. The player controls a paddle to hit a ball back and forth in a game field.
The game differentiates from the original game in two fundamental aspects: (1)
players control the paddle by moving the mobile device, and (2) the table field
is distributed amongst players. Each player’s mobile device represents the game
field for one player, which can interact with the game field of another player
nearby (by means of ad-hoc networking technology) or a remote player (over the
Internet).

Figure 7 shows the game field of a player which initially contains a paddle,
a portal and one ball. A portal is a special object located somewhere on the
game field (depicted by a green circle in the figure). When a ball traverses the
portal, the ball is sent to the opponent. To make the game more competitive,
each player has a power-up bar which contains the following types of items:

– extra ball power-up, which adds an extra ball to the game field of the player.
– multi-ball power-up, which adds three to five new balls to the game.
– long pallet power-up, which enlarges pallet for a duration of 20 seconds.
– score power-up, which appears for few seconds on the field game and allows

the player to earn extra 100 points when it is hitted.

Power-ups appear randomly in the bar of each player. The figure shows the
power-up bar on the left hand side of the field with unused 3 power-ups, and an
active score power-up on the game field. In order to use power-ups in the game,
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Fig. 7. Screenshot of the wePong game

a player can either tap it or drag it to a portal. When a power-up is tapped, the
effect is applied to the player’s own game field. A power-up can also be dragged
to the portal which will apply it to the opponent.

4.2 Implementation

The first step in the implementation of wePong, is to create and export a game
object to representing a playing session in the network. When the user clicks
on the newRoomButton button, the application creates a game session and waits
for an opponent to join it. Listing 1.2 shows the code exporting the game ob-
ject to other wePong applications instances. The game object is stored in the
remoteInterface variable at line 3 and contains four methods that can be called
by remote wePong applications: (1) getGameName returns the name of the game
session being exported so that a list of available games is shown to the user,
(2)joiningGame is called by an opponent who wants to join the game session,
(3) scoreChange is used to receive the score updates from an opponent, and (4)
receiveGameElement is used to receive power-ups or balls sent by the opponent.
As shown in line 11 power-ups are model by gameElement objects which need
to implement the doAction function.

Listing 1.3 shows the discovery of a wePong game instance. Upon discovery,
the application requests the name of the game session being exported by a player
by sending the getGameName message (line 2). Once the future for that asyn-
chronous message is resolved, the addRoomToTable method adds a new name to
the list of available game sessions (line 5), and the joinGame is called if the user
selects that game session by clicking on the name, and will notify the opponent
of the wish to join the game session.

The application contains a gameloop which periodically updates the position
of the balls and the pallet. The gameloop also detects collisions between a ball
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1 function startGame(roomName) {

2 currentGame = new game(AmbientJS, roomName, instrumenting);

3 var remoteInterface = AmbientJS.createObject(

4 "getGameName":

5 function () { return roomName; },

6 "joiningGame" :

7 function (nickname) { currentGame.playerJoined(nickname); }

8 "scoreChange" :

9 function (score) { currentGame.receiveOpponentScore(score); },

10 "receiveGameElement" :

11 function(gameElement) { gameElement.doAction(currentGame)},

12 });

13 AmbientJS.exportAs(remoteInterface, "WePong_Game");

14 currentGame.start(true);

15 }

Listing 1.2. Exporting a wePong game session on the network

1 AmbientJS.wheneverDiscovered("WePong_Game", function(reference) {

2 var getNameMsg = AmbientJS.createMessage("getGameName", []);{}

3 var future = reference.asyncSend(getNameMsg, "twoway");

4 future.whenBecomes(function(name) {

5 var row = addRoomToTable(name);

6 row.addEventListener(’click’, function(e) {

7 joinGame(name, reference);

8 });

9 });

10 });

Listing 1.3. Discovering a wePong game session on the network
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and some game object. When a collision happens between a ball and the portal,
the ball is sent to the opponent by calling the sendBall function.

Listing 1.4 shows the sendBall function. Each applications keeps an array of
balls being displayed on the game field. Before sending the ball to the opponent,
it is first remove from the player’s game field (in lines 2 - 3). Line 4 creates an
AmbientJSobject which is a copy of the ball to be passed to the opponent. In this
case the createObjectTaggedAs function is used to send the ball by copy. The
teleportedBall implements the required doAction method which will basically
add the ball to the opponent’s game field upon arrival. Lines 10 and 12 create
the receiveGameElement message which carries the teleportedBall and sends
it as one way message (i.e. we do not request a future for the result of the
function). The similar implementation strategy is followed to send power-ups to
the opponents when they are dragged into a portal.

1 function sendBall(ball) {

2 var i = balls.indexOf(ball);

3 balls.splice(i, 1);

4 var teleportedBall = AmbientJS.createObjectTaggedAs({

5 var copyBall = [ball.x, ball.y, ball.vx, ball.vy];

6 "doAction" : function (opponentsGame) {

7 opponentsGame.receiveBall(copyBall);

8 }

9 }, [Isolate]);

10 var ballMsg = AmbientJS.createMessage(

11 "receiveGameElement", [teleportedBall]);

12 opponent.reference.asyncSend(ballMsg, "oneway");

13 delete ball;

14 }

Listing 1.4. Sending a ball to an opponent through a portal

This concludes the relevant parts of the distribution aspects of wePong. We
have actually built two variants of wePong application, one to be deployed on
mobile devices natively with Titanium and one as a web application with Cor-
dova. Both variants employ the same AmbientJS code for implementing the game
functionality and distribution aspects. Only native functionality like acceleration
data, screen touches and user interface elements are different.

5 Performance Evaluation

Recall that AmbientJS is implemented on top of two existing cross-platform tech-
nology: Cordova and Titanium. Cordova is a hybrid technology where the appli-
cation is written in a mixture between HTML5 and Javascript while Titanium
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is an so called interpreted approach where all the UI elements are native com-
ponents and the application logic is written in Javascript. In order to showcase
the usability of AmbientJS we performed benchmarks with respect to CPU-load,
memory consecution and network throughput for both implementations.

Each benchmark is conducted by monitoring the execution performance of
the wePong game running on an iPhone 4S and an iPhone 6S. Note that the
implementation of the game does not rely on the GPU. Therefore, all calculations
of the trajectory of the balls, the collision detection and the network connections
with other players need to be handled by the CPU.

In order to ensure that the game is executing exactly the same code on both
platforms, the user interaction is completely automated. The automated script
goes through a typical scenario where two users connect with each other and
play the wePong game. The script fully automates all the interactions including
the device orientation and user touches such as tapping and dragging. Every
source of randomness was also removed from the game i.e. we ran it with the
same seed.

All performance experiments were measured with the Xcode performance
tools4. For each run of the benchmark, the CPU, memory usage and network
throughput is measured. A first observation is that both versions of Ambien-
tJS are able to run the wePong game smoothly at 80 frames per second. There
are, however, small differences between the interpreted version and the hybrid
approach. We give an overview of these difference in the following sections.

5.1 CPU Usage

The CPU usage is determined by measuring the CPU load at discrete time inter-
vals during the execution of the application. Each execution of the wePong game
lasts a bit more than a minute. During that time the Xcode Activity Monitor
is able to make 38 measurements of the CPU-load. We take the average CPU

4 https://tinyurl.com/instrumentsUserGuide

Fig. 8. Average CPU-usage over time
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load at each time interval for multiple runs of the application. Figure 8 shows
the average CPU-loads for both the Cordova and Titanium implementation.

From this graph it is clear that the CPU-load for both Cordova and Titanium
has a similar shape. At the start of the application there is a heavy startup-cost
after which the CPU-load becomes less intensive. When the connection between
the phones is established and the wePong game is running, the CPU load peeks
again. The graph clearly shows that the CPU load for wePong is less for Cordova
than for the Titanium implementation. The reason for this difference probably
lies in the fact that the Cordova version runs inside an HTML5 canvas, while
in Titanium it uses native UI elements. Hence, Titanium needs glue code to
communicate between the JavaScript interpreter and native components which
requires more CPU-load than its browser-based counterpart.

5.2 Memory Usage

To monitor memory usage throughout a wePong game, we used the Allocations
instrument included in Xcode Instruments. This instrument reports every mem-
ory allocation together with its size and timestamp. We processed the output of
this tool and imported them into SPSS. We then further processed these files
in order to measure the overall memory usage. Figure 9 shows the memory con-
sumption of the wePong application in three different runs of the benchmarked
scenario.

Fig. 9. Memory Consumption of the wePong Application

Based on figure 9, we conclude that the Titanium implementation of wePong
is using significantly more memory than the Cordova one. This is because Tita-
nium uses native UI elements to provide a better looking UI and bundles a self
contained JavaScript interpreter, while Cordova does not use any extra styling
to make the user interface look better and relies on the built in JavaScript inter-
preter. Hence, as Titanium provides a full SDK the memory usage is significantly
higher than with plain HTML5 and CSS.
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5.3 Network Throughput

The last performance benchmark we conducted measures the network through-
put during the lifetime of the wePong application. Again the network throughput
is measured by taking discrete slices of the application and measure the through-
put at that time slice. Note that the data that is being sent is exactly the same for
each of the implementations. The result of measuring the throughput is shown
in figure 10.

Fig. 10. Network throughput

From this benchmarks we can conclude that our network layer implemented
on top of Titanium performs significantly better with respect to throughput.
The most probable reason for this difference in throughput is that for the imple-
mentation in Titanium we directly access the native libraries of the the phone.
In the case of Cordova we make use of the web sockets library which seems to
perform a bit worse than the native libraries. Note that in practice both versions
of AmbientJS run the application smoothly and there is no noticeable network
lag. But this performance impact may be noticed by applications transferring
large amount of data like like sharing or video streaming applications.

5.4 Benchmark Conclusions

Our benchmarks unveiled that making use of the native UI components is not
necessarily more performant. In the wePong application there are many calls
from the Javascript to the UI component to draw on the screen. In the Titanium
implementation all these calls need to be translated to calls to the UI component
which is less efficient than directly using a HTML5 webview. We also noticed
that making use of Titanium implies a significant memory overhead compared to
the Cordova approach. Finally, we observed that employing native components
as done by Titanium does pay off in terms of network throughput which is
significantly higher than in the Cordova implementation.

When one has to choose a suited mobile cross-platform approach for his appli-
cation, various factors need to be considered. Important factors are performance
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as well as user experience. Because in Titanium the GUI components are native
the user experience is much better.

6 Related Work

In what follows we describe the different advances in the field of mobile and cloud
computing with respect to the design space of rich mobile applications. We give
an overview of the related work in three dimensions: the network technology,
distributed application architectures and the software platforms.

Network technology. Mobile rich applications employ a wide variety of con-
nection protocols, being the most relevant ones Wi-Fi, Bluethooth, and 3G[8].
Wi-Fi was intended as replacement for cabling amongst computers for wireless
local area networks (WLANs). Wi-Fi’s communication range is within 100 me-
ters and supports up to 11Mbps data rates. Bluetooth, on the other hand, was
intended for wireless personal area networks (WPAN) uses and it is character-
ized by low-power shorter communication range (up to 10 meters) requirements.
Bluetooth Low Energy (BLE) has reduced power consumption while keeping a
similar range. Finally, 3G provide broadband access to mobile devices of several
Mbps, which is slower than Wi-Fi but can be deployed over wider areas.

Since energy consumption varies amongst those technologies (e.g 3G has been
shown to be higher than Wi-Fi), many research in mobile cloud computing has
focused on offloading workload from mobile devices depending on the connection
protocols used [8]. Satyanarayanan et al. proposed the concept of a cloudlet [24]
in which part of the computation of the cloud is offloaded to several multi-core
computers which has access to the cloud (forming a cloudlet). This solution ad-
vocates VM technology which automatically offloads application workload from
the mobile device (which acts as a thin client) to a nearby cloudlets situated
on designated places like coffee shops or airports. Such VM migration technique
is employed by many mobile computing frameworks since it requires no or very
little application rewriting[8]. Common to our approach their VM migration
techniques can be deployed over several network interfaces. Their approach is
to hide the complexity in the VM while we offer it at the middleware layer.
Moreover, they do not provide any cross-platform facilities.

Distributed Application Architectures. An application architecture basi-
cally materializes the abstraction of a communication link used to represent the
interactions between entities of a distributed system[3]. In traditional distributed
applications, interactions are often established between two entities or process.
The most representative case of this type of interactions are client-server ap-
plications, supported by point-to-point communication abstractions. One of the
most recurrent communication abstractions for building distributed client-server
applications has been Remote Procedure Call(RPC). RPC-based solutions in-
clude distributed middleware like RMI[25], or RBI[13], but it has been also
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employed in the context of web programming in service-oriented architectures
like SOAP[29] and Apache Thrift developed by Facebook5. Nevertheless, RPC
has been repeatedly highlighted to be unappropriated for distributed program-
ming [27, 28]. Several extensions were proposed to overcome the so-criticized
synchronous request-response messaging promoted by RPC like queueing RPCs
[14]. In the context of rich mobile applications, one of the main critique on RPC
is the lack of support for disconnected operations[8].

Peer-to-peer architectures, one the other hand, considers that processes can
both provide and request services. Those architectures are often supported by
group communication abstractions. One of the representative approach of this
kind of interactions is the publish/subscribe communication paradigm[6] which
allows processes to interact by publishing event notification (often called events)
and subscribing to the type of events they are interested in. The first pub-
lish/subscribe systems assumed that components comprising an application are
stationary and interact by means of a fixed, reliable network of event brokers.
Adaptations for mobile computing does not rely on intermediate infrastructure,
but rely on broadcasting of subscriptions to reachable hosts ( e.g. EMMA [20]),
or to a certain geographical area closeby the producer, e.g. STEAM [17]. Such
group communication abstractions have recently penetrated mainstream SDKs
like allJoyn2, Qeo library3, Intel CCF SDK4.

Another group of models and languages in mobile computing are based on
the concept of coordination in which interactions are established between two or
more process by means of a shared tuple space[9] by reading and writing tuples.
Mobile middleware such as LIME [19] and TOTA [16] are the most representa-
tive examples based on distributed peer-to-peer variants of the original, shared
memory tuple space model. Mobile tuple space systems that have adopted a
replication model [16, 18, 11] allow for multi-hop architectures in which devices
in the network can be used as routers of messages.

Although variations of RPC, publish/subscribe and tuple spaces are plen-
tiful, the integration of those interactions has received very attention. Eugster
et al.[7] proposed support for publish/subscribe programming into an object-
oriented language. However, that work does not integrate the paradigms, rather
allows programmers to use both event notifications and message passing and
objects. To the best of our knowledge, reconciling the communication proper-
ties of point-to-point and group communication models has only been studied in
the context of distributed programming language AmbientTalk [4]. Van Cutsem
et al. [26] explored a novel remote object reference abstraction called ambi-
ent reference which unifies point-to-point with group communication for mobile
ad hoc networking applications. The main novelty of ambient references lies
in the declarative designation of a group of communication partners. Ambient
references, however, do not provide any means to combine multiple network tech-
nologies and present it as a single reference abstraciton to the programmer. In
the context of mobile RFID-enabled applications, multiway references [21, 22]
were introduced as a reference abstraction that allows to address RFID-enabled

5 http://thrift.apache.org/
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objects through different networking technologies. This paper builds on this work
and applies it in the context of rich mobile applications.

Software Platforms. From the platform perspective, developing rich mobile
applications entails developing one mobile application for each platforms. How-
ever, this is costly and requires deep knowledge of several operating systems
and programming languages, and imposes redudancy at the whole software de-
velopment cycle from design to testing[1]. In oder to reduce that cost, mobile
cross-platform frameworks have emerged as a solution to alleviate the issue [30].
They advocate the use of a single code base which can be deployed on multiple
mobile plaftorms.

There are two different kinds of mobile cross-platform solutions: hybrid ap-
proaches and interpreted approaches (also called “self-contained runtime envi-
ronments” [12]). The most prominent exponent of the hybrid approach is Phone-
Gap (currently developed in Apache Cordova) which combines web technology
and native functionality. More precisely, hybrid mobile applications combine
HTML5 web applications inside a native container (UIWebView in iOS and We-
bView in Android). On the other hand, the most relevant interpreted technology
is Appcelerator Titanium mobile which generates native code for the UI and ap-
plication logic implemented using JavaScript. Interpreted applications are said
to be more efficient and provide better user experience than hybrid approaches
because of the native user interfaces. However, they are mainly criticized by
the complete dependence on the software development environment as the UI is
implemented completely programmatically using the provided APIs.

What both families of mobile cross-platform frameworks have in common is
that they provide a number of built-in APIs for GUI construction and accessing
the underlying hardware without requiring detailed knowledge of the targeted
platform. However, developers still need to deal with many of the difficulties for
distributed programming, as they only provide low-level libraries directly on top
of networking protocols for communication (e.g. HTTP request and TCP/IP
sockets in Titanium, WebRTC or Chrome sockets in the case of Cordova).

While most popular mobile cross-platform solutions are built for JavaScript,
alternatives exists employing other languages like C# in Xamarin6, or C/C++ in
Marmalade SDK7. Employing JavaScript has the potential to allow developers to
write both mobile client and back-ends on the same programming language (e.g
by Cordova and node.js at client and server side respectively). Note, however,
there is no distributed object model that can be used on both mobile clients and
back-end JavaScript code running on node.js. Recent trends include the use
of reactive programming libraries[2] for JavaScript for communication between
client and server. However, distributed reactive programming is its infancy[23],
and developers need to manually program the interactions, ensuring consistency
and offline functionality.

6 https://www.xamarin.com/
7 https://marmaladegamestudio.com/tech/
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7 Conclusion

In this paper, we argued that due to mobile computing advances, programmers
today are faced with a ninth fallacy of distributed computing: “there is only one
fixed application architecture throughout the lifetime of the application”. When
programmers do not take into account that their mobile applications can operate
both in a peer-to-peer fashion as well as in a client-server architecture adding
support for both kinds of application architecture usually requires a rewrite of
the networking layer. We have shown that such problems do not arise when
making use our mobile cross-platform actor library called AmbientJS. The main
innovation of AmbientJSis the embodiment of a special kind of extensible remote
reference, called network transparent references (NTRs), which abstracts away
from the underlying network technology used. We have given an overview of
the NTR model, detailed their implementation in AmbientJS and assessed the
performance of AmbientJS with benchmarks.
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