
Practical Information Flow Control for Web
Applications

Angel Luis Scull Pupo, Laurent Christophe, Jens Nicolay, Coen de Roover, and
Elisa Gonzalez Boix

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
{ascullpu, lachrist, jnicolay, cderoove, egonzale}@vub.be

Abstract. Current browser-level security solutions do not provide a
mechanism for information flow control (IFC) policies. As such, they
need to be combined with language-based security approaches. Prac-
tical implementations for ICF enforcement remains a challenge when
the full spectrum of web applications features is taken into account (i.e
JavaScript features, web APIs, DOM, portability, performance, etc.). In
this work we develop Gifc, a permissive-upgrade-based inlined monitor-
ing mechanism to detect unwanted information flow in web applications.
Gifc covers a wide range of JavaScript features that give rise to implicit
flows. In contrast to related work, Gifc also handles dynamic code eval-
uation online, and it features an API function model mechanism that
enables information tracking through APIs calls. As a result, Gifc can
handle information flows that use DOM nodes as channels of information.
We validate Gifc by means of a benchmark suite from literature specif-
ically designed for information flow verification, which we also extend.
We compare Gifc qualitatively with respect to closest related work and
show that Gifc performs better at detecting unwanted implicit flows.

Keywords: Information Flow Control · JavaScript · Runtime Monitor-
ing · Browser Security · Programming Language

1 Introduction

Large parts of many contemporary client-side web applications are implemented
in or compiled to HTML and JavaScript. In these web applications, developers
reuse content, code, and services provided by third parties to avoid reimple-
menting everything from scratch. The default code inclusion mechanism in web
applications are script elements that point to a resource providing JavaScript
source code. The code a browser downloads in this manner is, however, exe-
cuted in the same environment and with the same privileges as the code pro-
vided by the hosted page itself. This implies that, without additional measures,
third-party JavaScript code may have access to sensitive data provided by users.
For example, consider a web application including a password strength checker
component to provide users with visual feedback about the quality of their pass-
word. In order for the component to perform this task, it must be provided with

the password value. However, nothing prevents the component from leaking the
password to other third party code.

To help mitigate exploits of such security vulnerabilities, modern browsers
provide mechanisms such as Same-Origin Policy (SOP) and Content Security
Policy (CSP). SOP allows to isolate content from different web origins coexisting
within the same web page [1], but it does not apply to the src content of script
tags. On the other hand, CSP enables developers to specify from which domains
the browser can load resources [33, 34], but it does not prevent white-listed
third-party components that access users data from leaking this data [25,34]. As
a result, SOP and CSP must be complemented with application-level security
mechanisms to ensure data privacy and confidentiality.

The goal of Information Flow Control (IFC) is precisely to enforce data con-
fidentiality and integrity guarantees in software systems. In this paper we focus
on dynamic IFC analysis through runtime monitoring for web applications. Dy-
namic analysis is said to be more suitable for JavaScript than static verification
since statically approximating the behaviour of programs is particularly diffi-
cult given the dynamic nature of JavaScript [3, 8]. However, several JavaScript
language features still make dynamic IFC analysis a particularly challenging
task [3], being the most relevant ones, how to reason about DOM and other web
APIs, eval, prototype inheritance and finally, how to handle implicit flows, i.e.
flows caused by non-executed branches. In this paper we explore a practical dy-
namic IFC mechanism that tackles all these relevant features without requiring
VM modifications.

1.1 Problem Statement

We surveyed recent and relevant dynamic IFC approaches for JavaScript that
have a publicly accessible implementation and are described in related work:
IF-transpiler [32], JSFlow [19], ZaphodFacets [6], FlowFox [14,16], and
Jest [13]. In general, existing work aims at tackling some of the aforementioned
language feature challenges while keeping the performance penalties at a reason-
able level.

eval/DOM Libraries Permissive Portable Performant

IF-transpiler 3 3 3

JSFlow 3 3

ZaphodFacets 3

FlowFox 3 3 3

Jest 3 3 3 3

Gifc 3 3 3 3 3
Table 1. Overview of recent and relevant dynamic IFC approaches for JavaScript.

Table 1 summarizes our survey of dynamic IFC approaches. Only JSFlow,
FlowFox, and Jest offer support for the DOM and eval, with Jest requiring

a server-side component to handle eval. Yet, support for the DOM and eval is
crucial when analyzing web applications, because the DOM models an important
part of the application state and eval is widely used in web applications [22,
30]. Moreover, only those three approaches support modeling the behavior of
(external) libraries in terms of information flow.

Permissiveness is considered to be an important factor in making IFC prac-
tical [18, 32]. In this regard, JSFlow and Jest are not as permissive as IF-
transpiler, meaning that these approaches will prematurely end a secure pro-
gram execution. On the other hand, FlowFox is permissive.

In terms of performance, applying JSFlow, ZaphodFacets, or FlowFox
incurs a high performance penalty because JSFlow and ZaphodFacets add
a complete layer of interpretation between the application code and the under-
lying JavaScript runtime, while FlowFox relies on multiple executions of an
application. Overall, approaches that modify the VM (FlowFox) or develop a
new interpreter (ZaphodFacets and JSFlow) are expensive.

Finally, JSFlow, ZaphodFacets, and FlowFox are not portable, as they
are tied to a particular implementation of a JavaScript or browser environment,
greatly diminishing their applicability in a landscape of JavaScript and web
standards which is constantly evolving.

In this paper we present Gifc, a permissive and portable dynamic IFC mech-
anism with support for dynamic code evaluation, external libraries and DOM.
Gifc exhibits the following properties:

Support for eval. Gifc handles dynamic code evaluation online. This is pos-
sible because we employ an instrumentation platform running alongside the
instrumented program.

Support for libraries. Gifc features an API function model mechanism that
enables information tracking through APIs calls. To handle external function
calls we took inspiration from the specification of function models described
in [21].

Permissive. The monitor of Gifc is based on the permissive upgrade (PU)
technique of Austin and Flanagan [5].

Portable. Gifc does not require modifications to the underlying JavaScript
interpreter or rely on a specific JavaScript runtime environment, but instead
works with any ECMAScript 5 compliant JavaScript interpreter.

Performant. The monitor of Gifc is inlined in the source code, so that the
instrumented program (including the monitor) can still benefit from the
optimizations offered by the underlying JavaScript runtime.

To the best of our knowledge, the combination of these properties are novel and
ensures that Gifc is well-suited to perform practical information flow control
for contemporary web applications.

The remainder of this paper is structured as follows. Section 2, informally
introduces the key IFC concepts. Next, Section 3 introduces the principal aspects
of our approach that drove the implementation of Gifc described in Section 4.
In Section 5, we evaluate qualitatively Gifc based on a benchmark suite from
literature. We also did a quantitative study to evaluate the performance of Gifc

with respect to the state of the art. Finally, Section 6 compares the features
introduced in Section 3 with the state of the art on dynamic IFC.

2 Background Information on IFC

IFC can be used to enforce data privacy and integrity guarantees in software
systems [20]. The semantic foundation for IFC is based on the concept of nonin-
terference [17, 20]. This property holds for an application when, given the same
public inputs, the variation of its secret inputs does not affect its public outputs.
Dynamic IFC mechanisms track the dissemination of program values as they
are produced and combined during program execution to prevent the flow of a
sensitive value to a public sink [20].

An IFC policy defines labels that express the security level of program val-
ues, and identifies the sources that produce values with a particular label. For
example, a low label L can be associated with non-sensitive program values that
are allowed to be publicly observable. In contrast, high labels H can be associated
with sensitive values that should remain private to the application. Additionally,
an IFC policy identifies information sinks in a program and associates them with
a label as well. IFC then only allows values flowing into a sink that are less sensi-
tive than that sink’s label. An IFC policy therefore establishes how the different
security levels are related, for example through the use of a total or partial order
(lattice) between labels. In our example, we would have L ⊂ H, expressing that
H is more sensitive than L, so that H values are not allowed to flow to L sinks.

Explicit and implicit flows. Information flows can be categorized into two
types [15, 20]. Explicit flows arise from the direct copy of information. For ex-
ample, the assignment expression y = x causes an explicit flow from variable x
to y, and after the assignment y will have the same value with the same label
as x. Implicit flows arise from control flow structures such as if, return in a
non-final position, break, continue, and throw. For example, after executing the
statement if (z) y=0 else y=1 the value of variable y depends on the value of
z. This results in an implicit flow from z to y, and after the if statement the
value of y will have the same label as z.

Permissiveness. Permissiveness can be understood as the ability of a monitor-
ing mechanism to allow the execution of semantically secure programs [13, 18].
Implicit flows from private variables holding secret values to public variables
holding non-secret values enables attackers to infer information about these se-
cret values. Austin and Flanagan [4] proposed the No-Sensitive Upgrade (NSU)
technique, in which any side effect that depends on secret information will ter-
minate the execution. NSU monitors, however, make a coarse approximation of
the all paths of executions of the program in order to ensure soundness. For ex-
ample, consider the program in Listing 1.1. NSU terminates the execution when
it reaches the assignment to y because the occurrence this side-effect depends

on the secret value of variable x. Although this behavior is sound, the termina-
tion of the program execution is premature since the value of y is never used
afterwards.

Listing 1.1.

let x = true; //H
let y = false;//L
let z = true; //L
if (x) {y=false };//P
print(z)

Listing 1.2.

let x = true; //H
let y = false;//L
let z = true; //L
if (x) {y=false };//P
print(y)

Listing 1.3.

let x = false;//H
let y = false;//L
let z = true; //L
if (x) {y=false };
print(y)

Permissive Upgrade (PU) [5] is an alternative to NSU that provides a more
permissive approach to handle implicit flows. A PU monitor keeps track of secret-
dependent values by means of a special label P that indicates that the information
is partially leaked, i.e., it is currently secret but in other executions may remain
public. The execution is terminated only when a partially leaked value is used in
a conditional statement or flows to a public sink. Therefore, at the assignment
to y in Listing 1.1, instead of stopping the execution as a NSU monitor would, a
PU monitor tags the value of variable y with P and execution continues until the
end. However, a PU monitor would halt the execution of the program in List-
ing 1.2 when reaching the print statement. For completeness, we mention that
both NSU and PU deem the execution of the program in Listing 1.3 to be safe,
although there is an implicit flow from variable x to y. Therefore, these moni-
tors are able to enforce termination-insensitive noninterference (TINI) which is
weaker than noninterference [4, 5, 10].

3 GIFC

This work introduces Gifc, a permissive and portable inlined monitoring mech-
anism that supports the DOM and dynamic code evaluation and offers support
for modeling external libraries. To the best of our knowledge, this combination of
properties for a dynamic IFC approach is unique. Before delving into how Gifc
offers all the properties from Table 1, we first lay out the attacker assumptions.

3.1 Attacker model

We adhere to the gadget attacker model [7]. We assume the user visits a trusted
web application in a legitimate browser. The attacker is somehow able to run
his malicious JavaScript code on the trusted site, for example because the ap-
plication includes a script from the attacker’s server or by using an improper
sanitized input. The attacker does not have any network privileges that allows
them to mount a man-in-the-middle attack [2]. The only outputs the attacker
can observe are those sent to his own server. For that, he can use APIs in the
browser environment (e.g XMLHTTPRequest). Those APIs are considered sinks of
information. Therefore, the duty of the IFC monitor is to prevent the flow of
any high or sensitive value to those sinks.

3.2 Permissiveness

Listing 1.4.

1 if (!h) {throw new Error ()};
2 y = z;
3 f();
4 g();

Gifc’s monitor is a flow-sensitive
variation on the PU strategy intro-
duced in Austin et al. [5]. Gifc pro-
poses to use AST information of the
program to extend the pc label con-
text of language constructs such as
return, break, throw, etc., when their
execution depends on secret values.
This information is crucial and must be handled carefully by approaches like NSU
or PU to ensure soundness and permissiveness guarantees. If the aforementioned
language features are not handled, the monitor will potentially leak information
and hence, will become unsound. On the other hand, if they are used with an
approach like NSU, the monitor could become excessively restrictive. For exam-
ple, consider the code snippet in Listing 1.4 in which h is secret. The execution
of lines from 2 to 4 depends on the value of h, given the throw statement will
execute based on the value h. Therefore, a NSU-based monitor will stop the ex-
ecution at the assignment statement (line 2). In this example this problem is
extended until the program encounters the first error handler.

3.3 Portability

Gifc does not rely on a modified VM like [9, 16], nor provides an IFC-aware
interpreter like [6,19] since those solutions are inherently not portable. Instead,
Gifc relies on code instrumentation. Similarly to [12,13,27,31,32], Gifc inlines
the monitor within the program.

Inlining the monitor in the program source code has, however, security impli-
cations given that the program runs alongside the monitor and an attacker may
attempt to tamper with the monitor state to compromise security. To increase
the monitor’s security, Gifc and Jest obfuscates all variables names introduced
by the monitor. This is a naive approach because an attacker can use the reflec-
tive capabilities of JavaScript to inspect and modify the monitor state. A pos-
sible way to ensure the security of the monitor could be by means of freeze/seal
of ECMAScript 5. These functions can be used to protect the monitor which
will prevent an attacker from altering the monitor functionality. This will imply
freezing Object, Array, String and other objects from the standard library.
Also, all the object in the prototype chain of the monitor should be secured to
prevent an attacker from tampering with its prototype chain. Nevertheless, the
security of our monitor is ongoing work.

3.4 Eval

Function eval allows the execution of arbitrary code represented by a string
value. Existing dynamic and hybrid approaches that rely on source code instru-
mentation do not support eval(). For a source code instrumentation approach

to support eval() with minimum performance implications, the instrumenta-
tion mechanism must run alongside the instrumented program. In Gifc, we
specialized eval() to track information flow on the string value that this func-
tion receive as argument. Since our code instrumenter is part of the execution
environment, when eval() is called, its argument is instrumented before its eval-
uation.

3.5 External library calls

JavaScript web applications do not live in isolation in the browser, but they
instead interact with the rest of the system in order to do something useful like
processing user input/output, sending data over the network, displaying a web
form, etc. All these interactions performed by the application are done by means
of calls to web APIs, implemented by the browser in other languages (e.g., C++).

Listing 1.5 shows an example of an external function call, Math.pow. When
executing that code with Gifc to track the flow of information, the applica-
tion is actually running with augmented semantics, e.g. values are labeled and
monitored. Since external libraries do not understand the values used in the aug-
mented semantics, the monitoring mechanism should not pass label information
to Math.pow. However, after the external library call, the monitor cannot know
which label assign to x’s value.

Listing 1.5.

let y = 13; //H
let x = Math.pow(y,2);

A conservative approach to solve this problem is to label the result value
with the most sensitive label of the values involved in the call. However, this is
considered to be restrictive [19]. To solve this problem in Gifc, we defined an API
function model with two functions ϕ and γ, inspired by the ones presented by
Hedin et al. in [21]. The ϕ knows how to marshal the values from the monitored
program to the external function. Also, it has to store the label all values involved
in the call. Those stored labels are then used by γ to decide which label should
be attached to the return value of the API function call.

3.6 Document Object Model

The Document Object Model (DOM) is the main web API offering page render-
ing and input/output facilities [24]. DOM elements are exposed to JavaScript as
objects. However, their semantics is different from regular ordinary JavaScript
objects. Properties of DOM elements are actually pairs of getter/setter functions
provided by the browser that cannot handle labeled values.

Monitoring flows from the DOM is crucial as attackers could store secret
information as DOM element or as part of their properties or attributes to then
later retrieve them and leak that information.

To be able to reason about the DOM without VM modifications, JavaScript
proxies [28] seem a good approach to enhance DOM elements operations with

information flow control semantics. However, the DOM is unable to handle prox-
ified nodes because type checks that inspect actual DOM elements will fail for
proxies. Also, our function model from Section 3.5 is stateless, while many DOM
elements model state.

In order to monitor the DOM API, Gifc associates a meta-object with each
DOM element. This meta-object keeps track the element properties’ labels and
is stored in its target DOM object as an “anonymous” property, using a symbol
property key. Note, however, that this approach is transparent but not tamper-
proof. This is because the attacker can gain access to the meta-object by mean
the language reflective features (i.e Object.getOwnPropertySymbols()).

3.7 Performance

As explained in the introduction dynamic IFC incurs on non-neglegible perfor-
mance penalties. In particular, the performance of FlowFox depends on the
number of security level and the number of cores of the CPU given that the
program needs to execute once per each security level. On the other hand, pro-
viding an IFC aware interpreter like JSFlow and ZaphodFacets incurs in a
big performance penalty (as we also later show in Section 5.2).

Similar to IF-transpiler, Gifc employs code instrumentation to inline its
monitor within the target program. Inlining the source code is potentially better
performant than the aforementioned solutions since the resulting code can bene-
fit from JIT compilation as pointed out in [13]. Section 5 evaluates this research
statement and measures the impact of GIFC on the original application.

4 Implementation

We implemented Gifc 1 as a JavaScript framework that takes a JavaScript
or an HTML page as input program. Gifc then inlines the IFC monitor by
instrumenting the source code of the application. More precisely, the JavaScript
code is instrumented to trap relevant operations and call the monitor through a
well-defined interface, decoupling the monitor from the instrumentation platform
used. Our current prototype assumes that developers tag the sources and sinks
in the input program and provide the specification of function models to handle
external libraries. In what follows, we will first briefly introduce the used code
instrumentation platform, and then provide details on the monitor, how it deals
with implicit flows and non-JavaScript APIs.

4.1 Code instrumentation platform

Gifc uses Linvail [11] as code instrumentation platform for implementing its
monitor. More precisely, it employs Linvail’s source-to-source transpiler for Java-
Script called Aran 2. Aran takes as input a target program and an analysis

1 https://gitlab.soft.vub.ac.be/ascullpu/guardia-ifc
2 https://github.com/lachrist/aran

and produces an instrumented JavaScript program that can be executed on any
ES5-compliant interpreter. The analysis is a JavaScript file that describes how
JavaScript operations should be embellished. In the case of Gifc, the analysis file
provides the traps for language operations (function calls, variable assignment,
object property access, etc.) that require calling the IFC monitor.

4.2 Monitor

The instrumented code interacts with the monitor using a well-defined interface
shown in Figure 1, distilled from the semantics of the PU monitor presented
by Austin et al. [5]. The monitor interface decouples its implementation from

Monitor function Description

pushContext(x, t) Push a context label given a type

ca
ll
b
a
ck

s popContext(t) Pop a context label given its type
join(x,y) Returns the least upper bound of the labels
permissiveCheck() Determine if there is no PU violation in a branching point
enforce(y,...xs) Enforce IFC if y is a sink and some of xs is a source

leave(fn)
Remember all values’ labels of an external function call
before its execution

enter(fn, val)
Attach a computed label to the return value of an exter-
nal function

im
p
l tagAsSource(x) Tags x as source (i.e. sensitive data)

tagAsSink(x) Tags x as sink (i.e. produce a public observable data)
addFnModel(ϕ, γ)) Registers a model γ for an external function ϕ

Fig. 1. Monitor interface

the instrumentation platform, which enables changing parts of the monitoring
mechanism independently. We would also like to exploit this decoupling in future
work to experiment with other code instrumentation platforms.

Figure 1 distinguishes two categories of monitor functions. Calls to the func-
tions marked as “callbacks” are automatically inserted into the target program
during code instrumentation (see Section 4.4). Calls to the functions marked
as “impl” have to be manually called by the IFC implementor, i.e. developer
performing IFC analysis. Those calls refer to the tagging functions for tagging
sources and sinks, and to add a function model (see Section 4.3).

4.3 Implementer monitor functions

Gifc provides functions tagAsSource and tagAsSink that developers have to
insert into a program to identify sensitive sources and sinks. For example, the
program in Listing 1.6 shows the required tagging for enabling the IFC monitor
to prevent the flow of the user password to the browser console output. Function
console.log is tagged as a sink, and the value property of the HTML element
with id #pass as a source.

Listing 1.6. Prevent password leakage

tagAsSink(console.log);
const onClickHandler = () => {

const $ = document.querySelector;
let pass = tagAsSource($(’#pass’).value);
...
console.log(pass);

}

Although developers currently have to manually tag sources and sinks in the
code, it would be possible to devise a more declarative (external) manner for
specifying sources and sinks, which the code instrumenter can then use to intro-
duce the tag functions in the target program where appropriate. We are currently
building plugin support enhanced with AI machinery to automate the marking
sources and sinks in the future.

Besides identifying sources and sinks, Gifc also expects that external func-
tions are registered using addFnModel(fun, γ). Function γ has to approximate
the flow of information of function fun in terms of the labels of the arguments.
For example, for Math.pow(x,y) shown in Listing 1.5, we would register γ(x,y)
= xty, correctly capturing the notion that if Math.pow is called with one or two
sensitive argument values, then the resulting value is also sensitive. We imple-
mented models for some objects of the standard libraries including Math, Array,
and String. However, the monitor fallback to default conservative model for
functions calls that do not have precise model implementation.

4.4 Callback monitor functions

Gifc uses a shadow stack to maintain the pc label. The pushContext() function
pushes a security label into the stack every time the program encounters a control
flow statement. The label value is the join of all values that influences control
flow in a control flow statement.

popContext() removes the top element of the stack when the execution
reaches the end of a control flow structure body.

Our monitor actually maintains an exception stack that keeps track of im-
plicit flows that arise from throwing exceptions in sensitive contexts. We push
into the exception stack when the execution of a throw statement depends on
sensitive information. This is because there is no syntactic way to know when
an exception will be handled. Then, when a catch handler is reached, we pop
all values from the exception stack.

The join(a,b) operation is used whenever the label of a value depends on
multiple values (i.e. the least upper bound of the elements). As a concrete ex-
ample, consider let z = x + y;. The label of z depends on the more sensitive
label involved in the values of the binary operation (also, in the label of the pc
context, etc.).

The permissiveCheck() enforces the PU invariant at the branching point
of control flow structures to avoid total leak of information. enforce() is then

used at code locations (e.g function application, setters) where information can
leak the system to prevent information flow violations. It checks if there is any
sensitive value flowing to a setter or function annotated as sink.

Functions addFnModel(fun, γ), leave, and enter enable the IFC monitor to
interact with non-instrumented functions, i.e. external function calls. As men-
tioned, external functions need to be registered using addFnModel(fun, γ). Dur-
ing program execution, upon the call to an external function, function leave
looks up the corresponding γ function, splits the labels from the argument val-
ues and applies γ, and stores the resulting label `. Next, the actual external
function is called with the unlabeled argument values. Finally, function enter
attaches the stored label ` to the value returned from the non-instrumented
function call.

Recall that to reason about the DOM, Gifc associates a meta-object with
each DOM element. When a getter or setter is executed on a DOM element,
the instrumentation ensures that each element property write operation updates
its corresponding label in the meta-object, while every value resulting from a
property read operation will be labeled with its corresponding label. For handling
DOM elements methods, the function model associated to the method is used.

5 Evaluation

In order to evaluate our approach, we performed a qualitative and quantitative
evaluation of our Gifc implementation. The qualitative evaluation provides an
indication of how effective our approach is in detecting illicit information flows.
The quantitative evaluation shows the performance implications of our approach
to an uninstrumented baseline and compares it to related approaches.

5.1 Qualitative evaluation

To evaluate the effectiveness of Gifc in a practical way, we compare it with
IF-transpiler, JSFlow, and ZaphodFacets by determining whether or not
illicit flows are detected in a suite of benchmark programs3. The benchmark suite
was designed by Sayed et al. [32] and consists of 33 programs specifically designed
for testing information flow control. It contains a wide variety of (combinations
of) language features that challenge any IFC approach. We extended the bench-
mark with 5 new programs to test features such as eval, API function calls, and
property getters/setters not present in the original one. In the Gifc repository
we describe the 28 programs included in the original benchmark suite4. The
last entries in the table describe the new 5 additions. Each benchmark program
takes as input a secret string value, which the program attempts to leak explic-
itly or implicitly in various ways. We ran all tools on all benchmark programs in

3 Unfortunately we were unable to set up a functional test environment for FlowFox
and Jest. In the case of Jest certain models are required that are undocumented
and not trivial to develop.

4 https://gitlab.soft.vub.ac.be/ascullpu/guardia-ifc

NodeJS, except for ZaphodFacets, of which the experiments were performed
in Mozilla Firefox 8.0 as required by the tool.

Table 2 shows how Gifc compares to the other three IFC approaches. The 3
means that a tool was able to detect the illicit information flow, while 7 indicates
that a tool was unable to detect the illicit flow. R.Err indicates that a tool threw
a runtime exception and was unable to execute the program properly. In.Err
indicates that the tool was unable to inline the monitor into the original program
source code. Exp indicates that the tool threw an exception at a point where
an illicit information flow could be. However, in these cases it was premature
because at that point there was no invalid information flow. This observation
was also made in [32].

The results in Table 2 show that Gifc is able to detect and prevent illicit
information flows in all test programs. For the 28 programs from the original
suite we were able to reproduce the findings reported by Sayed et al. [32] for
IF-transpiler, JSFlow, and ZaphodFacets. For the 5 test programs that
we extended the suite, Gifc and JSFlow successfully detected all illicit flows.
Both IF-transpiler and ZaphodFacets were able to successfully detect an
illicit flow in only one out of 5 new test programs.

Adding online support for eval() in IF-transpiler needs the static analysis
component and the transpiler in the same process of the application. Supporting
APIs will require the refactoring of the transformation rules to include function
models. Also, it will require implementing the mechanism that allows assigning
models to APIs functions which need to be configured at runtime.

From this we conclude that Gifc is on par with the existing tools in terms of
detecting illicit information flows in the presence of different JavaScript features.

5.2 Quantitative evaluation

We conducted performance benchmarks to measure the impact of Gifc on the
performance of the original application (the baseline), and to gauge how our
approach compares with IF-transpiler, JSFlow, and ZaphodFacets in this
regard. The set of benchmark programs consists of 9 different algorithms used in
Sayed et al. [32]. Table 3 shows the time in milliseconds to run the algorithms.
More concretely, it reports the average time of 10 executions of each algorithm.
Both JSFlow and ZaphodFacets failed to execute the AES algorithm. This
was also reported in [32].

The results in Table 3 show that the approaches that rely on code instru-
mentation (Gifc and IF-transpiler) have a performance impact which is
one or more orders of magnitude smaller than the performance impact of ap-
proaches that rely on an additional interpreter (JSFlow and ZaphodFacets).
IF-transpiler performs better than Gifc, although performance is still com-
parable. Important sources of performance overhead in Gifc’s dynamic monitor
are the wrapping and unwrapping of values before and after API calls, and the
emulation of implicit calls to functions toString() and valueOf() due to implicit
value coercion in the target program.

Program JSFlow ZaphodFacets IF-transpiler Gifc

Test 1 3 3 3 3

Test 2 3 3 3 3

Test 3 3 3 3 3

Test 4 3 3 3 3

Test 5 3 R.Err 3 3

Test 6 Exp R.Err 3 3

Test 7 Exp R.Err 3 3

Test 8 Exp R.Err 3 3

Test 9 Exp R.Err 3 3

Test 11 Exp R.Err 3 3

Test 11 Exp R.Err 3 3

Test 12 Exp R.Err 3 3

Test 13 7 R.Err 3 3

Test 14 3 R.Err 3 3

Test 15 3 R.Err 3 3

Test 16 3 R.Err 3 3

Test 17 3 R.Err 3 3

Test 18 3 R.Err 3 3

Test 19 3 R.Err 3 3

Test 20 7 R.Err 3 3

Test 21 Exp R.Err 3 3

Test 22 3 R.Err 3 3

Test 23 3 R.Err 3 3

Test 24 3 R.Err 3 3

Test 25 7 R.Err 3 3

Test 26 7 R.Err 3 3

Test 27 7 R.Err 3 3

Test 28 7 R.Err 3 3

Test 29 3 7 7 3

Test 30 3 R.Err In.Err 3

Test 31 3 R.Err 7 3

Test 32 3 7 3 3

Test 33 3 3 7 3

Table 2. Effectiveness comparison

Approach FFT LZW KS FT HN 24 MD5 SHA AES

Baseline 4ms 4ms 22ms 3ms 16ms 13ms 2ms 2ms 9ms
IF-
transpiler

14ms 11ms 363ms 10ms 327ms 126ms 33ms 29ms 284ms

Gifc 23ms 34ms 747ms 35ms 1238ms 1233ms 31ms 35ms 780ms
JSFlow 404ms 421ms 5206ms 661ms 5165ms 4371ms 491ms 566ms fails
ZaphodFacets100ms 188ms 15563ms 145ms 12657ms 6403ms 124ms 197ms fails

Table 3. Performance benchmarks

6 Related work

In this section, we discuss the most recent and relevant dynamic IFC approaches
for JavaScript previously mentioned (IF-transpiler, JSFlow, ZaphodFacets,
FlowFox) and some additional related work. All but IF-transpiler and Jest
are also part of the most recent survey on IFC by Bielova et al. [10].

Sayed et al. [32] introduce IF-transpiler, an hybrid flow-sensitive monitor
inlining framework for JavaScript applications. The static component is used to
improve the permissiveness of the monitor by collecting at branching points, the
side effects and function calls of branches not taken. At a branching point, the
static analysis collects all variables that could have been assigned or functions
that could have been called in the untaken branch. In contrast to Gifc, IF-
transpiler does not offer support for external libraries neither eval() nor
DOM, which prevent it from being used in a practical scenario. Also, its static
analysis do not handle side effects inside the body of function calls in the un-
taken branches. Therefore, the soundness of the static analysis is compromised.

JSFlow [19] is an IFC-aware interpreter for JavaScript that uses NSU to
handle implicit flows. To relax NSU, JSFlow uses upgrade instructions for
public labels before entering to a more sensitive context. However, this requires
programmer intervention to specify where and what the interpreter should up-
grade, which can lead to misconfigurations. JSFlow is not portable, because
it needs to be adapted for each JavaScript engine. Also, it has a considerable
performance impact due to the addition of a complete layer of interpretation.

ZaphodFacets [6] is an IFC-aware interpreter featuring faceted values which
capture the multidimensional view of a value with respect to confidentiality
levels. They provide formal proofs with respect to TINI and also evaluated their
as a plugin implementation for the Firefox browser. However, they lack support
for DOM and external libraries. They do not support eval and the application
performance is heavily affected due to the added interpretation layer. Also, the
ZaphodFacets portability is limited to the Firefox browser.

Secure Multi-Execution (SME) [16,29] takes a different approach that tradi-
tional monitoring approaches for IFC. Programs under SME are executed mul-
tiple times, once for each security level, using special rules for input and output
operations. The FlowFox implementation require large browser modifications
in order to synchronize all the executions. Executions that are not allowed to
access sensitive information are provided with dummy values representing more
sensitive values. Therefore, any leak of information will not release the secrets
of the application. However, it is unclear how dummy values can ensure the
transparency of the system.

Jest [13] is an IFC monitor inliner for JavaScript implementing NSU like JS-
Flow. It uses the concept of boxes to associate label information with program
values. To allow the program work on boxes, they rewrite the program using
special functions for all JavaScript operations (e.g function calls, assignments,
etc.). Like Gifc, Jest has a shadow stack to handle unstructured implicit flows.
However, Jest implements the NSU technique which requires the intervention
of the programmer to indicate the upgrading points. They also rely on an exter-

nal process to handle dynamic code evaluation, which degrades the application
performance on calls to eval().

Santos and Rezk [31] were the first that developed an IFC inlining compiler
for a core of JavaScript. They proved that the compiler is able to enforce TINI
and developed a practical implementation of it. However, their implementation
does not cover external libraries neither DOM.

Bichhawat et al. [9] implemented a dynamic IFC mechanism for the JavaScript
bytecode produced by Safari’s WebKit Engine. They formalize the Webkit’s
bytecode syntax and semantics, their instrumentation mechanism and prove
non-interference. To improve permissiveness, they implement a variant of PU
but their work does not support the DOM or other Web APIs.

Le Guernic et al. [23] developed a sound hybrid monitor that enforces non-
interference for a sequential language with loops and outputs. The monitoring
mechanism is composed by a variation of the edit automata [26] and the seman-
tics of monitored executions. It enforces non-interference by authorizing, editing
or forbidding the an specific action during the execution.

Magazinius et al. [27] formalized a framework to inline a monitor on the fly
for an small language with dynamic code evaluation.

7 Conclusion

We introduced Gifc, a practical portable dynamic IFC monitoring mechanism.
Gifc implements the PU strategy to improve the permissiveness of the mon-
itoring. It offers support for DOM and external libraries enabling a practical
use of IFC. Having static information at runtime makes it possible to develop a
more precise model of implicit flows. Gifc is the first inlining mechanism that
supports dynamic code evaluation online.

Benchmarks results show that the performance impact is better than ap-
proaches which rely on a IFC-aware interpreter but it is non-neglegible. Nev-
ertheless, we believe that the approach can be used in settings where security
plays a key role. Also, Gifc can aid developers if it is used as IFC testing tool
at development time.

In spite of the achievements presented here, there are still some challenges
that this kind of approaches need to overcome. First, the performance impact
needs to be addressed. Second, the monitor state must be secured given the fact
that its state is visible to the application.

References

1. Same Origin Policy - Web Security, https://www.w3.org/Security/wiki/
SameOriginPolicy

2. Man-in-the-middle attack - OWASP (Aug 2015), https://www.owasp.org/index.
php/Man-in-the-middle attack

3. Andreasen, E., Gong, L., Møller, A., Pradel, M., Selakovic, M., Sen, K., Staicu,
C.A.: A Survey of Dynamic Analysis and Test Generation for JavaScript. ACM
Computing Surveys 50(5), 1–36 (Nov 2017)

https://www.w3.org/Security/wiki/Same Origin Policy
https://www.w3.org/Security/wiki/Same Origin Policy
https://www.owasp.org/index.php/Man-in-the-middle_attack
https://www.owasp.org/index.php/Man-in-the-middle_attack

4. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis.
PLAS p. 113 (2009)

5. Austin, T.H., Flanagan, C.: Permissive dynamic information flow analysis. PLAS
pp. 1–12 (2010)

6. Austin, T.H., Flanagan, C.: Multiple facets for dynamic information flow. POPL
p. 165 (2012)

7. Barth, A., Jackson, C., Mitchell, J.C.: Securing frame communication in browsers.
Commun. ACM 52(6), 83–91 (Jun 2009)

8. Bichhawat, A., Rajani, V., 0001, D.G., 0001, C.H.: Generalizing Permissive-
Upgrade in Dynamic Information Flow Analysis. CoRR cs.CR, 15–24 (2015)

9. Bichhawat, A., Rajani, V., Garg, D., Hammer, C.: Information Flow Control in We-
bKit’s JavaScript Bytecode. In: Advances in Computer Science - ASIAN 2006. Se-
cure Software and Related Issues, pp. 159–178. Springer Berlin Heidelberg, Berlin,
Heidelberg (2014)

10. Bielova, N., Rezk, T.: A Taxonomy of Information Flow Monitors. POST 9635(1),
46–67 (2016)

11. Christophe, L., Boix, E.G., De Meuter, W., De Roover, C.: Linvail - A General-
Purpose Platform for Shadow Execution of JavaScript. SANER pp. 260–270 (2016)

12. Chudnov, A., Naumann, D.A.: Information Flow Monitor Inlining. In: 2010 IEEE
23rd Computer Security Foundations Symposium (CSF). pp. 200–214. IEEE (2010)

13. Chudnov, A., Naumann, D.A.: Inlined Information Flow Monitoring for JavaScript.
In: the 22nd ACM SIGSAC Conference. pp. 629–643. ACM Press, New York, New
York, USA (2015)

14. De Groef, W., Devriese, D., Nikiforakis, N., Piessens, F.: Flowfox: a web browser
with flexible and precise information flow control. In: Proceedings of the 2012
ACM Conference on Computer and Communications Security (CCS 2012). pp.
748–759. ACM (2012). https://doi.org/https://doi.org/10.1145/2382196.2382275,
https://lirias.kuleuven.be/handle/123456789/354589

15. Denning, D.E., Denning, P.J.: Certification of Programs for Secure Information
Flow. Commun. ACM 20(7), 504–513 (1977)

16. Devriese, D., Piessens, F.: Noninterference through Secure Multi-execution. In:
2010 IEEE Symposium on Security and Privacy (SP). pp. 109–124. IEEE (2010)

17. Goguen, J.A., Meseguer, J.: Security Policies and Security Models. IEEE Sympo-
sium on Security and Privacy pp. 11–11 (1982)

18. Hedin, D., Bello, L., Sabelfeld, A.: Value-Sensitive Hybrid Information Flow Con-
trol for a JavaScript-Like Language. In: 2015 IEEE 28th Computer Security Foun-
dations Symposium (CSF). pp. 351–365. IEEE (2015)

19. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: Tracking Information
Flow in JavaScript and Its APIs. In: Proceedings of the 29th Annual ACM Sym-
posium on Applied Computing. pp. 1663–1671. ACM, New York, NY, USA (2014)

20. Hedin, D., Sabelfeld, A.: A Perspective on Information-Flow Control. Software
Safety and Security (2012)

21. Hedin, D., Sjosten, A., Piessens, F., Sabelfeld, A.: A Principled Approach to Track-
ing Information Flow in the Presence of Libraries. In: Advances in Computer Sci-
ence - ASIAN 2006. Secure Software and Related Issues, pp. 49–70. Springer Berlin
Heidelberg, Berlin, Heidelberg (Mar 2017)

22. Jensen, S.H., Jonsson, P.A., Møller, A.: Remedying the eval that men do. In: the
2012 International Symposium. pp. 34–44. ACM Press, New York, New York, USA
(2012)

https://doi.org/https://doi.org/10.1145/2382196.2382275
https://lirias.kuleuven.be/handle/123456789/354589

23. Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-Based Con-
fidentiality Monitoring. In: Advances in Computer Science - ASIAN 2006. Secure
Software and Related Issues, pp. 75–89. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2007)

24. Le Hgaret, P.: W3c Document Object Model (Jan 2005), https://www.w3.org/DOM/
25. Lekies, S., Kotowicz, K., Groß, S., Nava, E.A.V., Johns, M.: Code-Reuse Attacks

for the Web - Breaking Cross-Site Scripting Mitigations via Script Gadgets. CCS
pp. 1709–1723 (2017)

26. Ligatti, J., Bauer, L., Walker, D.: Edit automata - enforcement mechanisms for
run-time security policies. Int. J. Inf. Sec. (2005)

27. Magazinius, J., Russo, A., Sabelfeld, A.: On-the-fly inlining of dynamic security
monitors. Computers & Security 31(7), 827–843 (Oct 2012)

28. MDN: Proxy (Mar 2018), https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global Objects/Proxy

29. Rafnsson, W., Sabelfeld, A.: Secure multi-execution - Fine-grained, declassification-
aware, and transparent. Journal of Computer Security 24(1), 39–90 (2016)

30. Richards, G., 0001, C.H., Burg, B., Vitek, J.: The Eval That Men Do - A Large-
Scale Study of the Use of Eval in JavaScript Applications. ECOOP (2011)

31. Santos, J.F., Rezk, T.: An Information Flow Monitor-Inlining Compiler for Secur-
ing a Core of JavaScript. In: ICT Systems Security and Privacy Protection, pp.
278–292. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

32. Sayed, B., Traoré, I., Abdelhalim, A.: If-transpiler: Inlining of hybrid flow-sensitive
security monitor for JavaScript. Computers & Security 75, 92–117 (Jun 2018)

33. Stamm, S., Sterne, B., Markham, G.: Reining in the web with content security
policy. In: the 19th international conference. pp. 921–930. ACM Press, New York,
New York, USA (2010)

34. Weichselbaum, L., Spagnuolo, M., Lekies, S., Janc, A.: Csp is dead, long live csp! on
the insecurity of whitelists and the future of content security policy. In: ACM Con-
ference on Computer and Communications Security. pp. 1376–1387. ACM Press,
New York, New York, USA (2016)

https://www.w3.org/DOM/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy

	Practical Information Flow Control for Web Applications

