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ABSTRACT

Bug prediction models are used to locate source code elements more
likely to be defective. One of the key factors influencing their per-
formances is related to the selection of a machine learning method
(a.k.a., classifier) to use when discriminating buggy and non-buggy
classes. Given the high complementarity of stand-alone classifiers,
a recent trend is the definition of ensemble techniques, which try
to effectively combine the predictions of different stand-alone ma-
chine learners. In a recent work we proposed ASCI, a technique that
dynamically selects the right classifier to use based on the character-
istics of the class on which the prediction has to be done. We tested
it in a within-project scenario, showing its higher accuracy with
respect to the Validation and Voting strategy. In this paper, we
continue on the line of research, by (i) evaluating ASCI in a global
and local cross-project setting and (ii) comparing its performances
with those achieved by a stand-alone and an ensemble baselines,
namely Naive Bayes and Validation and Voting, respectively.
A key finding of our study shows that ASCI is able to perform
better than the other techniques in the context of cross-project bug
prediction. Moreover, despite local learning is not able to improve
the performances of the corresponding models in most cases, it is
able to improve the robustness of the models relying on ASCI.
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1 INTRODUCTION

Bug prediction is the branch of software engineering that aims at
discovering which are the source code elements more prone to be
affected by faults so that developers may carry out focused testing
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activities [19]. Besides the adoption of unsupervised techniques
prioritizing inspection and testing tasks based on (i) self-organizing
maps [10], (ii) topic modeling [31], or (iii) connectivity metrics [46],
the research community has been widely studying the usage of su-
pervised techniques, which involve the definition of bug prediction
models relating a set of independent variables (a.k.a., predictors) to
the bug-proneness of code artifacts using machine learning meth-
ods [19]. Such models can be trained using a sufficient amount of
labeled data coming from (i) the previous history of the same project
where the model is applied to, i.e. using a within-project strategy,
or (ii) other similar projects, i.e. using a cross-project strategy.

Previous studies showed that within-project bug prediction mod-
els have higher capabilities than cross-project ones since they rely
on data that represents better the characteristics of the source code
elements of the project where the models have to be applied [44].
As a drawback, a within-project training strategy cannot often be
adopted in practice since new projects might not have enough data
to setup a bug predictionmodel [48]. As a consequence, the research
community has started investigating ways to make cross-project
bug prediction models more effective with the aim of allowing a
wider adoption of bug prediction models [21, 27]. For instance, Men-
zies et al. [25] recently proposed the concept of local bug prediction
introducing a technique that (i) firstly clusters homogeneous data
coming from different projects with the aim of reducing its hetero-
geneity and (ii) then builds for each cluster a different model using
the Naive Bayes classifier [30]. The empirical analysis showed that
such a technique can significantly improve the performances of
global bug predictionmodels, thus paving the way for a re-visitation
of cross-project techniques.

Looking at the literature on cross-project bug prediction, it is
clear that one of the factors that impacts more the performances of
such techniques is represented by the choice of the machine learn-
ing method used to discriminate buggy and non-buggy instances: as
a matter of fact, Ghotra et al. [16] demonstrated that a wrong selec-
tion of the classifier might impact the model capabilities up to 30%;
perhaps more importantly, Panichella et al. [34] found that different
classifiers perform similarly, being however highly complementary.
As a direct consequence of these findings, researchers have tried to
exploit the complementarity among different classifiers by means
of ensemble techniques, that is, methodologies able to combine to-
gether different classifiers to improve bug prediction performances
[5, 13, 24, 34, 36, 45]. For instance, Tosun et al. [43] experimented
with the Validation and Voting strategy, a two-step method that
firstly builds a set of bug prediction models relying on different
classifiers, and then predicts a class as buggy in case the majority
of models predict the bugginess of the class.

More recently, we proposed a novel ensemble technique, coined
ASCI (Adaptive Selection of Classifiers in bug predIction) [13], able
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Figure 1: ASCI - Workflow.

to dynamically select among a set of machine learning classifiers
the one which better predicts the bug proneness of a class based
on its characteristics. We tested its performances in an empirical
study involving 30 software systems, where we trained ASCI in a
within-project setting. As a result we found that ASCI was able to
achieve higher performances than (i) the base classifiers used to
build it and (ii) the Validation and Voting ensemble classifier.

In this paper, we aim atmaking a further step ahead by evaluating
ASCI in a cross-project setting, considering both global and local

training strategies. The study was conducted on a Promise dataset
composed of 10 software systems, where we applied a number of
corrections suggested by Shepperd et al. [38] in order to make it
cleaned and suitable for our purpose. We compared our technique
with Validation and Voting and Naive Bayes, that we found to
be the best stand-alone classifier in the context of our study.

The results suggest that the problem of predicting bugs using
cross-project information is still far to be solved, since none of the
experimented models exceed 40% in terms of F-Measure. The use
of ensemble techniques improves the performances of prediction
models, and indeed ASCI is the classifier performing better than
Naive Bayes and Validation and Voting when considering the
F-Measure and AUC-ROC. At the same time, we found that the
local learning in most cases is not able to effectively reduce data
heterogeneity and improve the performances obtained by the mod-
els. Despite this, we found that combining ASCI with local learning
leads to more robust models.

Structure of the paper. Section 2 discusses the previous achieve-
ments attained by the research community. In Section 3 we describe
the methodology followed to conduct the empirical study. Section
4 analyzes the results, as well as possible threats to validity. Finally,
Section 5 concludes the paper and describes our future research
agenda on the topic.

2 BACKGROUND AND RELATEDWORK

This section summarizes the related literature and reports an overview
of ASCI.

2.1 Related Literature

For sake of space limitations, we only briefly summarize the papers
on cross-project bug prediction and ensemble techniques on which
this study builds upon.

Cross-project bug prediction. Cross-project bug prediction
models are based on the usage of data coming from external (simi-
lar) projects to train a machine learner able to discriminate buggy
and non-buggy instances in the project currently being analyzed
[48]. While most of the research made in this area investigated
which are the most efficient features to use in cross-project mod-
els to correctly capture the bugginess of software classes [19], a
notable effort has been also devoted to how to make external data
suitable for the project under analysis [25]. The latter problem
aims at dealing with the fact that cross-project models suffer data
heterogeneity, i.e. external data might be different with respect
to the one available in the project to analyze, thus worsening the
performances of bug prediction models. One of most recent ad-
vances in this area is represented by the so-called local learning

methods. These approaches do not have the goal to filter training
data but rather that of building a specialized bug prediction model
for each cluster of the training data. Menzies et al. [25] studied for
the first time the effectiveness of local learning, finding that it can
substantially improve the performances of bug prediction models
with respect to global models.

Ensemble techniques. The need of using ensemble techniques
comes from previous studies that showed that there is no classi-
fier able to clearly outperform the others [4], since their perfor-
mance strongly depend on the specific dataset considered [15].
More importantly, Ghotra et al. [16] highlighted that the selection
of an appropriate classifier might lead bug prediction models to
be more or less effective by up to 30%, while Panichella et al. [34]
demonstrated that the predictions of different classifiers are highly
complementary despite the similar prediction accuracy.

Thus, the identification of the classifier to use is not a trivial task
and for this reason a lot of effort has been devoted to the definition
of so-called ensemble techniques, i.e. methodologies able to com-
bine different classifiers with the aim of improving bug prediction
performances. Tosun et al. [43] experimented with the Validation
and Voting technique, that is a method to combine the output of
different classifiers using an aggregating function. More specifically,
the technique predicts a class as buggy in case the majority of mod-
els (obtained running different classifiers on the same training set)
predicts the bugginess of a class; otherwise, the class is predicted
as bug-free. Other techniques proposed in literature are based on
the Bagging ensemble technique [36], which combines the out-
puts of different models trained on a sample of instances taken
with a replacement from the training set. For instance, Kim et al.
[23] combined multiple training data obtained applying a random
sampling. More recently, some approaches inspired to the Stacking
ensemble technique [36] have been proposed [34, 35]. They use a
meta-learner to induce which classifiers are reliable and which are
not and consider the predictions of different classifiers as input for
a new classifier.

Specifically, Panichella et al. [34] devised CODEP, an approach
that firstly applies a set of classifiers independently, and then uses
the output of the first step as predictors of a new prediction model
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based on Logistic Regression. Zhang et al. [47] conducted a similar
study as the one performed by [34] comparing different ensemble
approaches. They found that there exist several ensemble tech-
niques that improve the performances achieved by CODEP, and
Validation and Voting is often one of them. Petric et al. [35]
used 4 families of classifiers in order to build a Stacking ensemble
technique [36] based on the diversity among classifiers in the cross-
project context. Their empirical study showed that their approach
can perform better than other ensemble techniques and that the
diversity among classifiers is an essential factor. Furthermore, it is
worth mentioning the work by Wang et al. [45], who compared the
performances achieved by seven ensemble techniques, each of them
belonging to a different category, in the context of within-project
bug prediction, showing that often Validation and Voting stands
out among them.

2.2 Adaptive Selection of Classifiers

Figure 1 reports the main steps adopted by ASCI to recommend
which classifier should be used for evaluating the bugginess of a
class. More specifically:

(1) Let C = {c1, ..., cn } be a set of n different stand-alone ma-
chine learners, and let T = {e1, ..., em } be the set of classes
composing the training set. Each ci ∈ C is run against the set
T , so that the predictions of each classifier for each ej ∈ T
are collected.

(2) After the first step, each ej ∈ T is labeled with the informa-
tion regarding the classifier ci ∈ C which correctly identified
its bugginess. Two possible scenarios can arise. If only one
classifier ci is able to predict the bug-proneness of ej , then
ej will be associated with ci . Conversely, if more classifiers
or none of them correctly identified the bugginess of ej , the
classifier ci having the highest F-Measure on the whole train-
ing set is assigned to ej . As output of this step, an annotated
training set T ′ is created.

(3) In the last step, based on T ′, ASCI builds a classifier predic-
tion model using a decision tree DT as classifier. In other
words, given the code metrics of the classes in the annotated
training set as independent variables, it aims at predicting
which classifier ci ∈ C should be used for that class. Thus, a
prediction consists of a nominal value indicating the name
of the classifier ci ∈ C that is considered as most indicated
to properly classify the bug-proneness of ej ∈ T .

It is worth noting that in our previous work [13] we evaluated
ASCI in the within-project context, comparing it with (i) the base
classifiers used to build it, i.e. Naive Bayes, Logistic Regression,
Multi Layer Perceptron, J48, Radial Basis Function Network, and
(ii) the Validation and Voting ensemble classifier.

3 EMPIRICAL STUDY DESIGN

The goal of the study is to evaluate how ASCI works when adopted
for cross-project bug prediction and what is the effect of local learn-
ing on its performances. The specific research questions formulated
are the following:

• RQ1. How does ASCI work in the context of cross-project bug

prediction when compared to existing ensemble techniques?

Table 1: Characteristics of the software systems used in the

study

# Project Release Classes KLOC Buggy Classes (%)

1 Ant 1.7 745 208 166 22%
2 ArcPlatform 1 234 31 27 12%
3 InterCafe 1 27 11 4 15%
4 Ivy 2.0 352 87 40 11%
5 pBeans 2 51 15 10 20%
6 Serapion 1 45 10 9 20%
7 Synapse 1.2 256 53 86 34%
8 SystemDataManagement 1 65 15 9 14%
9 TermoProjekt 1 42 8 13 31%
10 Tomcat 6 858 300 77 9%

• RQ2. To what extent can local learning improve the perfor-

mances of ASCI?

The first research question (RQ1) aims at assessing the perfor-
mances of our approach in the context of cross-project bug pre-
diction, while RQ2 is focused on the combination between local
learning and the adaptive selection of classifiers.

3.1 Context Selection and Data Preprocessing

The context of the study was composed of the 10 software systems
shown in Table 1, which reports the specific releases taken into
account as well as the detailed characteristics of the projects consid-
ered in terms of (i) size, expressed as number of classes and KLOC,
and (ii) number and percentage of buggy classes. Starting from
the Promise dataset [26], we (i) filtered out systems having more
than 50% of buggy classes as recommended by Tantithamthavorn
et al. [40] to ensure data robustness, and (ii) randomly selected
10 projects from the remaining ones. It is important to highlight
that the considered dataset already contained both independent
and dependent variables used to build the bug prediction models.
Indeed, for each class of the considered systems the independent
variables were represented by LOC and Chidamber and Kemerer
metrics [8], while the dependent variable was represented by a
boolean value indicating the bugginess of each class.

Once we selected the dataset, we applied the following data
preprocessing activities:

(1) DataCleaning. As shown by Shepperd et al. [38], the Promi-
se repository might contain noise and/or erroneous entries
that possibly bias the results of bug prediction models. To
deal with this issue, we applied the 13 corrections they pro-
posed to remove instances with conflicting values or pre-
senting missing values. From the initial dataset composed
of 5,422 instances, we removed ≃1% of them. Thus the final
dataset was composed of 5,361 instances.

(2) Data Normalization. A second element that could badly
affect the performance of the prediction models is related
to the different levels of design-complexity metrics [6]. To
overcome this issue, we applied the normalization filter im-
plemented in Weka [17] which linearly normalizes the data
in the [0,1] interval. It is important to note that the choice of
this normalization technique came from the results provided
by Nam et al. [29] and Herbold et al. [22], who showed that
such a technique represents the best one for this task.
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(3) Feature Selection. Highly correlated independent variables
can negatively affect the capabilities of bug prediction mod-
els [32]. To avoid this issue, we applied the Correlation-based
Feature Selection (CFS) approach [18]. This method uses cor-
relation measures and a heuristic search strategy to identify
a subset of actually relevant features for a model. It is worth
noting that we applied CFS for each training set obtained
from the Leave-One-Out cross validation process, described
later in Section 3.2. Thus, we firstly combined the training
instances belonging to different software systems and then
we applied the feature selection algorithm, as recommended
by Hall et al. [19].

(4) Data Balancing. Bennin et al. [1] demonstrated that the
problem of data unbalancing, i.e. datasets having a number
of buggy classes much lower than non-buggy ones, can bias
the performance of bug prediction models. For this reason,
we applied the Synthetic Minority Over-sampling TEchnique,
i.e. SMOTE [7] to ensure a similar proportion of buggy and
non-buggy classes in the training sets.

It is worth noting that the order of the preprocessing steps have
been guided by the framework proposed by Song et al. [39], who
suggested an ideal sequence of operations to perform before train-
ing a bug prediction model.

3.2 RQ1 - Evaluating ASCI in Cross-Project Bug

Prediction

To answer RQ1 we ran ASCI over the 10 preprocessed datasets
selected. As done in our previous work [13], the selected base learn-
ers used to configure ASCI were Naive Bayes, Logistic Regression,
Multi Layer Perceptron, J48, Radial Basis Function Network.

A key decision in this context was the selection of an appropriate
validation strategy [41]. We opted for the Leave-One-Out Cross-

Validation [37]. In this strategy, the model is trained using the
data of all the systems but one, which is retained as test set. The
cross-validation has been then repeated 10 times, allowing each
of the 10 systems to be the test set exactly once [37]. We used
this validation strategy since it is among the least biased and most
stable validation approaches, according to the findings reported by
Tantithamthavorn et al. [41].

For the evaluation of the performances obtained by ASCI, we em-
ployed widely-adopted metrics such as (i) accuracy, (ii) F-measure,
i.e. the harmonic mean of precision and recall, and (iii) the Area
Under the Curve (AUC), which quantifies the overall ability of a
model to discriminate between buggy and non-buggy classes.

The performances achieved by our approach were firstly com-
pared with those obtained by the model relying on the Naive Bayes
classifier, which was found to be the best stand-alone machine
learner over our dataset. More specifically, we ran seven stand-
alone classifiers, i.e. Multi-Layer Perceptron, Naive Bayes, Lo-
gistic Regression, Radial Basis Function, C4.5, Decision Table,
and Support Vector Machine on the same set of systems con-
sidered in the study and using the same validation methodology.
As a result, we found that the use of Naive Bayes led to the best
results in terms of F-Measure. For this reason, we considered such
a classifier as our baseline. In the second place, we benchmarked
ASCI with the Validation and Voting (VV) ensemble classifier

[43], which predicts the bug-proneness of a class based on the ma-
jority of “votes” of the base classifiers. Also in this case, the base
learners were Naive Bayes, Logistic Regression, Multi Layer
Perceptron, J48, and Radial Basis Function Network.

The choice of using Validation and Voting as baseline was
driven by the findings provided by Zhang et al. [47], which demon-
strated that the VV method is able to outperform other ensemble
classifiers in the context of cross-project [47] bug prediction.

We are aware of the possible impact of classifiers’ configuration
on the ability of finding bugs [42], however the identification of
the ideal settings in the parameter space of a single classification
technique would have been prohibitively expensive [2]. For this
reason, we applied the classifiers using their default configuration.

Due to space limitations, we report and discuss the boxplots
of the distributions of the accuracy, the F-Measure, and the AUC
achieved by the single classifiers independently on the 21 consid-
ered systems. A complete report of the results is available in our
online appendix1.

3.3 RQ2 - Combination of Local-Project

Strategy and Ensemble Techniques

In the context of this research question, we had to build local bug
prediction models. To this aim, we exploited the Expectation
Maximization (EM) clustering algorithm proposed by Dempster
et al. [11]. Its choice was driven by multiple factors. Firstly, it can
automatically determine the number of clusters through an internal
cross-validation process. Secondly, it is similar to the MCLUST
algorithm used by Bettenburg et al. [3] and Menzies et al. [25].
Lastly, previouswork [22] showed that the performance achieved by
EM are close to those obtained by the algorithm originally proposed
by Menzies et al. [25]. We relied on the implementation of the
algorithm available in the Weka toolkit [17].

Given a project Pi , the input of the clustering algorithm was
represented by the data coming from all the systems but Pi , i.e. we
still worked in a cross-project setting by means of the Leave-One-
Out Cross-Validation [37] where the test sets was represented by
the data of Pi . Unlike traditional leave-one-out cross validation, we
created a bug prediction model for each of the clusters. During the
testing phase, for each class in Pi we used the model trained on the
cluster the class is closed to.

As done for RQ1 we we compared ASCI with Naive Bayes
and Validation and Voting using accuracy, F-Measure, and AUC
to evaluate the performances of our technique. The fine-grained
results are available in our online appendix1. To measure the extent
to which local learning has an effect on cross-project performances,
we also compared local models with global models defined in the
context of RQ1.

4 ANALYSIS OF THE RESULTS

In this section we present the results of our study, by discussing
each research question independently.

1https://figshare.com/articles/Ensemble_of_Classifiers_for_Cross-Project_Bug_
Prediction_A_Replicated_Study/5555002

https://figshare.com/articles/Ensemble_of_Classifiers_for_Cross-Project_Bug_Prediction_A_Replicated_Study/5555002
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Figure 2: Boxplots of the Accuracy, F-Measure, and AUC-ROC achieved by NB, VV, and ASCI.

4.1 RQ1 - Evaluation of Ensemble Techniques

when Adopted for Cross-Project Bug

Prediction

Figure 2 depicts the box plots of the Accuracy, F-Measure and AUC-
ROC achieved on the 10 software systems in our dataset by the
experimented cross-project bug prediction models (white asterisks
highlight the means). In red we report the performances in the
global setting, while in green the ones of local learning.

First of all, we found that in some cases the models based on
Naive Bayes exhibit better performances than those based on the
ensemble classifiers. Thus, we can claim that the models based
on ensemble classifiers do not always provide improvements with
respect to a well selected stand-alone model. Indeed, as for ASCI,
our results show how its performances are better than Naive Bayes
(e.g. median Accuracy +6%, median F-Measure +4%, and median
AUC-ROC +2%). At the same time, it shows better performance with
respect to Validation andVoting in terms of Accuracy, F-Measure
(e.g. median Accuracy +2%, median F-Measure +8%,≊median AUC-
ROC). Thus, the application of our technique in a cross-project
setting is able to provide improvements in the prediction of bugs
with respect to the models based on the well-known Naive Bayes

and Validation and Voting ensemble technique.
As a more general observation, it is important to note that the

performances of all the experimented cross-project models are quite
low—on average they do not exceed 40% in terms of F-Measure. On
the one hand, all the experimented models solely relied on code
metrics as independent variables. As widely shown in literature
[9, 12, 28] a combination of predictors of different natures (e.g.
processmetrics) has an important effect on the overall performances
of bug predictionmodels. On the other hand, our results still suggest
that cross-project bug prediction is still far from being actually
usable in practice. For this reason, the research community needs
to investigate more the problem, trying to identify useful tools to
make cross-project bug prediction actually effective.

Summary for RQ1. None of the experimented cross-
project models is able to exceed 40% of F-Measure (on aver-
age), meaning that the problem of identifying buggy classes
using external sources of information is still far from being
solved. However, the models relying on ASCI are able to
provide benefits with respect to stand-alone classifiers and
the Validation and Voting ensemble technique.

4.2 RQ2: Evaluation of Ensemble Techniques

when Adopted for Local Cross-Project Bug

Prediction

On the basis of the results achieved in RQ1, we verified whether
the application of local learning—that was suggested as a promis-
ing way to reduce data heterogeneity—could improve the perfor-
mances of ASCI. Figures 2 depicts the box plots reporting Accuracy,
F-Measure, and AUC-ROC achieved on the 10 subject systems when
combining local learning and the ensemble techniques considered
in our study, along with those achieved by the standard local bug
prediction model that relies on Naive Bayes. To ease the compari-
son with the results of RQ1, we also report box plots for the global
models built using the same set of classifiers.

As a first observation, local models do not always achieve better

performances with respect to global models. In particular, in case of
Naive Bayes, we can notice a decrease of the performances of 4%
in terms of median F-Measure. It is worth noting that combining
local learning with Naive Bayes does not achieve better perfor-
mances than those obtained using ensemble techniques without
local learning.

Analyzing the differences between the global and local versions
of the experimented ensemble methods, we observe that researchers
should be careful when applying local bug prediction. Indeed, looking
at the median F-Measure, we can observe that the Validation and
Voting model is not able to take full advantage of the local learning,
achieving a decrease of 5% of in terms of median F-Measure. A likely
motivation for such result comes from the characteristics of the
algorithm: as shown in previous research [13, 35], this technique
fails in case of high variability among the predictions provided
by different classifiers because the majority of the base classifiers
might wrongly classify the bug-proneness of a class, thus negatively
influencing the performances of techniques which combine the
output of different classifiers. When applying Validation and
Voting locally, we observed that specific classifiers act much better
on some specific clusters than other machine learners, meaning that
very few of them can correctly classify the bug-proneness of code
entities. As a consequence, the voting is often not useful, leading
to a decreasing of the overall performances of local bug prediction
for some systems. This result confirm the findings of Herbold et
al. [22] that find that local models have a small influence on the
results of cross-project bug prediction models.

Looking at ASCI, we found that this classifier is able to exploit
some of the advantages provided by the lower heterogeneity of
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data provided by local models. Indeed, despite there is a decrease
in terms of median F-Measure of 5%, there is an increase of 2% in
terms of Accuracy and 4% in terms of AUC-ROC. It is worth noting
that the AUC-ROC measures gives an indication on the robustness
of bug prediction models [20] (i.e. how well the classifier separates
the binary classes), while the F-Measure indicates the accuracy with
which the predictions are done. In other words, they are comple-
mentary metrics that capture robustness and accuracy, respectively.
Thus, we can affirm that local learning is able to improve the ro-
bustness of a technique for the adaptive selection of classifiers in
the context of cross-project defect prediction.

Summary for RQ2. Researchers should be careful when
applying local learning. Indeed, in most cases local learning
is not able to improve the performances of bug prediction
models. Despite this, the combination of local learning and
ASCI is able to improve the models performances in terms
of robustness.

4.3 Threats to Validity

In this section we discuss the threats that might affect the validity
of the empirical study conducted in this paper.

Threats to construct validity. Threats in this category regard
the relationship between theory and observation. In our work, a
threat is represented by the dataset we relied on. The dataset come
from the Promise repository [26], which is widely considered re-
liable and, indeed, has been also used in several previous work in
the field of bug prediction [16, 24, 33, 34, 47]. Although we cannot
exclude possible imprecisions and/or incompleteness of the data
used in the study, we applied a formal data preprocessing recom-
mended by Shepperd et al. [38], which allowed us to reduce noise
and remove erroneous entries present in the considered datasets.
Moreover, it is important to note that to produce stable results we
just considered software systems having less than 50% of buggy
classes [40].

As for the experimented prediction models, we exploited the
implementation provided by the Weka framework [17], which is
widely considered as a reliable source.

We are aware of the importance of parameter tuning for bug
prediction models. To minimize this threat we used the default
parameters for each classifier used in our study, since finding the
best configuration for all of themwould have been too expensive [2].
As future goal, we plan to further analyze the impact of parameters’
configuration to our findings.

Threats to conclusion validity. They are related to the rela-
tion between treatment and outcome. To reduce the impact of the
adopted validation methodology, we relied on the Leave-One-Out
Cross-Validation methodology [37]. This choice was driven by re-
sults recently reported that showed that such validation technique
is among the ones that are more stable and reliable [41].

To ensure that the results would have not been biased by con-
founding effects due to data unbalance [7] or highly correlated
independent variables [14], we adopted formal procedures aimed
at (i) over-sampling the training sets [7] and (ii) removing non-
relevant independent variables through feature selection [18].

As for the evaluation of the performances of the experimented
models, we used a widely used set of metrics (i.e. accuracy, F-
measure, and AUC-ROC) to evaluate the performances of bug pre-
diction classifiers [5, 16, 24, 34].

Threats to external validity. These are threats concerned with
the generalizability of the findings. We analyzed 10 different soft-
ware projects coming from different application domains and hav-
ing different characteristics (i.e. developers, size, number of com-
ponents, etc.). We are aware that this is a small set of systems
(especially as training set) and that this could have bad influenced
the results achieved in terms of F-Measure. Of course, we cannot
claim the generalizability with respect to industrial environments,
however the replication of the study on industrial projects is part
of our future research agenda.

5 CONCLUSION

In this paper, we aimed at evaluating the usage of ASCI for global
and local cross-project bug prediction. Specifically, we compared its
performances with those achieved by the best stand-alone classifier,
i.e. Naive Bayes, and the Validation and Voting ensemble tech-
nique, which has been shown to be the most reliable in previous
work [47]. The study was conducted on a set of 10 software projects
from the Promise dataset, where we mitigated possible threats to
validity applying some precautions with respect to the quality of
data used.

We found that our approach improves the performances of bug
prediction models when adopted in a global scenario: in this case,
ASCI tends to work better than the other considered models, thus
highlighting how a combination of stand-alone classifiers generally
improve bug prediction performances. When turning our attention
on the local learning scenario, our results show that the use of this
technique is not able in most cases to improve the performances
achieved by the models. Despite this, the combination of ASCI
with local learning is able to produce better models in terms of
robustness (e.g. AUC-ROC), while there are conflicting results in
terms of accuracy.

The observations above represent the main starting point for our
future research agenda. We firstly plan to replicate the study on a
larger set of systems, using a richer set of independent variables,
using a large number of ensemble classifiers, and investigating the
impact of classifiers configuration on our findings. In the second
place, we aim at studying what are the characteristics that make
the use of ensemble techniques useful or not useful, so that we can
build recommenders able to automatically suggest to developers in
which contexts it is really worth to use ensemble methods.
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