
Tackling the Awkward Squad for Reactive
Programming: The Actor-Reactor Model

Sam Van den Vonder
Vrije Universiteit Brussel

Brussels, Belgium
svdvonde@vub.be

Joeri De Koster
Vrije Universiteit Brussel

Brussels, Belgium
jdekoste@vub.be

Florian Myter
Vrije Universiteit Brussel

Brussels, Belgium
fmyter@vub.be

Wolfgang De Meuter
Vrije Universiteit Brussel

Brussels, Belgium
wdmeuter@vub.be

Abstract
In his famous paper entitled “Tackling the Awkward Squad”,
Peyton Jones studies how features that traditionally did not
fit in the functional programming paradigm can be added
to a functional language via careful language design (e.g.
using monads), instead of allowing programmers to sprinkle
around impure expressions and ad-hoc library calls, thereby
turning the entire program into a non-functional program.
Similarly, in this paper, we identify a number of code char-
acteristics that do not map onto the reactive programming
paradigm but that are present in many real life reactive pro-
grams. We propose a novel Actor-Reactor model that can
serve as the basis for future language designs that allow a
programmer to use the awkward squad without making the
reactive parts of the program accidentally non-reactive.

CCS Concepts • Software and its engineering→ Data
flow languages; Multiparadigm languages;

Keywords functional reactive programming, actors, reac-
tors, the actor-reactor model

ACM Reference Format:
Sam Van den Vonder, Joeri De Koster, Florian Myter, and Wolfgang
De Meuter. 2017. Tackling the Awkward Squad for Reactive Pro-
gramming: The Actor-Reactor Model. In Proceedings of 4th ACM
SIGPLAN International Workshop on Reactive and Event-Based Lan-
guages and Systems (REBLS’17). ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3141858.3141863

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
REBLS’17, October 23, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5515-5/17/10. . . $15.00
https://doi.org/10.1145/3141858.3141863

Figure 1. Structure of a reactive DAG

1 Introduction
Reactive programming is a highly declarative way to write
event-driven programs. It is based around expressions (sig-
nals) that automatically recompute whenever the value of a
sub-expression changes. As an example, consider the reac-
tive program c = a + b. Any changes to the variables a or b
automatically give rise to a recomputation of c as well. This
is typically done by compiling the reactive program into a
directed acyclic graph (DAG), as exemplified in figure 1. The
free variables of the program (in our case a and b) corre-
spond to sources of the DAG, and the expressions that have
no depending expressions correspond to sinks of the DAG.

In the past decade we have seen a lot of reactive languages
and reactive libraries written in mainstream languages. Their
designs focus on the concepts for programming the internal
part of a reactive system. Speaking in terms of the DAG, they
focus on language features and ever more powerful higher-
order abstractions that allow programmers to express those
DAGs as easily and as declaratively as possible.
In the rest of the paper we will talk about reactive pro-

grams in terms of their DAG, which features three kinds of
nodes. Source nodes correspond to the “input” signals of the
reactive program. They are typically provided by some exter-
nal world. Internal nodes are composed signals that constitute
the actual semantics of the reactive program. Sink nodes cor-
respond to the “output” signals of the reactive program. They
are typically connected to the GUI, either implicitly (as the
result of a print in the REPL in FrTime [2]) or explicitly

27

https://doi.org/10.1145/3141858.3141863
https://doi.org/10.1145/3141858.3141863

REBLS’17, October 23, 2017, Vancouver, Canada S. Van den Vonder, J. De Koster, F. Myter, and W. De Meuter

(e.g. by wiring signals to the DOM using insertValueE in
FlapJax [5]).

In recent years reactive programming has gained a lot of
popularity in mainstream software development, especially
in the domain of web development. However, one cannot
help but observe that reactive programming is only used for
certain parts of the application: The reactive program is em-
bedded in an application still written in ordinary imperative
languages such as JavaScript or Scala. This external part of
the reactive program typically consists of stateful program
logic (e.g. the GUI rendering algorithm) and offline “compu-
tations”. This desired coexistence means that both the input
and output signals of the reactive program should interact in
a predictable manner with the parts of the program written
in the host language.
Mechanisms that support a clean embedding of reactive

programs in the imperative parts of the program are poorly
investigated in the literature. As we will explain, this is es-
pecially the case if those imperative parts correspond to
“long lasting” computations, “very stateful” computations,
and (distributed) multi-threaded computations. In analogy
with Peyton Jones [6] we call this the awkward squad for
reactive programming, since they are all aspects of a reac-
tive software system that “do not neatly fit into the reactive
paradigm”, and that require an escape hatch to code written
in another (mostly imperative) programming paradigm. This
paper focuses on the programming language features that
correspond to the “external world” of a reactive system. We
present an experimental model in which a program is de-
fined as a set of actors and reactors. The reactors are ordinary
reactive programs, i.e. collections of expressions that depend
on each other but which have free variables that correspond
to the sources of the associated DAG. Actors are language
entities with their own thread of execution. They can inde-
pendently produce values (thereby producing the input for
reactors) and they can act upon their internal state e.g. for
I/O (thereby processing the output produced by reactors).
The main contributions of this paper are: (1) The defini-

tion of the “awkward squad for reactive programming”, a set
of non-reactive (imperative) application concerns that are
currently difficult to express in reactive programming lan-
guages, and (2) the definition of the Actor-ReactorModel that
cleanly separates these reactive and non-reactive concerns,
thus allowing them to co-exist within the same application.

2 Problem Statement
In this section we analyse the problems that may occur when
embedding a reactive program in a mainstream language,
or when allowing the nodes of a reactive program to be
programmed with the full power of a Turing complete (im-
perative) language.

2.1 Long Lasting Computations
Suppose that one of the DAG’s nodes reacts to incoming
web-based data by running some long lasting machine learn-
ing algorithm. Such long lasting computations are expressed
using iteration constructs or by means of recursive proce-
dures. They can be problematic to combine with reactive pro-
gramming since they tend to “hijack” the execution thread,
thereby temporarily stopping the reactive program. Long
lasting computations can also emerge in more subtle ways.
When one of the internal nodes iteratively computes the
length of an incoming string, this will result in long lasting
computations whenever long strings enter the DAG.
The idea of reactive programming is to automatically

(re)execute the expressions that depend on source signals
“every time” an external agent changes their value. But what
do we mean exactly by “every time”? Consider a reactive
program that reacts to an incoming third-party distributed
data stream. To ensure that the program does not drop too
many incoming values (or risk a buffer overflow) the reactive
program should update itself “as often as possible”. To guar-
antee this we necessarily have to assume that the execution
time of the reactive program does not depend on the incom-
ing values. In other words, the execution time of the reactive
program has to be O(1). This may sound controversial but
this property is truly at the heart of reactivity: A program
that is not in O(1) will be “busy” for a period of time the
duration of which depends on input provided by the external
agent. During this offline period it is no longer reacting to
external agents, and is therefore not reactive 1. Since most
languages and frameworks do not impose reactive programs
to be inO(1), we will call reactive programs whose nodes do
satisfy this property strongly reactive.
Combining the need for long lasting computations (e.g.

a machine learning algorithm) with strong reactivity will
require a combination of at least two execution threads. One
thread is the traditional reactive program that takes care of
updating the DAG at regular times. The other thread runs
the long lasting computation for as many incoming values
as possible. The strategy used by the latter to cope with the
input overflow is an orthogonal decision as long as it does
not block or hijack the reactive thread (thereby making the
reactive program “weakly reactive”).
The language design problem that needs to be solved is

how to allow the coexistence of multiple threads in a reac-
tive program. Some threads correspond to the update algo-
rithm of the strongly reactive parts of the program, and other
threads take care of long lasting computations (which are
typically stateful – see next section). The semantics of the
interaction and coordination of all those threads should be
simple and well-defined.
1 With our definition of reactive we blur the lines between reactivity as a
highly declarative means to write event-driven programs, and the expec-
tation that those programs are highly responsive to change, such as user
input.

28

Tackling the Awkward Squad for Reactive Programming REBLS’17, October 23, 2017, Vancouver, Canada

2.2 Effectful Statements
Effectful statements such as assignments and output state-
ments are extremely tricky to understand and debug in the
internal nodes of a reactive DAG. That is because the update
order of the nodes is not part of the semantics of the reac-
tive program (apart from the fact that it typically guarantees
glitch freedom), so the order in which the effects are executed
is no longer under the programmer’s control. Two nodes of
the DAG that have an effect on the same external resource
(e.g. a shared variable, a log for debugging, or some hardware
actuator) will typically result in effects whose order depends
on the implementation of the DAG update algorithm, and are
thus very elusive for the reactive programmer. The problem
gets worse when the reactive update algorithm is internally
parallelised to improve the throughput of the reactive pro-
gram, since accessing the shared resource will now also lead
to race conditions.
The language design problem that needs to be be solved

is how to allow the coexistence of effectful computations
that react to values arriving at a certain internal node of the
DAG without accidentally or non-deterministically affect-
ing the behaviour of effectful computations that reside in
other internal nodes of the DAG. A simple locking scheme
with mutexes that regulate the order of the effects in the
DAG’s internal nodes is not a good solution since locking
will result in a weakly reactive program. Hence, the effectful
computations have to be evacuated outside the DAG and
should be responsible for their own interaction and mutual
coordination, while the DAG’s update thread is free to work
independently.

2.3 Embedding the DAG in the External World
When embedding a reactive program in a multi-threaded
imperative program, multiple threads can modify the source
nodes of the DAG (either sequentially or in parallel). This
means that the reactive DAG itself becomes a stateful re-
source that is shared between various external threads. The
result is a very subtle combination of parallel DAG update
cycles that may affect each other in case the necessary book-
keeping is not implemented to keep updates from different
threads separated. This implies either a mutex to synchro-
nise all external threads accessing the DAG, or using an
asynchronous message passing strategy and buffering all
contributions to the DAG from one thread until contribu-
tions of the other threads are completely processed by the
DAG. The issue then is that the reactive program receives
messages from threads that produce values at different paces,
or at paces that exceed the capacity of the reactive program
(leading to buffer overflows).

Currently the source nodes of a DAG are typically changed
via two different mechanisms:

1. All languages and frameworks feature a number of built-in
reactive variables (such as seconds in FrTime [2]). These

are free variables in the reactive program that are automag-
ically updated by a computational process external to the
reactive program.

2. Many languages embed a reactive program into an imper-
ative program whose role it is to provide the inputs of the
DAG. For example, in REScala, Vars are signals that are
explicitly updated via assignments by the imperative part
of the program [7]. In Flapjax, $B and $E construct new
input signals that are updated via specific events in a web
page [5].

The language design problem that needs to be solved is
how to cleanly combine the external thread (or threads) that
“fill the sources” of the DAG with the thread that is respon-
sible for the reactive program. We have to find expressive
declarative means that allow a programmer to “couple” the
external threads to the reactive thread, to coordinate the
threads, and to express what needs to be done when external
threads are producing values at a much higher pace than
what can be handled by the reactive thread.

3 The Actor-Reactor Model
The general idea of the actor-reactor model is to fully em-
brace the existence of the different “worlds” that constitute
the “inside” and “outside” of reactive programs, to give these
worlds their own thread and effect-set, and to design simple
and well-defined operators to link them together. We have
done this by allowing a programmer to (a) evacuate stateful
and/or long lasting computations into a number of actors
that manage their own state, thread, and input-output, (b)
express multiple DAGs (called reactors) that each correspond
to a reactive program with its own update thread, and (c)
defining a preliminary set of operators that allow actors and
reactors to “listen” to each other and “emit” values that can
be accepted and processed by listening actors and reactors.

3.1 Running Example
We have built a prototype implementation of the Actor-
Reactor model in Racket. We introduce our language con-
structs by building an instance of the CheerLights service.
CheerLights is an Internet of Things project that synchro-
nises a global network of multicoloured lights controlled
by Twitter [8]. The project parses names of colours from
tweets sent to the project’s account, and publishes the corre-
sponding RGB value to an API. For example, the tweet “I love
purple! #CheerLights” is transformed into RGB(0.5, 0, 0.5).
Hobbyists use this API to illuminate their IoT devices. In the
following sections we gradually build our application using
two actors (Listing 1 and 2) and one reactor (Listing 3). The
actors are responsible for (1) fetching real-time data from
Twitter, and (2) displaying the results of the CheerLights
service in a GUI. The reactor implements the CheerLights
service itself and transforms names of colours to RGB values.

29

REBLS’17, October 23, 2017, Vancouver, Canada S. Van den Vonder, J. De Koster, F. Myter, and W. De Meuter

The actors and reactors of the application are instantiated
and wired together in Listing 4.

3.2 Actors
The Actor model is a concurrency model based on asynchro-
nous message passing and encapsulation of state. Actors are
typically defined in terms of a behaviour and an inbox [4].
The behaviour of an actor defines its internal state and the
messages the actor can process (i.e. its interface) 2. The inbox
of an actor is a queue that buffers messages before they are
processed one by one. An actor can be spawned by instanti-
ating a behaviour and creating an inbox. Sending a message
to an actor is equivalent to storing the message in the inbox
of the receiving actor.
We use actors to abstract over the “external world” of a

reactive program. Since they run in their own thread they
may perform long lasting computations (see Section 2.1), and
since they encapsulate their own state they may perform
effectful statements (see Section 2.2). To integrate with reac-
tors they can publish new signals ex nihilo, and conversely
they can integrate with existing signals. In other words they
may “put values into” source nodes and act as sink nodes of
a reactive program (see Section 2.3).

3.2.1 Actors as Sources
In the context of our running example an actor can be used
to fetch real-time data from Twitter and publish this info as
new signal. This involves opening a socket connection to
the Twitter API and (synchronously) reading data from the
socket. The behaviour of this actor, implemented in Listing 1,
defines one local state variable and two messages. On line 3
we declare the local state current-stream to be able to store
a reference to the current twitter stream. Line 4 defines the
open-stream message with one parameter keyword. Pro-
cessing such a message amounts to: (line 6) opening a socket
connection to start receiving relevant tweets, and (line 7)
sending a read-tweet message to itself (“∼>” is the asyn-
chronous send operator). The read-tweetmessage on line 9
reads one tweet from the socket (line 10) and publishes the
data as a signal. The way in which data is published may
seem strange at first. First we split the tweet into a list of
individual characters (line 11), and then we emit them over
a signal that quickly changes with each character (lines 12-
13) followed by a newline at the end of the tweet (line 14).
Finally we send a recursive message to read the next tweet
(line 15). The key aspect of this actor is the SPIT primitive
that is used to emit values over a signal owned by the current
actor. The first argument to SPIT is a label that identifies the

2 There may be some confusion due to overlapping terminology between
actor-based programming and reactive programming. In this paper we use
the term behaviour to denote constructs similar to a behaviour in actor-based
programming, which applies to both actors and reactors. We exclusively
use the term signal to denote the type of time-varying value that is called a
behaviour in reactive programming languages.

1 (define TwitterBehaviour
2 (ACTOR
3 (LOCAL_STATE current-stream)
4 (MESSAGE (open-stream keyword)
5 (set! current-stream
6 (open-twitter-connection keyword))
7 (∼> SELF read-tweet))
8
9 (MESSAGE (read-tweet)
10 (define tweet-text (read-tweet current-stream))
11 (define chars (string-split tweet-text ""))
12 (for-each (lambda (char) (SPIT 'tweet char))
13 chars)
14 (SPIT 'tweet "\n")
15 (∼> SELF read-tweet))))

Listing 1. Creating a signal from an actor

1 (define ClientBehaviour
2 (ACTOR
3 (IN change-colour)
4 ;; GUI code has been been omitted ;;
5 (MESSAGE (change-colour rgb)
6 (∼> SELF set-background rgb)))

Listing 2. Parameterizing actors with signals

signal (multiple signals can be published), and the second
argument is the value that is emitted. Modifying the signal
consecutively for each character in a tweet will help us in
Section 3.3 to build a reactor that is strongly reactive. For
now we do not show how to link this signal to another actor
or reactor (we leave this for Section 3.4). To conclude, we
now have an actor that, when receiving an open-stream
message, publishes a new signal of real-time tweets.

3.2.2 Actors as Sinks
Besides emitting, actors are also necessary to process the
data produced by reactive programs (as sinks), since this
computation must necessarily be separated from the reactive
program itself (due to the reasons given in Section 2). For
this they need to be able to integrate with signals. Assume
a signal of RGB values exists in the application (we build
this in the following section). In Listing 2 we implement
the behaviour of a client actor that displays the value of an
input signal as the background of a GUI. Via the IN primitive
(line 3) the behaviour declaratively specifies that the actor
acts as the sink for one signal that maps to change-colour.
Furthermore, the behaviour defines a change-colour mes-
sage (line 5) that modifies the GUI. The name similarity is no
coincidence. When a signal to which an actor is “listening”
updates its current value, this update is enqueued as a regu-
lar actor message. The name of the message is determined by
the IN primitive. In Section 3.4 we will show how a concrete
signal is wired to the actor, such that whenever the current
colour changes, the actor receives a new change-colour
message in its inbox and acts on this by modifying the user
interface.

3.3 Reactors
Reactors are used to represent a functional reactive program,
and are defined by a behaviour and an inbox. The behaviour

30

Tackling the Awkward Squad for Reactive Programming REBLS’17, October 23, 2017, Vancouver, Canada

1 (define CheerLightsBehaviour
2 (REACTOR
3 (IN tweet-char)
4
5 (TICK colour (foldp word-append "" tweet-char

is-colour ?))
6 (TICK colour-rgb (colour- >rgb colour))
7
8 (OUT colour-rgb)))

Listing 3. Implementation of a reactor

Figure 2. Internal DAG of the CheerLights reactor

defines a set of abstract inputs (sources) and a DAG that trans-
lates the inputs to outputs. Spawning a reactor instantiates
the behaviour and creates an inbox (a queue). A reactor runs
in new process that, when given a set of concrete signals,
uses these signals as the sources of the reactive program.
Every update to a source is buffered in the inbox until it per-
colates through the dependency graph one by one. We can
use a reactor to implement the CheerLights service, which
is an inherently reactive process that transforms a signal of
tweets into a signal of RGB values.

3.3.1 Basic Structure
Listing 3 defines the behaviour of a reactor, whose internal
DAG is represented in Figure 2. The basic structure is as
follows:
1. The IN primitive declares the set of abstract source nodes

of the internal DAG. In this case there is one input named
tweet-char (line 3) which corresponds to the source node
of Figure 2. In Section 3.4 we show how the source node
is wired to the tweets published by the Twitter actor.

2. The TICK primitive is used to name and create new signals
that represent intermediary computations, i.e. to create
the internal node depicted in Figure 2. In our example
we define a signal that aggregates characters into words
(line 5) and converts the word to an RGB value (line 6).
The colour-rgb node is not considered an internal node
because no other signals depend on it.

3. The OUT primitive specifies the set of signals that are pub-
lished by the reactor, for instance the colour-rgb signal

(line 8), which corresponds to the sink node of Figure 2.
In Section 3.4 we show how this sink node is wired to the
client actor (containing a GUI).

The internal DAG is constructed by implicitly lifting func-
tions. For example, colour->rgb on line 6 (that works on
strings) is automatically lifted to work on a signal of strings.
The propagation of values through the DAG uses a technique
similar to Elm [3] where the Global Event Dispatcher roughly
corresponds to the runtime and inbox of a reactor, and the
source nodes of an Elm program are the source nodes of
the reactor. By using this propagation algorithm we ensure
glitch freedom within a reactor.

3.3.2 Strong Reactivity
The Twitter actor of Listing 1 publishes tweets as a signal of
characters. By requiring a signal of characters as the source
we can guarantee that the reactor is strongly reactive. The
idea is that we then aggregate characters into words, and
test those against a list of known colours. An alternative ap-
proach would be to publish the complete tweet text from the
Twitter actor and to extract a colour in our reactor. However,
this involves splitting the input string into words, thus mak-
ing the computation of the reactor completely dependent on
the size of the input. A very large input would thus cause the
reactor to temporarily “stop reacting” due to factors outside
of its control (whatever data it is given). In other words, if
our reactor had used multiple sources, it would temporarily
completely ignore the values of the other sources. By build-
ing our reactor as strongly reactive we avoid this problem
entirely. To achieve this we define a foldp primitive with
the following type signature:
f oldp :: (a → b → b) → b → Siдnal a → (b → Bool) → Siдnal b

Our definition of foldp is similar to that of other reactive
languages such as Elm [3]. The first arguments are an ag-
gregation function, an initial accumulator, and a signal that
supplies the values that are aggregated. Unlike a classical
foldp we add a predicate to test the value of the accumu-
lator after every iteration. The difference with a classical
foldp is that the resulting signal is updated only when the
predicate evaluates to true. The accumulator resets after
every update.
In our reactor (line 5) we use word-append to aggregate

characters into words (it returns an empty string when the
character is a space or newline). Thus the colour signal
will update only when the aggregated word succeeds the
is-colour? test. The result is a reactor of which the com-
putational complexity is not dependent on the size of the
input, and instead it only depends on the efficiency of the
implementations of internal operations such as is-colour?.

3.4 Composing Actors and Reactors
The final thing that remains is spawning and composing the
actors and reactors of our application, i.e. linking the sources

31

REBLS’17, October 23, 2017, Vancouver, Canada S. Van den Vonder, J. De Koster, F. Myter, and W. De Meuter

1 (define twitter (SPAWN-ACTOR TwitterBehaviour))
2 (define tweet (SIGNAL twitter 'tweet))
3 (∼> twitter open-stream "#CheerLights")
4
5 (define cheerlights

(SPAWN-REACTOR CheerLightsBehaviour tweet))
6 (define colour (SIGNAL cheerlights 'colour-rgb))
7
8 (define client (SPAWN-ACTOR ClientBehaviour))
9 (FOLLOW client colour)

Listing 4. Wiring the application together

and sinks of actors and reactors together. Here we declare
that the Twitter actor is responsible for populating the source
node of the CheerLights reactor, and that the data produced
by the reactor should be processed by the client actor for
displaying (which is an effectful operation). The composition
of these components is shown in Listing 4. First the Twitter
actor is spawned (line 1), and a reference to its published
signal is constructed (line 2). Once the actor is initialised the
signal is populated with data (line 3). Note that at this point
no data has left the actor. When spawning the reactor of
Listing 3 it is necessary to provide the signals that produce
data for its source nodes. Therefore, it is spawned (line 5)
with the tweet signal as input. Data now starts flowing from
the actor through the reactor, resulting in the colour signal
(line 6). Finally the client of Listing 2 is spawned on line 8 to
act as a sink of the application. It is coupled to the reactor
via the FOLLOW operator that links the output of the reactor
to the input of the actor. Notice that dependencies for actors
are dynamic and may thus change at runtime.

3.5 A Philosophical Perspective
Our model can be regarded as a union of “active” and “re-
active” concepts. One can wonder whether it is possible to
unify actors and reactors in one single language concept. We
argue that this is probably not the case:

Actors are used to express code “that does something” re-
gardless of what is happening in the outside world. As
soon as an actor receives and processes a message it can
perform computations that change the actor’s state, go
into infinite loops, and emit side effects, completely ig-
noring what is happening elsewhere. The process that
decides “what happens next” is the instruction queue of
the running method.

Reactors are used to express code “that does something” as
soon as something happens in the outside world. When-
ever it receives a value it will process that value instan-
taneously so that it is immediately ready to process the
next incoming value (i.e. inO(1)). The process that decides
“what happens next” is the inbox that queues all input of
the source nodes.

We believe that there is no single concept that can recon-
cile both ideas at the same time.

3.6 The Actor-Reactor Model’s Footprint
Existing reactive languages have faced the issue of integrat-
ing effectful statements in their language, and in some as-
pects their solutions already partially adopted certain aspects
of the Actor-Reactor model.

3.7 FrTime
FrTime is a functional reactive language built in Racket [2].
One of the goals of the language is making maximal use of
the programming environment. It achieves this by exposing
two threads of control to the programmer. The first is the
thread responsible for running the reactive program, and
the second is a thread that runs a REPL that interfaces with
the reactive program. The REPL can be used to modify some
special signals (cells) which trigger a re-evaluation of the
reactive program, and conversely they can be used to read
the values of signals and continuously display their updated
value. The interaction between the REPL thread and the re-
active thread is similar to an actor and a reactor: The REPL
is part of the external world and communicates with the
reactive thread via asynchronous message passing. The re-
active thread buffers messages from the external world and
propagates them through the dependency graph one by one.

3.8 Elm
Elm is a functional reactive language for building client-side
web applications [3]. Some of its primitives (e.g. SyncGet
for web requests) block the reactive program until they com-
plete. One of the important features of Elm is support for
asynchronous reactive programming. It achieves this via an
async primitive that ensures that long running computa-
tions need not block the reactive program. This primitive is
effectively used to spawn invisible threads in the background
to perform an action asynchronously. When the action is run
to completion, the reactive program reacts to its return value.
Furthermore there are other invisible threads such as the
DOM whose thread is managed by the browser. Here the
invisible threads correspond to actors since they perform
effectful long lasting actions (fetching an image, updating
the DOM, ...) and the main program corresponds to a reactor.

3.9 REScala
REScala is a reactive programming language based on Scala
that unifies the concepts of functional reactive programming
with object-oriented programming [7]. In other words it em-
beds a DAG within an object-oriented program. The source
signals of the DAG are created as Var fields in objects that
can be changed via an assignment operator. Assigning a new
value to a signal is a synchronous operation that dictates a
traversal of the DAG to propagate the changed value. De-
velopers can make use of multiple Scala threads to change
sources, but the assigning thread requires a lock on the DAG
before the assignment can be executed. Other threads in

32

Tackling the Awkward Squad for Reactive Programming REBLS’17, October 23, 2017, Vancouver, Canada

the program are thus blocked from making assignments to
source signals as long as a propagation cycle is still ongoing.
In our terminology the “external world” of the reactive pro-
gram (i.e. the “world of objects”) is similar to an actor, since
it supplies the sources with values. Using multiple threads
then corresponds to using multiple actors.

4 Limitations and Future Work
One of the next steps of our research is to formalise our
model, e.g. via operational semantics. Via this formalisation
we will investigate whether we can enforce the property of
strong reactivity in reactors.
Since actors and reactors are isolated processes that run

at their own pace, we have to tackle the rate mismatch prob-
lem, more often known as backpressure. Backpressure is an
issue because actors and reactors may produce data at a
much higher rate than a receiver can process. Eventually the
inbox of the receiver will be completely full of old values,
resulting in a lot of time spent on older (possible irrelevant)
computations. Currently we assume that the inboxes of ac-
tors and reactors are unbounded, which is an assumption
often made in actor languages. However, since reactivity and
responsiveness are an important aspect of our system (c.f.
strong reactivity), we want to offer bounded mailboxes that
give the developer some real-time guarantees, accompanied
with a backpressure algorithm that is configurable to suit
the application’s requirements.
Another limitation is that we currently do not support

distribution. While we consciously chose abstractions that
lend themselves to distribution, there are many issues such as
partial failures and service discovery that remain unsolved
in reactive programming. We can draw inspiration from
AmbientTalk/R [1] that implements a mechanism for service
discovery in distributed reactive programs, but does not
tackle the issue of partial failures.

5 Conclusion
In this paper we motivate that reactive programming alone is
not enough to write real-world applications. In Section 2 we
define the awkward squad for reactive programming, a set of
problems that “do not neatly fit into the reactive paradigm”.
We argue that the paradigm is incompatible with performing
long lasting computations and effectful statements, and that
it is difficult to embed reactive programs in a (distributed)
multi-threaded external world. The key insight is that we
believe there is no single abstraction to solve all problems,
and instead we should cleanly separate the reactive part of
an application from the semantically non-reactive parts.
In Section 3 we propose a model of actors and reactors

where actors represent the non-reactive parts of an applica-
tion, and reactors represent a typical reactive program. We

solve the problem of long lasting computations (Section 2.1)
by running actors and reactors in a separate thread, and
clearly defining the semantics of their interaction. The issue
of effectful statements (Section 2.2) is tackled by evacuating
all effectful code from a reactive program into one or more
actors. Finally we solve the issue of embedding a DAG in the
external world (Section 2.3) by clearly defining what the ex-
ternal world entails: Actors that may emit values which can
be linked to the source signals of a reactor, and vice-versa
actors that can act as sinks for signals of a reactor.

Acknowledgments
We would like to thank the anonymous reviewers for their
insightful comments. This work is partially funded by Flan-
ders Innovation & Entrepreneurship (VLAIO) with the FLA-
MENCO project under grant No.: 150044, and the Brussels
Institute for Research and Innovation (Innoviris) with the
Doctiris programme under grant No. 15-doct-07.

References
[1] Andoni Lombide Carreton, Stijn Mostinckx, Tom Van Cutsem, and

Wolfgang De Meuter. 2010. Loosely-Coupled Distributed Reactive Pro-
gramming in Mobile Ad Hoc Networks. In Objects, Models, Components,
Patterns, TOOLS’10, Málaga, Spain (Lecture Notes in Computer Science),
Vol. 6141. Springer, 41–60.

[2] Gregory H. Cooper and Shriram Krishnamurthi. 2006. Embedding
Dynamic Dataflow in a Call-by-Value Language. In Programming Lan-
guages and Systems, 15th European Symposium on Programming, ESOP
2006, Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS’06, Vienna, Austria (Lecture Notes in Computer
Science), Vol. 3924. Springer, 294–308.

[3] Evan Czaplicki and Stephen Chong. 2013. Asynchronous functional
reactive programming for GUIs. In Programming Language Design and
Implementation, PLDI’13, Seattle, WA, USA. ACM, 411–422.

[4] Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 2016. 43
years of actors: a taxonomy of actor models and their key properties. In
Programming Based on Actors, Agents, and Decentralized Control, AGERE
2016, Amsterdam, The Netherlands. ACM, 31–40.

[5] Leo A. Meyerovich, Arjun Guha, Jacob P. Baskin, Gregory H. Cooper,
Michael Greenberg, Aleks Bromfield, and Shriram Krishnamurthi. 2009.
Flapjax: a programming language for Ajax applications. In bject-Oriented
Programming, Systems, Languages, and Applications, OOPSLA’09, Or-
lando, FL, USA. ACM, 1–20.

[6] Simon Peyton Jones. 2001. Tackling the awkward squad: monadic
input/output, concurrency, exceptions, and foreign-language calls in
Haskell. Engineering Theories of Software Construction 180 (Jan. 2001),
47–96. IOS Press.

[7] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala:
bridging between object-oriented and functional style in reactive ap-
plications. In Modularity, MODULARITY’14, Lugano, Switzerland. ACM,
25–36.

[8] Hans Scharler. 2017. CheerLights IoT. (August 2017). https://web.
archive.org/web/20170811121942/http://cheerlights.com/ Referenced
11 aug 2017.

33

https://web.archive.org/web/20170811121942/http://cheerlights.com/
https://web.archive.org/web/20170811121942/http://cheerlights.com/

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Long Lasting Computations
	2.2 Effectful Statements
	2.3 Embedding the DAG in the External World

	3 The Actor-Reactor Model
	3.1 Running Example
	3.2 Actors
	3.3 Reactors
	3.4 Composing Actors and Reactors
	3.5 A Philosophical Perspective
	3.6 The Actor-Reactor Model's Footprint
	3.7 FrTime
	3.8 Elm
	3.9 REScala

	4 Limitations and Future Work
	5 Conclusion
	Acknowledgments
	References

