
Enriching the Internet By Acting and Reacting
Sam Van den Vonder
Vrije Universiteit Brussel

Pleinlaan 2
Brussels, Belgium 1050
svdvonde@vub.ac.be

Florian Myter
Vrije Universiteit Brussel

Pleinlaan 2
Brussels, Belgium 1050
fmyter@vub.ac.be

Joeri De Koster
Vrije Universiteit Brussel

Pleinlaan 2
Brussels, Belgium 1050
jdekoste@vub.ac.be

Wolfgang De Meuter
Vrije Universiteit Brussel

Pleinlaan 2
Brussels, Belgium 1050
wdmeuter@vub.ac.be

ABSTRACT
A recent trend in application development for the web is a move
towards rich internet applications (RIAs). As more and more of
the application logic is moved to the client, RIAs can benefit from
concurrency in order to increase overall performance as well as
responsiveness of the application. Additionally, RIAs are often writ-
ten in an event-driven style of programming to react to incoming
events of a multitude of services that are integrated within the
application. In this paper we argue that, while individual technolo-
gies exist to tackle both concerns, these technologies cannot easily
be integrated in an ad hoc way. To increase the modularisability
and composability of RIAs we propose a new programming model
based on actors and reactors that encapsulate different parts of the
application. We show that our model is able to exploit some of the
available concurrency while reducing the required amount of event-
driven code. Both actors and reactors are modular components that
can be glued together via a unified communication mechanism.
We evaluate our approach by means of a motivating example of a
collaborative code editor.

CCS CONCEPTS
• Software and its engineering→ Data flow languages; Con-
current programming languages; Distributed programming lan-
guages; Frameworks;

KEYWORDS
Reactive programming, Actors, Reactors, Rich internet applications,
Distributed programming, JavaScript
ACM Reference format:
Sam Van den Vonder, Florian Myter, Joeri De Koster, and Wolfgang De
Meuter. 2017. Enriching the Internet By Acting and Reacting. In Proceedings
of Programming ’17, Brussels, Belgium, April 03-06, 2017, 6 pages.
DOI: http://dx.doi.org/10.1145/3079368.3079407

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Programming ’17, Brussels, Belgium
© 2017 ACM. 978-1-4503-4836-2/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3079368.3079407

1 INTRODUCTION
The Internet’s transition from a thin to a thick-client model has led
to a wide variety of new web-based applications commonly called
rich internet applications (RIA). Examples of RIAs include web
applications (Gmail, Office Web Apps), desktop applications (Slack,
Visual Studio Code), mobile applications (Facebook, Discord), etc.
One can distil the essence of a RIA in two characteristics:
Computationally Intensive There has been a trend in modern
day application development towards RIAs that are increasingly
required to execute long lasting computations. Moreover, long last-
ing computations are expected not to impede the responsiveness
of the application. Examples include in-browser games rendering
graphics, online code editors performing syntax highlighting, etc.

Interactive and Event-driven To provide a semblance of inter-
activity, web applications used to refresh entire pages in order
to provide users with novel information. RIA programmers are
stepping away from this methodology by implementing their ap-
plications as single page instances. This single page can be divided
into multiple parts, where each part is responsible for one of the
application’s functionality. Each of these parts is to independently
react to a plethora of events, which can either originate from
external sources (e.g. a server pushing new data) or from user
interaction (e.g. mouse events). As such, RIAs are highly event-
driven.
As is the case for the majority of the web, the predominant

language used to implement RIAs is JavaScript. Given JavaScript’s
applicability to both client as well as server-side web development
(e.g. via Node.js [4]), RIAs are often entirely implemented in it.
However, JavaScript lacks constructs allowing programmers to
elegantly deal with the two characteristics of RIAs listed above.
Concurrency The computationally intensive nature of RIAs re-
quires the use of concurrency. To this end JavaScript provides
either web workers for client-side development or child processes
for server-side applications. Both are semantically similar to the
actor model: each worker or child process runs in its own thread
of control (dedicated program threads in the case of web workers
and child processes), they lack shared state, and communicate ex-
clusively via asynchronous message passing. However, as detailed
in [10], both constructs are limited in the expressiveness of their
API. By default it is only possible for workers to communicate
in a parent-child relationship where the parent is the spawner

Programming ’17, April 03-06, 2017, Brussels, Belgium S. Van den Vonder et al.

and the child is the spawned worker. References to workers are
not first class and can therefore not be exchanged. Furthermore,
since workers have no shared state the developer must manually
serialise and deserialise objects to pass them between workers.
This is often difficult due to objects referencing their lexical scope,
and the process of (de)serialisation is error-prone. Finally, while
both constructs are applied in an inherently distributed context,
they lack built-in communication capabilities (i.e. web workers
and child processes cannot natively exchange messages).

Reactivity Due to the event-driven nature of RIAs their source
code is often riddled with callbacks to handle various events. How-
ever, implementing event-driven applications using the observer
pattern or callbacks is known to cause a number of issues [7].
Most notably it inverses the control flow: instead of being lexi-
cally determined, the flow of a program is now determined by
the order of incoming events [5]. Moreover, callbacks are not
composable and must therefore be nested leading to the "callback
hell" [3], which further complicated code readability and main-
tainability. The reactive programming paradigm [1] is an elegant
solution to the aforementioned problems. It allows programmers
to declaratively specify how events should be handled and com-
posed, leaving the underlying language or framework with the
responsibility of tracking changes to event sources and updating
the application state. In this paradigm events are reified as first
class citizens called signals. Using signals in function applications
creates dependencies that are managed by the reactive runtime.
When the occurrence of an event changes the value of a signal, the
reactive runtime uses the dependencies to update the application
state accordingly.

RIAs require both concurrency and reactivity. Web workers can
be used to some extent to improve concurrency within an applica-
tion, and reactive programming frameworks alleviate some of the
issues with event-driven programming. However, in this paper we
argue that the sum of both parts does not equal the whole. Solving
both problems within a single programming framework requires
careful integration of both programming models.

In this paper we propose a model to develop RIAs which ele-
gantly tackles both concerns. Our solution is focussed around two
abstractions, namely actors and reactors. Concurrency is provided
by actors, and reactivity is provided by reactors. We provide an
implementation of our model in JavaScript. The actor portion of
our model is an extension of the Spiders.js library [10], which is
an enrichment of standard web workers. Reactors are a new ab-
straction that encapsulate a reactive program written using the
Reactive Extensions library for JavaScript (RxJS) [11]. Our model is
innovative in the following ways:

• To the best of our knowledge this is the first instance of a model
that unifies reactive programming with actors. To achieve this we
extend actors with a publish/subscribe mechanism, and introduce
a new reactor abstraction that supports reactive programming.

• Our model and implementation brings high-level support for con-
currency to reactive programming by directly mapping actors and
reactors to web workers.

• Actors and reactors can be distributed over client and server. In
other words: besides concurrency, our model supports distributed
reactive programs in the context of the web.

2 PROBLEM STATEMENT
There already exist a number of technologies to exploit concurrency
within a RIA. The same is true for enabling a reactive style of
programming. However, we argue that enabling both within the
same application requires careful integration of both programming
models. Our programming model provides language constructs for
exploiting concurrency using actors, and reactivity using reactors.
Both actors and reactors are modular components that can be glued
together via a unified communication mechanism. This section
gives a brief overview of the available technologies and motivates
the need for a unified programming model.

2.1 Concurrency
For enabling concurrency, JavaScript provides either web workers
for client-side development or child processes for server-side appli-
cations. However, it has been shown that web workers have some
severe limitations that restrict their use for developing RIAs [10].
Firstly, web workers are restricted to hierarchical communica-
tion. By default the only type of communication that is supported
between workers is bi-directional message passing between the
spawner of a worker (the parent) and the worker itself (the child).
In other words, references to web workers are not first class citizens
and cannot be exchanged, and thus there is no built-in support for
communication among children. As such, developers have to mod-
ify their application to fit the parent-child relationship. Secondly,
web workers have no shared state. All non-primitive datatypes
passed in a message must be manually serialised on the sender
side and deserialised on the receiver side. This can easily lead to
serialisation errors, either due to objects that reference items in
their lexical scope, or copies of objects that are not synchronised.
Lastly, while web workers are actor-like constructs that operate in
a distributed context, client to client communication or client to
server communication is not supported.

The aforementioned issues were solved in an actor library that
implements the Communicating Event Loop (CEL) actor model [9]
on top of web workers [10]. This actor framework enables the
creation of actors both on the client as on the server side, and unifies
the communication mechanism between those actors. However,
this framework does not support reactive programming, and as
such does not compose well with reactive programming libraries or
frameworks. For this paper we extended this framework with new
constructs that enable the specification of reactive components that
can be composed with actors.

2.2 Reactive Programming
There exist a number of frameworks for reactive programming
on the web such as Elm [2], Facebook React [6], and RxJS [11]. A
straightforward approach for enabling concurrency within a re-
active application would be to simply spawn web workers from
within the reactive program to offload heavy computations. How-
ever, web workers are typically not part of the reactive execution
graph. As such, an ad hoc integration of web workers within any of
these technologies requires manual propagation of updated values
to the web workers and vice versa. The only exception to this is
an extension of RxJS where spawning a new web worker returns a
special value called a subject. Contrary to regular reactive values,

Enriching the Internet By Acting and Reacting Programming ’17, April 03-06, 2017, Brussels, Belgium

Figure 1: Communication/dataflow diagram of the CoCode
application with two clients (one client fully drawn).

anyone with a reference to a subject can push new events to it. A
subject created specifically for a web worker forwards any values
it receives to the mailbox of the worker, and conversely any values
received from the worker are pushed on the asynchronous stream
of the subject. However, while RxJS allows developers to spawn
workers, it does not provide any facilities to compose them, and
the web workers are still subject to the issues discussed in Section
2.1.

Another approach to enable concurrency within a reactive appli-
cation would be to parallelize [2] or distribute [8] the execution of
reactive program. While this is certainly possible, both approaches
focus on fine-grained reactive abstractions, whereas our aim is to
provide a more coarse grained concurrency mechanism that is more
suitable for the coarse grained concurrency model of JavaScript.
Our approach abstracts over reactive parts of an application as
modular components that each have their own execution environ-
ment. Each of these reactive components, called reactors, can be
glued together with the active parts, called actors, using a unified
communication mechanism.

3 ACTORS AND REACTORS BY EXAMPLE
To demonstrate actors and reactors we implemented an applica-
tion that is a typical for rich internet applications. CoCode is a
collaborative code editor that features automatic syntax highlight-
ing and peer-to-peer chat. All users connected to the application
share the same view of the code that is being edited. Users can
easily edit and commit new code to the server to share it with the
other users. In order to reduce network traffic and increase the
efficiency of the application, code is sent in its raw form rather
than the syntax-highlighted HTML which is significantly larger in
size. In practice this entails that syntax highlighting must occur on
the client, preferably concurrent to the rest of the application in
order to avoid freezing the browser window. Furthermore, users
can communicate via a peer-to-peer private and public chat.

Figure 1 depicts the communication- and dataflow diagram of
the CoCode application with two clients. Note that for clarity we
omit many aspects of the leftmost client, which are effectively
the same as the rightmost client. Without going into the details
of communication and dataflow, the diagram shows the general

1 class ClientApp extends actorreactor.Application {
2 initialize () {
3 this.coders = new clientManager.ClientStore ();
4
5 codeCommits.broadcastAs("CodeCommit");
6 publicChatMessages.broadcastAs("ChatMessage");
7 publicChatMessages.subscribe(chatMessage =>

this.addChatMessage(chatMessage));
8 }
9 refreshCoders(coders) {
10 let references = coders.getClientReferences ();
11 coders.getClientNames ().forEach ((name , idx) =>

this.addCoder(name , references[idx]));
12 }
13 addCoder(name , coderReference) { /* Omitted until later */ }
14 sendPrivateMessage(receiver , message) { /* invoke

addPrivateMessage on receiver */ }
15 addPrivateMessage(sender , message) { /* GUI */ }
16 addChatMessage(message) { /* GUI */ }
17 updateCode(rawHTML) { /* GUI */ }
18 }

Listing 1: Defining the CoCode client actor

structure of the application, which is split up in a client- and server
tier. The main entry point of both client and server is always defined
as an actor, namely ServerApp and ClientApp. These entry points
can be used to retrieve a reference to other actors (e.g. the client
contacting the server), spawn additional actors or reactors, and
specifically on the client they have exclusive access to the DOM.
On the client we encapsulate the syntax highlighting service in
a reactor, since syntax highlighting is always a reaction to new
code becoming available, either locally or as an update pushed
by the server. Furthermore, the server provides every client with
references to the other clients, enabling peer-to-peer interaction
and data flow.

3.1 Actors
Every application consists of at least one actor that is used as the
main entry point of the application. An actor is represented as
a JavaScript ES6 class where the methods of the class define the
interface of the actor, and spawning an actor from a class returns a
reference to the new actor. References are first-class citizens and
can be used to invoke methods on the actor using the standard
dot-notation. Our actor implementation reuses these features from
the Spiders.js library, and extends them with the ability to broadcast
or publish arbitrary values. For now we do not discuss the comple-
menting feature to integrate publications in the rest of the program,
and leave this for Section 3.3.

Listing 1 implements the main entry point of the CoCode appli-
cation that runs in the browser. We omit code related to interfacing
with the DOM and the sending of privatemessages, as to not distract
from the main contributions. The interface of ClientApp defines 7
methods that are mostly related to interaction with the DOM. The
initialisation method (defined on line 2) first sets up a local store for
keeping a reference to the active users in the application (line 3),
whichwill be used for implementing the private chat. Since themain
application actor is responsible for the DOM, it integrates with the
RxJS library. Both codeCommits (line 5) and publicChatMessages
(line 6, 7) are RxJS streams of values that originate from the user in-
terface, which produce strings that contain code and chat messages
respectively. We extend standard RxJS streams with a broadcastAs
operator that automatically broadcasts new values on the stream.

Programming ’17, April 03-06, 2017, Brussels, Belgium S. Van den Vonder et al.

For instance, when the user click the ’commit’ button, the raw code
is automatically broadcasted by the actor with the CodeCommit
label. Finally, line 7 causes a local method invocation whenever
a new value appears on the RxJS stream of public chat messages,
such that a message send is also reflected in the local user interface.

When the client contacts the server (not shown in Listing 1) it
receives a list of all active clients, handled by refreshCoders on
line 9. Here we add every active user to the local client store via the
addCoder method which we omit until Section 3.3. To summarise
the role of the client actor in the application: it is the main entry
point of one client, which broadcasts raw code and public chat
messages.

3.2 Reactors
Reactors are a new abstraction that encapsulate a fully capable RxJS
reactive program. Reactors extend the built-in Reactor class and
must implement two methods: imports and react. The imports
method is called during initialisation to load external scripts in the
execution environment of the reactor. The react method imple-
ments the main body of the reactor as an RxJS program. A reactor
is spawned with a static set of inputs (other actors/reactors) whose
output is made accessible in the body of the reactor as RxJS streams.
These streams are used to invoke the react method once to con-
struct the RxJS dataflow graph.

Unlike actors, reactors do not communicate via method invoca-
tions, and instead they are exclusively data-driven. Reactors can
broadcast the results of their computations (similar to actors), which
can be used by other actors and reactors. In the context of our
CoCode application, to prevent the browser from freezing we of-
fload syntax highlighting of code to a separate process. Since syntax
highlighting is always reaction to new data (unhighlighted code),
we encapsulate it in a reactor that takes raw code as input and
publishes syntax highlighted code.

Listing 2 implements the code highlighting reactor that receives
input from two sources, namely code from the local application,
and code from the server (i.e. other users). In both cases the code is
syntax highlighted and broadcasted. On line 2 we import a library
that handles the computationally intensive syntax highlighting, and
the react method on line 4 implements the main body of the reac-
tor. The arguments given to react (localCode and serverCode)
directly map to the inputs given to the reactor when it is spawned.
Both localCode and serverCode are asynchronous streams of
values in the RxJS paradigm. Every time the reactor receives a pub-
lication from another component, the publication is translated by
the reactor to an event on the corresponding asynchronous stream.
This allows developers to make use of the extensive set of purely
functional RxJS stream operators such as map, filter, and concat to
compute new values from the input. This implies that the body of a
reactor is also completely functional, as is often the case for reactive
programs. The reactor in Listing 2 receives code publications from
both the local client and the server, and merges the two streams
on line 5. The raw code of both sources is then syntax highlighted
on line 6 by applying the highlightAuto function to each element
on the stream. Finally, line 7 extracts the syntax highlighted code
as HTML from the resulting object, which is broadcasted by the
reactor with the html label. Similar to the Application actor of

1 class CodeHighlighter extends actorreactor.Reactor {
2 imports () { importScripts('highlight.js'); }
3
4 react(localCode , serverCode) {
5 localCode.merge(serverCode)
6 .map(code => self.hljs.highlightAuto(code))
7 .pluck("value")
8 .broadcastAs("html");
9 }}

Listing 2: Defining the CoCode syntax highlighting reactor

1 let app = new ClientApp ();
2 app.remote("127.0.0.1", 8000).then(server => {
3 app.initialize ();
4 server.registerClient(myName , app);
5
6 let newClientSource = [server , "NewClient"];
7 app.reactTo(newClientSource , "addCoder");
8
9 let codeSources = [[app , "CodeCommit"], [server , "CodeCommit"]];
10 let hjsService = app.spawnReactor(CodeHighlighter , codeSources);
11 app.reactTo ([hjsService , "html"], "updateCode");
12 });

Listing 3: Initializing the client application

Section 3.1, the broadcastAs operator is automatically added to
the RxJS library to integrate RxJS streams with reactors.

3.3 Reactive Program Composition
The CoCode client and code highlighter of Listings 1 and 2 are
defined as standalone components that perform a well-defined
function. However, in order to create meaningful applications we
must be able to compose them. We previously discussed that actors
and reactors can publish values with a certain topic. To complement
this, actors and reactors can subscribe to these publications and
react to new values becoming available.

Listing 3 shows the initialization code of the CoCode client which
wires together the different components. On line 1 the client of
Listing 1 is created, which is then used to obtain a reference to the
server actor (line 2). Since remote returns a Promise, we install a
callback that is invoked when the promise resolves with a reference
to the server. On line 3 the client is initialized, and registered with
the server on line 4.

Whenever a new client connects to the application, it is broad-
casted by the server with the NewClient label. Lines 6 and 7 set up
the client actor to react to these publications via a reactTo primi-
tive that is defined on actors. Whenever a new client is published,
the addCoder method of app is invoked with the received values.
Since publications are translated to method invocations, it is easy
for actors to add and remove dependencies at runtime.

Reactors require a different way of reacting, since the depen-
dency graph of a reactive program is often static. We therefore
create reactor dependencies when spawning the reactor, and do
not allow them to change at runtime. The highlighting service of
the CoCode application reacts to both code produced by the local
application as well as code produced by the server (line 9). Line
10 spawns an instance of the highlighting service with a reference
to these input sources. Finally, on line 11 we create a dependency
between the output of the highlighting service and the client such

Enriching the Internet By Acting and Reacting Programming ’17, April 03-06, 2017, Brussels, Belgium

1 addCoder(name , coderReference) {
2 if (this.name !== name) {
3 this.coders.addClient(name , coderReference);
4 this.reactTo ([coderReference , "ChatMessage"],"addChatMessage");
5 }}

Listing 4: Implementation of addCoder of Listing 1

1 class ServerApp extends actorreactor.Application {
2 constructor () {
3 super();
4 this.clients = new clientManager.ClientStore ();
5 }
6 registerClient(name , clientReference) {
7 this.clients.addClient(clientReference , ref);
8 clientReference.refreshCoders(this.clients);
9
10 let codeSource = [clientReference , "CodeCommit"];
11 this.reactTo(codeSource , "receiveCodeCommit");
12
13 this.broadcast("NewClient", name , clientReference);
14 }
15 receiveCodeCommit(rawCode) {
16 this.broadcast("CodeCommit", rawCode);
17 }}
18 new ServerApp ();

Listing 5: Initializing the cocode server application

that newly highlighted code causes an invocation of updateCode
on the client.

An interesting consequence of composition via publish/subscribe
is that it allows new dependencies to be added at runtime, be it via
spawning a new reactor, or adding a new reaction for an existing
actor. We can use this feature to implement the public chat. List-
ing 4 implements the addCoder method of the client actor which
we previously omitted. The method is invoked every time a new
client joins the application. Besides adding the new client to the
local client store (line 3), a new reaction is set up such that the
local actor reacts to public chat messages that are published by the
new client (line 4). Whenever a new chat message is received, the
addChatMessage method is invoked with the message. Similarly,
since the newly added client also receives a list of all clients in the
application, it will also react to chat messages from the local client.

3.4 Distribution
An important aspect of the CoCode application is interaction with
a server, and in Section 3.3 we discussed how the server can be con-
tacted, and how the client can react to publications of the server. List-
ing 5 shows the implementation of that server as an actor. Similar to
the Application actor on the client, the server extends the built in
Application class since it is the main actor that serves as the main
entry point of the server. The server has a simple interface with
two methods: registerClient and receiveCodeCommit. When a
new client joins the application it is added to the local client store
(line 7), which is then sent to the new client (line 8). To receive code
updates from clients, the server reacts to their CodeCommit publi-
cations (lines 10-11) and handles them via its receiveCodeCommit
method, which simply rebroadcasts the code. Finally on line 18
we create an instance of the server to start the application. The
takeaway message is that actors and reactors can easily react to
other components, regardless of where an actor or reactor has been

LOC Forwarding Handling Total
Native 86 (67%) 39 (30%) 128
Spiders.js 28 (35%) 46 (58%) 80
ActorReactor.js 22 (28%) 42 (54%) 78

Table 1: Comparison of he amount of lines of code dedicated
to message forwarding and message handling as a percent-
age of the total application (lower is better).

spawned. By using a publish/subscribe mechanism for reactive in-
put/output of components we provide developers with the means to
glue together distributed components, without hard-wiring depen-
dencies in the components themselves. This loose coupling makes
it easy to add, remove, and replace components in the application
without modifying the dependencies themselves.

4 EVALUATION
Evaluating the impact of reactive programming on applications is
notoriously difficult, since its benefits are difficult to measure in
code metrics. Nevertheless, we evaluate our approach using our
implementation of the CoCode application in native JavaScript,
Spiders.js (only actors), and our library ActorReactor.js (actors and
reactors). While the Spiders.js and ActorReactor.js applications are
equivalent, the native JavaScript implementation does not feature
peer-to-peer communication between clients. This simplifies its
code, since there is no need to manually exchange web sockets
between clients (which is not possible). In practice this entails that
there are fewer lines of code on the client because it need not keep a
reference to the other clients, but this is somewhat compensated on
the server which is now responsible for relaying public and private
messages.

We measure the complexity of the application with two metrics:
Message forwarding and message handling.
Message forwarding This includes all code that is required for
communication, including code that simply receives and forwards
messages. This includes manual message sends (for the native
application), method invocations, broadcasts, and react-to state-
ments. We also include surrounding code if the communication
occurs in a for loop, e.g. when sending a message to all clients.
Message forwarding can give an indication of the complexity of
communication.

Message handling Here we consider all code related to handling
messages. This can sometimes overlap with message forwarding,
since handling a message may invoke new communication. In
the native implementation we count the functions that serve as
callbacks for the communication protocol, i.e. the callback that is
invoked when a certain type of message is received. In the library
implementations we count the methods defined in classes. Ideally
the message handlers only concern themselves with application
logic. More lines of code can thus give an indication of more
boilerplate code that distracts from the main application logic.
Table 1 shows the lines of code dedicated to message forwarding,

message handling, and the total lines of code of the application
(GUI code is always omitted). With respect to code forwarding, a
significant portion of the native implementation is dedicated to

Programming ’17, April 03-06, 2017, Brussels, Belgium S. Van den Vonder et al.

communication. This is a consequence of manual message sending,
because every receiver needs to dispatch over the type of message
in order to invoke the correct message handler. Message forward-
ing in Spiders.js and ActorReactor.js is expectedly lower than the
native version since they abstract over message sends as method
invocations. While there is a small difference between Spiders.js
and ActorReactor.js, we can not draw any conclusions from it, since
in our small application a direct method invocation is often directly
replaced with a broadcast and react-to. Larger applications may
show bigger benefits due to reduced code complexity.

With respect to message handling, all three implementations
have little overhead. While we see no significant difference in lines
of code between Spiders.js and ActorReactor.js, one of the key ad-
vantages of reactive programming is difficult to measure in lines of
code, especially in small applications. That is, reactive programming
has been shown to increase program comprehension compared to
object-oriented programming [12]. Additionally, when comparing
our implementation to Spiders.js we see that there are a minimal
number of direct method invocations hard-wired between compo-
nents. Loose coupling of components has benefits for code reuse,
separation of concerns, maintainability, etc.

5 CONCLUSION
With the advent of Rich Internet Applications the internet is tran-
sitioning to a new era where web applications often exhibit the
following characteristics: On the one hand, RIAs often integrate a
plethora of different services that constantly publish new data rele-
vant to the application. This requires the application to be written
in an event-driven style. On the other hand, as more and more of the
application logic is pushed to the client, these thick clients become
more and more computationally intensive. To remain responsive
to incoming GUI events, it might become necessary for these appli-
cations to execute more heavy weight computations in parallel to
the main application logic. In this paper we motivate that current
solutions for both concerns are not always easily integrated.

In this paper we presented a programming model based on two
abstractions, actors and reactors. The key insight for these two
abstractions is that actors are driven by the control flow of the
program, and reactors are driven by data. In other words, the ap-
plication logic of a RIA can be specified in our model as a number
of concurrently running actors, while the reactive (data-driven)
parts of the application can be specified in terms of reactors. Actors
and reactors are naturally concurrent components that provide a
uniform communication model based on publish/subscribe, where
both actors and reactors may publish data, and subscribe to data by
others. Furthermore, actors and reactors may be distributed over
the client and server, allowing applications to react to events on
the server.

We implement our approach on top of the Spiders.js actor library,
and use it to implement a collaborative code editor (CoCode). We
compared our implementation of CoCode with the same application
written in native JavaScript and Spiders.js. We have shown that
our approach reduces the number of lines of code related to com-
munication with respect to the native JavaScript implementation,
and remains similar to the Spiders.js implementation. Additionally,
while not measurable in lines of code, our approach reduces the

amount of hard-wired dependencies between components, which
benefits code reuse, separation of concerns, and maintainability of
the resulting application.

ACKNOWLEDGMENTS
Thiswork is partially funded by Flanders Innovation&Entrepreneur-
ship (VLAIO) with the FLAMENCO project (FLAnders Mobile EN-
acted Citizen Observatories) under grant No.: 150044, and the Brus-
sels Institute for Research and Innovation (Innoviris) with the Doc-
tiris programme under grant No. 15-doct-07. The authors would
like to thank the anonymous reviewers for their valuable comments
and helpful suggestions.

REFERENCES
[1] Engineer Bainomugisha, Andoni Lombide Carreton, Tom Van Cutsem, Stijn

Mostinckx, and Wolfgang De Meuter. 2013. A survey on reactive programming.
ACM Comput. Surv. 45, 4 (2013), 52:1–52:34.

[2] Evan Czaplicki and Stephen Chong. 2013. Asynchronous functional reactive
programming for GUIs. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-
Juergen Boehm and Cormac Flanagan (Eds.). ACM, 411–422.

[3] Sigbjorn Finne, Daan Leijen, ErikMeijer, and Simon L. Peyton Jones. 1999. Calling
Hell From Heaven and Heaven From Hell. In Proceedings of the fourth ACM
SIGPLAN International Conference on Functional Programming (ICFP ’99), Paris,
France, September 27-29, 1999., Didier Rémi and Peter Lee (Eds.). ACM, 114–125.

[4] Node.js Foundation. 2017. Node.js. (2017). http://web.archive.org/web/
20170129014504/https://nodejs.org/en/ Accessed: 2017-01-30.

[5] David Garlan and David Notkin. 1991. Formalizing Design Spaces: Implicit Invo-
cation Mechanisms. In VDM ’91 - Formal Software Development, 4th International
Symposium of VDM Europe, Noordwijkerhout, The Netherlands, October 21-25,
1991, Proceedings, Volume 1: Conference Contributions (Lecture Notes in Computer
Science), Søren Prehn and W. J. Toetenel (Eds.), Vol. 551. Springer, 31–44.

[6] Facebook Inc. 2017. React: A JavaScript Library for Building User Interfaces.
(2017). http://web.archive.org/web/20170117003017/https://facebook.github.io/
react/ Accessed: 2017-01-16.

[7] Ingo Maier and Martin Odersky. 2012. Deprecating the Observer Pattern with
Scala.React. Technical Report. École Polytechnique Fédérale de Lausanne, EPFL-
REPORT-176887.

[8] AlessandroMargara and Guido Salvaneschi. 2014. We have a DREAM: distributed
reactive programming with consistency guarantees. In The 8th ACM International
Conference on Distributed Event-Based Systems, DEBS ’14, Mumbai, India, May
26-29, 2014, Umesh Bellur and Ravi Kothari (Eds.). ACM, 142–153.

[9] Mark S. Miller, Eric Dean Tribble, and Jonathan S. Shapiro. 2005. Concurrency
Among Strangers. In Trustworthy Global Computing, International Symposium,
TGC 2005, Edinburgh, UK, April 7-9, 2005, Revised Selected Papers (Lecture Notes
in Computer Science), Rocco De Nicola and Davide Sangiorgi (Eds.), Vol. 3705.
Springer, 195–229.

[10] Florian Myter, Christophe Scholliers, and Wolfgang De Meuter. 2016. Many
spiders make a better web: a unified web-based actor framework. In Proceedings
of the 6th International Workshop on Programming Based on Actors, Agents, and
Decentralized Control, AGERE 2016, Amsterdam, The Netherlands, October 30, 2016,
Sylvan Clebsch, Travis Desell, Philipp Haller, and Alessandro Ricci (Eds.). ACM,
51–60.

[11] ReactiveX. 2017. AnAPI for asynchronous programmingwith observable streams.
(2017). http://web.archive.org/web/20170128174958/http://reactivex.io/ Accessed:
2017-01-31.

[12] Guido Salvaneschi, Sven Amann, Sebastian Proksch, and Mira Mezini. 2014.
An empirical study on program comprehension with reactive programming. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014,
Shing-Chi Cheung, Alessandro Orso, and Margaret-Anne D. Storey (Eds.). ACM,
564–575.

http://web.archive.org/web/20170129014504/https://nodejs.org/en/
http://web.archive.org/web/20170129014504/https://nodejs.org/en/
http://web.archive.org/web/20170117003017/https://facebook.github.io/react/
http://web.archive.org/web/20170117003017/https://facebook.github.io/react/
http://web.archive.org/web/20170128174958/http://reactivex.io/

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Concurrency
	2.2 Reactive Programming

	3 Actors and Reactors by Example
	3.1 Actors
	3.2 Reactors
	3.3 Reactive Program Composition
	3.4 Distribution

	4 Evaluation
	5 Conclusion
	Acknowledgments
	References

