
Automated Categorisation of Breaking Merge Commits

Work in Progress

Ward Muylaert
ward.muylaert@vub.be

Coen De Roover
coen.de.roover@vub.be

Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium

Abstract

Integrating code from different sources can
be an error-prone and effort-intensive process.
While an integration may appear sound, un-
expected errors may still surface at run time.
What exactly constitutes these errors is not
always clear, nor is it known which are most
common. We want to create a hierarchic cat-
egorisation of errors that break merge com-
mits. We will do this in two phases. First, a
manual categorisation to enable the definition
of categories based on real world examples.
Second, a declarative specification of every
category to automate categorisation and en-
able performing an empirical study.

1 Introduction

Version control systems enable developers to work on
different versions of source code independently and in
parallel. When different versions of the source code
are merged together again, conflicts may occur. These
conflicts can be split in different categories (Mens
2002). In its most basic form, these conflicts may be
of a textual nature. Textual conflicts are caught by
the version control software and demand developer in-
tervention in order for the merging to complete. More
subtle are syntactic and semantic conflicts. These may
not be discovered until the code is built or run, respect-
ively, if at all.

Copyright c⃝ by the paper’s authors. Copying permitted for
private and academic purposes.

Proceedings of the Seminar Series on Advanced Techniques and
Tools for Software Evolution SATToSE 2017 (sattose.org).
07-09 June 2017, Madrid, Spain.

We are interested in the cause of these more subtle
conflicts. To investigate it, we look at breaking merge
commits specifically. We previously defined a commit
to be breaking if its compilation or tests failed, but
no such issues were present in the parent commit(s)
(Muylaert and De Roover 2017).

Previous work looked for causes and likelihood of
failure by considering the context: the number of mod-
ified subsystems or results of previous build (Hassan
and Zhang 2006) or the number of simultaneous de-
velopers contributing to the same part of the code, the
type of development performed, and stakeholder roles
(Kerzazi, Khomh and Adams 2014). Rausch, Hum-
mer, Leitner and Schulte (2017) categorises failures
by their cause, such as test failures or compile errors.
However, none of these studies focuses on integration
errors.

In this work in progress, we categorise breaking
merge commits by looking at what was done to fix the
conflict. We do this in two phases. At first, we manu-
ally analyse breaking merge commits and their fixes
in order to define a category hierarchy. The changes
between a breaking merge commit and its fixing com-
mit are analysed and assigned to a category. Second,
we construct declarative specifications for the differ-
ent categories. The declarative specifications are writ-
ten in Qwalkeko (Stevens and De Roover 2014). Using
these declarative specification will enable an automatic
analysis into which categories occur how often.

2 Dataset

Selecting our dataset happens in two steps. First,
projects are selected from the TravisTorrent dataset.
Second, breaking merge commits and their fixing com-
mits are selected from these projects.

We work with a subset of projects of the Travis-
Torrent dataset (Beller, Gousios and Zaidman 2017).
This subset is based on earlier work (Muylaert and

1



De Roover 2017) and on a Java dependency we have
in this work. TravisTorrent provides build informa-
tion gathered from Travis CI, a continuous integration
service. TravisTorrent contains information on 1300
Java and Ruby projects. These projects meet the fol-
lowing criteria defined by Kalliamvakou et al. (2015):
projects must have forks, received a commit in the last
six months, received at least one pull request, and have
more than 50 stars on GitHub. We previously selec-
ted a subset containing 348 projects (Muylaert and
De Roover 2017). Each project in our subset fulfils
the following criteria: (1) a “sufficient” success rate
present across all the builds and (2) build information
present on at least 50 merge commits and all their
parents. The original dataset contains both Ruby and
Java projects. Our automated analysis has a hard de-
pendency on Java. We removed Ruby projects out of
the 348 projects. This was done automatically by us-
ing the language information present in TravisTorrent.
A project is kept in the dataset if the majority of its
commits are classified as Java language.

In the selected projects, we identified breaking
merge commits: merge commits whose build in Travis
CI failed, but for which the build of both1 parents
succeeded. For breaking merge commits, we also iden-
tified the fixing commit. The fixing commit is the first
commit following the breaking merge commit for which
the build passes again. “Following” here is defined us-
ing the next build information present in TravisTor-
rent. Using this method, we find 245 breaking merge
commits and their fixing commits. These 245 are ana-
lysed manually as described in section 3.

3 Manual Categorisation

Prior work in categorising code integrations focused
on what went wrong in porting errors (Ray, Kim, Per-
son and Rungta 2013). Ray et al. manually identified
failures by searching for mentions of porting errors in
commit messages. This analysis was performed on the
FreeBSD and Linux code bases, which are written in
C. Ray et al. identified five categories of porting er-
rors: inconsistent control flow, inconsistent renaming
of identifiers, inconsistent renaming of related identi-
fiers, inconsistent data flow, and other.

We want to categorise breaking merge commits. To
do so, we look at what was done to fix the failing build.
In other words, we look at the difference between the
breaking merge commit and its fixing commit. We
start by manually analysing these differences and look-
ing for patterns. Our aim is to create a category hier-
archy. A hierarchy enables us to be as precise as pos-

1A commit may be a merge of more than two parent commits.
Only one such case was present in our 348 selected projects. We
do not consider this case.

sible in identifying and classifying different commits.
It also gives the option to look at things on a higher
level by combining data. The category hierarchy is a
work in progress, an example of what we have in mind
can be found in Figure 1. A commit may be categor-
ised in more than one category.

Consider, for example, the inconsistent_type

category. An actual occurrence of this category is
given here:

216

217 - List<State> states = new ArrayList<>();

217 + List<UUID> newObjectIds = new ArrayList<>();

218 if (!ObjectUtils.isBlank(newStorageItem)) {

As implied by the name, this category considers er-
rors in which the type is inconsistent with changes
made elsewhere. In this particular example, the State
class was no longer the correct class for the code that
followed. Code in another branch had already changed
in light of this, but this part of the code still needed
to be updated.

4 Automated Categorisation

4.1 Declarative Specification

Once the category hierarchy has been properly defined,
we want to perform an analysis that tells us how of-
ten each of the categories appear. To do so, we write
a declarative specification of the different categories.
This is done using the Qwalkeko tool (Stevens and
De Roover 2014). Qwalkeko enables automatically
looking at differences in source code and presents the
changes as Insert, Update, Move, or Delete actions on
the AST. It is over these actions and their contents
that the declarative specification matches.

Consider again the inconsistent_type mentioned
in the previous section. Declarative code in Qwalkeko
to find such occurrences looks as follows. Given a
change, this piece of code will validate that the change
is indeed to the type of a field.

(defn change|field-type [change]

(logic/fresh [?before ?type ?declaration]

; Look for a Qwalkeko update

(changes/change|update change)

; Check before the change

(changes/change-leftparent change ?before)

; Is it a change to the type?

(jdt/ast-parent ?before ?type)

(jdt/ast :SimpleType ?type)

; And is it of a field

(jdt/ast-parent ?type ?declaration)

(jdt/ast :FieldDeclaration ?declaration)))

The comments in the code describe the details, but
three parts can be distinguished:

2



error

source test configuration

control_flow call_relation data_flow error_flow inconsistent_type assert annotation

condition else break throw catch

Figure 1: Example of a category hierarchy of code integration errors.

1. Match the action (i.e., Insert, Update, Move, or
Delete).

2. Match the before or after of the action.

3. Match the AST in the before or after of the action.

4.2 Automated Analysis

Once the declarative specification is complete for all
the different categories we define, we will use it to
automatically categorise breaking merge commits in
all Java projects of the TravisTorrent dataset, not just
those of the 245 commits we looked at manually.

Acknowledgements

Ward Muylaert is an SB PhD fellow at FWO, project
number 1S64317N.

References

Beller, Moritz, Georgios Gousios and Andy Zaidman
(2017). ‘TravisTorrent: Synthesizing Travis CI and
GitHub for Full-Stack Research on Continuous In-
tegration’. In: International Conference on Mining
Software Repositories (MSR).

Hassan, Ahmed E. and Ken Zhang (2006). ‘Using De-
cision Trees to Predict the Certification Result of a
Build’. In: International Conference on Automated
Software Engineering (ASE).

Kalliamvakou, Eirini, Georgios Gousios, Kelly Blincoe,
Leif Singer, Daniel M. German and Daniela Damian
(2015). ‘An in-depth study of the promises and per-
ils of mining GitHub’. In: Empirical Software En-
gineering.

Kerzazi, Noureddine, Foutse Khomh and Bram Adams
(2014). ‘Why do Automated Builds Break? An Em-
pirical Study’. In: International Conference on Soft-
ware Maintenance and Evolution (ICSME).

Mens, Tom (2002). ‘A State-of-the-Art Survey on Soft-
ware Merging’. In: IEEE Transactions on Software
Engineering.

Muylaert, Ward and Coen De Roover (2017). ‘Pre-
valence of Botched Code Integrations’. In: Interna-
tional Conference on Mining Software Repositories
(MSR).

Rausch, Thomas, Waldemar Hummer, Philipp Leit-
ner and Stefan Schulte (2017). ‘An Empirical Ana-
lysis of Build Failures in the Continuous Integra-
tion Workflows of Java-Based Open-Source Soft-
ware’. In: International Conference on Mining Soft-
ware Repositories (MSR).

Ray, Baishakhi, Miryung Kim, Suzette Person and
Neha Rungta (2013). ‘Detecting and Characterizing
Semantic Inconsistencies in Ported Code’. In: Inter-
national Conference on Automated Software Engin-
eering (ASE).

Stevens, Reinout and Coen De Roover (2014).
‘Querying the History of Software Projects using
QwalKeko’. In: International Conference on Soft-
ware Maintenance and Evolution (ICSME).

3


	Introduction
	Dataset
	Manual Categorisation
	Automated Categorisation
	Declarative Specification
	Automated Analysis

	References

