
Thesis submitted in partial fulfillment of the requirements for the de-
gree of Master of Science in Applied Sciences and Engineering:
Computer Science

IDRA: AN OUT-OF-PLACE
DEBUGGER FOR
NON-STOPPABLE
APPLICATIONS

Matteo Marra

June 2017

Promotors:

Prof. Dr. Elisa Gonzalez Boix (VUB)
Dr. Guillermo Polito (CNRS, Inria)

Advisor:
Carmen Torres Lopez
Faculty of Science and Bio-Engineering Sciences

“Limits, like fears, are often just an illusion”

Abstract

Big data processing applications have emerged in a diverse domains ranging
from medicine to social networking. Those applications continuously analyze
data coming into the system in a parallel way. In this context, when failures
or bugs occur it is not always an option to stop the running application to
investigate the cause because it can result in a loss of time, data and availability
of the overall application. This is why we call them non-stoppable applications.

Non-stoppable applications are normally debugged post-mortem, by means
of logs or, more recently, trace-based debuggers. This means that debugging
operations happen after the system already failed and stopped executing. Al-
ternatively, it is possible to debug these systems on-line, allowing developers
to interact and inspect the state of the failing program. Traditional on-line
debuggers, however, need to pause the execution and are not completely suited
to such non-stoppable applications.

In this thesis we introduce out-of-place debugging, a novel debugging tech-
nique to remotely debug non-stoppable applications without affecting their
execution. We propose IDRA, an out-of-place debugger that provides on-line
debugging primitives while avoiding the suspension of the overall application’s
execution. IDRA can be deployed in a distributed system, allowing to remotely
debug different nodes. It also includes a committing system for developer’s
changes.

We evaluate our solution on several real and synthetic applications which
vary from a data intensive application consuming tweets from an infinite stream
to an IoT device consuming hardware sensor data. Our results show that
debugging operations are on average from a thousand to ten thousand times
faster than a traditional remote online debugger. IDRA presents negligible
performance overhead if no failures are generated. In the case of a failure IDRA
shows an increase of the execution time. We also show that IDRA supports a
load of ten thousand concurrent failures, given by the limits imposed by the
operating system.

v

Acknowledgements

To start, I would like to thank my parents for the incredible and continuous
support in this and all the other steps of my life and academic career.

Grazie mamma, grazie papà!

A big thank goes to my promotors and advisor: Elisa Gonzalez Boix, Gulliermo
Polito and Carmen Torres Lopez. Elisa for all her support, ideas, critiques,
suggestions and even papers to read throughout the whole thesis. Guille for
the big help on the technical part of the thesis, for listening to my complaints
about Pharo, motivating me to find always a better solution, and for always
being there, even when I needed a place to stay in Lille. Carmen for all the
feedback and support and for all the corrections to my (sometimes awful)
English, together with the periods at the end of any caption. Thank you for
also sharing your office with me.

Thanks to Steven Costiou for sharing ideas and work with me, and for helping
me with the raspberry use case and its benchmarks. Thanks to Yesplan, in
the person of Andy Kellens, for the idea of the use case and for letting me use
their application model.

I would also like to thank the whole Software Languages Lab of the Vrije
Universiteit Brussel for listening to my presentations and giving continuous
and useful feedback, and professor Wolfgang De Meuter for helping me finding
the first idea for this thesis.

Thanks to Stéphane Ducasse and all the RMOD research group in Lille for
hosting me many times and giving me a big technical help.

A big thank you to all my family and friends back in Italy and here in Brussels,
especially my kotmates for many good moments (and for listening to my com-
plains everyday) and all the ESNers for letting me neglect them when I had to
work on this thesis. Thanks also to my classmates, especially Bruno and Silke,
for being with me from Day 1 in Brussels, as the unforgettable buddy group
3, which was with me almost every day during my first year. Also thanks to
Elisa Gilormello for the logo, which I promise you will see one day.

vii

Thanks to all the people of Elements, especially Federico, Marco and Michele,
for all the work we did together in the last two years, and for never giving up
on me, even in the most busy moments of this thesis.

I want to thank the jury for reading my thesis, and you, for at least reading
this acknowledgements. I hope you will find the courage to read the rest of
this thesis.

Finally, I would like to thank Marie-Louise for being with me and besides me
every day that I worked on this thesis.

Contents

1 Introduction 1

1.1 Research Context: Big Data Processing 1

1.1.1 Case Studies . 2

1.2 Research Problem: Debugging non-stoppable applications 3

1.3 IDRA: an out-of-place debugger 4

1.4 Structure of this thesis . 5

2 Motivation 7

2.1 Data Intensive Applications . 7

2.2 Long Running Systems . 8

2.3 Non-stoppable applications . 8

2.4 Motivating examples . 8

2.4.1 Use Case 1: Twitter Analyzer 9

2.4.2 Use Case 2: Yesplan Testing 10

2.4.3 Use Case 3: Sensor Monitoring 12

2.4.4 Conclusion . 12

2.5 State of the Art . 12

2.5.1 Offline Debugging . 13

2.5.2 Online Debugging . 16

2.6 Remote debugging . 17

2.6.1 Online remote debuggers 18

2.7 Debugging non-stoppable applications 20

2.7.1 Offline debugging . 20

2.7.2 Online debugging . 21

2.7.3 BigDebug . 21

2.8 Problem Statement . 23

2.9 Conclusion . 26

3 A distributed programming model for Pharo 27

3.1 Master/Worker Architecture . 27

ix

3.2 Design and Implementation of Master/Worker Framework in
Pharo . 29
3.2.1 Communication between Master and Worker 30
3.2.2 Scheduling tasks on the Worker 31

3.3 Conclusion . 32

4 IDRA 33
4.1 IDRA’s Overview . 33

4.1.1 Debugger monitor and manager 34
4.2 Handling exceptions or breakpoints 37

4.2.1 IDRA Monitor . 37
4.2.2 IDRA Manager . 38
4.2.3 Breakpoints . 39

4.3 Reconstructing exceptions or breakpoints 40
4.3.1 Handling the state . 41

4.4 Fixing and committing . 42
4.4.1 IDRA Changes Handler 43
4.4.2 Applying changes . 45
4.4.3 Detected changes . 46
4.4.4 Restarting . 46
4.4.5 Atomicity of changes . 48

4.5 Overview of IDRA architecture 49
4.6 IDRA front-end in Pharo . 50

4.6.1 Interacting with the exception queue of IDRA 52
4.7 Conclusion . 54

5 Implementation 55
5.1 Communication architecture . 55

5.1.1 Communication layer . 56
5.1.2 Communication protocol 57

5.2 IDRA Debugger . 57
5.2.1 Breakpoints and exception handlers 59

5.3 IDRA Changes Handler . 63
5.3.1 Changes detection tool 64

5.4 Conclusion . 65

6 Evaluation 67
6.1 Benchmarking scenarios . 67

6.1.1 Twitter analyzer . 67
6.1.2 Yesplan testing . 70
6.1.3 Sensor monitoring application 71

6.1.4 Buggy observer . 72
6.2 Evaluation overview and setup 72

6.2.1 Benchmark setup . 73
6.2.2 Benchmark framework 74
6.2.3 SMark benchmarks . 74

6.3 Micro-Benchmarks . 75
6.3.1 Setup . 75
6.3.2 Benchmarks . 76
6.3.3 Results . 77

6.4 Network overhead benchmarks 80
6.4.1 Setup . 80
6.4.2 Benchmarks . 81
6.4.3 Results . 82

6.5 IDRA overhead benchmarks . 85
6.5.1 Setup . 85
6.5.2 Benchmarks . 85
6.5.3 Results . 86

6.6 IDRA scalability test . 89
6.6.1 Setup . 89
6.6.2 Benchmark 7 - IDRA scalability test 89
6.6.3 Results . 89

6.7 Conclusion . 90

7 Conclusion 93
7.1 Problem statement revisited . 93
7.2 IDRA: An Out-of-place Debugger 94

7.2.1 The IDRA debugger . 94
7.2.2 IDRA changes handler 95
7.2.3 Evaluation . 95

7.3 Contributions . 96
7.4 Limitations and future work . 97

7.4.1 Future work . 98

List of Figures

2.1 A model for the Twitter analyzer. 9
2.2 Twitter analyzer deployed on a master and a worker. 10
2.3 Architectural overview for the Yesplan testing scenario. 11
2.4 Core model of Mercury (Extracted from [PBFD15]) 19
2.5 Data transformations of a word count (Extracted from [GIY+16]). 22
2.6 Simulated breakpoint in a stage (Extracted from [GIY+16]). . . 22

3.1 Overview of master/worker architecture. 27
3.2 Worker selection phase in master/worker architecture. 28
3.3 Class diagram of the master/worker Pharo API. 29
3.4 Communication of distributed master and worker on Pharo im-

ages. 31

4.1 Representation of IDRA instances, manager and monitor, in a
distributed system of two machines. 35

4.2 Representation of IDRA instances in the master/worker archi-
tecture. 36

4.3 Handling of an exception in IDRA Monitor - Part 1. 37
4.4 Handling of an exception in IDRA Monitor - Part 2. 38
4.5 Overview of exception handling operations in IDRA Manager. . 39
4.6 Representation of a call stack and a context. 40
4.7 Representation of a call stack and an exception. 41
4.8 Representation of a call stack and a breakpoint-context. 42
4.9 Overview of IDRA architecture with an IDRA Changes Handler. 44
4.10 Recording changes of a debugging session 45
4.11 Applying changes in a remote machine. 45
4.12 Adding a restarting strategy to an exception. 47
4.13 Atomic apply of changes when using master/worker framework. 49
4.14 Overview of IDRA components in a simple developer/worker

setup. 50
4.15 The Pharo Debugger. 51
4.16 The view on the errors queue. 52

xiii

4.17 The IDRA debugger developer interface. 53

5.1 An overview of the connection between IDRA Manager and
Monitor, and two IDRA Changes Handler 56

5.2 Class diagram of IDRADebugger. 57
5.3 Code to setup IDRA as Manager 58
5.4 Code to setup IDRA as Monitor 58
5.5 Code of IDRADebugger >> #handleError:inContext :restart-

ingStrategy: . 59
5.6 Code of IDRADebugger >> #serveQueueMonitorMode 59
5.7 Class diagram corresponding to the implementation of exceptions 60
5.8 Class representation of the breakpoints. 61
5.9 Placing a breakpoint in the code. Code extracted from Twitter

analyzer. 61
5.10 Implementation of DefaultHandler >> #handleException:. . 62
5.11 Handle an exception with an ExceptionHandler. 62
5.12 Setting a default strategy to an IDRADebugger. 62
5.13 Default implementation of UnhandledError >> #defaultAction 63
5.14 New implementation of UnhandledError >> #defaultAction . 63
5.15 Class diagram of a ChangesHandler. 64

6.1 UML class diagram of TwitterMaster and TwitterWorker. . . 68
6.2 Class diagram of Tweet and the related classes. 69
6.3 Class diagram of RemoteTestRunner and ControlledTestRunner 70
6.4 Architecture of the sensor monitoring. 71
6.5 Setup of idra on two machines for benchmarking. 76
6.6 Setup of the pharo remote debugger (PharmIDE) on two ma-

chines for benchmarking. 76
6.7 Boxplot of the session initialization time for an exception 78
6.8 Bar plot of the execution time of single debugging operations

on the buggy observer . 79
6.9 Bar plot of the execution time of single debugging operations

on the sensor monitoring application 80
6.10 Plot of the number of bytes exchanged for an increasing number

of exceptions. 83
6.11 Plot of the number of bytes exchanged for one exception. 83
6.12 Bar plot of the bytes exchanged to commit one change. 84
6.13 Overhead of the execution with active IDRA Monitor. 87
6.14 Overhead of the execution with active IDRA Manager. 87
6.15 Execution of AST-core-tests, increasing number of failures. . . 88

Chapter 1

Introduction

1.1 Research Context: Big Data Processing

In the latest years we saw the spreading of multi-core and parallel machines,
from processors for personal computers to clusters for cloud computing. These
machines can perform many parallel operations, and are used today to ana-
lyze big sets of data from any domain, from medicine to social networking,
continuously flowing on the internet. This is commonly known as big data
processing.

One of the most representative examples of big data applications are the so
called data intensive applications. As described by Gorton et al. [GGSW08]
data intensive applications manage and process a growing set of data, poten-
tially coming from non-stoppable streams. The analysis on the data is time
sensitive to avoid losing data and computational time. These applications are
normally deployed on distributed clusters using engines such as Apache Spark
[Apab], Hadoop MapReduce [DG08], Apache Giraph [Apaa] and many others.
These engines allow developers to write applications in a functional style, en-
forcing parallel execution and scaling it to all the cores of the machine where
they are executing.

Other applications, such as long running systems share the same charac-
teristics. These are systems that run a continuous computation, in a classic or
distributed way. Their interruption potentially leads to:

� A loss of partial results of computation.

� A loss of produced or processed data.

Examples of long running systems include web servers, which continuously
listen for client requests, or Wireless Sensor Networks (WSN) and Cyber Phys-
ical Systems (CPS). In particular, we could have one or more microcontrollers

1

2 CHAPTER 1. INTRODUCTION

analyzing data coming from sensors and executing different operations on
them. In contrast to data intensive applications, applications for these systems
are built using object oriented languages, which involve a stack of execution
and a complex variable state.

Both data intensive applications and long running systems are executed
on remote machines, should not crash, nor be stopped and process data that
should not be lost. We call these applications non-stoppable.

1.1.1 Case Studies

In this thesis we will employ three case studies that motivate the need for new
debugging support. We will use those three cases also to evaluate our solution.

First the Twitter analyzer, a data intensive application which continuously
analyzes tweets to provide different statistics about it. It is directly analyzing
tweets coming from the Twitter stream, and should not stop if, for instance,
there is an error in parsing one particular tweet.

Second, as long running system we consider the testing infrastructure of the
Belgian company Yesplan [Yes], which provides a web application for planning
of events. Before releasing, they execute a series of tests, which take consider-
able amount of time, on their application. These tests are non deterministic
because are initialized with different variables to add entropy to the system,
simulating the end-user use. As a result, if a test fails, it is very difficult to
reproduce the exact conditions that make the test do not fail. They are run-
ning on a remote non accessible server which just provides a log of the failures.
Since there is a lack of specialized debugging support, developers normally try
to run again a failed test, which will pass or not pass again only depending
on the non-determinism of the system. A representative of the company told
us that is very rare that a new version of the product is released with all the
tests correctly passing. We call this case study yesplan testing.

Third, example of long running system is in the context of cyber physical
systems (CPS). Imagine a CPS monitoring the room temperature of a food
storage room. If the sensor returns a wrong value, for example in text format,
the CPS does not have to stop reading the next temperature from the sensor. In
the described systems such failures are non-deterministic, and not predictable.
Without proper debugging support, such unpredicted failure would stop the
execution of the CPS. We call this case study sensor monitoring.

CHAPTER 1. INTRODUCTION 3

1.2 Research Problem: Debugging non-stoppable

applications

We believe that, due to the analyzed constraints of non-stoppable applications,
when a failure occurs the system should react in the following way:

� The failure should not stop the execution of computation on other nodes.

� The failed node should not crash.

The solutions commonly used to deploy data intensive applications do not
react like specified when an failure occurs and are notoriously difficult to debug.
In fact they are normally debugged post-mortem which analyze execution logs
or, lately, using trace-based replay debuggers such as Graft [SSK+15] and
Arthur [DZSS13]. However, replay debuggers add important overhead to the
execution to record a trace, and in the context of data intensive applications
cannot be deployed in production.

Few solutions, such as BigDebug [GIY+16], propose the use of online debug-
ging primitives to debug such applications. When using BigDebug, a failure
will not trigger the immediate end of execution of all nodes, but will instead
allow the different nodes to finish their job correctly and then stop the execu-
tion of the overall program. It does not prevent the crash of the failed node
but it allows the re-execution of the failed node and supports crash culprit
determination. More concretely, it offers some online debugging primitives,
allowing the insertion of simulated breakpoints and watchpoints. Breakpoints
and watchpoints, opposite to a failure, do not stop the execution of the pro-
gram and allow the user to analyze the state in a particular moment of the
execution.

Long running systems normally execute remotely, and they are difficult
to locally debug for lack of physical access, or even because some of these
systems do not provide a graphical interface. In this context, a failure of a
part of the system should not imply to stop the overall application to debug
it. For example, in CPS a failure should not make a microcontroller stops its
execution. Instead, it should be possible to debug the system while it keeps
working.

Different solutions exist to debug remote processes. In fact implementa-
tions of remote debuggers are available for most of the mainstream languages,
such as C, Java and .NET . Among the others, Mercury [PBFD15] is a debug-
ger designed to remotely debug applications in Pharo Smalltalk [Pha]. This
systems, however, are not fully suited to debug non-stoppable applications.

4 CHAPTER 1. INTRODUCTION

1.3 IDRA: an out-of-place debugger

In order to tackle the described debugging problems we propose to use an out-
of-place debugging technique, which allows to locally debug remote exceptions
coming from different remote machines. When an exception occurs on a remote
machine which is continuously executing some tasks the debugger will:

1. Extract the debugging information, such as current state, and let the
machine proceed to the next task.

2. Reproduce the error on a different machine which the developer can
access easily.

3. Allow the developer to provide a fix to the exception and locally test it.

4. Detect the changes made by the developer during the debugging session.

5. At command of the developer, distribute the changes to the bugged ma-
chine(s).

6. Apply the changes on the bugged machine(s).

7. Re-execute failed tasks with the fixed code.

We propose IDRA, a debugger for non-stoppable applications such as data
intensive applications and long running systems aforementioned.

IDRA is composed by:

� IDRA Monitor: executes on the remote machine, and can detect errors
avoiding the machine to crash.

� IDRA Manager: executes on a local accessible machine, connected to
the remote ones, and can reconstruct the errors detected by the IDRA
Monitor.

� IDRA Changes Handler: detects the local changes to the code and
provides a mechanism to propagate the changes to all the connected
machines.

Both IDRA Monitor and Manager handle a queue of errors. When an error
happens on a machine where IDRA Monitor is executing, it is stored in a queue.
One by one the errors are sent to the connected session of IDRA Manager.
When receiving an exception, the IDRA Manager will open one debugging
session at a time. The developer can then interact with the debugging session,
changing the code and restarting it from a chosen point. When he decides the

CHAPTER 1. INTRODUCTION 5

fix should be provided to the remote machine(s), it invokes the IDRA Changes
Handler to send the changes to the connected IDRA Changes Handler in the
system.

We developed our solution in Pharo Smalltalk [Pha], a live object-oriented
programming language. It provides an easily extensible debugger [BNDP10]
and allows to access execution and state structures. It also provides a remote
debugger [PBFD15, Kud], to which we can compare our solution.

The IDRA out-of-place debugging technique and its implementation in
Pharo form the main contributions of this work.

The master/worker architecture

The Pharo community does not provide a programming model for distributed
computing. Normally developers program distributed application directly on
top of networking technology or by means of proxies. Because of this, in order
to implement a data intensive applications, we implemented a master/worker
framework on which such applications can be built in Pharo. This is a common
architecture adopted in distributed systems for big data processing like Apache
Spark [Apab]. Actually, Master/worker is a classic parallelism model for ex-
ecution of parallel tasks. In the model applications consist of a master and
one or more workers. The master instructs the worker on which operations to
execute, and the workers execute the instructed operations in an independent
way between each other.

The implementation of the master/worker architecture in Pharo is a tech-
nical contribution of this thesis in the context of the Pharo community.

Evaluation

In order to evaluate IDRA we executed different benchmarks on different use
cases, comparing it to the Pharo Remote Debugger and evaluating the overhead
IDRA introduces to the system.

We executed micro-benchmarks on a simple application and on the sensor
monitoring application to compare IDRA with the Pharo Remote Debugger.
We then executed some overhead and scalability benchmarks on the other
motivational examples.

1.4 Structure of this thesis

Chapter two analyzes our motivating examples and provides a literature re-
view of the different debugging techniques. We conclude this chapter with the
problem statement.

6 CHAPTER 1. INTRODUCTION

Chapter three describes the master/worker architecture and our implementa-
tion.
Chapter four introduces an overview on IDRA and its functionalities, analyz-
ing its different components.
Chapter five analyzes the implementation details of IDRA.
Chapter six contains the results of our evaluation and teir analysis.
Chapter seven contains a final conclusion on the thesis, describing IDRA and
possible future work.

Chapter 2

Motivation

Data intensive applications and long running systems nowadays are widely
used to process and analyze data coming from different sources and in different
scenarios. In this chapter, we characterize those applications and we offer a
literature review of different debugging approaches. At the end of the chapter
we present our problem statement.

2.1 Data Intensive Applications

As the computational power of processors grew up to the technological limit
[SL05], the clock rate of processors stopped increasing as it used to. In this
context we assisted the development of parallel systems, from multi-core pro-
cessors for personal computers to large scale servers and cloud computing plat-
forms. Internet became a big set of data constantly flowing giving rise to cloud
computing platforms, which offer high parallelization of processes. Such vol-
ume of data is typically analyzed through data intensive applications.

A data intensive application is a program that [GGSW08]:

� manages and processes an exponentially growing set of data.

� potentially processes data coming from an unstoppable stream.

� applies an analysis on time sensitive data, which has to be processed in
short time to avoid losing incoming information.

Examples of unstoppable streams are Internet streams and sensors. Data
coming from these streams can be processed online, while the data is flowing.
Alternatively, it can be stored into databases or distributed file systems and
processed afterwards. In both cases it is crucial not to stop the flow of data
analyzed by the system: in the first case, because the application should not

7

8 CHAPTER 2. MOTIVATION

lose any data, in the second one because, even if the incoming data comes from
a persistent file or database, one single machine crashing in a big cluster could
generate a significant reduction on availability of the system. As a result, this
reduces the processing capabilities and could lead to a sensitive time loss, so
it is preferable not to stop the machines when an error happens.

2.2 Long Running Systems

Not only data intensive applications handle non-stoppable streams or non-
stoppable computation. Classic distributed systems like web servers are con-
stantly listening to client requests, and should not be stopped to be debugged.
Another example is a repetitive long running system on a remote server, like
unit testing of a complete distribution of a programming language or an end-
user application. Developers might want to intercept a failed test immediately,
while other tests are still running, examine its state to find out the reason why
it failed and provide a fix.

Wireless Sensor Networks (WSN), or more recently, Cyber Physical Sys-
tems (CPS) also exhibit similar characteristics. As a CPS we can have a micro-
controller executing continuous analysis on sensors. The execution should not
be stopped after a single failure, but rather debugged while it keeps reading
other sensors.

2.3 Non-stoppable applications

Data intensive applications and long running systems share different common
characteristics:

� Processes should not be stopped.

� They are executed on remote machines.

� The data that provoked a failure should not be lost.

Hence, we refer to both of them as non-stoppable applications.
This thesis aims to provide debugging facilities for non-stoppable applica-

tions that take into account the aforementioned concerns.

2.4 Motivating examples

In this section we describe three use cases that are representative of non-
stoppable applications studied in this thesis. We employ them to motivate

CHAPTER 2. MOTIVATION 9

debugging techniques to be employed and in later chapters to apply our novel
debugging support and showcase its functionalities.

We first introduce a Twitter analytics application. This is an artificial
example that we created, which analyzes tweets, which are constantly read
from the Twitter stream, running on a distributed system. We will refer to
this case as the “Twitter Analyzer”.

We then describe the continuous test integration system of the Belgian
company Yesplan [Yes]. This system is in charge of executing all the automated
tests of the software in production. We will refer to this case as “Yesplan
Testing”.

Finally, we describe a core subset of a cyber physical system that monitors
temperature, which can present different errors when parsing the result of the
reading.

2.4.1 Use Case 1: Twitter Analyzer

Figure 2.1: A model for the Twitter analyzer.

The Twitter use case represents an example of a data intensive application. An
infinite random set of public tweets is read from the Twitter Streaming Public
API [Twi], and then analyzed by reconstructing them from a JSON into a
Tweet object. The application then outputs some statistics, e.g. a count of
the words used in the tweets. An overview of the system is showed in Figure
2.1. Each node in the figure represents one operation, some operations, like
instanciate tweets and count words can be executed in parallel.

This application can be modelled in a distributed architecture in which one
node is the one connected, through HTTPS and SSO, to the API. We call this

10 CHAPTER 2. MOTIVATION

node master. It parses the strings to recognize the different JSONs and then it
sends those strings to other nodes, that will instantiate the Tweet object. The
result is sent back to the master, that will instruct another node to analyze
the tweet. The analysis of the Tweet produces a collection composed by words
used and frequency, that will be returned to the master node. The master
node will then merge the elements of the collection in an unique word count.
An overview of the system is showed in Figure 6.1. Each square represents a
function, and is placed either on the master on the other node, called worker.

Figure 2.2: Twitter analyzer deployed on a master and a worker.

Note that the different operations executed in parallel do not have a shared
state, so these operations do not contain any read nor write on a shared mem-
ory space. Only the single master node maintains a global state that contains
all the words, and the associated count, summed for all the analyzed tweets.

2.4.2 Use Case 2: Yesplan Testing

Yesplan is a Belgian software development company whose main product is an
event planning platform mostly developed in Pharo Smalltalk. More con-
cretely, Yesplan uses a browser interface in Javascript which allows users
to plan events (allocating time-slots, staff, resources, etc.). It has a Pharo
Smalltalk back-end which provides all the logic of the application and the
database communication.

CHAPTER 2. MOTIVATION 11

In the development and deployment of Yesplan, many tests are deployed
to check the correctness of the solution after applying changes and before
releasing a new version to their clients. To test whether users actions are
correctly executed, a browser environment is set up and the Selenium library
[Pro] is used to simulate user actions on the web interface such as clicks, mouse
movement, fill in of fields, etc. Different tests check that the right calls are
made in the back-end. The rendered web-page is then checked to verify the
correctness of the result shown to the user. Figure 2.3 shows a model of the
testing setup.

Figure 2.3: Architectural overview for the Yesplan testing scenario.

Every time a test is executed, a different setup is used:

� A different table and configuration of events is shown in the browser.

� Fields are updated with different values.

� The simulated click will not happen always in the same position.

This testing process is actually automatized. The tests are run in a different
setup depending on the date, hour, and many other variables. This is done to
add entropy to the executed tests, trying to cover all the possible cases that
an end-user could encounter.

Due to all those variables, the setup on which the tests are run is non-
deterministic. When a test fails a log is produced, but the non-determinism
of the setup makes it impossible to properly reconstruct it. Many times it
happens that, when re-executing the test, the Selenium engine simulates clicks
on a slightly different position at the web front-end, and the test will not fail
anymore. The company representative we talked to acknowledges that it is
really rare that a version is released with all the test passed, just because of

12 CHAPTER 2. MOTIVATION

this non-determinism. Furthermore, the Yesplan tests are executed remotely,
which makes it really difficult to locally debug the tests on that machine. As a
result, most of the times failing tests cannot be reproduced and the information
gathered when a test fails is very minimal.

2.4.3 Use Case 3: Sensor Monitoring

The last motivating example is a core subset of a Cyber Physical System
(CPS) for sensor monitoring. This monitoring system is made of a Raspberry-
pi connected to a temperature sensor and an LCD screen. We deploy the
device in the room that we are interested to track. The sensor probes the
room’s temperature and displays the result on the LCD screen. This device
is connected to the internet via wi-fi. It can be configured to send alarm
notifications to a remote user if the temperature of the room exceeds a given
level (e.g in a food storage room). The communication is actually bidirectional:
the device can also receive updates such as user application and firmware
updates.

2.4.4 Conclusion

In this thesis we want to provide a debugging support for non-stoppable ap-
plications, such as our Twitter analyzer, the YesPlan testing scenario and the
sensor monitoring scenario. They all share the main concern that their exe-
cution should not be stopped if an error occurs, and they need to be debugged
remotely.

In the next section we analyze different current debugging solutions for
such applications through a literature study.

2.5 State of the Art

In the development of modern applications developers spend most of their
time debugging and verifying their code to find structural or behavioral errors
[HS01]. There are different approaches to debug an application. Based on the
paper from Pacheco [Pac11] and the survey from McDowell et al. [MH89] we
categorize most of the debugging tools in two big families: Offline Debugging
and Online Debugging.

Terminology

Before analyzing different debugging techniques present in literature, we dis-
cuss the terminology used in this thesis. We base our terminology on Avizienis

CHAPTER 2. MOTIVATION 13

[ALRL04].

A failure is an event that occurs when a system provides different services
from the one that it was designed for. An error is the difference between the
service provided and the theoretically correct one, that might lead to a failure.
The fault is an incorrect part of the program that might cause an error. If
it does is called active. Otherwise if is present and not manifested is called
dormant. A crash is a failure that leads to the end of the execution of the
program.

In this thesis we use the term bug to identify a fault.We call debugging
the process of analysis a failure, identification of a fault and correction of the
fault.

2.5.1 Offline Debugging

Offline debugging refers to analysing programs after the execution of the pro-
gram completed, failed or terminated with an unexpected result. In literature
it is also referenced as post-mortem debugging, and is nowadays widely
used in many systems, from cloud computing to operating systems and simple
applications.

Logs and dumps

The simplest example of offline debugging, mostly used by inexperienced de-
velopers new to a particular platform, is the printf debugging. This consists
of inserting in the code some console prints that then it allows the developer,
during and after the execution, to analyze if a state or if a particular branch
is reached. Even though prints happen at runtime, the developer cannot do
any immediate operation on the code, nor pause the execution to analyze the
state. Although this system is pretty immediate and does not add consider-
able overhead, it is difficult to deploy in production. Many applications are
not deterministic, so a simple re-execution of the code will not produce the
same output as the one that produced a crash, making the use of printf not
sufficient to understand what caused the crash.

When debugging such undeterministic systems, a complete view of the sys-
tem is necessary to analyze the state that made the program crash. This
was achieved introducing core dumps, a screenshot of the whole state of the
program when a crash happens, and providing interpreters for these dumps
[MM80]. Different well-known debuggers like the GNU project debugger (GDB)
[GNU] offer primitives to navigate through core dumps and analyze the state
of the execution by means of assembly commands and the state of the variables
by means of pointers. Those dumps are normally generated by the Operative

14 CHAPTER 2. MOTIVATION

System, but when running higher level languages, especially if they are exe-
cuted on top of virtual machines, a dump generated by the operative system
does not offer the required level of abstraction to analyze the state of the
program at the moment of the crash. Furthermore, a virtual machine will
probably not crash if the program crashes, avoiding the intervention of the
operating system to generate a dump.

To conclude, a core dump does not provide enough information to debug
high level programs, since it only provides the state of the memory and a call-
stack, that in many occasions are not enough to totally understand the nature
of a bug. For example the value of the function arguments are not provided,
nor the values referenced in the different levels of the stack.

Trace-based debuggers

Debugging high level applications using dumps does not provide much infor-
mation to reconstruct a proper debugging section. This happens because it
only records the state at the moment of the crash and not the single steps
and different values of the variables that would allow to totally reconstruct
the environment of the crash. To debug high level applications those different
steps and values are recorded in a trace . Debuggers can offer different ways
to analyze this trace:

� Browsing: A tool is offered to analyze the events history and possibly to
show the relations between events and state changes.

� Replay: A debugger analyzes the trace and re-executes the program
following that trace. The debugger allows then to use online debugging
primitives such as breakpoint and stepping to examine the state of the
program without altering its behavior.

In both approaches the recording of the execution is crucial, since it can
introduce high overhead in the execution. Furthermore, in concurrent and dis-
tributed systems, a partial order of variable access or events (such as message
sending/receive in message passing systems) has to be stored in the trace. We
describe now different solutions for replay debugging.

In concurrent systems, Leblanc [LMC87] supposes that, given some par-
allel processes, the overall output is non deterministic. But for each single
process, given an input, the output of that process can be processed again
in a deterministic way. There is no need to store all the output value of the
processes but only the input values that then can produce the error again.
Netzer [Net93] optimizes the tracing, including only the variables subject to
race conditions, which improves the performance of the recording. DrDebug

CHAPTER 2. MOTIVATION 15

[WPP+14] allows the developer to select the region to record, and uses cyclic
debugging on dynamic slices of code that played a role in the computation
of a value, and allowing to fast forward the part of code developers are not
interested into.

In distributed systems, Ronsse [RK98] proposes to use Lamport clocks to
trace order of access to variables in the distributed memory.

In Friday [GAM+07], the library liblog [GASS06] is used to record the side
effects of non-deterministic calls also using Lamport clocks, then the execution
is re-played with the possibility to add watchpoints, breakpoints and to query
into the distributed state of the system.

Omniscent debuggers

Replay and dump debuggers offer both a view of the system, one allowing to
replay the situation that led to a crash, one that offers a view of the state of
the crashed system. In none of those systems is possible to have, at the end
of the execution, a complete view of all the state changes, i.e. any variable set
that happened during the execution. In order to have a complete view of the
system at any moment, an omniscient debugger can be used [Lew03].

An omniscient debugger stores all the variable changes and the function
calls that happened during the execution. At the end of the execution the
developer can open a debugger and navigate through the state of the program
at any moment in time, seeing when a particular variable was set or changed,
or when a particular event happened.

As in the replay debuggers, recording all the execution causes high over-
head and produces a sensible amount of data when the execution time of the
debugged program increases. Also querying and navigating that data must be
responsive to the user. For example, to tackle this problem, in TOD [PrT09]
a database is used to store all the events, and a query manager is provided to
go through all the events in an efficient way.

Conclusion

Offline debuggers are undoubtedly diffused in the context of distributed appli-
cations, and, especially replay and omniscent debuggers can provide a clear
view of the system to debug a failure. However, the overhead introduced to
produce a trace of the execution is high [MH89]. The fault is debugged when
the system finished running, that in a data intensive application could mean
hours of computation lost [GIY+16].

16 CHAPTER 2. MOTIVATION

2.5.2 Online Debugging

Opposite to offline debugging, online debugging, often called breakpoint-
based debugging, controls the execution of the program through different
facilities like pausing/resuming execution and step-by-step execution. The
main operation offered by an online debugger is the possibility to place a
breakpoint. A breakpoint pauses the execution of the program and allows
the developer to investigate the current state and, depending on the language,
to access some data to analyze the flow of the computation, like a stack-trace.
After stopping via a breakpoint, the developer can step-in a particular call
to check what its code does, or step-over a call to directly jump to its result.
Some debuggers also provide a step-out command that executes until the end
of the current executing function, stepping to where it returns.

A developer can insert a conditional breakpoint, that will be activated
only when a specific condition is fulfilled. In some systems, the developer can
add a watchpoint, which will halt whenever the value of a particular variable
changes, without needing to provide a specific condition. An online debugger
also offers an evaluator that allows to evaluate a particular expression in the
halted context, which is really useful to inspect the state of the program.

When applying these debuggers to a distributed system we find solutions
like CDB [WCS02], TotalView [Got09] and REME-D [GNV+11] which allow to
place breakpoints in distributed nodes, stopping their execution and allowing
to analyze the state.

Interactive Debuggers

Live programming platforms like Smalltalk offer an interactive environment
[Gol84] in which the developer can directly interact through reflection with all
objects of the system, including classes, instances, environments and contexts.
This structure of the environment makes it possible for a debugger to intercept
a failure and show to the developer a complete browsable view of the system
in that moment. In these systems, introducing a code change in the debugger
will automatically reflect on the running environment, allowing incremental
updating while debugging and easing approaches like test driven development
(TDD) [ABF05].

A representative example of these techniques is the Pharo Debugger [BNDP10],
a debugger for the Pharo SmallTalk implementation[Pha]. It offers a full de-
bugger with the breakpoint and stepping commands. It also offers a complete
view of the stack, which is represented by an accessible object, and allows to
restart the execution from a particular context of the stack, hot-swapping the
updated code when necessary.

CHAPTER 2. MOTIVATION 17

Conclusion

We believe that online debuggers are more suitable to debug data intensive
application, or, more in general, applications that should not crash before we
can find a bug in them. However, the main concept of an online debugger is a
breakpoint, which stops the execution allowing to use the stepping primitives
that, considering an application that is reading from an unstoppable stream of
data, might lead to a loss of data. These arguments show that classic online
debuggers are not perfectly suited to debug such applications.

2.6 Remote debugging

When debugging an application we normally have two logical processes run-
ning: one that is the application itself, and one that is the debugger. We talk
about remote debugging when the process of the debugger is running on
another machine than the debugged process. [PBFD15]

Non-stoppable applications are normally deployed in a distributed system,
hence it is interesting to analyze this debugging technique.

Remote debugging is orthogonal to offline and online debugging. So, there
exists a number of techniques that provide remote debugging for online debug-
gers and offline debuggers that we review below.

Offline remote debugging

Offline debugging happens once the application finished by analyzing and in-
specting the application logs and dumps. Thus, offline remote debugging can
reuse the same techniques explained in Section 2.5.1.

In the case of a log-based offline debugger, the failed execution will probably
generate a log. Having access from a remote machine to that log is enough in
order to apply the same debugging constructs as a developer would do locally
(i.e. going through the log).

If the offline debugger is a replay debugger , we would need to transfer the
produced trace to the machine where the debugger will run, to then execute
the replay on it. The developer produces a fix on the debugging machine. That
fix needs to be transferred and compiled on the machine that is executing the
debugged program.

Online remote debugging

An online debugger, as we saw in Section 2.5.2, allows to interrupt the process
of the application and interact with it by means of debugging operations such

18 CHAPTER 2. MOTIVATION

as step-in, step-over, etc. In a remote setting the debugger process is in a
separate machine than the debugged program, which means that a solution
is needed to control directly what is executing on a remote machine without
altering its results. The remote program needs then to be updated, better if
automatically, with the fix provided by the user.

2.6.1 Online remote debuggers

Different solutions in different programming languages exist for remote debug-
ging, some of which are listed in [PBFD15]. Many mainstream languages offer
remote debugging facilities.

The Java Virtual Machine offers a debugging framework called JPDA [Orab],
which consist in a remote interface called JDI [Oraa], a communication pro-
tocol and a debugging support on the debugged virtual machine, implemented
at virtual machine level. A system to automatically update modified code on
the remote machine is not provided: the user has always to manually run the
application on the remote virtual machine in debug mode, and set up the two
virtual machines to communicate.

GDB [GNU] offers remote debugging facilities for Objective-C, that can
be activated compiling the application in debug mode on the remote machine
and activating the gdb-server. It also offers a limited mechanism to update the
code on the remote machine through a patch of the executable memory.

Microsoft also provides remote debugging facilities similar to the Java ones
in its framework .NET through its IDE Visual Studio [Micb].

Similarly, Pharo Smalltalk [Pha] also offers a remote debugging facility,
which will be further analyzed in the next section.

Remote interactive debugger

Mercury is an interactive remote debugging model based on reflection [PBFD15].
The Mercury prototype is currently named PharmIDE [Kud] and is part of
the remote tool suite of the Pharo language. Mercury uses mirrors [BU04] are
used from the debugger machine as interface to represent the objects of the
debugged machine.

Mirrors are objects that encapsulate all the meta-level facilities of an ob-
ject. They make the meta-level facilities independent from the implementation,
keeping a direct correspondence with the structure of the object they are mir-
roring. As we can see in Figure 2.4, every mirror in the development machine
contains a reference to an object on the debugged machine, referenced as target
in the figure.

CHAPTER 2. MOTIVATION 19

Figure 2.4: Core model of Mercury (Extracted from [PBFD15])

Every call done through mirrors from the developer side are applied in the
correct reference on the debugged side, with a slight difference from a normal
execution: every value returned to the developer side is returned as a mirror.
This approach will basically wrap all the debugged environment in mirrors,
allowing from the debugger machine a total manipulation of the objects in the
debugged side handled from the meta-level.

We have to consider that in Smalltalk everything is an object, including
classes, which means that for example modifying a method means modifying
the object correspondent to the method, that actually contains the compiled
bytecode to be executed. Changing a method on a class normally reflects to an
immediate recompilation of the method, which from then on will be executed
with the new bytecode.

In order to have run-time evolution of the code the mirrors have to be
causally connected to the objects in the debugged image, meaning that any
change in one of the sides has to be reflected in the other. Applying changes
to a mirror means that they will be immediately be changed also on the re-
mote reference, so in the debugged machine. The model of Mercury supports
both structural reflection and computational reflection. Structural reflection
reifies any change to the structure of the program (such as class addition,
etc.). Computational reflection is the reification of the contexts and processes
[Mae87].

Debugging remote promises

When debugging remote processes it could be useful to have a clear relation
between the operation that is debugged and the one that spawned it. Leske

20 CHAPTER 2. MOTIVATION

and al. [LCN16] proposed a model which extends Mercury to debug remote
promises. Remote promises represent a result of a remote computation, im-
plemented with proxies in their model.

When a failure happens during this remote computation they propose to
use the Pharo remote debugger to debug it. While debugging, they show that
normally only the stack of the remote process will be shown, not the one of
the main process that executed the call.

This makes debugging more difficult because the cause of the bug could be
in that previous call so they propose a model where, relying on the current
remote debugging infrastructure, they combine the stack of the caller with the
stack of the remote process that failed, giving a more clear overview of what
caused the bug.

Conclusion

Remote debugging is a really powerful tool, especially when dealing with dis-
tributed systems or clusters, which would be difficult to access singularly to
be debugged. Remote debugging allows to use all the classic online debugging
capabilities in a remote machine, but, as a normal online debugger, it will
stop the execution on the debugged machine when a breakpoint or a failure is
encountered.

2.7 Debugging non-stoppable applications

In this section we review existing approaches to debug non-stoppable appli-
cations, such as data intensive applications. These applications are normally
deployed in cluster systems like Hadoop MapReduce [Apac, DG08] and Spark
[Apab] which allow high parallelization of jobs.

To date, those programming platforms offer very few debugging support.
A recurrent approach is to debug those application post-mortem using logging.
Instrumenting the code is easy and it introduces few overhead. However, the
resulting logs are extremely difficult to debug, especially because of the amount
of events being logged due to the flow of big amount of data. In the remainder
of this section we review some solutions for offline and online debugging of
data intensive applications.

2.7.1 Offline debugging

As for classic distributed applications, some of the post-mortem solutions in-
clude replay debuggers. The systems studied in this thesis allow only to have
parallel tasks not directly dependent on each other, and not modifying a shared

CHAPTER 2. MOTIVATION 21

memory, since they are programmed in a functional way. This property re-
duces the trace that has to be recorded, needing to store only the input values
of particular tasks, that then can be re-executed and will give the exactly
same result, since they do not read from a shared state that might have been
modified before the re-execution.

Graft [SSK+15] is a debugger for Apache Giraph [Apaa] that allows to
select particular jobs to capture their execution, and then replay the execution
later, but requires previous identification of the faulty nodes.

Arthur [DZSS13] allows to perform a post-mortem analysis on the failed
process, requiring multiple re-executions to access the intermediate results that
caused the failure. This is pretty time-costly when debugging it, since it also
requires to write particular queries in order to replay the correct tasks.

2.7.2 Online debugging

Post-mortem approaches are surely useful and scalable to this kind of appli-
cation, but the bug might be found after many hours of computation lost
[GIY+16]. Daphne [JYB11], a debugger for DryadLINQ [Mica], tries to tackle
the problem, allowing a runtime view of the system and the query nodes gen-
erated by a LINQ query. It allows to add breakpoints to inspect the state and
start and stop commands through the Visual Studio remote debugger. Debug-
ging is done directly on the client where the breakpointed node is executing,
interrupting it in order to debug it.

We believe that the most advanced debugger in data intensive applications
is BigDebug [GIY+16]. Being the closest related work, in the next section we
will analyze it in details.

2.7.3 BigDebug

BigDebug [GIY+16] is a debugger for Apache Spark [Apab] that offers a set of
interactive real-time debugging primitives, that allow to perform debugging on
Apache Spark with a considerable performance improvement from other de-
bugging platforms for Spark like NEWT [LDY13], a tool for capturing dataflow
that allows replay.

BigDebug relies strongly on the architecture of Spark, especially on Re-
silient Distributed Datasets (RDD) [ZCD+12]. RDD is a data structure that
allows to store a variable as set of transformations from an initial value. When
a user writes its function that manipulates an input data, this is interpreted
as a series of RDD transformations, which are grouped by stages, as we can
see in Figure 2.5.

22 CHAPTER 2. MOTIVATION

Figure 2.5: Data transformations of a word count (Extracted from [GIY+16]).

RDDs are stored between stages, in memory or fully persisted depending
on the configuration, and can be used to restart a particular stage without
needing to recompute all the previous stages, but only the lineage of the RDD
when needed.

Simulated breakpoints and guards

BigDebug introduces the concept of simulated breakpoint, which can be placed
between any transformation of a stage, as we can see in Figure 2.6

Figure 2.6: Simulated breakpoint in a stage (Extracted from [GIY+16]).

It is called simulated because it does not stop the execution, nor freezes all
the different nodes in the system waiting for the resolution of the breakpoint.
It stores the information necessary to replay the environment, namely the RDD
in the point S1, so the state of the input of the stage where the breakpoint is,
and the different steps to get to S2, and notify a driver node, then continue
the execution. When stepping in that breakpoint, the node will restart from
S1 and execute until the point of the breakpoint (S2). The debugger will then
show the state of the variables in that moment. After inspecting the state
the user can provide a fix, which will be hot-swapped in the worker before the
execution is resumed.

They BigDebug also allows to add a watchpoint to an RDD, using guards.
In a watchpoint a function is provided by the user to check whether an RDD
satisfies a predicate, and in that case send the data back to the driver, from
which the user can inspect the intermediate state.

CHAPTER 2. MOTIVATION 23

Crash remediation

When a crash happens in a Spark node, normally all the stages are aborted,
with their intermediate results. BigDebug allows those stages to continue for
all the pending tasks, while waiting for the intervention of the user. If there are
multiple crashes BigDebug accumulates them, waiting for a fix from the user.
Assuming that the provided fix is a correct extension of the old (not working)
function, all the crashed tasks are re-executed from their last stage before
crashing. At this stage it is not possible to add a completely new function.
This is only possible when fixing the code from a simulated breakpoint, and
an output will not be shown to the user if the tasks fails.

Conclusion

The approach adopted in BigDebug is definitely the closer to the requirements
of the non-stoppable applications. BigDebug offers simulated breakpoint, that
do not stop the execution of the other workers, and concludes its jobs at the
moment of a crash. It also allows to remotely debug distributed nodes, which
is convenient on a distributed setting and automatically propagates a code fix
to all the nodes in the system. However we believe this approach has some
limitations:

� A complete code fix can be provided only through a breakpoint, not after
a crash.

� When debugging a simulated breakpoint, developers debug directly on
the node: this means that the node is freezed, responding to our debug-
ging operations.

� If developers provide a wrong code fix, they cannot properly test that it
works before applying it to all nodes.

2.8 Problem Statement

The overall goal of this thesis is to study debugging support for distributed non-
stoppable applications. As shown in Section 2.5, many solutions exist to debug
distributed and concurrent programs (online or offline, in place or remotely).
We observed that nowadays they are often implemented using programming
models such as MapReduce [DG08] and Apache Hadoop [Apac]. Developers
of those platforms typically make use of execution logs through the so called
printf debugging, which does not add any overhead at run-time, but it often
leads to hours of computation loss because of corrupted data and other time

24 CHAPTER 2. MOTIVATION

lost to go through the logs, as reported in [FDCD12]. More advanced post-
mortem debuggers exist, like Arthur [DZSS13], that allows to replay failed
execution. However, replay debuggers do not avoid the possible crashing of
nodes, and add high overhead when recording a trace.

Alternatively, some online debuggers implementations like (BigDebug [GIY+16]),
exist for the platform Apache Spark [Apab]. It offers a limited set of debug-
ging primitives in order to debug by means of breakpoints and watchpoints,
remote nodes that might cause a crash. BigDebug does not provide crash
avoidance, but rather, it enables analysis of a crash culprit to re-create the
same conditions that led to the error. BigDebug tackles this problem by per-
sisting in different points the state of the computation, and then replaying it
when needed. The only difference with a classic replay debugger is that they
replay from intermediate points of the computation to then stop in a certain
point. This is possible because Spark applications are programmed in a func-
tional style, setting up tasks does not share state and perform pure parallel
computations.

In this thesis, departing from a pure functional style of programming such
applications, we will employ object oriented programming for implementing
data intensive applications. The goal then is to study a debugging support
for an object oriented language that needs to tackle different problems that
cannot necessarily be expressed in the means of parallel independent tasks nor
as functional programming constructs.

From the analysis of the characteristics of non-stoppable applications and
the conclusions from the literature review, we argue that the debugging support
should be able to locally debug remote exceptions. It should also be able to
deploy the changes the developer applies during the debugging session. We
detail those aspects in the sections that follow.

Locally debug remote exceptions

When an exception occurs on a remote machine that we are debugging, we
want to be able to debug while this remote machine keeps executing other
jobs. Debugging directly on the remote machine might require physical access
to it, and eventually would stop the execution in order to properly debug.
Using a classic Remote Debugger [Pap13] might resolve the problem of the
physical access, but does not provide a solution to debug a machine while
that is still executing other processes. A work-around could be to execute
the debugger in a parallel process to the executed jobs, but then, other than
introducing some code update problems (analyzed in Section 2.8), we would
need to wait that the machine finishes a job to then reschedule the process we
are debugging.

CHAPTER 2. MOTIVATION 25

Ideally a debugger for data intensive applications should allow us to see
locally on the debugger machine what happened remotely, without affecting
the remote machine during this process. It is clear that a Remote Debugger
with mirrors would influence directly the objects on the remote machine, so
we need a system that takes a snapshot of the exception happened and sends
it to the debugger, which then will reconstruct it and debug it locally.

Being in Object-Oriented programming and considering that we are de-
bugging non-deterministic applications, this brings the problem of handling a
stack, which represents the current state of the program when an exception
happened. We need to extract the stack and the different referenced vari-
ables in the heap and send it to the debugger machine, so a full picture of
the exception can be seen. To this end, we believe that an interactive debug-
ger as the one employed in Pharo provides a good foundation to allow such
manipulations.

Deploy changes

When remotely debugging one machine, the code changes provided in the de-
bugging section need to be applied also in the remote machine we are debug-
ging. We saw that only few remote debuggers (like GDB) offer this facility,
while is more common in debuggers for distributed clusters like BigDebug
[GIY+16].

In systems like those, the updated code will automatically start running
on all the nodes: in case the new code does not introduce any new bug, this
will not give any problem. Instead, if the new code produces new bugs, all the
nodes might suddenly start producing errors or crash. To avoid this, we need
a debugger tool that allows the developer to try a fix before deploying it on a
running system, eventually multiple times in order to provide a correct fix.

Out of place debugging

The proposed solution allows to debug remote applications out of their origi-
nal place. In other words, the proposed debugger transfers the execution state
of the remote application to the local developer’s machine. The developer pro-
ceeds then to debug as if the application was originally a local application.
Anyhow, the remote application is not influenced by the operations of the de-
veloper until he decides to resume the failed processes with an updated version
of the code. We call this debugging technique out of place debugging.

26 CHAPTER 2. MOTIVATION

2.9 Conclusion

In this chapter we presented the problems targeted by this thesis, describing
different types of non-stoppable applications that we aim to debug. A non-
stoppable application is an application that is run remotely and cannot be
stopped to be debugged, nor can stop working because of a failure.

We analyzed then the state of the art, to check for existing solutions
both in online and offline debugging which could suit non-stoppable appli-
cations. We found interesting approaches for remote debugging, such as Mer-
cury [PBFD15], and for debugging data intensive applications (i.e. BigDebug
[GIY+16]). Anyhow, those approaches do not totally fulfill the requirements
of non-stoppable applications because they still allow the execution to stop on
a failure.

We propose IDRA, a debugger designed specifically for non-stoppable ap-
plications. IDRA is designed to be employed in a distributed application, and
does not stop the nodes where a failure happens. Instead allows to debug them
in another node of the system using an out-of-place technique. A committing
system is used to propagate code changes to all the nodes of the system.

An interactive debugger such as the Pharo Debugger [BNDP10] (cf. Section
2.5.2) represents a good base for IDRA because its implementation is provided
in Pharo and is easily extendible. Also, the Pharo language reifies the concept
of call stack, which allows us to directly manipulate execution information.

However, Pharo has limited support for distributed programming for partic-
ular applications, such data intensive applications that we treat in this thesis.
To this end, we implemented a framework for the master/worker architecture
in Pharo, which will be explained in the next chapter. Afterwards we will give
a detailed overview of IDRA.

Chapter 3

A distributed programming
model for Pharo

Data intensive applications normally run on distributed architectures that al-
low high parallelization of computation. In Pharo Smalltalk, the platform we
selected to implement our approach, such architecture is not yet available.
As such, we designed and implemented a distributed programming model to
Pharo to this end. In this chapter we analyze the concept of a master/worker
architecture and how we designed it for such distributed model.

3.1 Master/Worker Architecture

Figure 3.1: Overview of master/worker architecture.

The master/worker architecture is a concurrent and distributed model that
allows to execute parallel jobs in a coordinated way. In this architecture a
node of the system takes the role of master and coordinates the other nodes,
assigning jobs to them and retrieving their results [ANF03].

An overview of the master/worker architecture is shown in Figure 3.1.
Considering a distributed system where we want to perform parallel compu-
tation we can assume that a single node, called the master, will be instructed

27

28
CHAPTER 3. A DISTRIBUTED PROGRAMMING MODEL FOR

PHARO

on which tasks have to be computed on which data. The master node orches-
trates the rest of the other nodes in the system, that we call workers, and sets
up a communication channel with them to this end. The master can instruct
workers to execute a certain computation on certain data by means of a task.

The goal of the master is to evenly divide the work (i.e. tasks) between all
its workers, so all the computational power of the system can be exploited. In
order to accomplish this goal, as shown in Figure 3.2, the master includes a
scheduler, that might be implemented as component or as scheduling function,
which extracts a task from the task list (2) and selects a worker (3) on which
the task will be executed (4). After the workers process a task, they might
return a value that has to be handled by the master (5). Depending on how
the master was instructed and how it divided the work, it might feed the return
value into another task or persist that value somewhere in memory.

A scheduler can select workers in different ways. Tasks can be divided by
time slots, by their complexity or, in more advanced distributed systems, they
can also be assigned by distance and ping time.

Figure 3.2: Worker selection phase in master/worker architecture.

Advantages and limitations

The master/worker architecture is an easy approach to divide the work be-
tween multiple workers. Most of the complexity is in the scheduling function,
that can be tuned depending on which platform this architecture is deployed
on [GKYL01, ANF03].

It is, however, a centralized architecture where the master plays a decisive
role which makes it the single point of failure of the system. Moreover, a failure
in a worker can be easily handled by the master node, but if the master fails
or is disconnected from the network the whole system could stop working. As

CHAPTER 3. A DISTRIBUTED PROGRAMMING MODEL FOR
PHARO 29

consequence, the workers will not receive more tasks from a master node and
will not be able to return the processed results.

This limitation can be overcome by having several masters in the system,
which can take control once one master fails, or introducing a load balancer
which selects and instructs the master.

3.2 Design and Implementation of Master/-

Worker Framework in Pharo

To the best of our knowledge, there is no master/worker framework implemen-
tation on top of the Pharo language[Pha]. Papoulias [PBFD15] proposed an
approach that enables Pharo to communicate with a remote machine through
proxies, but we did no encounter an example of a distributed architecture such
as master/worker.

We propose an implementation of master/worker architecture as frame-
work, which manages the communication layer and leaves to the developers
the specifics of task scheduling an execution. For this, our framework pro-
vides different abstract superclasses, following the concepts of object oriented
programming. The API is composed by two classes, Master and Worker that
provide all the infrastructure for scheduling, connection and communication
between master and workers.

Figure 3.3: Class diagram of the master/worker Pharo API.

Figure 3.3 shows an overview of the API. In our implementation a task is
identified by a command. When a Worker receives a command, it will execute
the code associated to that command in a new task.

A Master offers the following functionalities:

� connectToWorkerUrl:port: allows to connect a Master to a Worker.
The URL and port number of the Worker are needed.

30
CHAPTER 3. A DISTRIBUTED PROGRAMMING MODEL FOR

PHARO

� connectedWorkers holds a reference to all the communication channels
with the Workers. A Master can be connected to many Workers.

� scheduleCommand:parameters: is called to schedule a task in a Worker.
This is done specifying a particular command and some parameters that
will be sent to a Worker, which will then construct a task using that
command and those parameters.

� selectWorker implements the actual scheduling, selecting an available
Worker to which a command can be sent. It is used internally by
sendCommand:parameters:.

� listenForResultFromWorker: is called when a new connection is setup
with a Worker, and listens for values from the Worker. This method is
abstract, so it needs to be implemented in the desired implementation of
a Master.

A Worker provides:

� listenForCommandsOnPort: used to setup a communication channel to
which a Master can connect.

� connectedMaster is a reference to the communication channel setup
when a Master connects.

� scheduleCommand:parameters: is called when a worker receives a par-
ticular command through the method listenForCommandsOnPort:. This
method needs to recognize the command sent by the master and pro-
cesses it, creating and executing a task. It is an abstract method, so
an implementation of this method needs to be provided if a Worker is
implemented, so the user can specify different commands and ways to
execute them when extending this API.

� sendToMaster: is provided to send back to the master a particular result
for a task.

3.2.1 Communication between Master and Worker

Being in a distributed system, master and worker will be running in two
different logical processes. This means that an inter-process communication
layer needs to be implemented. In Pharo we can assume that all the instances
of a particular session are running in a unique virtual machine, which can run
many Pharo processes.

CHAPTER 3. A DISTRIBUTED PROGRAMMING MODEL FOR
PHARO 31

Each logical process contains all the objects representing the classes of
the system and it holds reference to global instances. These global instances
include all the global objects, such as an internal scheduler, the UI process,
and many other objects that are necessary to run the logical process. One
logical process also contains local instances of a particular process that is run
on the system, and among this local instances we have on the master process
a master object, and on the worker process a worker node.

TCP Sockets are used to provide communication between two logical
processes, that might be executed on the same machine or also on different
machines connected in a network.

Figure 3.4: Communication of distributed master and worker on Pharo
images.

Figure 3.4 shows an overview of a master and a worker node, with the
two master and worker entities connected through a TCP channel. A worker
starts listening on a port of its choice, and then a master can initialize a TCP
connection on this port. From then on, all the communication will happen
through that socket channel, and objects will be serialized to be sent through
a library called Fuel [DPDA11].

3.2.2 Scheduling tasks on the Worker

Master and Worker are actually run each on a logical Pharo process, on two
different virtual machines. In our implementation, each logical process includes
a scheduler. When a worker receives a message it will delegate the execution
of the task to the user defined code. A possible implementation of this is to
start the execution of the task in a separate thread to not block the thread
managing the communication. In Pharo, threads are implemented as green

32
CHAPTER 3. A DISTRIBUTED PROGRAMMING MODEL FOR

PHARO

threads. Green threads are used to execute different logical threads on the
same virtual machine with some internal scheduling.

Our master/worker architecture employs the TaskIt library [Bra] to im-
prove the scheduling on the worker. TaskIt allows to easily schedule tasks
in new processes on the same virtual machine, handling the order in which
tasks are executed and managing the concurrent execution or the execution
one by one. The user can choose to use this functionality using the instance
of TKTRunner, offered by the TaskIt API, present in the Worker class.

Note that TaskIt does not provide distribution, but improves the local
scheduling of new processes within the same virtual machine. In our use cases
we can use it as internal scheduler in the Worker, allowing it to receive different
commands from a Master and to schedule the associated tasks one after the
other.

3.3 Conclusion

In this chapter we introduced the master/worker architecture, widely used to
deploy data intensive applications. It consists of a distributed model containing
one node called master that controls the other nodes of the system, called
workers. The master can schedule different tasks on the workers, allowing a
parallel execution of different tasks.

Since, to the best of our knowledge, there is no distributed model imple-
mented in Pharo, we implemented this model to allow us to build data intensive
applications in Pharo. Therefore, this is a technical contribution of the thesis.

In the next chapter we will give an overview on IDRA, an out-of-place
interactive debugger capable to debug data intensive applications running on
architectures such as the one described in this chapter.

Chapter 4

IDRA

In this chapter we present IDRA, an interactive out-of-place debugger designed
for data intensive applications and long running systems. In the first part of the
chapter we describe the architecture and the components of IDRA debugger.
The second, third and fourth sections describe how exceptions are handled,
how they are reconstructed and how code changes are committed to other
machines in the system, respectively. The last section shows the front end of
IDRA in Pharo.

4.1 IDRA’s Overview

Data intensive applications and long running processes both require a debug-
ging technique that does not stop the execution of processes and allows to
debug them remotely. As we argued in section 2.8 a debugger for such ap-
plications should handle more than one exception raised by one and many
machines, and this debugger should allow to examine the program state at the
moment that each of those exceptions happened, letting the running processes
continue. To this end, we designed and implemented IDRA, an out-of-place
debugger that allows to remotely debug those application without stopping
them. IDRA is deployable in architectures such as the master/worker archi-
tecture (cf. Section 3.1) and in simpler remote setups where is difficult to
access a machine that is executing long running processes.

IDRA allows developers to place a special kind of breakpoints in the code,
which will not stop the whole program execution but rather just one partic-
ular process and allow the developer to perform step-by-step execution of the
program from that point on.

While debugging, the developer is able to change the code of the application
and to try this fix on the existent program state that lead to the bug being
debugged. The code changes made by the developer during the debugging

33

34 CHAPTER 4. IDRA

session do not affect the running system, because they could introduce new
bugs, that then would spread in the system causing more exceptions, or even
block the whole application.

Once the developer is satisfied with the bugfix, such fix should be deployed
to all the nodes of the distributed system which will then start executing the
updated code.

In short, IDRA divides the debugging session in three main phases:

� Handling exceptions/breakpoints: operations necessary to handle
an exception or breakpoint in the program when they occur. These
operations do not impact the execution of the overall program, allowing
it to continue executing.

� Reconstructing exceptions/breakpoints: operations necessary to
reconstruct the state of the program upon an exception or breakpoint on
a different remote virtual machine. This allows the developer to debug
the exception or breakpoint without affecting the running program.

� Fixing bugs and committing: operations that record on the remote
virtual machine the changes a developer makes to fix the bug and prop-
agates them to the running system (i.e. all the processes of the system).

4.1.1 Debugger monitor and manager

To further explain IDRA we will employ a concrete example of distributed
architecture on which IDRA can be deployed. Let us consider a simple dis-
tributed system composed by two machines, one that is executing different
tasks, that we call the worker, and one that is the machine of the developer
wanting to debug those tasks, that we will call the developer, as shown in Fig-
ure 4.1. In this example, the developer machine can be considered as master
and runs an instance of IDRA. We call the instance of IDRA on the developer
machine a manager. The manager allows the developer to retrieve and debug
all the exceptions that might happen on the worker machine.

On the other hand, the worker machine also contains an instance of the
debugger that we call monitor, listening for the exceptions to send to the
developer machine.

CHAPTER 4. IDRA 35

Figure 4.1: Representation of IDRA instances, manager and monitor, in a
distributed system of two machines.

Figure 4.1 shows how IDRA can be deployed in the developer/worker
model.

We now detail the conceptual steps that both monitor and manager per-
forms during a debugging session. On the one hand, the IDRA Monitor needs
to:

1. Intercept and handle all the exceptions and breakpoints happening on
the monitored tasks.

2. Store the exceptions and the relative stacks and variables.

3. Send to an IDRA Manager all the exceptions, one by one.

4. Recover the failed tasks and re-execute them on command of the devel-
oper.

On the other hand, the IDRA Manager at the developer machine needs to:

1. Listen for exceptions happening on the connected IDRA Monitor(s).

2. Reconstruct the received exceptions and their relative stack.

3. Allow the developer to debug one by one those exceptions.

4. Allow the developer to re-execute the failed functions with an updated
version of the code.

5. Allow the developer to interact with more than one exception at the time
to verify the updated version of the code.

36 CHAPTER 4. IDRA

We will now consider a more complex distributed architecture where IDRA
can be generally deployed. More concretely, we discuss a distributed master/-
worker architecture, a recurrent pattern employed by big data applications.
Debuggers such as BigDebug [GIY+16] are also based on this kind of setup.

Figure 4.2: Representation of IDRA instances in the master/worker
architecture.

Figure 4.2 shows how IDRA can be deployed in a distributed master/worker
architecture. In this architecture there are one master node and different
worker nodes.

In this case, the IDRA manager is placed in one of the nodes of the system,
called debugger. The debugger node is the one that the developer needs to
access in order to debug all the other nodes of the system. The IDRA manager
node is connected to all the workers nodes of the system, and it is responsible
of handling all the exceptions, as well as offering a developer interface to the
developer to debug the application.

In the following sections we analyze in detail how the different phases are
executed and we detail the different components that compose IDRA.

CHAPTER 4. IDRA 37

4.2 Handling exceptions or breakpoints

In this section we will describe with a concrete example how IDRA provides
handling for exceptions and breakpoints both on the monitor and manager.
Consider again the simple distributed system with one developer and one
worker machine described in Section 4.1.1. In this scenario, a worker is run-
ning different tasks, which might generate an exception or trigger a breakpoint
inserted by the developer. In the next sections we describe in detail the struc-
ture of IDRA Monitor, IDRA Manager and IDRA Changes Handler.

4.2.1 IDRA Monitor

The IDRA monitor provides the infrastructure to handle the exception before
triggering the crash of the worker, and stores it to allow the developer to
debug it. When an exception happens it is caught by the debugger and the
worker will proceed to the next task (as IDRA allows the overall program to
proceed). In order to capture the exception, the state of the execution needs
to be extracted and copied.

After the worker continues its execution other exceptions might happen.
This is the reason why an exceptions queue is kept in the IDRA Monitor.
When an exception happens, the thrown exception, with all the relative data,
will be added to this queue, waiting to be processed, as shown in Figure 4.3.
The figure shows how the IDRA Monitor updates its state during this process.

Figure 4.3: Handling of an exception in IDRA Monitor - Part 1.

Every time an exception is raised, it is added to the same exception queue.
The IDRA Monitor checks continuously on the queue and takes the elements
to be sent, one by one, to the IDRA Manager associated. Exceptions cannot
just be forwarded to the IDRA Manager, but they have to be stored in a
different queue, called sent exceptions. This allows to restart the execution
from the point in which an exception happened in the worker after the code is

38 CHAPTER 4. IDRA

fixed. Hence IDRA avoids losing the data that was being processed when the
execution stopped because of an exception.

Figure 4.4 shows a state diagram of the exceptions queue handling, show-
ing how the IDRA Monitor updates during the different phases, though the
function processError, which retrieves an exception from the exceptions queue.
After retrieving it, it stores the exception in the sent exceptions queue and
calls the function sendException to send it to an IDRA Manager.In the last
step the exception is sent to the developer machine.

Figure 4.4: Handling of an exception in IDRA Monitor - Part 2.

4.2.2 IDRA Manager

Recall that on the developer machine an instance of IDRA Manager is run-
ning, listening for exceptions from the connected worker machine. When an
exception is received, a debugger session is opened on it so that the developer
can see what happened on the worker machine. This means that at the next
exception received, another debugger session will be opened. However, if many
exceptions arrive, many debugger session open on the developer machine. As
a result it becomes difficult for the developer to debug.

To alleviate this issue, the IDRA Manager employs a queue where the
exceptions arriving from the workers are kept, allowing only one debugging
session to be opened at a time. When a developer terminates debugging one
exception, another exception will be processed from the queue. Figure 4.5
shows an overview of these operations in the IDRA Manager. The figure shows
how the state of the IDRA Manager is updated through different functions,
namely receiveError and handleError, after receiving an exception from the
IDRA Monitor. In the final stage a debugging session is opened.

CHAPTER 4. IDRA 39

Figure 4.5: Overview of exception handling operations in IDRA Manager.

4.2.3 Breakpoints

IDRA offers online debugging support (i.e. breakpoints and step by step ex-
ecution) in a similar way that it handles exceptions. A breakpoint pauses
the execution of a program and allows the developer to inspect the state of
the variables through step-by-step execution. In fact stepping primitives like
step-in or step-over allow developers to analyze how the state of the program
changes during its execution at each code statement (cf. Section 2.5.2).

As required by the non-stoppable applications presented in this thesis (cf.
Section 2.3), IDRA does not simply stop the overall execution when a break-
point/exception happens, but it allows workers to continue executing tasks.
Recall from section 2.7.3, BigDebug [GIY+16] provides a simulated breakpoint
to avoid to stop the execution of the program. This will make a task pro-
ceed after the breakpoint, but store the execution state in order to allow the
developer to restart, in the debugger, the execution from that point. While
simulated breakpoints are a really powerful instrument to remotely debug a
running process, IDRA provides a novel kind of breakpoint that completely
stops the execution of one process, and continues it only after a fix is provided.
We call such a breakpoint a stop-and-go breakpoint.

In contrast to a simulated breakpoint, the stop-and-go breakpoint behaves
like a classical breakpoint. After storing the information necessary to re-create
the situation, it does not let the execution proceed from after the breakpoint.
Instead, a stop-and-go breakpoint will suspend the execution of the task and
let the worker proceed to the next task. Only when the developer will decide
to restart all the breakpoints the suspended tasks will be executed from that
point on, possibly using an updated code.

Offering both kind of breakpoints leaves more choice to the developer on
how a worker should behave when it encounters one breakpoint. On the one
hand, a stop-and-go breakpoint allows the developer to better inspect the state
while the computation is interrupted, so if an exception is going to be raised

40 CHAPTER 4. IDRA

it will happen directly on the machine being used to debug. On the other
hand, the simulated breakpoint allows the developer to inspect the state at
the moment of the execution of that process, and to analyze what he/she did
instead of what it is going to do.

4.3 Reconstructing exceptions or breakpoints

In order to correctly reconstruct an exception on a different debugger instance,
we need to store and exchange different information about the state of the pro-
gram. This step is necessary since applications such as the Twitter scenario
(cf. Section 2.4.1) and the Yesplan testing scenario (Section 2.4.2) execute dif-
ferent tasks that are non-deterministic and may depend on different variables.
The state of these variables at the moment of the exceptions cannot be lost,
since it is the only way to correctly reconstruct the environment that led to
the exception.

Most of the object oriented programming languages encode state in objects
which are stored in the heap or stack. Each call within a function generates a
new stack frame, which will evaluate, eventually generate other stack frames,
and then return to the context that created it. As we can see in Figure 4.6, each
level of the call stack corresponds to a context, and each context contains a
pointer to the precedent context (Priv) in the stack and the eventual successor
(Succ). Each context also holds references to memory correspondent to its
local variables and, more in general, to all the variables used in that particular
context.

Figure 4.6: Representation of a call stack and a context.

When an exception occurs, the top of the stack stores the context that
generated the exception. Some exception handling functions may be then ex-
ecuted on top of the failed context. When debugging an exception, developers

CHAPTER 4. IDRA 41

are not interested in such contexts. This is why many debuggers when showing
the call stack hide the exception handling contexts. We use the same approach
in our debugger.

Figure 4.7: Representation of a call stack and an exception.

When an exception is raised, an object representing the exception is instan-
ciated in memory. This object contains some information about the exception
and a pointer to the call stack. This allows the debugger to bind an exception
to the stack where it was generated.

4.3.1 Handling the state

In order to debug an exception in another process, the exception needs to be
transferred to the second process. In our model an exception has a reference
to the context that generated it, called signaler context. This signaler context
is necessary to reconstruct the exception on another process, as the previous
context stored in it. Since any context, except the starting one, has a reference
to its calling context , all the context of the call stack are necessary to properly
reconstruct the exception.

Note that each context may reference one or more local and global vari-
ables. To fully reconstruct the situation that led to the exception, all those
variables need to be transferred to the other process. All the exception handling
contexts, normally presented on top of the context that caused the exception,

42 CHAPTER 4. IDRA

can be discarded when transferring the stack, since they are not needed to
reconstruct the exception.

In short, in order to send an exception to an IDRA monitor all the variables
reachable from the exception are needed to be copied. This allows to store the
state in the moment of the exception, and avoids other agents to modify the
values of the variables that will be sent.

Handling a breakpoint

A breakpoint is a point in program in which execution can be paused or halted.
If the debugger needs to reconstruct the context that led to a breakpoint, it
is important to note that the context of a breakpoint is at the top of the call
stack. This means that a breakpoint has a context, and this context links to
the whole call stack, as we can see in Figure 4.8.

Figure 4.8: Representation of a call stack and a breakpoint-context.

In order to reproduce the context of a breakpoint in another process, the
call stack and all its referenced variables will need to be copied and sent to
that process. The infrastructure built for exceptions is reused to support break-
points, i.e. handling a stop-and-go breakpoint happens exactly in the same way
as an exception. The simulated breakpoint could be also handled as an excep-
tion but, since the execution does not need to be restarted afterwards, we can
avoid to store them in the sent exceptions queue.

4.4 Fixing and committing

IDRA offers the necessary infrastructure to debug remote exceptions executing
a local debugger on local objects, not influencing the overall running system.
This allows developers to safely debug not worrying on the side effects that

CHAPTER 4. IDRA 43

the their changess would have on a remote worker. On the other hand, this
poses a new challenge: the debugger needs to keep the code base updated.

Note that approaches like BigDebug [GIY+16] and Mercury [PBFD15] the
code base is constantly kept up to date. As discussed in Section 2.6.1, in
BigDebug the code base is physically the same for the distributed system,
while for Mercury a mirror communication is setup. In both approaches the
exceptions are debugged directly on the remote machine, and it is impossible
that the code changes made in the local machine do not affect the remote
one. This means that if other tasks of the same kind are running, they will
immediately start running with an updated version of the code. This approach
works perfectly if the fix produced by the developer is correct, but if the fix
introduces a new error all the workers of the system will start executing faulty
code.

To solve this issue, in our approach, there is not a complete correspon-
dence between the code of the master and the worker. IDRA debugger allows
developers to change the code from their local machine without directly af-
fecting the debugged code when an exception raised or a breakpoint was hit.
IDRA incorporates a mechanism to propagate code changes from the debug-
ging machine to all workers after developers have the opportunity to verify
that those changes work. Such a mechanism is implemented by the IDRA
Changes Handler.

4.4.1 IDRA Changes Handler

The IDRA Changes Handler offers the following functionalities:

� Detects the changes made to the code base in the developing environ-
ment.

� Produces a code-patch (or fix) applicable to all the workers of the system.

� Communicates with other IDRA changes handler sessions in the system
to propagate the fix.

� Applies a fix received from another IDRA Changes Handler

Figure 4.9 shows the IDRA Changes Handler in the architecture of IDRA
in the scenario of one developer machine and one worker introduced in Sec-
tion 4.1.1. All machines where IDRA works contain an instance of the IDRA
Changes Handler, then all the connected machines can be updated with the
code fix produced in the debugger. When the IDRA Changes Handler is in the
developer machine, it records the code changes that happen during a debug-
ging session such as class and method creation, class and method modification,

44 CHAPTER 4. IDRA

etc. When a change is detected, the change is stored in a list. Changes are
not propagated to other machines until the developer decides it. This is why
this list keeps growing until the developer decides to commit the changes.

Figure 4.9: Overview of IDRA architecture with an IDRA Changes Handler.

Figure 4.9 shows an overview of the architecture containing both IDRA
debugger and changes handler. On the developer side we have an instance of
IDRA Monitor and a IDRA Changes Handler.

Figure 4.10 shows how an IDRA Changes Handler reacts to user changes
and commits. First the user fixes the code. The change is detected and added
into a queue. When the user decides to commit the changes, the fix is produced
and sent to another IDRA Changes Handler.

CHAPTER 4. IDRA 45

Figure 4.10: Recording changes of a debugging session

4.4.2 Applying changes

When an instance of IDRA Changes Handler receives a fix from another, it
extracts the set of code changes made by the developer. After extracting the
single changes, it applies them to the code base of the machine in which is
executing. In our example the instance of IDRA Changes Handler running on
the developer machine will create the fix and send it to the IDRA Changes
Handler running on the worker. Figure 4.11 shows an overview of this process.

Figure 4.11: Applying changes in a remote machine.

46 CHAPTER 4. IDRA

4.4.3 Detected changes

The IDRA Changes Handler allows to propagate the changes made in one
machine to all the machines of the system. To be complete it has to support a
set of changes that is fundamental to keep both versions of the code synchro-
nized, and that satisfy all the structures of the object oriented programming
paradigm. Those changes include:

� change of an instance method

� change of a class method

� addition and removal of an instance method

� addition and removal of a class method

� addition and removal of instance variables

� addition and removal of class variables

� addition and removal of a class

This set of changes is necessary to cover all the possible changes in a ob-
ject oriented program. Non considering any of this changes will lead to a
compilation or execution error.

4.4.4 Restarting

The developer can change the code on his local machine and restart the single
exceptions to verify that it fixes the problem. He can then decide to use the
IDRA Changes Handler to propagate the updated code to the other machines
in the system.

When an IDRA Changes Handler receives a new version of the code, it will
apply the update and look for an instance of an IDRA Monitor. When it finds
one, it will notify it that the code base has changed, and the IDRA Monitor
will restart the exceptions present in the sent exceptions list.

IDRA supports the following different restarting strategies which denote
the way in which an exception can be restarted.

� Default strategy: is used by default, and can restart the contexts in
two ways:

1. Restart from the bottom of the stack, re-executing the whole task.

2. Restart from the context used to restart in the IDRA Monitor.

CHAPTER 4. IDRA 47

The second option is possible because, when an instance of IDRA Changes
Handler propagates a change, it checks for an instance of IDRA Manager.
If an IDRA Manager is present, the IDRA changes handler extracts the
last restarting information from the IDRA Manager and sends it to the
other IDRA Changes Handler with the changes.

� Task strategy: When IDRA is used to debug an application deployed
with the master/worker framework (cf. Chapter 3), an exception hap-
pening during the execution of a task will be able to restart with this
strategy. This strategy identifies the original task in the stack and
reschedules the task, not really restarting the exception.

� Test strategy: Analogue to the task strategy, if an exception happens
during the execution of a unit test or if the test fails, the test will be
detected from the task and will be re-executed again.

� NoRestart strategy: This strategy is used if the developer does not
want to restart the enqueued exceptions, possibly because the data that
was going to be processed can be discarded. In this case, the stack is
simply discarded.

Assigning a restarting strategy

A restarting strategy allows developers to restart the enqueued exceptions in
different ways, depending on the problem the developer is debugging, and
can be different in any exception. An exception queue can contain different
exceptions with different restarting strategies, and the debugger will restart
them depending on their restarting strategy.

Hence, the exceptions are ‘tagged’ with a restarting strategy in the moment
they are caught by the IDRA Monitor, depending on the context in which they
happen. An overview of the operation is shown in Figure 4.12.

Figure 4.12: Adding a restarting strategy to an exception.

48 CHAPTER 4. IDRA

4.4.5 Atomicity of changes

The IDRA Changes Handler does not always guarantee the atomic consecutive
application of the changes. When a set of changes is received the handler will
apply the changes one by one, according to the order in which they were
produced. This happens in a process concurrent to the other tasks that run in
the machine and the instances of IDRA. This makes it impossible to determine
if all the changes will be applied one after another, or if the scheduler of
the machine will decide to execute different code in between of the changes.
Instead, it is guaranteed that the changes will be all executed, and all in the
order that were applied by the developer. This is an open research problem in
the context of dynamic software update techniques [PDB+15].

Atomicity is only guaranteed if the IDRA Changes Handler is deployed in
a master/worker setup, following the framework described in Chapter 3. In
this case, if an instance of Worker is detected, the IDRA Changes Handler can
communicate with it, and create a task which corresponds to the whole code
update. In this case, since a Worker executes tasks one after another, it can be
instructed to execute only the update task between two other tasks. In this way
the update will be executed atomically with regards the other tasks, and no
tasks will execute with partially updated code. Figure 4.13 shows an overview
of this setup. We can see the three nodes, master, worker and debugger, which
all contain an instance of IDRA Changes Handler. The debugger contains an
IDRA Manager connected to both the IDRA Monitor present in master and
worker. When the worker receives the change, it will schedule a code update
task between other tasks.

CHAPTER 4. IDRA 49

Figure 4.13: Atomic apply of changes when using master/worker framework.

4.5 Overview of IDRA architecture

IDRA allows to locally debug remote exceptions, reconstructing the context
in which the exception happened on a different process, and allowing to debug
different processes in a distributed system.

The main functionalities of IDRA are divided in three components:

� IDRA Debugger Monitor: which handles exceptions on a machine.
It is responsible for detect exceptions in the system, copy their state
information and send them to the IDRA Debugger Manager.

� IDRA Debugger Manager: which allows to debug all the exceptions
happening in the different monitors. It has to reconstruct received ex-
ceptions and open a debugger session on them, allowing the developer to
change it.

� IDRA Changes Handler: running on all the machines, allows to detect
and propagate code changes. It detects the code changes (i.e. method
or class addition, modification, deletion) made by the developer and, on
commit, propagates them to the other changes handler in the system.

50 CHAPTER 4. IDRA

Figure 4.14 shows an overview of the architecture.

Figure 4.14: Overview of IDRA components in a simple developer/worker
setup.

In the following section we will analyze the front-end of the debugger, which
offers different debugging operations.

4.6 IDRA front-end in Pharo

We implemented IDRA as an extension of the Pharo Debugger [BNDP10], al-
lowing all its interactive debugging operations and adding some functionalities
to interact with the exceptions queue. This section details first the debugging
functionalities offered by the Pharo debugger, then the extensions we provided
to the Pharo User Interface to interact with IDRA.

CHAPTER 4. IDRA 51

Figure 4.15: The Pharo Debugger.

Figure 4.15 shows the developer interface of the default Pharo Debugger.
On the top right we can see five debugging operations:

1. Proceed.

2. Restart.

3. Step into.

4. Step over.

5. Step through.

The view is then composed by three parts:

� The upper one shows a representation of the call stack.

� The middle part shows the source code of the function executed at the
selected level of the call stack.

� The bottom part shows the state of the variables in that level of the
stack. It can be changed into an evaluator to evaluate arbitrary code
in the selected context.

52 CHAPTER 4. IDRA

Most of the operations offered by the Pharo debugger are common on-line
debugging operations, except the second one: the restart. Restart allows to
replay the execution from the selected point in the stack. This means that an
arbitrary context can be selected in that stack, and a click on restart will allow
to replay, with a debugger open, to inspect the behavior of the program. This
offers to the Pharo Debugger replay capabilities, typical of offline debuggers.

When restarting from a particular context, the code will be re-compiled.
This means that, from that moment on, if the developer changes the code of
the functions involved in that computation, the new code will be used.

4.6.1 Interacting with the exception queue of IDRA

Figure 4.16: The view on the errors queue.

When executing an IDRA Manager connected to one or more IDRA Monitor
different exceptions might be added to the errors queue, as explained in Section
4.1.

Figure 4.16 shows the view a developer has on these exceptions, which
indicates the name of the exception and where it is. A developer can open
a debugger on any of those exceptions and debug it with the default Pharo
Debugger operations, but he might want to interact at the same time with
more exceptions in the queue.

Let us motivate the need for a new visualization to interact with exceptions
by means of a concrete example. Consider the case shown in the same figure,
where all the exceptions in the queue are equivalent. In this case, probably
all exceptions are triggered from the same bug but by different data. The

CHAPTER 4. IDRA 53

developer can change the code of the faulty method and provide a fix. Then
he can restart the exception that he is debugging, and proceed the execution.
If no other error is raised, the bug can be considered solved.

At this point, IDRA would open another debugger on the next exception
that happens to be the same as the one the developer just solved. In this case
the developer will need to manually restart, one by one, all the exceptions to
verify his fix works. This is why we provide an extended version of the Pharo
Debugger which allows to directly interact with the queue.

Figure 4.17: The IDRA debugger developer interface.

Picture 4.17 shows how we extended the default Pharo Debugger. We
added two operations, underlined in red on the top right of the interface:

� Restart Next: This operation allows to restart the current exception
from the selected point in the stack, and will automatically proceed with
its execution. When the next debugging session will open, it will restart
it from the same point in the stack that was previously selected by the
developer. It allows the developer to have the updated version of the code
in the new exception, and eventually to use stepping operation such as
step in or step over, to verify the new behavior. If the exception is not the
same or the two stacks are shaped differently, the new debugger will not
be restarted and will normally open on the stack level of the exception.

� Restart All: This operation sequentially applies a restart next to all
the exceptions in the queue that have a call stack with the same shape as

54 CHAPTER 4. IDRA

the first one the developer restarted. This operation allows an automatic
restarting process on all the exceptions.

When using both operations might happen that the new code generates an
exception. That exception will be enqueued in the same debugger, therefore
information on the new exception will not be lost and the developer will be
able to debug it again.

4.7 Conclusion

In this chapter we introduced IDRA, a out-of-place debugger for remote appli-
cations that cannot be stopped, such as data intensive applications and long
running processes. IDRA allows to remotely debug an exception on a local
machine, and to locally test a fix without affecting the other machines in the
system. Moreover IDRA enables to deploy the made changes to all the ma-
chines and to restart the halted executions. The operations of IDRA can be
grouped in three phases:

1. Handling exceptions/breakpoints.

2. Reconstruct exceptions/breakpoints.

3. Fixing bugs and committing.

IDRA executes those phases in three different processes

� IDRA Debugger Monitor: is responsible for the phase one.

� IDRA Debugger Manager: is responsible for the phase two.

� IDRA Changes Handler: handles the phase three.

IDRA is built specifically to debug non-stoppable applications (cf. Section
2.3). Those applications cannot be stopped when an exception or breakpoint
happens, and this is enforced in the first phase. The second phase allows
the developer to debug an exception or breakpoint in a different environment
that the one where the exception happened. This avoids interference with the
computation happening on the remote machine. The third phase allows to
keep the code base of the whole system updated after a developer provides a
change to the code. In general all the phases avoid an eventual loss of data,
by means of restarting strategies inserted by the IDRA Debugger.

In the next section we will analyze the implementation details of IDRA.

Chapter 5

Implementation

In this chapter we present some of the implementation details of our solu-
tion. These details include the communication architecture used, as well as
the implementation of IDRA Monitor, IDRA Manager and IDRA Changes
Handler.

5.1 Communication architecture

Some of the tools and applications developed in the context of this thesis,
such as the IDRA Debugger, IDRA Changes Handler and the use cases, are
deployed remotely. Therefore, they are deployed in another process that might
be executed on another machine. Those remote instances demand a communi-
cation layer to exchange information between local and remote instances. The
instances that need to communicate are:

� One IDRA Manager and one or more IDRA Monitor.

� Different IDRA Changes Handler.

� A Master and a Worker in the master/worker architecture described in
Chapter 3.

They also need a library to serialize all the objects to transfer them between
two processes. The tool needs to be able to:

� Serialize and de-serialize objects.

� Include in the serialization all the reachable objects from a given one,
following all the references it includes.

55

56 CHAPTER 5. IMPLEMENTATION

5.1.1 Communication layer

We use TCP Sockets as communication layer because they allow to connect
processes running locally, on local network and on the internet, and are widely
implemented in all the common operating systems. An implementation of
TCP Sockets is present in Pharo, under the class TCPSocket.

A TCP connection has normally one server listening on a port for requests
and one or more clients that connect to that port. As many mainstream
languages, Pharo offers the right classes to deploy a TCP connection, with
classes such as ConnectionSocket for a server and TCPSocket for a client. It
allows multiple connection spawning a new InteractionSocket when a server
receives a connection. The TCP handshake is transparent to the developer.

We deployed this in the IDRA Debugger and in the IDRA Changes Handler,
as well as in the master/worker architecture (cf. Chapter 3). For example we
setup an IDRA Manager as server and an IDRA Monitor as client. Figure 5.1
shows an overview of this connection.

Figure 5.1: An overview of the connection between IDRA Manager and
Monitor, and two IDRA Changes Handler

We can see that an IDRA Monitor has a TCPSocket which can send a
connection request to the ConnectionSocket of the IDRA Manager. In the
same way two IDRA Changes Handler can connect to each other. In our
implementation the instance of changes handler on the worker machine listens
for a connection from another one, i.e. the one running on the developer
machine.

CHAPTER 5. IMPLEMENTATION 57

5.1.2 Communication protocol

In order to exchange objects between the remote instances we use Fuel ([DPDA11]),
a library for serialization of objects. Fuel can serialize any object in the sys-
tem, and all the objects that are reachable from that. Fuel is customizable to
avoid serialization of objects, since we want to avoid serializing the instances
of the debugger and offer a small API to interact with.

Fuel allows both binary and textual serialization of the objects, and offers
acceptable performance on both serialization and deserialization. However,
the serializer is not heavily linked to the implementation. In fact is easily
replaceable, in the current implementation, by means of overriding the two
methods responsible for the communication. The rest of the application logic
is not dependent on the serializer.

5.2 IDRA Debugger

The IDRA Debugger is the central point of this implementation. It provides
all the structure to locally debug remote exceptions, from error handling to
the debugging session. By design, each process in the network can run one
instance of the debugger, either in Monitor or in Manager mode. Figure 5.2
shows an UML representation of the IDRADebugger class.

Figure 5.2: Class diagram of IDRADebugger.

58 CHAPTER 5. IMPLEMENTATION

The class IDRADebugger follows the singleton pattern to ensure there is a
single instance per process and clients cannot create new instances of it. It
does not expose a constructor and the unique instance can be retrieved through
the static method getCurrentInstance. Most of the core functionality of this
class is implemented in the following methods and instance variables:

� monitorMode: A boolean specifying if the debugger is executed as an
IDRA Monitor or as an IDRA Manager.

� setupAsManagerOnPort: and setupAsMonitorWithHost:port: Two
static methods that allow to initialize a new instance of the debugger,
which will substitute the old one, in one of the two modes. Figure 5.3
and 5.4 show the code used to setup IDRA as Manager or Monitor.

1 setManagerModeOnPort: aPort

2 self resetInstance.

3 monitorMode := false.

4 ↑ ([self getInstance startAsServerOnPort: aPort] fork).

Figure 5.3: Code to setup IDRA as Manager

1 setMonitorModeWithHost: serverIP port: aPort

2 | instance |

3 self resetInstance.

4 instance := self getInstance.

5 monitorMode := true .

6 instance openClientSocketWithServerURL: serverIP port: aPort.

Figure 5.4: Code to setup IDRA as Monitor

� handleException:inContext:restartingStrategy: It is used in both
manager and monitor mode and it wraps an exception in tuple, called
ExceptionTuple in Figure 5.2 with a particular RestartingStrategy.
The strategy is inserted by an ExceptionHandler, as explained in Sec-
tion 5.2.1. Figure 5.5 shows how the exception information are wrapped
in a tuple.

CHAPTER 5. IMPLEMENTATION 59

1 handleError: anError inContext: aContext restartingStrategy: aStrategy

2 "create a tuple and add it to errorsQueue and view queue"

3 errorsQueue nextPut: {anError . aContext . currentVersion . aStrategy}.

4 sentExceptions nextPut: { anError . aContext . currentVersion . aStrategy}.

5 "refresh the view"

6 table refresh.

Figure 5.5: Code of IDRADebugger >> #handleError:inContext
:restartingStrategy:

� serveQueueManagerMode: reads from the exceptionsQueue and opens
a debugger on the first of the queue.

� serveQueueMonitorMode: reads from the exceptionsQueue and sends
the ExceptionTuple through the method sendException:withContext:,
as shown in Figure 5.6.

1 serveQueueClientMode

2 | |

3 eventsQueue isEmpty

4 ifFalse: [

5 tuple := eventsQueue nextOrNil.

6 self sendException: (tuple first) withContext: (tuple second).

Figure 5.6: Code of IDRADebugger >> #serveQueueMonitorMode

� sendException: it is an utility function that sends an ExceptionTuple

to the managerSocket.

� listenForExceptionsOnPort: is used from the initializer of the moni-
tor mode, and continuously listens on a monitorSocket for new excep-
tion.

� managerSocket: is a Socket used when the debugger is in monitor mode.
It holds the connection to a IDRADebugger in manager mode.

� monitorSockets: is a list of Socket used when the debugger is in
manager mode. It holds a connection for each IDRADebugger in monitor
mode connected.

5.2.1 Breakpoints and exception handlers

Adding an IDRA Debugger to the system is not enough to start handling all
the exceptions that might happen. This is because to handle exceptions in

60 CHAPTER 5. IMPLEMENTATION

Pharo we have to hook into the system’s exception handling mechanism. We
provide two ways to do so: one is less invasive, and is about changing the
exception handling of a single exception. It was employed in a development
stage to explicitly avoid catching all the exceptions. We also provide a change
to the default exception handling system in order to finally handle all the
exceptions of the system.

Figure 5.7: Class diagram corresponding to the implementation of exceptions

The first approach shown in Figure 5.7, is to avoid catching all the ex-
ceptions, for development purpose, and re-directing to IDRA Debugger only
custom types of exceptions and breakpoints.In order to implement this, a class
OnlineHandlableException, extending Exception, has been created, which
automatically forwards the exception to IDRA Debugger. This is possible be-
cause in Pharo any unhandled exception in the system is managed by a main
exception handler. In the case that exception handler is not configured to
handle a particular exception, it will delegate the treatment to the exception
itself, sending it the #defaultAction message.

CHAPTER 5. IMPLEMENTATION 61

Figure 5.8: Class representation of the breakpoints.

The breakpoints are implemented using the same kind of concept as the
exceptions, as in Pharo a breakpoint is itself an exception. Figure 5.8 shows
the two classes SimulatedBreakpoint and StopAndGoBreakpoint. They the
two kind of breakpoints supported by IDRA Debugger, and can be activated
calling the static method break.

Figure 5.9 shows, in lines 7 and 10, how the developer can place both types
of breakpoint.

1 parseFromJSONString: aString

2 | tweet |

3 tweet := self fromMapper: (NeoJSONReader on:(aString readStream)).

4 tweet coordinates: (TweetCoordinates fromDictionary:(tweet coordinates)).

5 SimulatedBreakpoint break.

6 tweet entities: (TweetEntities fromDictionary: (tweet entities)).

7 tweet place: (TweetPlaces fromDictionary: (tweet place)).

8 StopAndGoBreakpoint break.

9 tweet quoted_status: (Tweet fromDictionary: (tweet quoted_status)).

10 tweet user: (TweetUser fromDictionary: (tweet user)).

11 ↑tweet.

Figure 5.9: Placing a breakpoint in the code. Code extracted from Twitter
analyzer.

Exception Handlers

To handle the calls to IDRA Debugger, we created different exception handlers.
An ExceptionHandler allows to handle an Exception, and calls the IDRA
Debugger after extracting the context from the exception. It then cuts the
extracted context to exclude the contexts related to the exception handling
itself and selecting a RestartingStrategy. There is one ExceptionHandler

for each RestartingStrategy.

62 CHAPTER 5. IMPLEMENTATION

1 handleException: anException

2 | context |

3 context := self copyContextOfException: anException.

4 (self isBreakpoint: anException)

5 ifTrue: [context := context sender sender.

6 [IDRADebugger getInstance

7 handleBreakpoint: anException

8 inContext: context

9 strategy: DefaultStrategy] fork]

10 ifFalse: [[IDRADebugger getInstance

11 handleError: anException

12 inContext: context

13 strategy: DefaultStrategy] fork]

Figure 5.10: Implementation of DefaultHandler >> #handleException:.

Figure 5.10 shows the implementation of the method #handleException:

of the DefaultHandler. It gets a copy of the stack through an utility function,
which will remove the exception handling generated context. It then checks if
is a breakpoint, and calls the debugger with the right method.

If we want a particular exception handler to handle exceptions during a
try catch, we can now write the code in Figure 5.11. In fact it is enough to
instanciate an ExceptionHandler and ask it to handle the produced exception.

1 [...] on: Error do: [|exception|

2 DefaultExceptionHandler new handleException: exception.].

Figure 5.11: Handle an exception with an ExceptionHandler.

Handling all the exceptions

If we want to handle all the exceptions of the system, a particular class needs
to be modified: UnhandledError. In fact, if an Exception is not handled, the
method defaultAction of the class UnhandledError will be called. The call to
IDRADebugger needs to be placed in that methods, and an ExceptionHandler

is used to make the call to the debugger. To do so, an instance of IDRADebugger
also holds a reference to an ExceptionHandler, which can be set at any mo-
ment with the code shown in Figure 5.12.

1 IDRADebugger restartingStrategy: DefaultStrategy.

Figure 5.12: Setting a default strategy to an IDRADebugger.

CHAPTER 5. IMPLEMENTATION 63

This allows to set a default handling mode for all the exceptions handled by
the debugger. Furthermore, IDRADebugger allows to enable or disable the op-
tion to debug all the exceptions via the field debugAll. Figures 5.13 and 5.14
show the default implementation of UnhandledError >> #defaultAction,
and our modified version.

1 "Default exception handling in Pharo"

2 defaultAction

3 [↑ UIManager default unhandledErrorDefaultAction:

4 self exception]

Figure 5.13: Default implementation of UnhandledError >>

#defaultAction

1 "check if the debugger is debugging all if true get"

2 "the exceptionHandler to handle the exception."

3 "otherwise , call the default handler of pharo."

4 defaultAction

5 [↑ OnlineDebugger getInstance isDebuggingAll

6 ifTrue: [OnlineDebugger getInstance exceptionHandler new

7 handleException: self exception]

8 ifFalse: [UIManager default unhandledErrorDefaultAction:

9 self exception]]

10 on: Error

11 do: [↑ UIManager default unhandledErrorDefaultAction:

12 self exception]

Figure 5.14: New implementation of UnhandledError >> #defaultAction

5.3 IDRA Changes Handler

The IDRA Changes Handler is an object that can detect code changes that
happen during a debugging session, and can propagate them to other instances
of IDRA Changes Handler. It is also able to apply a set of changes re-
ceived from another instance. Figure 5.15 shows an UML class diagram of
an IDRAChangesHandler.

64 CHAPTER 5. IMPLEMENTATION

Figure 5.15: Class diagram of a ChangesHandler.

The main functionalities are implemented in the following methods and
instance variables:

� connectToChangesSocketToUrl:port: this method allows to connect a
IDRAChangesHandler instance to another one to which it needs to send
the changes.

� listenForChangesOnPort: this method is used to initialize a Socket

on which that instance of IDRAChangesHandler will listen for changes.
This is also where the changes are applied to the source base.

� serializeChanges: is the method that needs to be called when the
user wants to distribute the changes to all the connected instances of
IDRAChangesHandler.

� addObserver: this method can be used to attach an IDRADebugger to
the IDRAChangesHandler.

� notifyObserverWithRestartDetails: is the method used to notify all
the attached IDRADebugger that the code has been updated and that
it should restart the exceptions stored. The restarting details can be
retrieved from the received changes, and normally indicate which is the
context used to restart the exceptions in the IDRA Manager instance.

5.3.1 Changes detection tool

The IDRA Changes Handler offers the infrastructure to handle changes, but a
library called Epicea [DCD13] is used for the changes detection and application.

Epicea logs high level information about those changes, it can store inter-
mediate operations and easily separate system events from user changes. For

CHAPTER 5. IMPLEMENTATION 65

example the creation, removal or modification of classes and methods, refac-
tors, the execution of unit tests, etc. It allows to record, apply and roll-back
code changes, satisfying the requirements of our solution listed in Section 4.4.
It also offers an accessible API, from where changes can be retrieved and han-
dled.

In Pharo, Epicea is always active, logging all the changes that happen in
the IDE. This means that using this tool will not add recording time and space
overhead to our solution.

Epicea is organized in sessions, allowing to separate the changes happening
during a debugging session from other ones. A session is accessible from the
Epicea API, and contains all the changes that happened since it was started.

Retrieving and applying changes

Epicea offers a class EpMonitor which is the one holding a reference to the
current changes store. The changes store is the data structure in which all the
changes are stored. This data structure can be retrieved at any moment, and
will give a set of EpEntries representing the changes of the current session.
The changes store is totally accessible, and its changes can be re-applied using
a visitor pattern. Epicea provides several visitors that simplify the interaction
with the changes, such as EpApplyVisitor, the EpUndo and the EpRedo. It is
important that the changes are applied in the same order they were retrieved,
to avoid missing dependencies.

In the context of the IDRAChangesHandler the changes are retrieved from
an EpMonitor, then these changes are serialized using Fuel [DPDA11] on the
communication channel with other IDRAChangesHandlers and finally the store
is reset, starting a new Epicea session. The reset is necessary because otherwise
the next changes will include the old ones.

On the other hand, when an IDRAChangesHandler receives a set of changes,
it can iterate them and use the EpRedo visitor to apply them in that code base.

5.4 Conclusion

In this chapter we presented the implementation details of IDRA Debugger
and IDRA Changes Handler.

In short, IDRA Debugger is represented by a singleton class, which can be
instanciated only once. It can be both IDRA Monitor and IDRA Manager
(cf. Section 4.1.1), using an internal variable to specify in which mode it
is working. We implemented specific exceptions, breakpoints and exception
handlers as extensions of the ones present in Pharo, and we hooked to the

66 CHAPTER 5. IMPLEMENTATION

Pharo default exception handler to call IDRA Debugger when an exception
happens.

All the communication happens through TCP sockets, and a library called
Fuel [DPDA11], which is used to serialize objects on the network.

The IDRA Changes Handler allows to detect and distribute changes made
during a debugging session. In order to record the changes, we use Epicea
[DCD13], a library present in Pharo to this extent.

The remote communication between all the entities happens over a TCP
connection.

In the next chapter we present the evaluation of our solution, explaining
how we implemented some use cases and showing the results of our bench-
marks.

Chapter 6

Evaluation

In this chapter we analyze the use cases we developed for this thesis, used
scenarios of our benchmarks. We present then an overview of the evaluation
and present our different benchmarks. We designed seven benchmarks divided
in four categories: micro-benchmarks, network overhead benchmarks, IDRA
overhead benchmarks and IDRA scalability test. For each category we analyze
what is the benchmarks setup, which benchmarks are executed and their result.

6.1 Benchmarking scenarios

In this section we will analyze the implementation of the twitter analyzer,
yesplan testing and sensor monitoring application described in Section 2.4. We
will also introduce a Buggy observer, a simple application which continuously
generates exceptions.

6.1.1 Twitter analyzer

The Twitter analyzer application is built on top of the master/worker frame-
work described in Chapter 3. The framework provides a Master, a Worker and
implements a communication layer and a task scheduling policy. The Twitter
analyzer is composed in four main parts

1. The TwitterMaster

2. The TwitterWorker

3. The Tweet parsing logic

4. The Tweet analyzing logic.

67

68 CHAPTER 6. EVALUATION

TwitterMaster and TwitterWorker

TwitterMaster and TwitterWorker extend the classes Master and Worker of
the master/worker framework. Figure 6.1 shows an UML representation of
the classes.

Figure 6.1: UML class diagram of TwitterMaster and TwitterWorker.

The TwitterMaster is responsible for the communication with the Twit-
ter Streaming API [Twi] and for separating the stream of data arriving from
the API. The API will continuously return tweets in JSON format. The
TwitterMaster, in its method startStreamingTweets will communicate through
HTTP and SSO with the API. The communication layer is provided by Zinc
[Zin], a library included in the Pharo Smalltalk Distribution.

Handling results

The TwitterMaster handles the results coming back from the remote TwitterWorker(s).
In the case the result comes from the instanciateTweets command, it will
send a countWordsInTweet command to the TwitterWorker. Instead, if the
result was generated from a countWordsInTweet the local words dictionary of
the TwitterMaster will be incremented.

Tweet analysis

The TwitterWorker provides all the functionalities to initialize and analyze a
tweet in the methods instanciateTweets: and countWordsInTweet:.

CHAPTER 6. EVALUATION 69

To do those operations, an object model of the tweets is used. Figure 6.2
shows an UML representation of some of the classes involved.

Figure 6.2: Class diagram of Tweet and the related classes.

A Tweet represents a tweet from a user. It has many attributes, which are
not all shown in the figure because of importance. It has different elements
also represented by objects, which all extend a common class TweetElement.

The method fromDictionary: is a static method which can instantiate one
TweetElement from a dictionary, and is used after parsing the JSON notation
of the tweet that has to be initialized. They are necessary to correctly initialize
tweets and allow all kind of analysis on them.

However, for our example only the text attribute of Tweet will be used,
since it represents the text of the tweet that contains the words we have to
count.

The bug

The tweeter analyzer application can present different bugs especially in the
stage of parsing and instantiation. For example, a tweet in a language which
uses an unicode encoded characters, such as Japanese, can generate an excep-
tion because such characters can be recognized as escaping functions. Further-
more the Twitter stream also contains removed tweets, that are encoded in a

70 CHAPTER 6. EVALUATION

different JSON format and produce a parsing error.

6.1.2 Yesplan testing

The Yesplan testing demands a framework to remotely execute tests, on which
IDRADebugger can be initialized to capture test failures. To execute tests
Pharo provides a TestRunner, in which a user can select tests and execute
them. At the end of the execution shows the results of the tests, and allow to
re-execute them again. We created a RemoteTestRunner, which extends the
TestRunner and allow to execute tests in a ControlledTestRunner.

Figure 6.3: Class diagram of RemoteTestRunner and ControlledTestRunner

As we can see in Figure 6.3, a RemoteTestRunner has a reference to one
TestMaster, which extends the Master class of the master/worker architec-
ture (Chapter 3). Also the ControlledTestRunner holds a reference to one
TestWorker.

Commands

To comply with the master/worker framework, TestMaster and TestWorker

use the command runTestSuites, which will trigger the corresponding method
in the TestWorker class.

Execution of the tests

The tests that have to be executed can be selected in the machine with the
TestMaster, using the RemoteTestRunner view. When the execution com-
mand is activated, the selected tests are sent to the TestWorker which will

CHAPTER 6. EVALUATION 71

execute them. Test failures will be collected and sent to the developer ma-
chine as they happen.

Test failures in Pharo are a special exception, which will be normally de-
buggable using IDRA.

6.1.3 Sensor monitoring application

The sensor monitoring application consists in a monitoring application run-
ning on a Cyber Physical System We built this monitoring system using a
Raspberry-pi computer 1 together with a GrovePi board2. The Raspberry-pi
is a cheap but powerful small computer that can be easily extended with nu-
merous additional hardwares, like humidity sensors or screens. The GrovePi
board is a board designed to be put on top of the Raspberry-pi and provide
easy access to a variety of sensors. GrovePi already ships with specific drivers
written in different programming languages. Our monitoring system controls
the hardware using the provided driver to ask for sensor input and display
data on the LCD screen.

Figure 6.4: Architecture of the sensor monitoring.

Our monitoring software installed in the device is written as a Pharo [Pha]
application. As shown in Figure 6.4, the user application queries the GrovePi
driver for the current temperature with a frequency of 2 Hertz. The driver
performs a sensor read and converts the obtained string to a number. The
application then shows the current measure in an LCD screen. Our application
is also configured with a maximum temperature threshold. While the sensed

1https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
2https://www.dexterindustries.com/site/?product=grovepi-starter-kit-raspberry-pi

72 CHAPTER 6. EVALUATION

temperature is lower than the configured threshold, a green LED is turned on.
Otherwise, the application sends an alarm to the user. We implemented this
alarm for our scenario as a red LED turning on.

It is worth noticing that our design acknowledges the fact that i/o errors
can occur and that sometimes the sensor coming from the data could be erratic.
Because of this, our application validates the value obtained by the sensor
before treating it (i.e. the application checks the value is not a null string).

The bug

When testing our application, the device works fine the majority of the time.
However, from time to time false alarms are sent to the user. Restarting the
device solves temporarily the problem: after an undetermined period of time
the bug reappears. Reproducing the bug is not easy because we cannot predict
the moment when the bug will appear. In addition, in production mode the
temperature monitor works remotely, so when there is a problem we cannot
know for sure what is happening. Reproducing the exact conditions under
which the bug happens is complicated.

6.1.4 Buggy observer

Buggy observer is an application we created for benchmarking and testing
purposes. This application continuously produces an exception, until is fixed
by the developer. It is composed by a Generator which produces random
numbers, and an Observer, which receives those numbers and prints them in
a console. If the number is higher than a threshold the Observer will throw an
exception. This application is useful to our evaluation because it can generate
an high number of exceptions in a small time, which have to be remotely
debugged.

6.2 Evaluation overview and setup

In this section we present the benchmarks that we performed to evaluate our
solution. When possible we compare our solution to the PharmIDE [Kud], the
last implementation of Mercury [PBFD15] Mercury is a remote debugger for
Pharo Smalltalk that we analyzed in Section 2.6.1. We present different kind
of benchmarks:

� Micro-benchmarks: Micro-benchmarks evaluate the performance of
the different IDRA debugging operations and We do so using a simple
application which continuously produces exceptions on one machine, and

CHAPTER 6. EVALUATION 73

we will debug them from a different machine. We apply these benchmarks
also to the sensor monitoring application, which is a typical application
where Mercury is deployed.

� Network overhead benchmarks: In these benchmarks we measure
the overhead of the network communication generated by an exception
and a code change in comparison to Mercury.

� IDRA overhead benchmarks: In these benchmarks we evaluate the
overhead added by IDRA to the execution of the program in terms of
time. We will apply this benchmark to the testing use case.

� IDRA scalability test: In these benchmarks we evaluate the number
of exceptions IDRA can handle, both on monitor and manager side,
before stopping to work.

We will first describe the hardware setup on which the benchmarks were
executed. Then we will explain the benchmarks we executed and present the
results. We will first analyze the micro-benchmarks, then the network overhead
benchmarks, the IDRA overhead benchmarks and finally the IDRA scalability
test

6.2.1 Benchmark setup

For the execution of our benchmarks we used different machines in different
setups, depending on the context. We used two computers, to which we refer
as Machine 1 and Machine 2, and one Raspberry-pi, which we will refer to
as Raspberry. We will now describe the different machines.

Machine 1

� CPU: Intel Core i7 6700HQ @2.60GHz x 8 with Intel Turbo Boost.

� RAM: 16 GB DDR4

� Operative System: Linux Mint 18.1 Serena - 64 bit.

� Pharo: Version 6.0 #60499

Machine 2

� CPU: Intel Core i7 3540M @3.00 GHz

� RAM: 8 GB DDR3

74 CHAPTER 6. EVALUATION

� Operative System: macOS Sierra 10.12.4

� Pharo: Version 6.0 #60499

Raspberry

� CPU: ARMv8 quad-core @ 1.2GHz

� RAM: 1 GB DDR3

� Operative System: Raspbian GNU/Linux 8 (jessie)

� Pharo: Version 6.0 #60499

6.2.2 Benchmark framework

For different timing benchmarks we use a framework for Pharo Smalltalk called
SMark [Mar]. SMark allows to easily write benchmarks in Pharo and deploy
them in a unit-test like. It allows multiple execution of the same benchmark to
provide a more reliable sample of data. In the case of IDRA we added different
lines of code to count how much data is transferred through network. In the
case of the Pharo Remote debugger the class SeamlessLogger, which stores
information of all the network communication, has been used to retrieve this
information.

6.2.3 SMark benchmarks

SMark proposes a set of benchmarks on basic problems which can be exe-
cuted to test a particular implementation or setup. We will use some of those
benchmarks for part of our evaluation (cf. Section 6.5.2).

The selected benchmarks that we will use are:

1. SendWithManyArguments: calculates the time of execution of fifty thou-
sand message send with many arguments.

2. FloatLoop: calculates the time needed to execute fifty thousand iteration
of a loop with float increment of the looped variable.

3. ArrayAccess: calculates the time needed to execute fifty thousand ac-
cesses and assignments in an array.

4. InstVarAccess: calculates the time necessary to access fifty thousand
times an instance variable.

CHAPTER 6. EVALUATION 75

5. Send: calculates the time of execution of fifty thousand message send
with no arguments.

6. ClassVarBinding: calculates the execution time of fifty thousand ac-
cesses to a class variable.

7. IntLoop: calculates the time of fifty thousand iterations of a loop with
integer increments of the looped variable.

6.3 Micro-Benchmarks

In the micro-benchmarks we evaluate IDRA in comparison to the Pharo remote
debugger. We execute single debugging operations on a debugging session and
we verify how much time take the execution of single debugging operations. We
apply the micro-benchmarks to different applications: first a buggy observer, a
simple application continuosly throwing exceptions. We also evaluated these
benchmarks for the sensor monitoring application.

We will now describe the setup.

6.3.1 Setup

We execute all the experiments for one hundred exceptions received on both
debuggers. The y-axis is displayed with a logarithmic scale to ease visualiza-
tion.

For these benchmarks we will use the buggy observer application, which
constantly generates exceptions and allows us to test, multiple times, both
how much time debugging operations take and how much data is sent through
the network. For the second benchmark we will also use our sensor monitoring
application.

These benchmarks are executed using the machine 1 as debugger and the
machine 2 as worker.

The debugging infrastructures are run in different ways, due to the different
designs of the debuggers.

IDRA debugger

When using IDRA Debugger, the application is executed in the worker, along
with an instance of IDRA debugger in monitor mode and with an IDRA
changes handler active. The debugger executes an instance of IDRA debugger
in manager mode and an IDRA changes handler analyzing the changes in the
code. Figure 6.5 shows an overview of the setup.

76 CHAPTER 6. EVALUATION

Figure 6.5: Setup of idra on two machines for benchmarking.

Pharo remote debugger

When executing the Pharo remote debugger, the application is running in the
worker machine with an instance of Pharo remote IDE server active. On the
worker an instance of Pharo remote IDE client is executed and connected to
the server instance in the worker. Different benchmarks have been used, which
are explained in next section.

Figure 6.6 shows an overview of the setup.

Figure 6.6: Setup of the pharo remote debugger (PharmIDE) on two
machines for benchmarking.

6.3.2 Benchmarks

The micro-benchmarks consist in different debugging operations, which mea-
sured using both the debuggers and the same application.

These operations are:

CHAPTER 6. EVALUATION 77

Benchmark 1 - Session initialization

When the debugger machine receives an exception, it has to open a debugging
session on it. We measure the time passed between the the moment when an
exception arrives from a remote image and the moment in which a debugging
session is opened.

We do not consider the time needed by the user interface to open a debug-
ger. This is totally non-deterministic and not dependent of the two debuggers,
since they both use a classic Pharo debugger session.

Benchmark 2 - Stepping operations

When the debugger machine receives an exception, a debugging session on it
will be opened. At this point different operations can be executed:

� Restart the execution from a selected point in the stack.

� Step Into the next line of code, shows the code corresponding to the
method invoked in that line.

� Step Over the next line of code, executes the next line and goes to the
following.

� Step Through the next line of code, executes parameters evaluated and
steps into the proper code execution.

� Proceed simply continues the execution not debugging.

For each operation we execute:

1. Restart from a point in the stack

2. Execute the operation (Step into/over/through). This step is not
executed in the case of the Restart operation.

3. Proceed the computation

This actions represent a typical debugging session, except the fact that no
code is changed. It is however consistent to evaluate the execution time of the
operations on both debuggers.

6.3.3 Results

We will now show the results of benchmark 1 and 2.

78 CHAPTER 6. EVALUATION

Benchmark 1 - Session Initialization

In this benchmark we measure how much time passed between an exception
is received and a debugger is opened on it. In the case of the Pharo remote
debugger, every exception opens immediately a debugger, while in the case of
IDRA only one debugging session is opened at the time. This is why we had
to make sure to close the debugging sessions when opened, in order to have a
correct evaluation.

Figure 6.7 shows a boxplot of the results. The time is calculated in mil-
liseconds.

Figure 6.7: Boxplot of the session initialization time for an exception

Figure 6.7 shows that, on average, the Pharo Remote debugger is between a
thousand and ten thousand times faster than IDRA. In fact the Pharo remote
debugger takes approximately 15 µs on average, while IDRA takes around 60
ms.

This result is expected because of the way IDRA handles arriving excep-
tions: while the Pharo Remote Debugger immediately calls the user interface
to generate a debugger, IDRA puts the received exception in a queue. Another
thread reads from that queue, and asks the user interface to open a debugger.
This thread reads on the queue every 60 ms, approximately the delay measured
in this benchmark.

Benchmark 2 - Debugging operations

In this benchmark we evaluate on both debuggers the time of execution of
different debugging operations. Those operations are:

CHAPTER 6. EVALUATION 79

� Restart.

� Step into.

� Step over.

� Step through.

We executed this benchmark both on the Buggy Observer and on the sensor
monitoring application. The time was calculated in microseconds.

Figure 6.8 shows the result of this benchmark on the buggy observer. Figure
6.9 shows the result of this benchmark on the sensor monitoring application.

Figure 6.8: Bar plot of the execution time of single debugging operations on
the buggy observer

80 CHAPTER 6. EVALUATION

Figure 6.9: Bar plot of the execution time of single debugging operations on
the sensor monitoring application

It is clear that on both use cases, for all the debugging operations, IDRA
is faster than the Pharo Remote Debugger. On the buggy observer it is faster
between a hundred and a thousand times, while on the sensor monitoring
application it is constantly more than one thousand times faster.

In fact, in the case of a remote exception handled with IDRA, the exception
and all the stack information is copied and sent to the debugger. A debugging
session is always opened on a local copy of the exception (and its stack), which
makes the debugging session a normal Pharo debugging session.

On the other hand, the Pharo Remote Debugger reconstructs a remote
exception by means of proxies of the exception itself and of the related stack.
The debugging operations will be executed on the remote machine, introducing
communication and network overhead for each of the operations executed.

6.4 Network overhead benchmarks

In this benchmarks we compare the network overhead of IDRA and the Pharo
Remote Debugger. We do it executing the benchmarks on both the buggy
observer.

6.4.1 Setup

The benchmarks setup is analogue to the one used for the micro-benchmarks
(cf. Section 6.3.1).

CHAPTER 6. EVALUATION 81

We measure this overhead in different ways, depending on the debugger. In
IDRA we measure the size of the data received on the IDRA Manager, since we
have control over the TCP connection. Instead, the Pharo Remote Debugger
uses an underlining framework called Seamless [PBFD15] which handles the
TCP communication. To assess how much data is exchanged through Seamless,
we use a logger provided in the framework, which returns detailed statistics
over all the communication that happened since it was started.

6.4.2 Benchmarks

Benchmark 3 - Network usage for an exception

This benchmark measures how much data is sent (in bytes) between the two
instances of the debuggers: monitor -manager in the case of IDRA and server -
client in the case of the Pharo remote debugger. This benchmark measures
this size for a different amount of exceptions, analyzing how the behavior of
the two debuggers changes. It can also give an idea on how much commu-
nication time is needed to transfer an exception using both debuggers. The
communication time is not evaluated since it depends on the network and it
would require a notion of distributed clocks to be correctly evaluated. This
communication time can be inferred knowing the amount of data transferred
and the communication speed of the network.

Benchmark 4 - Size of propagation of code changes

In this benchmark we measure what is the size of different code changes applied
to the remote machine. The setup of the two debuggers is different: In the
case of IDRA, changes happen locally and are then sent to the remote machine
through the IDRA Changes Handler. The changes will be applied in the remote
machine only when the user explicitly calls the functionality.

Instead, with the Pharo Remote Debugger the user can open a remote
browser on the classes of the remote machine. In this way the user can directly
modify in that browser and changes will directly be applied.

In the Pharo Remote debugger we have to consider that the simple opening
of a browser and browsing also generates network traffic. This is why all the
operations are evaluated only after opening the browser and browsing to the
right class.

For different code changes, we analyzed what is the size, in the means of
network communication, of propagating:

� No operation: no changes are made. A browser is opened and changes
are sent.

82 CHAPTER 6. EVALUATION

� A class addition: a class named Test01 is added to the default package.

� An instance variable addition: an instance variable named instanceVariable

is added to Test01

� A class variable addition: a class variable named classVariable is
added to Test01

� A method code change: a method of the class Test01 is changed
adding a line of code.

The code-base is the same in both cases: a basic Pharo 6 image with both
Pharo Remote Debugger and IDRA loaded. Figure 6.12 shows the network
usage in bytes for each operation.

6.4.3 Results

Benchmark 3 - Network usage for an exception

In this benchmark we measure the amounts of bytes exchanged in the net-
work to handle one exception, happening remotely and debugged on another
machine.

We executed this test on the buggy observer, sending an increasing number
of exception and verifying at each point how much bytes were exchanged at
that moment. Figure 6.10 shows the results of these benchmarks. The x-axis
shows the number of exceptions and the y-axis the number of bytes exchanged.
The y-axis is displayed with a logarithmic scale.

CHAPTER 6. EVALUATION 83

Figure 6.10: Plot of the number of bytes exchanged for an increasing number
of exceptions.

Figure 6.11 shows, on average, how much bytes were exchanged for each
exception in both debuggers.

Figure 6.11: Plot of the number of bytes exchanged for one exception.

From both Figures 6.10 and 6.11 is clear that, for this use case, the data
exchanged for each exception is sensibly lower in the case of IDRA. For each
exception, in a constant way when increasing the number of exceptions, IDRA
exchanges over network five times less bytes than the Pharo Remote Debugger.
We believe that the reason of this result, in this particular use case, is that the
stack associated to the exception is really small, and actually the exception,

84 CHAPTER 6. EVALUATION

and stack itself produces less bytes than all the communication necessary to
install and exchange proxies.

Benchmark 4 - Size of propagation of changes

We executed this benchmark doing different code changes and verifying the
network overhead.

The y-axis uses a logarithmic scale.

Figure 6.12: Bar plot of the bytes exchanged to commit one change.

The no operation category indicates on the IDRA the sending of the changes
when changes were not made and the developer sends anyway the command
to propagate them. On the Pharo Remote Debugger it indicates the number
of bytes exchanged when opening a browser. We can see that the amount of
bytes exchanged in this case is approximately the same, not showing a partic-
ular difference.

All the other operations show that IDRA uses eight to ten times less net-
work when compared to the Pharo Remote Debugger for simple committing
operations.

We believe that these results are due to the fact that the Pharo Remote
Debugger uses a remote browser, which contains proxies to many entities of
the remote image. Every modification constantly generates a request to the
remote image to update, which does not happen in IDRA because the changes
are applied to the local code base.

CHAPTER 6. EVALUATION 85

6.5 IDRA overhead benchmarks

In the previous sections we analyzed the performance of IDRA in comparison
to the Pharo Remote Debugger with different micro-benchmarks on different
debugging operations. In the next sections we will analyze different bench-
marks applied on the Twitter and testing use case, along with a small overhead
benchmark using the default benchmarks of SMark.

6.5.1 Setup

In these benchmarks we will use always Machine 1 as debugger machine and
Machine 2 as the machine running the applications that need to be debugged.
IDRA debugger is run on both the machines, as IDRA Manager in Machine
1 and as IDRA Monitor in Machine 2. The two instances of IDRA debugger
in the two machines are connected. An instance of Changes Handler is also
running on both Machine 1 and Machine 2.

All the following benchmarks are executed for one hundred exceptions re-
ceived on both debuggers.

6.5.2 Benchmarks

These benchmarks are applied on two scenarios. One is the SMark Benchmarks
and the other one is the Yesplan testing. The benchmarks are:

Benchmark 5 - Basic overhead of IDRA infrastructure

In this benchmark we will analyze how much overhead is introduced by IDRA
in the execution of the system. We will do it simply running the SMark
benchmarks.

There are no exceptions, so the showed overhead is only of the debugger
active listening for exceptions, and of the changes handler listening for changes.
We performed this benchmark on Machine 1 setup as IDRA Manager and
on Machine 2 setup as IDRA Monitor, executing the benchmarks on both
machines.

Benchmark 6 - IDRA serialization overhead

: In this benchmark we analyzed how much overhead IDRA adds in the exe-
cution of tests in the case of a test failure.

Normally, when running tests in Pharo, when a failure happens it is simply
logged. In the case of our testing use case, we can remotely run the tests, and
debug the failures through our debugger. We will first measure the execution

86 CHAPTER 6. EVALUATION

time of all the test, without failures. Then we will incrementally add failures
in the tests to measure how much time is spent to serialize the failure.

In order of not changing the amount of computation executed by the tests,
to add a failure we add a basic assertion fail such as the one showed in listing
6.1.

Listing 6.1: Code for a simple assertion failure in a Pharo TestCase

1 s e l f assert : f a l s e .

.
We setup the benchmark in the following way: Machine 1 runs an instance

of IDRA Manager, one IDRA Changes Handler and one Remote Test Runner.
Machine 2 runs an instance of IDRA Monitor, one IDRA Changes Handler
and one Controlled Test Runner.

The Remote and Controlled test runners are connected through the mas-
ter/worker framework introduced in Chapter 3, as explained in Section 6.1.2.
We automatized the process of selection of tests on the Controlled Test

Runner to run the selected package every ten seconds, fifty times. At each fifty
run we add a number of test failures in randomly selected test methods. We
will run the benchmark with four different amount of failures:

1. No failures

2. 2.25% failures (4 test failing over 154)

3. 5% failures (8 test failing over 154)

4. 10% failures (16 tests failing over 154)

We measure the time passing between the whole test execution is started
and is completely finished (all the test methods have been evaluated). We do
this measurement on the Controlled Test Runner in Machine 2, which is the
one actually executing the tests.

We executed all the tests of the package AST-Core-Tests, containing 154
tests.

6.5.3 Results

We will now present the results of the IDRA Overhead Benchmarks.

Benchmark 5 - Basic overhead of IDRA infrastructure

In this benchmark we measure how much overhead is introduced by an active
instance of IDRA over one application not introducing bugs. We do it over

CHAPTER 6. EVALUATION 87

the SMark default benchmarks described in Section 6.2.3. We first executed
all the benchmarks without initializing IDRA. Each single benchmark was
executed one hundred times. The same operation was done after initializing
and connecting IDRA. After the averages were calculated for each operation,
and the ratio was calculated dividing the two averages. The resulting overhead
is showed in Figure 6.13 and Figure 6.14.

Figure 6.13: Overhead of the execution with active IDRA Monitor.

Figure 6.14: Overhead of the execution with active IDRA Manager.

As we can see from figure 6.13 IDRA Monitor does not introduce sensible
overhead. Some benchmarks, like the number 2, are even faster when IDRA

88 CHAPTER 6. EVALUATION

is running, which shows that actually if there are any differences, they are not
related to the presence of the debugger.

On the other hand, figure 6.14 shows that IDRA Manager introduces a
slight overhead in most of the operations. This overhead is due to the presence
of one more socket listening for exceptions coming from the connected IDRA
Monitor, but is anyway negligible.

Benchmark 6 - IDRA serialization overhead

The goal of this benchmark is to measure which is the time overhead of exe-
cuting remote tests containing failures. To do this we analyze the execution of
the tests of the package AST-Core-Tests, which contains 154 tests, normally
not failing.

Figure 6.15 shows the running times, on average and with errors, of the
tests execution when increasing the number of errors.

Figure 6.15: Execution of AST-core-tests, increasing number of failures.

We can clearly see in Figure 6.15 that the execution time increases when
increasing the percentage of failure. This is because of the serialization oper-
ations that can take up some processing power in the working machine. Since
Pharo is single threaded, even if the the execution of the serialization is done
in a parallel green thread, this can clearly impact the time of execution of the
tests. The increase is proportioned to the number of exception.

CHAPTER 6. EVALUATION 89

This happens because when a failure is being serialized another failure
might happen, slowing down the process because the failure has to be handled
while we are serializing already one. We also have to consider that the ma-
chines are connected through a local network and each failure, other than the
serialization operation, triggers a network communication.

6.6 IDRA scalability test

6.6.1 Setup

We perform this benchmark on Machine 1 executing two processes: one is
the TwitterMaster and IDRA Manager. The TwitterWorker is executing on
Machine 2 and has an instance of IDRA Monitor connected to Machine 1.

6.6.2 Benchmark 7 - IDRA scalability test

The goal of this test is to evaluate the scalability of IDRA when receiving many
exceptions. We use the Twitter analyzer to test it, generating an exception for
each tweet that is parsed. We will generate the exception in different points
in the same stack, running the simulation to see how many exception we can
handle before the system stops working. In fact, in the current solution, there
is no system to handle such failures.

We manually inserted an exception in the TwitterWorker. We decided to
insert the exceptions in the initializeTweet: method, which takes a string
representation of a tweet and parses it to create a Tweet object.

We did three tests:

1. Insert the exception as the first line of the
TwitterWorker>>initializeTweet: method.

2. Insert the exception in the deepest point in the stack possible, so during
the parsing of the tweet in Tweet>>parseFromJsonString:.

3. Insert the exception as the last line of the method
TwitterWorker>>initializeTweet:.

6.6.3 Results

Benchmark 7 - IDRA scalability test

The goal of this benchmark is to assess how many exceptions we can receive
in an IDRA Manager before any of the processes in the system stops working.

We did two executions for each test, and they produced the following result:

90 CHAPTER 6. EVALUATION

� Test 1 and 3 - The process running the IDRA Manager crashed ap-
proximately after ten thousand exceptions received on average.

� Test 2 - The process running the IDRA Monitor crashed after approxi-
mately five thousand exceptions sent on average.

The crashes of test 1 and 3 are produced by an out of memory exception
from the Pharo Virtual Machine. This means that the Pharo Image running
in that instance of virtual machine reached its maximum size. Running a 32
bit virtual machine, the maximum addressable memory index is 4,294,967,295.
If we analyze the log of our execution, we can see that the instance of IDRA
Manager received, on average, ten thousand exceptions.

The crash of test 2 happened for a different reason: the execution on the
machine instantiating the actual tweets produced a segmentation fault. We
believe that this happened because the virtual machine tried to access or al-
locate memory outside the area of memory allowed by the operative system.
From the logs we can also see that this crash consistently happened during the
serialization process, where different buffers are allocated. Compared to the
tests 1 and 3, the test 2 has the deepest stack because the exception is inserted
during one of the functions called in the parsing.

We also have to consider that Machine 2, where the TwitterWorker in-
stantiating tweets was running, has less RAM memory than Machine 1. This
means that the operative system of Machine 1 will normally allow one of its
processes to use more RAM than one running in Machine 2.

6.7 Conclusion

In this chapter we analyzed different benchmarks we applied to evaluate our
solution.

The micro-benchmarks, executed on a simple application such as the buggy
observer prove that IDRA can be a valid alternative to the Pharo Remote
Debugger:

� Benchmark 1 shows that the initialization time for a session is bigger,
but because of the queue-handling of exceptions that is not present on
the Pharo Remote Debugger.

� As analyzed with benchmark 2, all the debugging operations are around
one thousand times faster on IDRA then on the Pharo Remote Debugger,
because they do not involve any network communication.

The network overhead benchmarks show good performance comparing IDRA
to the Pharo Remote Debugger:

CHAPTER 6. EVALUATION 91

� Benchmark 3 shows that on a small stack like the one considered for the
buggy observer, the amount of network communication in IDRA is lower
than in the Pharo Remote Debugger.

� The amount of network communication when executing basic code changes
is around ten times lower in IDRA than in the Pharo Remote Debugger,
as measured in benchmark 4.

We then applied the IDRA overhead benchmarks on the SMark benchmarks
and the Yesplan testing scenarios. The results show that:

� Benchmark 5 proves that IDRA does not introduce considerable overhead
to a normal execution.

� With benchmark 6 we measured that the execution of the tests becomes
slower when adding failures. The overhead increases when increasing the
number of failures.

Finally, the IDRA scalability test (benchmark 7) shows that IDRA is pretty
robust handling (without user interaction) between five and ten thousand ex-
ceptions.

Overall, these benchmarks show that IDRA is improvable on some points,
like time of the serialization or maximum number of exception handled, but
they also show that it is usable in practice with better results, on some bench-
marks, than the Pharo Remote Debugger.

In the next chapter we will give a final overview of the problem statement.
We will then briefly give and overview of IDRA and present some limitations
and future work.

92 CHAPTER 6. EVALUATION

Chapter 7

Conclusion

In this thesis we studied the problem of debugging applications that should not
be stopped, such as data intensive applications and long running systems. To
this end, we employed three different non-stoppable applications. The twitter
analyzer scenario is a data intensive application which continuously analyzes
tweets retrieved from an internet stream. The Yesplan testing scenario is a test
running environment for the testing process of the Belgian company Yesplan,
requiring the execution of long-lived tests which depend on non-deterministic
data. The sensor monitoring scenario is an example of cyber physical system,
which preforms reading operations on a sensor.

In what follows, we first revisit our problem statement, and then introduce
the main highlights of IDRA, an implementation of the proposed out-of-place
debugging technique for non-stoppable applications. We then recapitulate the
evaluation our work based on the three aforementioned scenarios. We then
draw final conclusions of this thesis analyzing contributions, limitations and
future work.

7.1 Problem statement revisited

To debug non-stoppable applications we propose a new model of debugging
remote applications, called out-of-place debugging. This debugging technique
allows to remotely debug different processes, without stopping their execution
when a failure happens. Out-of-place debugging introduces a new approach in
the debugging techniques of those applications, and distinguishes three differ-
ent phases a debugging session consists of:

Handle exceptions and breakpoints. On a remote machine, when an ex-
ception or a breakpoint is found, the debugger extracts the necessary
information to debug and resumes the execution of the program.

93

94 CHAPTER 7. CONCLUSION

Reconstruct exception and breakpoints. Debugging information is trans-
ferred to the developer’s environment, allowing her developer to debug
the problem locally.

Fix the code and atomically commit them. The developer can, if he de-
sires to, produce a fix in the code and commit all related changes changes
to the remote machine. Then the executions suspended because of the
breakpoint or exceptions are resumed.

In short, out-of-place debugging allows developers to debug program ex-
ecution for a task in a different machine but on the environment where it
happened. The developer can locally modify the application without affecting
the execution of the machine where it was triggered, while using traditional
on-line debugging features like stack inspection and step-by-step execution.

7.2 IDRA: An Out-of-place Debugger

We implemented out-of-place debugging in IDRA, a debugger for non-stoppable
applications written in Pharo. In this section we will give an overview of the dif-
ferent concepts of IDRA, namely the IDRA Debugger and the IDRA Changes
Handler, independently of the concrete implementation in Pharo.

7.2.1 The IDRA debugger

The IDRA debugger is the component of IDRA that traps exceptions and
manage all the debugging operations. The IDRA debugger has two main
subcomponents:

IDRA Monitor. The IDRA Monitor Runs in the same process than the
debugged application. It captures all unhandled exceptions happening
on the debugged process. When it captures an exception, it suspends the
failing process that produced it and pushes the exception in a queue for
later processing. Regularly, it sends the queued exceptions to an IDRA
Manager. A transferred exceptions includes:

� The stack trace of the failed process, from the top of the stack to
the point where the exception was generated.

� All objects reachable from such stack, including the ones referenced
by local and global variables.

This way of handling exceptions allows the machine to continue executing
other processes, without being influenced by the debugging operations.

CHAPTER 7. CONCLUSION 95

IDRA Manager. The IDRA Manager runs in the developer’s machine and
is connected to one or more IDRA Monitor instances, listening for incom-
ing exceptions. When an exception arrives, it reconstructs a debugging
session on it with the debugging information transferred by the IDRA
Monitor. The constructed debugging session allows to debug the same
code and data that produced the exception, without influencing the re-
mote machine where it happened. This is the core concept of out-of-place
debugging.

If another exception arrives while another session is still open, it is en-
queued for later processing. Enqueued exceptions will be debugged after
the previous exception has been debugged.

A graphical interface offers a clear view of the incoming exceptions.

Both IDRA Monitor and IDRA Manager are able to handle breakpoints in
an analogue way as exceptions (Section 4.2.3).

7.2.2 IDRA changes handler

The IDRA changes handler is responsible of recording all changes that a user
makes to his code-base, and to propagate them to all the machines connected to
it. It records all the changes made by the developer to an object oriented code
base, including addition, changes and removal of classes, methods, instance
variables and class variables. It stores all changes done during a debugging
session until the developer decides to propagate them. At that moment all
session changes are sent to all IDRA changes handlers that are connected to
it.

When the remote IDRA Changes Handler instances receive a set of changed
from the developer’s side, they apply all the changes in order updating their
code base.

This allows a developer to debug its exception and change the code base on
his machine, as if he was developing the application locally. All the changes he
makes are applied in the same moment when the developer decides it, allowing
him to test his solution before deploying to all the other nodes of the system.

7.2.3 Evaluation

We evaluated IDRA in two different ways. First, we demostrated that IDRA
can be applied to three different case studies that are representative of non-
stoppable applications. Second, we conducted different benchmarks to assess

96 CHAPTER 7. CONCLUSION

the feasibility of our approach and compare it to state of the art remote de-
bugging techniques. To this end, we use the concrete implementation of an
out-of-place debugger in Pharo.

We measured the execution overhead introduced in a normal application,
testing its maximum charge, and comparing its performance against the Pharo
Remote Debugger [Kud]. Our measurements show that IDRA introduces neg-
ligible overhead on the running time of applications which do not have errors.
When failures are present, like in the tests use case, the overhead is more visi-
ble, since it takes on average 50% more time to execute the tests of a package
when there are 10% of failures. We observed also that IDRA can be heav-
ily charged with exceptions, because it is only limited to the virtual machine
memory size limit and the memory assigned to the process by the operating
system.

In comparison to Pharo’s Remote Debugger, our evaluation shows that
IDRA’s implementation in Pharo has a higher session initialization time than
the Pharo remote debugger, due to the presence of the queue in which all
the exceptions are added before a debugging session is opened. On the other
hand all debugging operations (e.g., stepping into, over, resuming) are on
average around one thousand times faster on IDRA then on the Pharo Remote
Debugger. We also observed that the amount of data exchanged for exchanging
exceptions with a small stack is more than five times lower in IDRA then in the
Pharo Remote Debugger. Overall, IDRA is comparable to the Pharo Remote
Debugger, and offers room for improvement when coming to overhead in the
execution.

7.3 Contributions

This thesis makes the following contributions:

1. We identify the debugging characteristics of what we called non-stoppable
applications, applications that remotely execute time and data-sensitive
processes. These applications cannot be stopped to be debugged, nor
cannot fail and stop working.

2. We propose and implement a debugging technique called out-of-place de-
bugging to remotely debug such non-stoppable applications. In contrast
to traditional remote debugging, this technique allows to debug a fail-
ure that happened remotely in an another machine reconstructing there
the necessary runtime environment. The use of a different environment
makes it possible for the different processes of the application to con-

CHAPTER 7. CONCLUSION 97

tinue working, while the debugging and code change for bug fix a faulty
process happens on a different machine.

3. We implement the out-of-place debugging model in IDRA, a debugger
specifically designed for non-stoppable applications written in Pharo. It
can handle multiple exceptions, enqueueing them, and allows the use of
classic online debugging techniques, introducing two kind of breakpoints
and different ways to handle exceptions.

4. We demonstrate that IDRA is a good alternative to state of the art re-
mote debuggers, in particular, PharmIDE [Kud], the last implementation
of Mercury [PBFD15]. In fact it outperforms PharmIDE on execution
time of debugging operations, being one thousand times faster, on aver-
age. on the applications presented in this thesis. Although, IDRA intro-
duces a negligible overhead to the execution of a program and shows a
consistent overhead when comparing the initialization time of a debug-
ging session to PharmIDE.

5. As technical contribution in the Pharo community, we provide an im-
plementation of a framework for the master/worker distributed archi-
tecture. This framework allows to construct distributed applications
following the master/worker architecture in Pharo, abstracting the com-
munication between the different nodes.

7.4 Limitations and future work

In this section we analyze some limitations of the IDRA prototype in Pharo
and future work.

Local Resources Unavailability

In our prototype, external resources (such as local files, sensors at the local
machine’s hardware) are not shared between the IDRA Manager and the IDRA
Monitors. When debugging directly (or via proxies) an exception that hap-
pened in the same machine this problem does not appear. On the other hand,
in our solution we reconstruct an environment on a separated machine, so we
could have a problem of resource unavailability.

For example, if a developer runs IDRA on the sensor monitoring applica-
tion, he has to avoid trying to access a sensor from the developer’s machine.
This is because the sensor is not physically present on the machine he is using
to debug, and a call to get information from it will fail. This problem does
This is a problem akin to code mobility, and many possible solutions can be

98 CHAPTER 7. CONCLUSION

found in the literature [FPV98]. For example proxies can be used for those
instances that cannot be reproduced.

Serialization

The serialization library used in this thesis (Fuel [DPDA11]), provides serial-
ization of all the objects reachable from a certain starting point, namely, in
our case, the exception and its context. While this is a desirable property for a
serializer, this may become problematic when employing it for an out-of-place
debugger. Indeed, some times the object graph reachable when execution stops
at an exception or breakpoint, may have references to global objects and in-
clude objects that the developer did not expect. Note that serialization has a
direct impact on the size of the exchanged stack traces.

Avoiding the serialization of such object can be solved analyzing and opti-
mizing the serialization process to handle better some references, for example
references to processes. For example in PharmIDE [Kud], the current im-
plementation of Mercury [PBFD15], the serialization process is optimized to
serialize proxies on the TCP network.

Network stability

Communication in our IDRA prototype happens over TCP/IP and we rely on
its mechanisms for network failure handling. This means a slow network or
machine can lead to errors because of too short timeouts. We did not imple-
ment any high level failure handling, nor a robust disconnection/re-connection
mechanism either. This might lead to stop the execution of IDRA.

In order to solve this problem, we could implement a better communi-
cation protocol to avoid using timeouts, and build an automatic system for
re-connection of disconnected nodes. Furthermore, adding a visualization of
the connected machines would help the developer to have a clearer view of the
system.

7.4.1 Future work

The technical future work plans are to make IDRA stable and usable, and
release it within the Pharo community. The issues of network stability and
serialization need to be tackled before doing so, but different improvements
are possible. For instance, a better handling of the queue, e.g. grouping
similar exceptions avoiding to transfer them multiple times, could significantly
reduce the communication overhead. Tackling the unavailability of resources
will make IDRA fully compliant with the applications it is designed to debug.

CHAPTER 7. CONCLUSION 99

In terms of out-of-place debugging, a querying system on the exception
queue would improve the debugging experience, especially when many excep-
tions are present. The debugging experience could also be improved with a
better visualization of the state of the debugger and of the different nodes,
and the jobs they are executing. Being in object oriented programming, we
would also like to extend the support of out-of-place debugging to shared state
applications.

Moreover, a deeper analysis of the different debugging features necessary
for data intensive applications is needed. We will then try to apply IDRA to
other real-world applications. Therefore, we have concrete plans with Yesplan
to use IDRA to debug their tests, in their real setup, and check, in practice, if
IDRA could help deal with the non-determinism of their tests.

We will also work to enforce an atomic and more dynamic application of
changes. To this extent we plan to continue working with Steven Costiou,
extending the sensor monitoring scenario to use a system of dynamic layers
adaptation that he his developing [CKDP17].

Finally, we plan to investigate if the mechanism underlying IDRA can be
used in broader contexts than debugging.

100 CHAPTER 7. CONCLUSION

Bibliography

[ABF05] Alex Abacus, Mike Barker, and Paul Freedman. Using test-driven
software development tools. IEEE Softw., 22(2):88–91, March
2005.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic concepts and taxonomy of dependable and secure
computing. IEEE Trans. Dependable Secur. Comput., 1(1):11–33,
January 2004.

[ANF03] Kento Aida, Wataru Natsume, and Yoshiaki Futakata. Distributed
computing with hierarchical master-worker paradigm for parallel
branch and bound algorithm. Proceedings - CCGrid 2003: 3rd
IEEE/ACM International Symposium on Cluster Computing and
the Grid, pages 156–163, 2003.

[Apaa] Apache. Apache giraph. http://giraph.apache.org/. Accessed:
2017-05-10.

[Apab] Apache. Apache spark. http://spark.apache.org/. Accessed:
2017-05-12.

[Apac] Apache. Hadoop. http://hadoop.apache.org. Accessed: 2017-
04-12.

[BNDP10] A.P. Black, O. Nierstrasz, S. Ducasse, and D. Pollet. Pharo by Ex-
ample. Open Textbook Library. Square Bracket Associates, 2010.

[Bra] Santiago Bragagnolo. Taskit. https://github.com/

sbragagnolo/taskit. Accessed: 2017-05-26.

[BU04] Gilad Bracha and David Ungar. Mirrors: Design principles for
meta-level facilities of object-oriented programming languages. In
Proceedings of the 19th Annual ACM SIGPLAN Conference on

101

 http://spark.apache.org/
http://hadoop.apache.org
https://github.com/sbragagnolo/taskit
https://github.com/sbragagnolo/taskit

102 BIBLIOGRAPHY

Object-oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA ’04, pages 331–344, New York, NY, USA, 2004.
ACM.

[CKDP17] Steven Costiou, Mickaël Kerboeuf, Marcus Denker, and Alain
Plantec. Unanticipated debugging with dynamic layers. Accepted
for publication (Apr. 2017), Live Adaptation of Software SYstems,
2017.

[DCD13] Martin Dias, Damien Cassou, and Stéphane Ducasse. Represent-
ing code history with development environment events. CoRR,
abs/1309.4334, 2013.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. Commun. ACM, 51(1):107–113, Jan-
uary 2008.

[DPDA11] Mart́ın Dias, Mariano Martinez Peck, Stéphane Ducasse, and
Gabriela Arévalo. Clustered serialization with fuel. In Proceedings
of the International Workshop on Smalltalk Technologies, IWST
’11, pages 1:1–1:13, New York, NY, USA, 2011. ACM.

[DZSS13] Ankur Dave, Matei Zaharia, Scott Shenker, and Ion Stoica. Arthur:
Rich post-facto debugging for production analytics applications.
Technical report, University of California, 2013.

[FDCD12] Danyel Fisher, Rob DeLine, Mary Czerwinski, and Steven Drucker.
Interactions with Big Data Analytics. ACM, 1072(5220):50–59,
2012.

[FPV98] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding code mo-
bility. IEEE Transactions on Software Engineering, 24(5):342–361,
May 1998.

[GAM+07] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe,
and Ion Stoica. Friday: Global comprehension for distributed re-
play. In Proceedings of the 4th USENIX Conference on Networked
Systems Design & Implementation, NSDI’07, pages 21–21,
Berkeley, CA, USA, 2007. USENIX Association.

[GASS06] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Re-
play debugging for distributed applications. In Proceedings of the
Annual Conference on USENIX ’06 Annual Technical Conference,
ATEC ’06, pages 27–27, Berkeley, CA, USA, 2006. USENIX Asso-
ciation.

BIBLIOGRAPHY 103

[GGSW08] I. Gorton, P. Greenfield, A. Szalay, and R. Williams. Data-
intensive computing in the 21st century. Computer, 41(4):30–32,
April 2008.

[GIY+16] Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo,
Sai Deep Tetali, Tyson Condie, Todd Millstein, and Miryung Kim.
Bigdebug: Debugging primitives for interactive big data processing
in spark. In Proceedings of the 38th International Conference on
Software Engineering, ICSE ’16, pages 784–795, New York, NY,
USA, 2016. ACM.

[GKYL01] Jean-Pierre Goux, Sanjeev Kulkarni, Michael Yoder, and Jeff Lin-
deroth. Master–Worker: An Enabling Framework for Applications
on the Computational Grid. Cluster Computing, 4(1):63–70, 2001.

[GNU] GNU. The gnu project debugger. https://www.gnu.org/

software/gdb/. Accessed: 2017-04-14.

[GNV+11] Elisa Gonzalez Boix, Carlos Francisco Noguera Garcia, Tom Van
Cutsem, Wolfgang De Meuter, and Theo D’Hondt. Reme-d: a re-
flective, epidemic message-oriented debugger for ambient-oriented
applications. In SAC’11 The 2011 ACM Symposium on Applied
Computing, volume 2, pages 1275–1281, New York, NY, USA, 4
2011. ACM.

[Gol84] Adele Goldberg. SMALLTALK-80: The Interactive Programming
Environment. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1984.

[Got09] Chris Gottbrath. Deterministically troubleshooting network appli-
cations. Technical report, TotalView Technologies, April 2009.

[HS01] Brent Hailpern and Padmanabhan Santhanam. Software debug-
ging, testing, and verification. IBM SYSTEMS JOURNAL, 41:4–
12, 2001.

[JYB11] V. Jagannath, Z. Yin, and M. Budiu. Monitoring and debugging
dryadlinq applications with daphne. In 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and
Phd Forum, pages 1266–1273, Anchorage, AK, USA, May 2011.

[Kud] Denis Kudriashov. Pharmide: Pharo remote
ide to develop farm of pharo images remotely.
http://dionisiydk.blogspot.be/2017/01/pharmide-pharo-remote-
ide-to-develop.html. Accessed: 2017-05-10.

https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/

104 BIBLIOGRAPHY

[LCN16] Max Leske, Andrei Chiş, and Oscar Nierstrasz. A promising ap-
proach for debugging remote promises. In Proceedings of the 11th
Edition of the International Workshop on Smalltalk Technologies,
IWST’16, pages 18:1–18:9, New York, NY, USA, 2016. ACM.

[LDY13] Dionysios Logothetis, Soumyarupa De, and Kenneth Yocum. Scal-
able lineage capture for debugging disc analytics. In Proceedings of
the 4th Annual Symposium on Cloud Computing, SOCC ’13, pages
17:1–17:15, New York, NY, USA, 2013. ACM.

[Lew03] Bil Lewis. Debugging backwards in time. CoRR, cs.SE/0310016,
2003.

[LMC87] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel
programs with instant replay. IEEE Trans. Comput., 36(4):471–
482, April 1987.

[Mae87] Pattie Maes. Concepts and experiments in computational reflec-
tion. SIGPLAN Not., 22(12):147–155, December 1987.

[Mar] Stefan Marr. Smark. http://smalltalkhub.com/#!

/~StefanMarr/SMark. Accessed: 2017-06-01.

[MH89] Charles E. McDowell and David P. Helmbold. Debugging con-
current programs. ACM Comput. Surv., 21(4):593–622, December
1989.

[Mica] Microsoft. Dryadlinq. https://www.microsoft.com/en-
us/research/project/dryadlinq/. Accessed: 2017-05-10.

[Micb] Microsoft. Remote debugging. https://msdn.microsoft.com/

en-us/library/y7f5zaaa.aspx. Accessed: 2017-05-12.

[MM80] D. R. McGregor and J. R. Malone. Stabdumpa dump interpreter
program to assist debugging. Software: Practice and Experience,
10(4):329–332, 1980.

[Net93] Robert H. B. Netzer. Optimal tracing and replay for debug-
ging shared-memory parallel programs. In Proceedings of the
1993 ACM/ONR Workshop on Parallel and Distributed Debug-
ging, PADD ’93, pages 1–11, New York, NY, USA, 1993. ACM.

[Oraa] Oracle. Jdi - java debug interface.
http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/ in-
dex.html. Accessed: 2017-05-10.

http://smalltalkhub.com/#!/~StefanMarr/SMark
http://smalltalkhub.com/#!/~StefanMarr/SMark
 https://msdn.microsoft.com/en-us/library/y7f5zaaa.aspx
 https://msdn.microsoft.com/en-us/library/y7f5zaaa.aspx

BIBLIOGRAPHY 105

[Orab] Oracle. Jpda - java platform debugger architecture.
http://docs.oracle.com/javase/7/ docs/technotes/guides/jpda/.
Accessed: 2017-05-10.

[Pac11] David Pacheco. Postmortem Debugging in Dynamic Environ-
ments. Commun. ACM, 54(12):44–51, 2011.

[Pap13] Nikolaos Papoulias. Remote Debugging and Reflection in Resource
Constrained Devices. Theses, Université des Sciences et Technolo-
gie de Lille - Lille I, December 2013.

[PBFD15] Nick Papoulias, Noury Bouraqadi, Luc Fabresse, and Marcus
Denker. Mercury: Properties and Design of a Remote Debugging
Solution using Reflection. Journal of Object Technology, 14(2):36,
2015.

[PDB+15] Guillermo Polito, Stéphane Ducasse, Noury Bouraqadi, Luc Fab-
resse, and Max Mattone. Virtualization support for dynamic core
library update. In 2015 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Soft-
ware (Onward!), Onward! 2015, pages 211–223, New York, NY,
USA, 2015. ACM.

[Pha] Pharo. Pharo smalltalk. http://pharo.org/. Accessed: 2017-04-
14.

[Pro] Selenium Project. Selenium - browser automation.
http://www.seleniumhq.org/. Accessed: 2017-05-10.

[PrT09] Guillaume Pothier and ric Tanter. Back to the future: Omniscient
debugging. IEEE Software, 26:78–85, 2009.

[RK98] M. A. Ronsse and D. A. Kranzlmuller. Roltmp-replay of lam-
port timestamps for message passing systems. In Parallel and
Distributed Processing, 1998. PDP ’98. Proceedings of the Sixth
Euromicro Workshop on, pages 87–93, Madrid, Spain, Jan 1998.

[SL05] Herb Sutter and James Larus. Software and the concurrency rev-
olution. Queue, 3(7):54–62, September 2005.

[SSK+15] Semih Salihoglu, Jaeho Shin, Vikesh Khanna, Ba Quan Truong,
and Jennifer Widom. Graft: A debugging tool for apache giraph. In
Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’15, pages 1403–1408, New
York, NY, USA, 2015. ACM.

http://pharo.org/

106 BIBLIOGRAPHY

[Twi] Twitter. Twitter streaming public api. https://dev.twitter.

com/streaming/public. Accessed: 2017-04-14.

[WCS02] Xingfu Wu, Qingping Chen, and Xian-He Sun. Design and devel-
opment of a scalable distributed debugger for cluster computing.
Cluster Computing, 5(4):365–375, 2002.

[WPP+14] Yan Wang, Harish Patil, Cristiano Pereira, Gregory Lueck, Ra-
jiv Gupta, and Iulian Neamtiu. Drdebug: Deterministic replay
based cyclic debugging with dynamic slicing. In Proceedings of
Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’14, pages 98:98–98:108, New York, NY,
USA, 2014. ACM.

[Yes] Yesplan. Yesplan. http://www.yesplan.be. Accessed: 2017-04-
14.

[ZCD+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedings of
the 9th USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA, USA, 2012.
USENIX Association.

[Zin] Zinc. Zinc. http://zn.stfx.eu/zn/index.html. Accessed: 2017-
05-26.

https://dev.twitter.com/streaming/public
https://dev.twitter.com/streaming/public
http://www.yesplan.be
http://zn.stfx.eu/zn/index.html

	Introduction
	Research Context: Big Data Processing
	Case Studies

	Research Problem: Debugging non-stoppable applications
	IDRA: an out-of-place debugger
	Structure of this thesis

	Motivation
	Data Intensive Applications
	Long Running Systems
	Non-stoppable applications
	Motivating examples
	Use Case 1: Twitter Analyzer
	Use Case 2: Yesplan Testing
	Use Case 3: Sensor Monitoring
	Conclusion

	State of the Art
	Offline Debugging
	Online Debugging

	Remote debugging
	Online remote debuggers

	Debugging non-stoppable applications
	Offline debugging
	Online debugging
	BigDebug

	Problem Statement
	Conclusion

	A distributed programming model for Pharo
	Master/Worker Architecture
	Design and Implementation of Master/Worker Framework in Pharo
	Communication between Master and Worker
	Scheduling tasks on the Worker

	Conclusion

	IDRA
	IDRA's Overview
	Debugger monitor and manager

	Handling exceptions or breakpoints
	IDRA Monitor
	IDRA Manager
	Breakpoints

	Reconstructing exceptions or breakpoints
	Handling the state

	Fixing and committing
	IDRA Changes Handler
	Applying changes
	Detected changes
	Restarting
	Atomicity of changes

	Overview of IDRA architecture
	IDRA front-end in Pharo
	Interacting with the exception queue of IDRA

	Conclusion

	Implementation
	Communication architecture
	Communication layer
	Communication protocol

	IDRA Debugger
	Breakpoints and exception handlers

	IDRA Changes Handler
	Changes detection tool

	Conclusion

	Evaluation
	Benchmarking scenarios
	Twitter analyzer
	Yesplan testing
	Sensor monitoring application
	Buggy observer

	Evaluation overview and setup
	Benchmark setup
	Benchmark framework
	SMark benchmarks

	Micro-Benchmarks
	Setup
	Benchmarks
	Results

	Network overhead benchmarks
	Setup
	Benchmarks
	Results

	IDRA overhead benchmarks
	Setup
	Benchmarks
	Results

	IDRA scalability test
	Setup
	Benchmark 7 - IDRA scalability test
	Results

	Conclusion

	Conclusion
	Problem statement revisited
	IDRA: An Out-of-place Debugger
	The IDRA debugger
	IDRA changes handler
	Evaluation

	Contributions
	Limitations and future work
	Future work

