
Poster: Static Analysis of Concurrent Higher-Order
Programs

Quentin Stievenart, Jens Nicolay, Wolfgang De Meuter, Coen De Roover
Software Languages Lab

Vrije Universiteit Brussel, Belgium
{qstieven,jnicolay,wdmeuter,cderoove}@vub.ac.be

Abstract—Few static analyses support concurrent higher-order
programs. Tools for detecting concurrency bugs such as deadlocks
and race conditions are nonetheless invaluable to developers.
Concurrency can be implemented using a variety of models,
each supported by different synchronization primitives. Using
this poster, we present an approach for analyzing concurrent
higher-order programs in a precise manner through abstract
interpretation. We instantiate the approach for two static analyses
that are capable of detecting deadlocks and race conditions in
programs that rely either on compare-and-swap (cas), or on
conventional locks for synchronization. We observe few false
positives and false negatives on a corpus of small concurrent
programs, with better results for the lock-based analyses. We
also observe that these programs lead to a smaller state space to
be explored by the analyses. Our results show that the choice of
synchronization primitives supported by an abstract interpreter
has an important impact on the complexity of the static analyses
performed with this abstract interpreter.

I. INTRODUCTION

It is difficult to find concurrency bugs such as deadlocks
and race conditions by hand. An exponential number of thread
interleavings needs to be explored. Higher-order programming
features, such as functions taking others as arguments, exac-
erbate this difficulty. The need for tool support increases as
these features become more widespread.

The AAM approach to abstract interpretation [9] provides
a theoretical foundation for this support. It has already
been adapted to concurrent programs [6], giving rise to the
P(CEK⋆)S machine that features support for multiple threads
of execution (i.e., through primitives spawn and join), as
well as for their synchronization through a compare-and-swap
primitive (i.e., cas). In addition to supporting higher-order
features, its qualities include conciseness and extensibility.

We extend the P(CEK⋆)S machine with first-class support
for locks as a synchronization primitive and demonstrate its
applicability as the foundation for two client analyses that
detect deadlocks and race conditions [8]. The corresponding
implementations are publicly available1.

II. FOUNDATION

We observed that the P(CEK⋆)S machine only scales to
small concurrent programs (around 60 lines of code with 3
threads). This is due to the state explosion problem, also

1https://github.com/acieroid/pcesk

shared by model checking techniques that support concur-
rent programs. Since every thread interleaving is computed,
exploring the corresponding state space quickly becomes
intractable. Research on this problem in the area of model
checking (cf. [4]) has lead to techniques such as partial-
order reduction [7], binary decision diagrams [3], and bounded
model checking [1]. However, we leave incorporating these
techniques in the P(CEK⋆)S machine as future work.

Instead, we orthogonally address another source of com-
plexity in the generated state space: the synchronization
primitives supported by the abstract interpreter. The original
P(CEK⋆)S machine uses an atomic compare-and-swap syn-
chronization primitive, cas. This primitive works in a active
way: (cas v old new) will compare the content of the
variable v with the value old, and only if the content matches,
v will be updated to take the value of new. If the comparison
fails (e.g., due to a bad thread interleaving, which would
make the computation of new incorrect if based on the value
old), the update has to be tried again. This is how a shared
concurrent counter would be implemented using cas:

(letrec ((v 0)
(inc (lambda ()

(let ((old v) (new (+ old 1)))
(if (cas v old new)
#t ;; successful update
;; incorrect update (v != old),
;; try again
(inc))))))

[...])

The fact that a failing cas has to be retried over and over
until it eventually succeeds, leads to an increase in the size of
the state space where many states are generated only because
a cas is retried, and will not lead to real progress in the
program execution.

Another common synchronization mechanism is locking.
Locks can be simulated with cas, and no first-class language
support is necessary to use locks. The lock-based equivalent
of the shared concurrent counter example is shown below.

Based on the observations that cas introduces an overhead
in terms of number of states, and that most programs tend to
use locks instead of cas, we add first-class support for locks
to the P(CEK⋆)S machine. This way, the abstract interpreter
no longer needs to analyze a low-level library implementation
of locking in terms of cas. A lock can be either #locked or
#unlocked. It can be acquired with the acquire primitive,

(letrec ((v 0)
(a-lock #unlocked)
(inc (lambda ()

(acquire a-lock)
(set! v (+ v 1))
(release a-lock))))

[...])

which blocks the current thread until the lock is acquired. Once
acquired, a lock can be released with the release primitive.

III. CLIENT ANALYSES

One can design static analyses for concurrent programs as
an exploration of the state space generated by the P(CEK⋆)S
machine. We have formulated analyses for detecting deadlocks
and race conditions, each for programs using cas and for
programs using first-class locks [8]. We have observed that
analyses for programs making use of locks are more straight-
forward to formulate. For example, the race condition analysis
with locks is equivalent to a conflict analysis. With cas, the
conflict analysis has to be augmented by another analysis to
catch a source of race conditions not present with locks.

IV. EVALUATION

We tested our client analyses on a small number of con-
current programs exhibiting various situations of deadlocks
and race conditions. The results are given in Table I. Lock-
based analyses tend to be able to handle programs with more
threads and locks, and have fewer false positives when dealing
with deadlocks. The only false positive found by both race
condition analyses is a benign race condition which has no
effect on the outcome of the programs, and it is arguable
whether this instance of race condition should be detected.

TABLE I
RESULTS OF THE DEADLOCK AND RACE CONDITION ANALYSES.

Deadlock Race Condition
Analysis Analysis
cas locks cas locks

Input programs 6 7 8 6
Max. LOC 65 58 45 52
Max. threads 3 4 3 4
Max. locks 2 3 – 1
Max. states 234962 3829 8845 3829
Defects 7 5 7 2
Found 6 5 6 2
False positives 2 0 1 1

Since locks are a blocking synchronization technique, pro-
grams using locks generate smaller state spaces. Indeed, a
thread waiting to acquire a lock will be blocked, and will not
introduce any new states until it can acquire the lock, whereas
it would have introduced new states if cas were used. We
verify that this is actually the case by measuring the state
space size of similar programs implemented once using cas,
and once using locks. We identify that the switch from cas
to locks leads to around one order of magnitude improvement,
and up to three orders of magnitude improvement in the
number of states. This improvement allows the analysis to
support more complex programs, involving more threads.

V. CONCLUSION

Our poster presents the P(CEK⋆)S machine and its design
based on the CESK machine. The different synchronization
mechanisms supported (cas and locks) are introduced through
examples. We show that switching from cas to first-class
locks in the analyzed programs can lead to a reduction of
the state space of around one order of magnitude, and up to
three orders of magnitude. We also introduce our deadlock and
race condition analyses.

This approach of performing static analysis for concurrent
programs has the advantage of supporting higher-order pro-
grams, unlike most existing concurrent static analyses. It also
outputs a precise state graph that over-approximates executions
of the program. One downside of this approach is the size of
the state graph (up to 106 states in our examples), which is
subject to the state explosion problem, as concurrent model
checkers are. However, it allows a relatively straightforward
formulation of static analyses, such as our deadlock and race
condition analyses.

Future work includes tackling the state explosion problem
to improve the analysis’ scalability to support programs of a
complexity closer to real-world applications. We aim to reduce
the size of the state space further, by adapting techniques that
have been proven useful in the context of model checking (e.g.,
to verify models of up to 2120 states [2]). One such technique
is cartesian partial-order reduction [5], which is formulated in
a manner close to abstract interpretation.

Adapting the P(CEK⋆)S machine to more precise abstract
interpretation models (e.g., pushdown-based models) could
improve the precision of the derived states, but requires a non
straightforward adaptation. Finally, adapting the P(CEK⋆)S
machine to other concurrency models and other synchroniza-
tion primitives could lead to further improvements and new
insights.

REFERENCES

[1] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman,
and Yunshan Zhu. Bounded model checking. Advances in computers,
58:117–148, 2003.

[2] Jerry Burch, Edmund M Clarke, and David Long. Symbolic model check-
ing with partitioned transition relations. Computer Science Department,
page 435, 1991.

[3] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill,
and Lain-Jinn Hwang. Symbolic model checking: 10 20 states and
beyond. In Logic in Computer Science, 1990. LICS’90, Proceedings.,
Fifth Annual IEEE Symposium on e, pages 428–439. IEEE, 1990.

[4] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Progress on the state explosion problem in model checking. In
Informatics, pages 176–194. Springer, 2001.

[5] Guy Gueta, Cormac Flanagan, Eran Yahav, and Mooly Sagiv. Cartesian
partial-order reduction. Springer, 2007.

[6] Matthew Might and David Van Horn. A family of abstract interpretations
for static analysis of concurrent higher-order programs. In Static Analysis,
pages 180–197. Springer, 2011.

[7] Doron Peled. Ten years of partial order reduction. In Computer Aided
Verification, pages 17–28. Springer, 1998.

[8] Quentin Stievenart. Static analysis of concurrent constructs in higher-
order programs. Master’s thesis, Université Libre de Bruxelles, Belgium,
2014.

[9] David Van Horn and Matthew Might. Abstracting abstract machines. In
ACM Sigplan Notices, volume 45, pages 51–62. ACM, 2010.

Static analysis of concurrent higher-order programs
Quentin Stievenart, Jens Nicolay, Wolfgang De Meuter, Coen De Roover

{qstieven,jnicolay,wdmeuter,cderoove}@vub.ac.be
Software Languages Lab, Vrije Universiteit Brussel, Belgium

Context: concurrent higher-order languages
Multi-threaded execution in a Scheme variant:

;; Creating a thread
(let ((t (spawn (fib 12)))
 [...])
;; Waiting for a thread to finish
(join t)

Synchronization primitives:
;; Concurrent counter implemented with cas
;; (atomic compare-and-swap)
(let ((v 0)
 (inc (lambda ()
 (let ((old v)
 (new (+ old 1)))
 (if (cas v old new)
 ;; success, finish
 #t
 ;; failure because v != old, retry
 (inc))))))
 [...])

;; Concurrent counter implemented with locks
(let ((v 0)
 (a-lock #unlocked)
 (inc (lambda ()
 (acquire a-lock)
 (set! v (+ v 1))
 (release a-lock))))
 [...])

References

[1] Matthew Might and David Van Horn. "A family of abstract interpretations for static analysis
of concurrent higher-order programs." Static Analysis. Springer Berlin Heidelberg, 2011.

[2] Quentin Stievenart. "Static Analysis of Concurrency Constructs in Higher-Order Programs.",
Master's Thesis, Université Libre de Bruxelles, 2014.

{1: {+}}

{1: {#<primitive +>}}

1

{1: {+}

2: {+}}

{1: {+}

2: {#<primitive +>}}

2

{1: {#<primitive +>}

2: {+}}

1

{1: {+}

2: {1}}

{1: {+}

2: {Int}}

2

{1: {#<primitive +>}

2: {1}}

1

{1: {+}

2: {2}}

{1: {+}

2: {Int}}

2

{1: {#<primitive +>}

2: {2}}

1

{1: {+}

2: {(+ 1 2)}}

2

{1: {#<primitive +>}

2: {(+ 1 2)}}

1

{1: {+}

2: {Int}}

2

{1: {#<primitive +>}

2: {Int}}

1

2

{1: {#<primitive +>}

2: {Int}}

1

2

{1: {#<primitive +>}

2: {Int}}

1

2

{1: {#<primitive +>}

2: {#<primitive +>}}

1

{1: {3}}

{1: {(+ (join t) 3)}}

1

{1: {(+ (join t) 3)}

2: {+}}

1

{1: {(+ (join t) 3)}

2: {#<primitive +>}}

2

{1: {(+ (join t) 3)}

2: {1}}

1

{1: {(+ (join t) 3)}

2: {Int}}

2

{1: {(+ (join t) 3)}

2: {2}}

1

{1: {(+ (join t) 3)}

2: {Int}}

2

{1: {(+ (join t) 3)}

2: {(+ 1 2)}}

1 2

{1: {(+ (join t) 3)}

2: {Int}}

1 2

1 2

1 2

1 2

{1: {(letrec ((t (spawn (+ 1 2)))) (+ (join t) 3))}}

{1: {(spawn (+ 1 2))}}

1

{1: {#<thread 2>}

2: {(+ 1 2)}}

1

{1: {(join t)}}

{1: {Int}}

1

{1: {(join t)}

2: {+}}

{1: {(join t)}

2: {#<primitive +>}}

2

{1: {(join t)}

2: {1}}

{1: {(join t)}

2: {Int}}

2

{1: {(join t)}

2: {2}}

{1: {(join t)}

2: {Int}}

2

{1: {(join t)}

2: {(+ 1 2)}}

2

{1: {(join t)}

2: {Int}}

2

2

2

2

1

{1: {#<thread 2>}}

1

{1: {#<thread 2>}

2: {+}}

1

{1: {#<thread 2>}

2: {#<primitive +>}}

2

{1: {#<thread 2>}

2: {1}}

1

{1: {#<thread 2>}

2: {Int}}

2

{1: {#<thread 2>}

2: {2}}

1

{1: {#<thread 2>}

2: {Int}}

2

1 2

{1: {#<thread 2>}

2: {Int}}

1 2

1 2

1 2

1 2

1

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

Example state graph for a very small multithreaded program.

Problem: performing static analysis
 • State space explosion due to thread interleaving.
 • How to reason about higher-order features?
 • How to detect different concurrency bugs ?

1

10

10²

10³

10⁴

10⁵

pcounter1

pcounter

pcounter5-seq

producer-consumer-seq

deadlock1

deadlock1-release

deadlock

PCESK cas
PCESK locks

Results

Number of states generated when analyzing concurrent
programs with a certain synchronization primitive.

Complexity.
 • Contribution: switching from cas to locks reduces state space by up to 3 orders of
 magnitude [2].
 • Cause:
 • cas is an active way of performing synchronization, generates many states,
 • acquiring a lock blocks a thread, preventing it from generating further states.
 • Still only scales to small concurrent programs
 (future work: adapt state space reduction techniques from model checking)

Precision and scalability.
 • Contribution: adding first-class support for locks improves accuracy [2].

Detect read-write conflicts by searching for a
state (grouping multiple threads) that
contains simultaneous read and write

Race condition detection
A race condition occurs when the result of a computation depends on the thread interleaving.

Same as for locks, except that a subgraph has to
be found in which there is no back edge from the
failure state to the cas itself.

Approach: the P(CEK)S abstract machine
The P(CEK)S machine [1] is a static analysis technique
 • based on abstract interpretation
 • that supports higher-order programs
 • that supports concurrent programs.

• models a single-threaded machine

• supports the base language (Scheme)

• transition function

control: C
environment: E

store: S
continuation: K

P(
 C
 E
 K)
S shared store

set of threads

• models a multi-threaded machine with a shared store

• first-class support for spawn, join, cas,
 but not yet for locks (acquire, release)

• transition function , defined in terms of

From , we compute a state graph over-approximating every feasible path

Client analyses: cas vs. locks

Deadlock detection

Search for a loop within the state graph that has
no success branch out of cas.

t1:(cas v old new)

1:#f

...

failure state
1:#t

success state

11

Search for a state (grouping multiple threads)
simultaneously evaluating acquires and
joins that has no successors.

t1:(join t2)
t2:(join t3) ;; holds lock l
t3:(acquire l)

state without any successor

1
2
3

t1:(cas v old new)

t1:#f

...

failure state
t1:#t

success state

11

t1:(set! v 1)
t2:v

t1:#undefined
t2:v

t1:#undefined
t2:1

t1:(set! v 1)
t2:0

t1:#undefined
t2:0≠

1

1

2

2

With cas: With locks:

With cas: With locks:

Contribution: adding first-class support for locks to the P(CEK)S machine simplifies formulating
client analyses [2].

A deadlock occurs when the computation does not make any progress.

Implementation available at https://github.com/acieroid/pcesk

cas locks cas locks
Input programs 6 7 8 6
Max size (LOC) 65 58 45 52
Max threads 3 4 3 4
Max locks 2 3 - 1
Defects 7 5 7 2
Found 6 5 6 2
False positives 2 0 1 1

Deadlock
Analysis

Race Condition
Analysis

