
A Logic Foundation for a General-Purpose History
Querying Tool.

Reinout Stevens1,1, Coen De Roover1,2, Carlos Noguera1,3, Andy Kellens1,2,
Viviane Jonckers1

aVrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

Abstract

Version control systems (VCS) have become indispensable software develop-
ment tools. The version snapshots they store to provide support for change
coordination and release management, effectively track the evolution of the ver-
sioned software and its development process. Despite this wealth of historical
information, it has only been leveraged by tools that are dedicated to a spe-
cific task such as empirical validation of software engineering practices or fault
prediction. General-purpose tool support for reasoning about the historical in-
formation stored in a version control system is limited. This paper provides a
comprehensive description of a logic-based, general-purpose history query tool
called Absinthe. Absinthe supports querying versioned Smalltalk system us-
ing logic queries in which quantified regular path expressions are embedded.
These expressions lend themselves to specifying the properties that each indi-
vidual version in a sequence of successive software versions ought to exhibit. To
demonstrate the general-purpose nature of our history query tool, we use it to
verify development process constraints, to identify temporal bad smells and to
answer questions that developers commonly ask. Finally, we compare a query
written in Absinthe to an equivalent one written in Smalltalk.

1. Introduction

Version control systems (e.g., CVS, Subversion, Git and Mercurial) have
become indispensable software development tools. They enable a developer
to work on a private copy of a jointly developed project and provide support
for merging changes with the contributions of other team members later on. As
these systems track the history of a project, they contain a wealth of information
that can be leveraged by other software engineering tools.

Email addresses: resteven@vub.ac.be (Reinout Stevens), cderoove@vub.ac.be (Coen
De Roover), cnoguera@vub.ac.be (Carlos Noguera), akellens@vub.ac.be (Andy Kellens),
vejoncke@soft.vub.ac.be (Viviane Jonckers)

1Funded by a doctoral scholarship provided by “IWT Vlaanderen”.
2Funded by the Stadium SBO project funded by “IWT Vlaanderen”.
3Funded by the AIRCO project of “FWO Vlaanderen”.

Preprint submitted to Elsevier November 19, 2014

This information is potentially of use to several stakeholders. Developers
spend a significant amount of time understanding source code before altering
it. They need to find answers to questions such as “why were these changes
introduced?” or “who modified this piece of code most?” [1, 2] that require
information about the history of the source code. Managers might need to ver-
ify whether a development team obeyed all imposed process constraints. The
questions they need answered include “has the team correctly applied test-driven
development?” and “were all changes to the system after its beta release correc-
tive only?”. Finally, researchers in the field of “Mining Software Repositories”
aim to peruse trends in the history of a system to, among others, predict future
defects [3], elicit co-changing entities [4], or to empirically validate engineering
practices (e.g., [5]).

Version control systems provide limited support for querying or browsing
the history information they store. For example, a user can only retrieve who
changed a particular line of code. As a result, software engineering tools are
increasingly being developed to answer the history queries of a particular stake-
holder. However, existing tools are dedicated to answering a predefined set of
queries and are not suited for answering others. There is therefore a need for
a general-purpose tool that answers questions about a system’s history, formu-
lated by the stakeholders themselves.

In earlier work [6], we introduced a novel logic-based approach to querying
the history of versioned software and instantiated it in a general-purpose tool
called Absinthe. We primarily focused on the identification of quantified reg-
ular path expressions [7] as a suitable mean for specifying which characteristics
the software should exhibit along successive versions. In this paper, we provide
a more comprehensive overview of Absinthe as a whole. In addition:

• We demonstrate the expressiveness and applicability of Absinthe us-
ing several representative history queries that answer questions of various
stakeholders. The examples stem from three application domains: verify-
ing development process constraints, answering developer questions and
identifying temporal bad smells.

• We discuss the advantages and disadvantages of using Absinthe over
Smalltalk by means of a query written in both languages.

This paper is structured as follows. Section 2 introduces our logic-based ap-
proach to history querying and its prototype instantiation Absinthe. Section 3
demonstrates Absinthe through history queries that answer questions of var-
ious stakeholders such as team leaders, software developers and tool builders.
Section 4 compares Absinthe to Smalltalk. Before concluding this paper, we
discuss the related work in Section 5.

2

2. Absinthe: A General-Purpose History Querying Tool

In this section, we introduce the Absinthe4 tool for answering questions
about the evolution of versioned software. These questions are specified as a
logic query that quantifies over a representation of the software’s version repos-
itory. As such, Absinthe is a tool in the tradition of logic program querying
—which has already proven itself suitable for answering questions about a single
software version. The expressiveness of the logic paradigm facilitates specifying
characteristics of sought after code.

2.1. A Logic Program Querying Foundation

Soul [8] provides the logic program querying foundation for Absinthe.
Soul is a Prolog-like language with dedicated features for querying code. Among
others, it features a symbiosis with Smalltalk. Soul variables can be bound
to logic as well as Smalltalk values. To this end, Soul supports embedding
Smalltalk expressions in logic queries. Absinthe relies on this feature to quan-
tify over its object-oriented repository representation (cf. Section 2.2).

We illustrate Soul by means of the following query:

1 if ?class isClassWithName: #Person,

2 ?method isMethodInClass: ?class,

3 ?method methodSendsMessage: ?msg,

4 ?implementer isMethodWithName: ?msg inClass: ?implementClass

The query detects all the methods that may be called by an instance of the
class Person. This is done by looking at all the instance methods of the class
Person, finding which messages these methods send, and finally finding a method
implementing this message. As Smalltalk is a dynamic language we cannot be
sure which of these methods are actually called at runtime.

The first condition of the query uses binary predicate isClassWithName:/2 to
bind variable ?class to the Person class. Note that the syntax for a predicate in
Soul closely resembles the one of Smalltalk for a message that is sent to the
first argument of the predicate. Logic variables start with a question mark. We
indicate the arity of a predicate by means of a suffix. Conditions are separated
by commas. The second condition of the query requires ?method to be one of the
methods of the Person class. The third condition binds variable ?msg to one of
the messages sent by ?method. The final condition quantifies over methods with
the name of this message, and the class in which they reside.

2.1.1. From Logic Program Queries to History Queries

The history of a versioned system can be represented as a directed acyclic
graph. The graph’s nodes represent individual versions of the software, while its
edges correspond to the successor relation between versions. Section 2.2 details
this history representation used by Absinthe.

4Absinthe can be downloaded from http://soft.vub.ac.be/SOUL/

3

To enable querying a graph-based history representation, Absinthe extends
the syntax and semantics of Soul with an intuitive formalism to quantify over
the paths through a graph: quantified regular path expressions [7]. Consisting
of logic conditions to which regular expression operators are applied, quantified
regular path expressions enable specifying which characteristics a system should
exhibit along the paths throughout its history representation. To this end, each
condition within a quantified regular path expression is implicitly evaluated
against a different version of the software. These conditions can use any predi-
cate from the existing Soul libraries. Section 2.2 discusses Absinthe’s use of
quantified regular path expressions in detail.

2.2. History Representation

Absinthe relies on an object-oriented representation of the history of a ver-
sioned software system called Ring [9]. Ring models this history as a directed
acyclic graph. The graph’s nodes represent individual software versions, while
edges represent the successor relation between two versions. Note that a node
can have multiple outgoing edges. This is the case for versions that initiate a
new branch in the software’s history. Nodes can also have multiple incoming
edges. This is the case for versions that resulted from the merge of different
branches.

History-specific information (i.e., time stamp, log message, author, revision
number) can be accessed for each version in the repository representation. In
addition, each version contains a snapshot of the source code in that particular
version. This snapshot contains:

• A coarse-grained representation of the software’s structure. Ring stores
information about the structural entities (i.e., packages, classes, interfaces,
fields and methods) declared in the source code and information about how
they are related (i.e., inheritance, containment). Similar to the HISMO
meta-model [10], each structural entity has a reference to the version of
the software in which it was defined.

• A reference to the complete source code of the version as stored in the
version control system. This code can be quantified over using one of the
existing predicate libraries for Soul.

To minimize the memory footprint of the history representation, Ring uses
the same object for an entity that remains unchanged across successive ver-
sions. To this end, an additional layer of indirection is introduced between
version snapshots and the objects that implement their structural source code
entities. Each structural entity is assigned a unique identifier. All entity-related
information (e.g., binary relations such as containment and inheritance) within
a version snapshot is stored in terms of these identifiers. They remain constant
throughout the history of the entity. In turn, each version snapshot maintains
a mapping from entity identifiers to implementation objects (the objects rep-
resenting classes, methods, etc.). This mapping is only updated for entities
that changed since the previous version. As a result, version snapshots share

4

implementation objects for entities that remain unchanged. The actual imple-
mentation strategy is inspired by the work of Laval et al. [11].

2.2.1. Populating the History Representation

A number of importers can be used to populate Absinthe’s history rep-
resentation from a version control system. Currently, we support importing
Smalltalk programs from either VisualWorks Store or Monticello repositories.
The source code of each version is checked out of the repository and subse-
quently parsed. In the case of the first version in the repository, the importer
creates a full version snapshot. Implementation objects are instantiated for all
of its structural entities. For all subsequent versions, the AST of their code
is compared with the AST of its predecessor’s code. For versions that resulted
from the merger of multiple versions, the AST of the merged version is compared
with those of all its predecessors. New implementation objects are only instanti-
ated for structural entities that had changed or were added. The mapping from
entity identifiers to implementation objects is updated accordingly within the
version snapshot. Note that the importers compare structural entities based on
their name. As such, they do not take renaming into account. Within a version
snapshot, only the presence of a new entity and the absence of the renamed
entity is reflected. It is up to the user to detect and define entities that are
conceptually the same, but are not identified as such. For example a renamed
class can be detected by finding a newly introduced class implements the same
methods as a class that was removed in the previous version. Absinthe does
not do this automatically for the user as there is no clear definition when a
refactoring preserves the identity of an entity.

2.2.2. Predicates for Quantifying over the History Representation

Absinthe provides a library of Soul predicates for quantifying over its
history representation, which can be used within history queries. Although the
history representation is object-oriented, it does not need to be converted to a
logic fact base before it can be queried. The symbiosis of Soul with Smalltalk
enables the Absinthe predicates to query the objects of the representation
directly

Table 1 depicts an excerpt from this predicate library. Three categories of
predicates can be discerned: (1) predicates that reify history-specific information
about a version (e.g., unary isVersion/1), (2) predicates that reify the structural
entities within a version snapshot (e.g., unary isClass/1) and their relations
(e.g., binary isClassInPackage:/2), and (3) predicates that reify frequently used
sub-method information (e.g., methodReads:/2).

Unary predicate isVersion/1 belongs to the first category. It succeeds if its
argument ?v unifies with a version that is stored in the repository representation.
As a result, conditions can use this predicate to verify whether ?v is bound to a
version as well as to bind ?v to one of the versions in the representation. This
kind of multi-directionality is supported by all predicates in the library.

The second category of predicates reifies information about the structural en-
tities in a particular version snapshot. For instance, binary predicate isClassInPackage:/2

5

Predicate Description
Versions
?v isVersion Entity is a version
?v isOrigin Is the version an origin
?v isTerminal Is the version a terminal
?v isVersionAtDate: ?d Find the version at a particular date
?v isVersionBetweenDates: ?start and: ?end Find all versions during a particular time interval
?d isCommitMessageOfVersion : ?v Retrieve the time stamp of a version
?a isAuthorOfVersion : ?v Retrieve the author of a version
Structural entities within version snapshots
?c isClass : ?version Entity is a class in a particular version
?c isClassInPackage: ?p : ?version Class belongs to package in a particular version
?c isClassWithName: ?n : ?version Class in version has name
?i isInterface : ?version Entity is an interface in a particular version
?i isInterfaceInPackage: ?p : ?version Interface belongs to package in a particular version
?i isInterfaceWithName: ?n : ?version Interface in version has name
?m isMethod : ?version Entity is a method
?m isClassMethod : ?version Entity is a class (static) method
?m isMethodInClass: ?c : ?version Method belongs to class
?m isMethodWithName: ?n inClass: ?c : ?version Method with particular name in class
?p isPackage : ?version Entity is a package in a particular version
?p isPackageWithName: ?n : ?version Package with name
?v isInstanceVariableWithName: ?n inClass: ?c : ?version Entity is field with name in class
?v isClassVariableWithName: ?n inClass: ?c : ?version Entity is static field with name in class
?c isSubclassOf: ?super: ?version Class is a direct subclass of superclass
?c isSuperclassOf: ?sub : ?version Class is a direct superclass of a subclass
?c classImplementsInterface: ?i : ?version Class implements a particular interface
?i interfaceIsImplementedBy: ?c : ?version Interface is implemented by a particular class in a version
?i isSubinterfaceOf: ?super : ?version Interface is a subinterface of a particular interface
?tree isParseTreeOf: ?e : ?version Tree is the Abstract Syntax Tree of entity in a version
?e wasChanged : ?version Entity was altered in a particular version
Frequently used sub-method information
?m methodReferencesClass: ?c : ?version Method refers to a particular class
?m methodSendsMessage: ?msg : ?version Method sends a particular message
?m methodReads: ?var : ?version Method reads from a field
?m methodWrites: ?var : ?version Method writes to a field

Table 1: Excerpt from our library of logic predicates.

6

reifies the relation between classes and the packages in which they are declared.
Note that these predicates can only be evaluated relative to a version snapshot.
To make this explicit in the predicate library, these predicates have been anno-
tated (indicated after the colon) with an additional logic variable ?version that
specifies the version snapshot of which the structural entities are queried.

The third category of predicates reifies frequently used sub-method informa-
tion. For instance, predicate methodReads:/2 succeeds if its first argument unifies
with a structural entity that represents a method and its second argument uni-
fies with one of the fields read by this method.

2.3. QRPEs for Specifying Paths Through the History Representation

Absinthe extends Soul with Quantified Regular Path Expressions [7] (QRPEs).
QRPEs are an intuitive formalism for quantifying over the paths through a
graph. They are but one of many graph query formalisms. Other examples
include Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) [12].
We have opted for QRPEs, as they strike the balance between expressiveness
and ease of use [13]. As such, they are a natural fit to quantify over the
information in Absinthe’s history representation.

Quantified regular path expressions are akin to regular expressions [14], ex-
cept that they consist of logic conditions to which regular expression operators
have been applied. Rather than matching a sequence of characters in a string,
they match paths through a graph along which their conditions holds. In the
context of Absinthe, QRPEs match sequences of successive versions from the
history representation. Using the predicates from Absinthe’s predicate library,
each condition within a regular path expression quantifies over the structural
entities in a different version snapshot.

Predicate matches:start:end:/4 can be used to embed a quantified regular
path expression in a history query:

if ?quantifier(?exp) matches: ?path start: ?start end: ?end

The predicate succeeds if ?path unifies with a list of successive versions (i.e.,
a path), between a version that unifies with ?start and a version that unifies
with ?end (both inclusive), that matches the regular path expression bound to
?exp. Variable ?quantifier determines whether a path expression is universally
or existentially quantified. The existential quantifier, written e, denotes that
at least one path must exist between ?start and ?end for which the expression
holds. The universal quantifier, written a, denotes that the expression has to
hold on all the paths between ?start and ?end.

The ?start and ?end variables do not necessarily need to be bound: when they
are unbound, our tool will backtrack over all possible combinations of ?start and
?end for which the regular path expression holds. Both variables will get bound
to their corresponding version for each successful regular path expression.

The actual regular path expression ?exp is an expression of the form e1 →
e2 → . . . → en, where each ei is a logical expression that must hold in version
vi. Each ei → ej can be annotated by a ∗ or + and single or double arrowhead,
each controlling how frequently the condition ei can be iterated over across

7

V4

origin

terminal

V2 V3

V5 V6

V8 V9

V7

V1

Figure 1: Illustration of a graph of versions.

a number of successive versions. Both ∗ and + have the same meaning as in
regular expressions: the conditions can succeed in arbitrary number of successive
versions. With a ∗ this number can be zero, while a + means this number must
be larger than zero. The head controls whether paths are considered using
pre-order (→) or post-order (�) numbering.

The following meta-symbols can be used alongside the logic conditions in a
path expression as well:

• origin: Only consumes the current version if it is not the successor of any
other version (similar to the caret in regular expressions).

• terminal: Only consumes the current version if it does not have any
successors (similar to the dollar in regular expressions).

• $this version: A variable bound to the current version of the path ex-
pression.

To illustrate these concepts, consider the graph of versions depicted in
Figure 1. This graph consists of 9 versions with V1 being the single ori-
gin, and versions V7 and V9 being terminals. When ?start is bound to
version V1 and ?end is bound to V7, an existentially quantified expression
e(?exp) matches: ?path start: ?start end: ?end verifies whether there exists a
path between V1 and V7 that matches ?exp. In other words, either the path
(V1, V2, V3, V4, V7) or the path (V1, V5, V6, V7) should match ?exp. The univer-
sally quantified expression a(?exp) matches: ?path start: ?start end: ?end, in
contrast, verifies whether ?exp holds for all paths between ?start and ?end. Note
that not all paths through the graph need to match ?exp, but rather only the
paths between ?start and ?end. Upon backtracking, variable ?path receives a
binding for each path that matches ?exp —independent of the actual quantifier
that was used.

We present a logic query that embeds a universally quantified path expres-
sion.

8

1 if

2 ?start isOrigin,

3 ?end isTerminal,

4 a(not(? isClassWithName: Evaluator)→
5 (?class isClassWithName: Evaluator)� +)

6 matches: ?path

7 from: ?start

8 end: ?end

This query quantifies over the history representation to identify pairs of
origins ?start and terminals ?end for which there always exists a class Evaluator on
all paths between them —except in the first version of the path. Lines 2–3 bind
two logic variables, ?start and ?end to an origin and terminal version respectively.
Lines 4–8 contain the actual QRPE. The universally quantified regular path
expression on lines 4–5 consists of two conditions. The first condition (line 4)
verifies that no class named Evaluator exists in the first version on the path. The
second condition (line 5), to which the � + operator has been applied, verifies
that a class named Evaluator exists from the second version on the path until
the end of the path.

Note that both conditions within the path expression use predicate
isClassWithName:/2 from Table 1. As mentioned above, its annotated variable
?version parameterizes the predicate with the version snapshot over which it
is to quantify. Ordinary conditions that use this predicate therefore have to
provide a binding for this variable. This is not necessary for conditions within
a path expression. They are implicitly evaluated against a version by the path
expression evaluator.

2.4. Overview of the Architecture

Figure 2 depicts the architecture of Absinthe. A version control system
holds the complete history of the queried software project. From the VCS,
the importer builds an instance of the Ring model. The importer supports
Monticello repositories storing projects written in Smalltalk. The Ring model
provides an object-oriented representation of the history of the software project.
This representation works on two levels. First, it provides history information,
such as the timestamp of a version, the author, the commit message etc. Second,
it stores the entities (classes, methods, etc.) present in a version up until the
level of methods. Frequently used sub-method information (for example which
messages a method sends) is also stored.

The predicate library reifies this information: it features predicates quan-
tifying over version information and the structural entities within each version
snapshot. These predicates are implemented using the Soul programming lan-
guage. Using Soul, QRPE, and these predicates, the software project under
investigation can be easily queried.

This architecture allows for some flexibility. Software projects implemented
in a different language or versioned in a different VCS can be supported through
another importer, given that the language can be mapped to Ring. A new tem-
poral specification language, such as computation tree logic, can be implemented

9

History Query

Quantified Regular Path
Expression

Ring

Snapshot
representation

I
m
p
o
r
t
e
r

Version Control
System

Predicate Library

Version Predicates

Sub-version Predicates

instantiates

Ring

Snapshot
representation

reads

reifies

reifies

uses

SOUL Logic Engine

evaluates

uses

Figure 2: Overview of how the Ring model is instantiated (top half) and queried (bottom
half).

in Soul and used to specify the temporal relations. One could even replace
Soul with another program querying language, provided that the predicate li-
brary is either changed as well or compatible with the new language. Finally,
Ring can be replaced with a different meta-model. This requires changing the
importer so that it instantiates the new meta-model correctly. However, this
may also require changing the predicate library in case the interface to the model
is changed, or new information is exposed.

3. Answering History Queries using Absinthe

We illustrate the expressiveness and applicability of Absinthe by specifying
queries that answer several representative history-related questions.

3.1. History Queries Answering Developer Questions

We begin our discussion with examples that illustrate how Absinthe can
be used by developers to answer some of the questions they commonly ask (e.g.,
as identified by the surveys [1, 2]).

3.1.1. Identifying Co-Authors of a Class Owned by a Developer

In our first example, a developer wants to find out which people modified
some of the classes he owns. A person owns a class when he introduced that
class.

First, we create a query to find the version in which a specific class named
Evaluator was introduced. Second, we create a query to find all the classes
introduced by a certain person. Finally, we create a query for the initial history-
related question; which people modified classes introduced by our developer.

10

Find the version in which Evaluator was introduced. The following query finds
the software version in which a class named Evaluator got introduced:

1 if

2 ?start isOrigin,

3 e((true)→ ∗
4 and(?class isClassWithName: Evaluator,

5 ?class wasIntroduced))

6 matches: ?path from: ?start end: ?version

Line 2 binds ?start to the root version of the repository. Lines 3–6 represent
the actual path expression. We are interested in a path in which its last version
has introduced class Evaluator. To this end, we use predicates isClassWithName:/2

and wasIntroduced/1. The first predicate succeeds when the current version con-
tains a class with the specified name. The second predicate succeeds when its
argument was introduced in the current version. This is done by verifying that
the class is present in the current version, but not in one of the predecessors of
the current version. Line 3 specifies the quantifier for the QRPE: we use the ex-
istential quantifier as we are only interested in one path. The condition on line
3 consumes versions along the path as long as the next line does not succeed.
Lines 4–5 specify that the current version must contain a class named Evaluator,
and that the class was introduced in that version. The last line returns the
path, start version and end version for which the QRPE succeeded.

Finding which classes are introduced by a specific author. The previous query
identified the version in which the Evaluator class was introduced. The following
query extends the previous one so that it identifies classes introduced by a
specific author.

1 if

2 ?start isOrigin,

3 e((true)→ ∗
4 and(?class isClass,

5 ?class wasIntroduced,

6 bob isAuthorOfVersion))

7 matches: ?path from: ?start end: ?end

We use predicate isAuthorOfVersion/1, which succeeds when its first argument
unifies with the author of the current version. The query only differs from the
previous one on lines 4–6. Here, we specify that ?class needs to be a class
introduced in the current version, and that Bob must be the author of that
version.

Finding who changed classes introduced by a specific author. Our final query
answers the original question: “who changed classes introduced by Bob?”.

11

1 if

2 ?start isOrigin,

3 e((true)→ ∗
4 and(?class isClass,

5 ?class wasIntroduced,

6 bob isAuthorOfVersion)→
7 (true)→ ∗
8 and(?class wasChanged,

9 ?changer isAuthorOfVersion,

10 not(?changer equals: bob)))

11 matches: ?path from: ?start end: ?end

The beginning of the query is the same as the previous one: we are looking
for a class that was introduced by Bob. Lines 7–10 specify that this class is
modified in a later version by a different author. Line 7 skips an arbitrary
number of versions, as the modification may happen in any successor of the
version in which the class was introduced. Lines 8–10 identify the successor
version in which the class is changed; ?changer is the author of that version.
Line 10 verifies that ?changer differs from the original author.

3.1.2. Identifying Co-changing Classes

For the second example in this section, consider detecting classes that con-
sistently change together. Finding co-changing classes is interesting, as they
might hint at the presence of hidden dependencies [4].

The following Absinthe query identifies pairs of classes that are, starting
from the first version in which they changed together, always changed together.

1 if

2 ?start isOrigin,

3 e((true)→ ∗
4 and(?classA isClass,

5 ?classA wasChanged,

6 ?classB isClass,

7 not(?classA equals: ?classB)

8 ?classB wasChanged)→
9 (or(and(?classA wasChanged,

10 ?classB wasChanged)

11 and(not(?classA wasChanged),

12 not(?classB wasChanged)))� +
13 terminal)

14 matches: ?path start: ?start end: ?end

Lines 3–8 consume versions on the path until two different classes change to-
gether. Predicate wasChanged/1 (lines 5 and 8) checks if its argument got changed
in the current version. Lines 9–12 consume one or more versions in which classes
?classA and ?classB are consistently changed together (lines 9–10) or not changed
at all (lines 12–13). Finally, the QRPE succeeds if we reach the end of a path
(terminal on line 14).

3.1.3. Identifying Re-introduced Methods

Our third example identifies methods deleted at one particular point in time,
but added again afterwards —possibly under a different name. The following
query identifies such methods:

12

1 if

2 ?start isOrigin,

3 e((true)→ ∗
4 and(?method isMethodInClass:?class,

5 RBMethodNode(?name,?args,?body) isParseTreeOf: ?method)→
6 (true)→ ∗
7 (not(?method isMethodInClass:?class))� +
8 and(?reintroduced isMethodInClass:?class,

9 RBMethodNode(?,?args,?body) isParseTreeOf: ?reintroduced))

10 matches: ?path start: ?start end: ?end

Starting from the origin, its QRPE will try to consume one or more versions
(line 3) until it reaches a version that contains a method ?method defined by a class
?class. Line 5 uses predicate isParseTreeOf:/2 to retrieve the parse tree of ?method
from the history representation. By unifying this parse tree with an equivalent
logic term, the same line extracts the method’s ?name, arguments ?args and ?body.
The logic term is named after the class representing a method in the AST,
namely Refactoring Browser Method Node. Next, the QRPE lazily consumes
zero or more versions (line 6) until the method is removed from the class (line
7). Finally, lines 8–9 verify whether there exists a method ?reintroduced in the
same class ?class for which the arguments ?args and the method ?body match
that of the original method.

In all solutions to the query, variable ?end will be bound to the version in
which the method got introduced again. Note that the query does not only
identify reintroduced methods based on the last method body encountered on
the path, but on all such previous method bodies. This is ensured by the use of
(true)→* on line 6. Upon backtracking, this line will consume a longer path in
search for a reintroduced method with the same body.

3.2. History Queries Verifying a Development Process

We now shift our focus to history-related questions managers of a devel-
opment team might want answered. These questions concern the development
process.

3.2.1. Finding Violations against Test-Driven Development

In the first example, a manager needs to find violations against the principle
of test-driven development which advocates writing tests prior to implementing
the tested functionality. The manager wants to assert that the team actually
followed the intended design process. In natural language, the question that the
manager needs answered is “what are the methods in the system for which a
unit test was never added, or for which the corresponding unit test was added
only after the method was introduced?”.

The following Absinthe query assumes that a predicate isTestFor:/2 exists
which verifies whether a unit-test tests a particular method. Although we do
not provide a definition for this predicate, this predicate links a unit test to a
method through a naming convention.

13

1 if

2 ?start isOrigin,

3 e((true)→ ∗
4 (and(?m isMethod,

5 not(? isTestFor:?m)))� +
6 or(not(?m isMethod),

7 terminal,

8 ?test isTestFor:?m))

9 matches: ?path start: ?start end: ?end

The query consists of a single existential regular path expression that quan-
tifies over the history of the system to identify a ?path starting from an origin
?start (line 2) that contains methods for which there either never was a unit
test provided, or for which the unit test was introduced in a later version than
the method.

The path expression is structured as follows. Starting from the origin ?start,
the path expression consumes zero or more versions on the path (line 3) until it
encounters a sequence of one or more versions (using the � + operator – lines 4
and 5) that contains a method ?m for which there exists no corresponding unit
test. Violations are identified by verifying in the next version (lines 6–8) that
either method ?m is no longer present (line 6), or that we have reach the end of
the path (terminal on line 7) meaning that there never existed a unit test for
the method, or that the unit test for the method was added after method was
introduced (line 8).

In each solution to this query, variable ?m is bound to a method that violates
the test-driven development practice. These violations can be investigated in
successive Absinthe queries. For instance, to find out which developer com-
mitted the violation. Note that we did not bind version ?end beforehand. De-
pending on whether the method got removed, there never existed a unit test for
the method, or the unit test was introduced afterwards, ?end will respectively
be bound to the version in which the method was removed, the last version on
the path, or the version in which the unit test was added.

The depicted query illustrates an important feature of Absinthe. Logic
variables (i.e., ?m) can be used in multiple parts of a path expression. This
enables tracking software entities across version boundaries.

3.2.2. Finding Violations against a Release Schedule

For the second example, consider the situation in which a manager needs to
verify whether a prescribed release schedule was followed. The release schedule
states that between the alpha and beta release, developers are only allowed to
either fix bugs or work on planned features; after the beta release only bugs are
allowed to be fixed until the product is released. Suppose also that developers,
for traceability purposes, annotate the intent of each revision by stating its
purpose (e.g., “worked on feature X”, “fixed bug number Y”) in the commit
message.

The following rules and query depicted verify this release schedule (i.e., all
revisions between the alpha and beta release should concern a feature or a bug
fix; versions after the beta release should only be bug fixes).

14

1 alpha : ?version if

2 ?version isVersionAtDate:{15 January 2011}
3 beta: ?version if

4 ?version isVersionAtDate:{20 February 2011}
5 release : ?version if

6 ?version isVersionAtDate:{1 May 2011}
7

8 if

9 alpha : ?alphaVersion,

10 a((and(?message isCommitMessageOfVersion,

11 ?message matchesRegex: ’.*(feature|bug).*’,

12 alpha))� ∗
13 (and(?message isCommitMessageOfVersion,

14 ?message matchesRegex: ’.*bug.*’,

15 beta))� ∗
16 release)

17 matches: ?path start: ?alphaVersion end: ?releasedVersion

First, we define which versions are considered to be an alpha, beta and a
product release. To this end, the logic rules on lines 1–6 define three auxiliary
predicates. The history query on lines 8–17 verifies the actual release schedule.
Its universally quantified QRPE verifies that all paths from alpha to releas are
of the following form. The first version on each path should be the alpha release
(lines 9–17). After the alpha release, there should be zero or more versions
that satisfy the requirement that their commit message contains either strings
‘feature’ or ‘bug’ (lines 10–12). We verify this using a regular expression. From
the beta release onwards, there should be zero or more versions that contain the
string ‘bug’ in their commit message. The final version on the path should be
marked release.

Note that the QRPE in this query is universally quantified. This ensures that
all paths between the different milestones and the release follow the prescribed
schedule. Thus, if a developer creates a separate branch in order to work on
a feature after the beta version, this will only be marked as a violation if that
branch is actually merged back into the main trunk before the release version.

This query demonstrates that Absinthe queries do not necessarily have to
reason about the history of the source code. In the above query, we solely reason
about the meta-data of versions, such as commit messages.

3.3. History Queries Identifying “Temporal Bad Smells”

As a final example we illustrate the use of Absinthe to detect a temporal
bad smell. These are bad smells that only become apparent when analyzing
the evolution of the source code of a system. In particular, we introduce the
concept of zombie code. We define this bad smell as methods in the system
that were stopped being used in a particular version but that are not removed
(i.e., become dead code), and that are used again in a later version. While the
presence of zombie code is not necessarily a problem in the system, instances of
this bad smell might point at uses of implicitly deprecated code.

The following Absinthe query retrieves instances of zombie methods:

15

1 if

2 ?start isOrigin,

3 e((true)→ ∗
4 (and(?m isMethodWithName:?name inClass: ?c,

5 ?invoker methodSendsMessage:?name))→
6 (and(?m isMethodWithName:?name inClass: ?c,

7 not(? methodSendsMessage:?name)))� +
8 and(?m isMethodWithName:?name inClass: ?c,

9 ?newInvoker methodSendsMessage:?name))

10 matches: ?path start: ?start end: ?end

This query consists of a single QRPE that matches a sub-path that exhibits
the following characteristics. Lines 3–5 advance until a version is encountered
that contains a method ?m with name ?name defined in a class ?c that is called by
a method ?invoker. Lines 6–7 match one or more versions in which method ?m is
still present, but no callers are found (i.e., the method is implicitly deprecated).
Finally, lines 8–9 match a version in which the method ?m is still present, and it
is again called by method ?newInvoker.

When evaluated, this query will bind the logic variable ?m to all methods
considered as a zombie method. The logic variable ?end will be bound to the
first version in which the zombie method gets called again. Notice that we also
retrieve bindings for the methods ?invoker and ?newInvoker: the query does not
only provide information regarding the zombie methods, but also indicates all
callers of such methods.

4. Validation

In the previous section we demonstrated the use of Absinthe for answering
several representative history queries. In this section, we discuss the expressive-
ness of Absinthe’s history query specification language and the performance
of the mechanism it uses to find solutions to such a query.

We compare the query that detects co-changing entities presented in 3.1.2
to an equivalent Smalltalk implementation. The Smalltalk implementation in-
terfaces directly with the Ring model.

For reference, the following code implements the query in Absinthe:

1 if

2 ?start isOrigin,

3 e((true)→ ∗
4 and(?classA isClass,

5 ?classA wasChanged,

6 ?classB isClass,

7 not(?classA equals: ?classB)

8 ?classB wasChanged)→
9 (or(and(?classA wasChanged,

10 ?classB wasChanged)

11 and(not(?classA wasChanged),

12 not(?classB wasChanged)))� +
13 terminal)

14 matches: ?path start: ?start end: ?end

16

The following Smalltalk code defines a method classNamed:cochangesAlongPath:

which, given the name of a class (aSymbol) and a path (aPath) on which to perform
the search, detects which classes are co-changing.

1 classNamed: aSymbol cochangesAlongPath: aPath

2 |solutions|

3 solutions := OrderedCollection new.

4 [aPath isEmpty] whileFalse: [

5 |currentVersion targetClass|

6 currentVersion := aPath first.

7 aPath remove: currentVersion.

8 targetClass := self findClassNamed: aSymbol inVersion: currentVersion.

9 (targetClass isNil) ifFalse: [

10 currentVersion classes do: [:aClass |

11 (aClass = targetClass) ifFalse: [

12 (self classCochanges: targetClass with: aClass along: aPath) ifTrue: [

13 solutions add: aClass.

14].

15].

16].

17].

18].

19 ^solutions.

The method starts by looping over all the versions in the path (lines 4–18).
For each version, it then retrieves the version-specific entity representing the
class with the provided name and whether this entity is still present in the cur-
rent version (lines 8–9). Next, it loops over all the classes present in the current
version and verifies whether a class co-changes for the remaining versions of the
path (lines 10–12) by invoking the helper method classCochanges:with:along:. If
this is the case the class is added to the solutions. Finally, the solutions are
returned (line 19).

The method which verifies whether two classes co-change in all the versions
of a given path is the following:

1 classCochanges: candidateClass with: targetClass along: aPath

2 ^(aPath anySatisfy: [:aVersion |

3 |versionCandidate versionTarget|

4 versionCandidate := aVersion thisHistory: candidateClass.

5 versionTarget := aVersion thisHistory: targetClass.

6 (versionCandidate isNil or: [versionTarget isNil]) ifTrue: [

7 ^true.

8].

9 ^(versionTarget wasChanged = versionCandidate wasChanged) not.

10]) not.

The method detects whether the path contains a version in which the classes
do not change together. To this end, it first retrieves the version-specific rep-
resentation of the two given classes for each version (lines 4–5) and stops when
either class no longer exists (lines 6–8) or when they do not co-change (line 9).
The result is a boolean indicating whether the two classes co-change along the
path or not.

17

4.1. Discussion

Having introduced the Smalltalk query over the Ring model that finds co-
changing classes, we now compare it to the previously introduced equivalent
Absinthe expression in terms of expressiveness and performance.

4.1.1. Expressiveness

First, we consider the expressiveness of both solutions by comparing naviga-
tion through the version graph, retrieval of relevant entities in each version and
reusability.

The Smalltalk code has several issues, which are absent from the Absinthe
version of the query:

Version Navigation Absinthe features QRPE to describe paths through the
graph of versions. In Smalltalk, this version management needs to be done
manually. This is reflected in the code by the looping over all the versions
in the path. If the path was not provided, a queue or work list of versions
would have to be used, and every time a version is processed its successors
would be added to that list. Absinthe also returns the path for which
the query succeeded. This path would have to be constructed manually in
Smalltalk. This requires that the user correctly adds and removes versions
to the path under construction while executing the query.

Entity Retrieval Absinthe looks up the version-specific representation for
every variable, even if that variable was bound and used in another version.
If the entity is no longer present in the current version, the reasoning
engine will backtrack automatically. In Smalltalk, all of the above must
be implemented by the user. This results in repetitive code whenever
conditions are checked in a version.

Reusability Each variable passed to an Absinthe query can be used both as
input and output for that query. For example the “co-changing entities”
query can be used to verify whether two given classes co-change, which
classes co-change with a given class or to find all the co-changing classes
in the system. The Smalltalk code we have provided, in contrast, only
finds which classes co-change with a given class.

The Smalltalk code has repetitive patterns that, while necessary, are not
related to the main logic of the query. In the classNamed:cochangesAlongPath:,
only line 12 is actually related to co-changing entities; the other 18 lines deal
with navigation and entity retrieval. These additional concerns are handled by
the Absinthe runtime, thus allowing the developer to concentrate on the actual
logic of the query.

4.1.2. Performance

The superior expressiveness of Absinthe comes at the cost of a lower per-
formance. To illustrate the overhead of Absinthe over Smalltalk we have con-
ducted a benchmark. In this benchmark we compute all the classes that co-
change with a given class along a provided path. This benchmark is executed

18

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

50.5 82.5 115.5 144 176 215 266 307.5

704.5

1142

1593.5

2073.5

3139

3596.5

4031.5

4497.5
4935

0

10

20

30

30 40 50 60 70 80 90 100
Versions

S
lo

w
do

w
n

of
 u

si
ng

 A
bs

in
th

e
ov

er
 S

m
al

lta
lk

●● Smalltalk
Absinthe

Detecting Cochanging Classes

Figure 3: The overhead of using Absinthe over Smalltalk for the query detecting which classes
co-change with a given class. The Y-axis depicts the overhead. The X-axis depicts the number
of versions. The number with each node denotes the runtime in ms.

against the version repository of the Ring implementation, which comprises
281 versions, of which the latest version contains 249 classes. The benchmark is
executed using Pharo 1.3 and the CogVM 4.0.0, running on a single thread of a
server with 2.4 Ghz Xeon E5520 processors. Pharo [15] is a popular Smalltalk
dialect originally forked from Squeak. The heap of the VM is restricted to 1
GB.

Figure 3 depicts the results for this benchmark. The X-axis shows the num-
ber of versions for which the query was executed. The Y-axis depicts the over-
head of using Absinthe over Smalltalk. The number of each node denotes
the runtime in ms. Note that the graph only shows data when the number of
versions is more than 30. The runtime of both queries with a lower number of
versions was too low to produce any meaningful result.

For this particular query Absinthe is around 20 times slower than Smalltalk.
Note that the overhead of Absinthe in general diminishes as the number of
versions increases. At the 60 versions mark, this trend is broken with a sharp
increase in runtime for the Absinthe version of the query. Looking at the code
of the repository, we see that in version 50 a refactoring that augments the
number of classes in the system took place. This implies that the Absinthe
query is more sensitive to the size of the search space than the Smalltalk version.

In general, the performance of Absinthe changes depending on several fac-
tors. Examples are the number of bound and unbound variables in a query, the
number of entities present in each version, the topology of the version graph

19

etc.
While the Smalltalk version is clearly faster, the point of this comparison

is to provide a base line against which to compare the relative advantages of
Absinthe in terms of expressiveness versus its runtime performance.

5. Related work

Our work lies at the intersection of mining software repositories and logic
program querying.

Mining Software Repositories. In the field of mining software repositories, a
number of approaches that analyze the information contained in version control
systems have been proposed. While a complete overview of these approaches
lies outside the scope of this paper, we provide two illustrative examples. Giger
et al. [16] track the semantic evolution of a software repository, in combination
with a bug tracker, for bug prediction. Instead of using a line-by-line compari-
son they use fine-grained source code changes that contain semantic information
about the changes. Bradley and Murphy present Rationalizer [17], a tool that
integrates historical information into the source code editor, providing develop-
ers information regarding what was changed by whom, and why.

The work presented in this paper complements such approaches: while the
above aims at supporting one particular task or solve one particular problem,
the goal of Absinthe is to offer stakeholders a tool to create custom queries
about the history of the source code, to retrieve information that is necessary
to solve the task at hand.

Logic Program Querying. One of the foundations of Absinthe is the use of a
logic programming language to query software. In particular, we have extended
the Soul [8] program query language with quantified regular path expressions
for reasoning about the evolution of versioned software. A number of similar
logic-based program query languages have been proposed. Examples include
JQuery [18], JQL [19] and SCL [20]. However, none of these languages can be
used to reason about the history of a system. They are limited to reasoning
about a single version.

Querying Source Code History. There exist a number of query languages that
are closely related to Absinthe. SCQL [21] is a query language to reason about
the evolution of a version repository. Internally it represents a version control
system as a graph. Each author, file and revision is a vertex in this graph. Each
revision is assigned a timestamp and is connected with the corresponding files
and author for that revision. It provides a temporal specification language that
allows a user to express relationships as “previous”, “after”, “always”, “never”
etc. SCQL does not link version snapshots to source code and therefore does not
support queries that are as fine-grained as the ones supported by Absinthe.

V-Praxis [22] compiles a version repository into a logic fact base. It does
this by creating a complete representation of the first version, and storing deltas

20

between versions. Each fact is associated with a timestamp, allowing a complete
reconstruction of the history of a project. Unlike Absinthe, V-Praxis does not
feature a dedicated query and temporal specification language, but instead uses
regular Prolog. This results in repetitive patterns, such as binding a version
to a logic variable before executing a goal in that version. These patterns are
absent from Absinthe queries.

6. Conclusions and Future Work

In this paper we have detailed the logic-based history query tool Absinthe.
Next to logic predicates for reasoning about a system’s state in a particular ver-
sion, Absinthe offers quantified regular path expressions for reasoning about
the evolution of the system throughout successive versions. While the former
have proven themselves for querying source code, the latter have proven them-
selves for querying the paths through a graph. Together they give rise to an
elegant language for querying a system’s history. To the best of our knowledge,
Absinthe is the first tool that applies QRPEs in this manner.

We have demonstrated the expressiveness and applicability of Absinthe
on several representative history queries. The resulting queries are descriptive,
but future experiments ought to determine whether Absinthe is sufficiently
intuitive for application developers to use.

Finally, we have compared and discussed the “co-changing entities” query
written in Absinthe with an equivalent one in Smalltalk in terms of expres-
siveness and performance. The increase in expressiveness comes at a reasonable
performance loss.

In future work we will research whether a specification language closer to the
source code would be feasible. We suspect that the granularity of the current
specification language is too coarse. The source code is stored in the model, but
querying source code entities across multiple versions still remains hard. At the
moment it can only be done by specifying the characteristics of the code in each
version individually. Better would be to allow some transformational approach,
where a user specifies the code in one version, and describe how the code has to
evolve in future versions by means of transformations.

Next we would like to replace the in-memory representation of a repository to
a database representation. Even though Ring provides a scalable representation
of the history of a versioned software project the memory consumption is still too
high for large-scaled projects. This can be solved by storing the representation
in a database.

References

[1] T. Fritz, G. C. Murphy, Using information fragments to answer the ques-
tions developers ask, in: Proceedings of the 32nd International Conference
on Software Engineering (ICSE10), 2010, pp. 175–184.

21

[2] T. D. LaToza, B. A. Myers, Hard-to-answer questions about code, in: Eval-
uation and Usability of Programming Languages and Tools (PLATEAU10),
2010, pp. 8:1–8:6.

[3] M. D’Ambros, M. Lanza, R. Robbes, An extensive comparison of bug pre-
diction approaches, in: Proceedings of the 7th IEEE Working Conference
on Mining Software Repositories (MSR10), 2010, pp. 31–41.

[4] T. Zimmermann, P. Weisgerber, S. Diehl, A. Zeller, Mining version histo-
ries to guide software changes, in: Proceedings of the 26th International
Conference on Software Engineering (ICSE04), 2004, pp. 563–572.

[5] F. Khomh, T. Dhaliwal, Y. Zou, B. Adams, Do faster releases improve
software quality? an empirical case study of Mozilla Firefox, in: Proceed-
ings of the 9th IEEE Working Conference on Mining Software Repositories
(MSR12), 2012, pp. 179–188.

[6] A. Kellens, C. De Roover, C. Noguera, R. Stevens, V. Jonckers, Reasoning
over the evolution of source code using quantified regular path expressions,
in: Proceedings of the 18th Working Conference on Reverse Engineering
(WCRE11), 2011, pp. 389–393.

[7] O. de Moor, D. Lacey, E. V. Wyk, Universal regular path queries, Higher-
Order and Symbolic Computation (2002) 15–35.

[8] C. De Roover, C. Noguera, A. Kellens, V. Jonckers, The SOUL tool suite
for querying programs in symbiosis with Eclipse, in: Proceedings of the
9th International Conference on Principles and Practice of Programming
in Java (PPPJ11), 2011, pp. 71–80.

[9] V. U. Gómez, Supporting integration activities in object-oriented applica-
tions, Ph.D. thesis, Vrije Universiteit Brussel - Université des Sciences et
Technologies de Lille (October 2012).

[10] T. Gı̂rba, S. Ducasse, Modeling history to analyze software evolution, Jour-
nal of Software Maintenance: Research and Practice (JSME) 18 (2006)
207–236.

[11] J. Laval, S. Denier, S. Ducasse, J.-R. Fallery, Supporting simultaneuous
versions for software evolution assessment., Science of Computer Program-
ming 76 (12) (2011) 1177–1193.

[12] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
P. Schnoebelen, System and Software Verification, Model-Checking Tech-
niques and Tools, Springer, 2001.

[13] R. Stevens, Source code archeology using logic program queries across ver-
sion repositories, Master’s thesis, Vrije Universiteit Brussel (2011).

[14] A. Aho, Algorithms for finding patterns in strings, MIT Press, 1990.

22

[15] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, M. Denker, Pharo
by Example, Square Bracket Associates, 2009.

[16] E. Giger, M. Pinzger, H. C. Gall, Comparing fine-grained source code
changes and code churn for bug prediction, in: Proceedings of the 8th
Working Conference on Mining Software Repositories (MSR11), 2011, pp.
83–92.

[17] A. W. Bradley, G. C. Murphy, Supporting software history exploration, in:
Proceedings of the 8th Working Conference on Mining Software Reposito-
ries (MSR11), 2011, pp. 193–202.

[18] K. De Volder, JQuery: A generic code browser with a declarative config-
uration language., in: Proceedings of the 8th International Symposium on
Practical Aspects of Declarative Languages (PADL06), 2006, pp. 88–102.

[19] T. Cohen, J. Y. Gil, I. Maman, JTL: the Java Tools Language, in: Pro-
ceedings of the 21st Annual SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA06), 2006, pp.
89–108.

[20] D. Hou, H. J. Hoover, Using SCL to specify and check design intent in
source code, Transactions on Software Engineering 32 (6) (2006) 404–423.

[21] A. Hindle, D. M. German, SCQL: A formal model and a query language for
source control repositories, in: Proceedings of the 2005 Working Conference
on Mining Software Repositories (MSR05), 2005, pp. 100–105.

[22] A. Mougenot, X. Blanc, M.-P. Gervais, D-Praxis: A peer-to-peer collabora-
tive model editing framework, in: Proceedings of the 9th International Con-
ference on Distributed Applications and Interoperable Systems (DAIS09),
2009, pp. 16–29.

23

