
Blame Prediction: Technical report

Dries Harnie, Christophe Scholliers, and Wolfgang De Meuter

Vrije Universiteit Brussel

This document is a supplement to the paper Blame Prediction: A Technique
for Predicting Must-fail Errors. It aims to explain how blame prediction can be
extended to deal with programs that feature recursive functions (section 1) and
(limited) mutation (section 2).

1 Recursion

Having explained how blame prediction can be applied to non-recursive pro-
grams, this section will demonstrate how to support recursion. Recall that, dur-
ing check inference, function application expressions give rise to type function
applications at the type level. In a recursive function however, the function type
can contain recursive applications of itself. Expanding these applications naïvely
results in an infinite process. For example, the type of the factorial function
with an explicit accumulator variable is:

αfac = Παn, αa.(αa ∨ (int ?= αn)→(int ?= αa)→(αfac int int))

Expanding the function type application (αfac int int) then yields an infinite
process:

(αfac int int) = int ∨ (int ?= int)→(int ?= int)→(αfac int int)

= int ∨ (αfac int int)

= int ∨ int ∨ (αfac int int)

= . . .

Note that expansions after the first do not contribute any new return types; this
is the core insight to resolve these infinite types.

1.1 Syntax

We start by adding the letrec keyword to the Schemeβ syntax. The binding
groups in the letrec define variables x1, . . . , xn which are bound to expressions
e1, . . . , en (usually functions). In the body as well as every ei, the variables
x1, . . . , xn are in scope.

e ∈ Exp = . . . | (letrec ([x1 e1] . . . [xn en]) e)

The expressions ei can be any kind of expression. However, to simplify the pre-
sentation of the check inference rules we restrict these to operate on groups of
mutually recursive function expressions. There exists a transformation to split
up a big letrec into a series of nested lets and letrecs containing mutually recur-
sive functions. This transformation is defined in [1, Section 6.2.8] and [2] among
others.

2

1.2 Check Inference and Mobility

Inferring types for a letrec expression is different from a let expression, as the
functions in the binding part of the letrec can refer to both themselves and
other functions bound in the letrec. The types inferred from this process will
contain type function applications of the other functions in the letrec. These
type function applications cannot simply be expanded, as the expansions will
again contain type function applications, yielding an infinite type. These infinite
types need to be reduced to finite types before they can be used in the letrec
body.

Figure 1 defines the check inference rule T-letrec. First, the various ex-
pressions in the binding part of the letrec are check-inferred, with the variables
x1, . . . , xn bound to fresh type variables α1, . . . , αn. This yields infinite types
τ1, . . . , τn. These types are converted to finite types τ1, . . . , τn using the Solve
function (shown later in this section). Finally, the type of the body is inferred
with x1, . . . , xn bound to the finite types, and the final type of the letrec becomes
the type inferred for the body. Unlike the let expression, the type of the body
does not need to be Chain-ed to any type tests made in the binding part, as it
can only contain function expressions.

Figure 1 also defines a check mobility rule F-letrec which is functionally
identical to check mobility for let expressions. Since all the expressions in the
binding parts are functions, they cannot contribute any preconditions. As with
let, preconditions propagated by the body are masked against the variables in
the binding part.

α1, . . . , αn fresh Γ, x1 : α1, . . . , xn : αn ` ei : τi ∀i ∈ 1 . . . n
τi = Solve(τi;α1 : τ1, . . . , αn : τn) ∀i ∈ 1 . . . n

Γ, x1 : τ1, . . . , xn : τn ` e : τ

Γ ` (letrec ([x1 e1] . . . [xn en]) e) : τ
(T-letrec)

ei → e′i ↑ #t ∀i ∈ 1 . . . n
e→ e′ ↑ p p′ = mask(x1 . . . xn, p)

(letrec ([x1 e1] . . . [xn en]) e)→ (letrec ([x1 e′1] . . . [xn e′n]) [p]e
′) ↑ p′

(F-letrec)

Fig. 1: Check inference and mobility for letrec

1.3 Paths

In the next section we define the Solve function. This function operates on a set
of paths, which contain the type tests generated by following along a single path
in the function and its eventual return type. We start off by defining paths and
their operations.

3

Types can be seen as trees where type tests guard subtrees and union types
correspond to branches. Ground types, type variables, type functions or type
function applications make up the leaves of a type tree. Individual paths through
this tree are valid types themselves. For example: (int ?= α)→ (int ∨ string) has
two paths: (int ?= α)→ int and (int ?= α)→string respectively.

We define two functions Unbraid and Braid which respectively split up a
type into a set of paths and combine a set of paths back into a type. Their
definitions are in fig. 2. Unbraid splits a type into two sets of paths whenever
it sees a union type, while type tests are transformed into path tests. As an
example of Unbraid and Braid, fig. 3 shows a tree representation of the type
int ∨ ((string ?= α)→ int) ∨ (int ∨ string), the paths resulting from Unbraid, and
the type reconstructed with Braid. Note that the reconstructed type has merged
the paths ending in int.

Unbraid(τ1 ∨ τ2) = Unbraid(τ1) ∪Unbraid(τ2)

Unbraid((τ1 ?= τ2)
lb
lc
→ τ) = {(τ1 ?= τ2)

lb
lc
→ P | P ∈ Unbraid(τ)}

Unbraid(τ) = {τ}

Braid(P∗) =
∨

P∈P∗

P

Fig. 2: Definition of Braid and Unbraid

stringint

(string ?= α)

intint

(a) Input type tree

int

(string ?= α)

int string

(b) After Unbraid

string

(string ?= α)

intint

(c) After Braid

Fig. 3: Example of using Unbraid and Braid

Besides Braid and Unbraid, we define two more operations on paths:

Unfold replaces a type function application at the end of a path with its ex-
pansion. If one of the arguments to the type function application is a union

4

type, the application is performed separately for each part of the union type.
As this expansion can introduce a union type, the resulting type is then Un-
braided to produce a set of paths.

Canon simplifies a path with respect to type tests, much like the check sim-
plification step in section 4.4. First, it removes redundant type tests on the
same variable and removes trivially true type tests (of the form (int ?= int)).
Next, if a contradictory type test is found (such as (int?= string)), the entire
path is replaced with error. Finally, type variables that appear in the scope
of a type test are replaced by a concrete type in the rest of the path.

1.4 The Solve function

Having defined paths and their operations, we now turn our attention to the
Solve algorithm. Recall that the input to Solve is the inferred infinite type and
a mapping of type variables to the other infinite function types in the letrec.

1. First, this type is split into a set of finite paths from the top of the tree to
every leaf type (which is either a concrete type or a function application).
These paths form the initial working set.

2. Every path that ends in a type function application is expanded by replac-
ing the type function application with every other path in turn. Paths are
then canonicalized to eliminate duplicate or erroneous paths. This process
is repeated until expansion no longer yields new paths.

3. In the resulting set of paths, the paths that end in a concrete type are joined
together using union types, yielding a final type. If no paths end in a concrete
type the function will always diverge, so its return type is just error.

The canonicalization step guarantees termination of the algorithm: it removes
type tests that can be statically resolved (ie. (int?= int)), it fills in type variables
that have been tested for a specific type (ie. (int?= α)→α becomes (int?= α)→
int), and it removes erroneous paths such as (int ?= string)→

At the start of every iteration the working set is split into three distinct sets:

1. The paths that end in a concrete type (concrete): these contribute to the
final type; they are passed unmodified to the next iteration.

2. Paths that end in a type function application, but have been visited be-
fore (seen): these are ignored. Expanding them will not contribute any new
paths.

3. Paths that end in a type function application, not visited yet (todo): these
are Unfolded, passed to Canon, and added to working set for the next invo-
cation of loop.

The Solve function stops when this last set becomes empty. At that point, the
return type is constructed as explained above using the paths in the concrete
set. A pseudocode implementation of the Solve algorithm is given in fig. 4. In this
code, T-APPLY and T-FUN are data constructors for types, and T-FUN-PARAMETERS
extracts the type variables from a function type. The set-up code on lines 3–4

5

create the empty visited set, and the singleton set paths to contain a type
function application with its own parameters. Line 21 starts the inner loop of
the algorithm.

Lines 7–8 split the working set into the three sets described above (concrete,
seen and todo). After that, the end conditions are checked as above, and the
function either returns a final type (lines 11–13) or continues with another iter-
ation (lines 15–18)

1 def Solve(fun, inftypes)
2 visited = ∅
3 parameters = T-FUN-PARAMETERS(fun)
4 paths = { T-APPLY(fun, parameters) }
5
6 def loop(visited, paths)
7 def concrete, applications = partition-set(paths, is-leaf-concrete?)
8 def seen, todo = partition-set(applications, member-of?(visited))
9 if set-empty?(todo)
10 then
11 if set-empty?(concrete)
12 then return T-FUN(parameters, error)
13 else return T-FUN(parameters, Unbraid(concrete))
14 else
15 def new-visited = visited ∪ todo
16 def extra-paths = { Canon(P2) | P1 ← todo, P2 ← Unfold(inftypes, P1) }
17 def new-paths = concrete ∪ extra-paths \ {error}
18 return loop(new-visited, new-paths)
19 end
20
21 return loop(visited, paths)
22 end

Fig. 4: Pseudocode for the Solve function

Without the visited set, the algorithm would loop forever. It would get
stuck in expanding the same type function applications over and over. The Canon
helper function additionally limits the growth of paths by eliminating paths that
contain failing type tests, and removing trivial or duplicated type tests. This
ensures that the working set only ever contains paths that actually perform
equivalent type tests, albeit in another order.

Theorem 3. Solve always terminates.

Proof. There are three kinds of paths present in the working set of any invocation
of loop:

1. Paths that end in a concrete type: These cannot be expanded further. If
there are no other kinds of paths, the algorithm terminates.

6

2. Paths that end in an application and have been visited before: These paths
have already added their unfolding to the working set. Unfolding these paths
again leads to an infinite loop that does not gain any new information. They
are therefore not expanded again.

3. Paths that end in an application and have not been visited before: These
must be expanded and their paths added to the working set.

This last group has the potential to keep the algorithm going. There is an
upper bound on the number of possible types in this group, however:

– For a function with n arguments, a path can contain up to n type tests (one
per argument) as the canon function already removes trivial or duplicate
type tests. Conflicting or erroneous type tests will turn the path into error,
in which case it cannot belong to the third group. There can thus only be
(g+1)n type tests on the path, where g is the number of ground types that
can be tested and the 1 stands for “no test”.

– Finally, the type function application at the end of the path must pass m
types as arguments. An argument can be either a ground type or a parameter,
so there are (g + n)m different function applications.

There are a finite number of paths, so Solve will terminate after a fixed number
of iterations.

We have now shown how to apply blame prediction to programs that contain
recursive functions. In the next section we describe how blame prediction can
apply to programs with variable assignment.

2 Mutation

In the context of program analysis and type systems, mutation is considered
to be a prominent member of the “awkward squad”. Mutation severely limits
program optimizations, as expressions cannot be reordered freely for example.
In the context of type systems, mutation is always limited to be type-preserving :
an assignment may not change the static type of a variable.

Consider the program in Listing 1.1. Running it in an interpreter will print
0 5 7. Every call to add! changes the value of counter, which is accessed in
every call to display.

1 (let* ([counter 0]
2 [add! (lambda (x)
3 (let ((new-counter (+ counter x)))
4 (set! counter new-counter)))])
5 (display counter)
6 (add! 5)
7 (display counter)
8 (add! 2)
9 (display counter))

Listing 1.1: Example of side effects using set!

7

In this section we introduce support for mutation in blame prediction in
the form of variable assignment. Unlike mutation in statically typed languages,
blame prediction allows variable assignments to change types.

This section is subdivided as follows:

– First, we present a new syntax and semantics that adds support for the set!
keyword to Schemeβ (section 2.1);

– Next, we augment the blame prediction transformation with effect infer-
ence (section 2.2);

– The results of this effect inference are used in the check inference, introduc-
tion, and mobility stages (section 2.3);

– We show how the augmented blame prediction transformation handles some
common idioms in dynamically typed programming languages (section 2.5);

– We prove that the new blame prediction transformation maintains the same
safety properties as functional blame prediction (section 2.6).

2.1 Syntax and Semantics

In Schemeβ , as in Scheme, variable assignment is done using the set! keyword.
(set! x s) takes a variable x and an ordinary expression s, evaluates the expres-
sion and assigns the result to the variable x. fig. 5 shows the syntax for a set!
expression.

e ∈ Exp ::= . . . as in the paper
| (set! x s) Variable assignment

Fig. 5: Definition of the set! keyword in Schemeβ

The semantics of the paper eagerly substited values in let bodies, which
effectively made variables immutable. Programs like Listing 1.1 cannot be ex-
pressed using these semantics of the paper, therefore we need a new semantics
for Schemeβ that incorporates variable assignments.

Semantics for languages with mutable variables add an extra indirection step
between variables and values: rather than having variables directly contain values
(or substituting a value for the variable), they contain pointers to cells in a shared
heap. Evaluation of lambda expressions also becomes more complex, as they need
to capture the environment in which they are defined which may differ from the
environment in which they are called. We present an updated semantics for
Schemeβ in fig. 6.

Evaluation rules in this semantics are of the form H, E , e H′, v: given a
starting heap H and environment E , the expression e evaluates to v, returning a
potentially modified heapH′. We use the syntax E [x] orH[`] to denote lookups in
environments or heaps. E [x→ `] or H[`→ v] return a new environment or heap
with an updated binding. Functions are represented by a triple 〈E , x1 . . . xn, e〉,

8

v ∈ Val = void | #f | #t | n | 〈E , x1 . . . xn, e〉 Runtime values
` ∈ Loc ⊂ N
E ∈ Env = x ⇀ Loc Environments
H ∈ Heap = Loc⇀ Val Heaps

H, E , x H,H[E [x]] (E-var) H, E , c H, c (E-const)

H, E , (lambda (x1 . . . xn) e) H, 〈E , x1 . . . xn, e〉 (E-lambda)

H, E , s H, vc
i = 2 if vc = #f, 1 otherwise

H, E , ei H′, v
H, E , (if s e1 e2) H′, v

(E-if)

`1, . . . , `n fresh
E ′ = E [x1 → `1, . . . , xn → `n]
H, E ′, ei H, vi ∀i ∈ [1 . . . n]
H1 = H[`1 → v1, . . . , `n → vn]

H1, E ′, e H2, v
H, E , (letrec ([x1 e1] . . . [xn en]) e) H2, v

(E-letrec)

` fresh
H, E , ex H1, vx

E ′ = E [x→ `] H2 = H1[`→ vx]
H2, E ′, e H3, v

H, E , (let (x ex) e) H3, v
(E-let)

H, E , p H, vp

If vp = #f, raise a err-blame(p) error.
H, E , e H1, v

H, E , (check p e) H1, v
(E-check)

H, E , s H, v H1 = H[E [x]→ v]
H, E , (set! x s) H1, void

(E-set)

H, E , si H, vi ∀i ∈ [0 . . . n]
H1, E ′, e = δ(H, E , v0, v1 . . . vn)

H1, E ′, e H2, v
H, E , (s0 s1 . . . sn) H2, v

(E-apply)

δ(H, E , o#, v1, . . . , vm) = err-not-int(vi) if ∃i : ¬number? vi
δ(H, E , o#, v1, . . . , vm) = H, E , o#(v1, . . . , vm) otherwise

δ(H, E , 〈Ef , x1 . . . xm, e〉, v1, . . . , vm) = H[`1 → v1, . . . , `n → vn], Ef [x1 → `1, . . . , xn → `n], e
δ(H, E , λx1 . . . xm.e, v1, . . . , vn) = err-args-λ(λx1 . . . xm.e) if m 6= n

δ(H, E , v, . . .) = err-not-λ(v) if ¬function?(v)

Fig. 6: Semantics for Schemeβ with support for mutation

9

where E is the environment in which it is defined, x1 . . . xn are the names of its
arguments, and e is the body.

We explain some of the rules:

– E-const: evaluating a constant simply returns the constant.
– E-var: to evaluate a variable, its location is first looked up in the environ-

ment, and this location is then looked up in the heap.
– E-lambda: a lambda expression captures the environment in which it is

defined.
– E-if: the correct subexpression is chosen depending on s being #f or not.
– E-letrec: every expression ei is evaluated in the environment E ′ which maps

all bound variables to a new location `i. The resulting values (all functions,
see section 1.1) are assigned to the corresponding locations in heapH1, which
is used to evaluate the body.

– E-let: after evaluating the expression ex, a new memory location ` is ini-
tialized with the value vx. The variable x is bound to this memory location,
and the body is evaluated in this new heap and environment.

– E-check: the check expression raises an error if its precondition evaluates
to #f.

– E-set: finally, evaluating set! updates the heap.
– E-apply: after evaluating the function vf and arguments v1 . . . vn, the δ

function returns an expression, along with an environment and heap to eval-
uate it in.

In this semantics we allow a rule to evaluate subexpressions directly, where
the previous semantics would rely on evaluation contexts and substitution. If any
of these subexpressions raises an error — or in the case of E-var, the variable is
not bound in the environment — evaluation immediately stops with the raised
error.

The extended syntax and semantics are sufficient to describe and evaluate
programs that perform side effects. For the sake of simplicity (and presentation)
we will also allow begin expressions into the language. A begin expression evalu-
ates its expressions from left to right and returns the value of the last expression.
Any begin can be translated to the standard let expression as shown in fig. 7,
where ignore is a fresh variable name. Functions or let-expressions with multiple
expressions in the body are implicitly wrapped in a begin expression.

J(begin)K = (void)

J(begin e)K = e

J(begin e es ...)K = (let (ignore e) J(begin es ...)K)

Fig. 7: Translation of begin to let

10

2.2 Effect Inference for Schemeβ

Now that we have explained the syntax and semantics of the extended Schemeβ ,
we turn to effect inference. In order to ensure correctness of the transformed
program, effect inference is used to estimate which variables are affected by
evaluating a given subexpression. The inferred effects will enable check mobil-
ity to move checks upwards in the program without changing its meaning. For
example, consider the snippet in Listing 1.2, taken right after applying check
introduction:

1 (begin (display (check (string? name) (string-length name)))
2 (f)
3 (check (string? name) (string-append "Hello, " name)))

Listing 1.2: Example of why effect inference is needed

This snippet makes use of a variable name which is defined above, and a
function f. There are three possibilities:

1. f assigns to the variable name. In this case, the second check cannot be
moved over the call to f, as it might have changed the type of name.

2. f assigns to the variable name, but preserves its type (string).
3. f does not assign to name. In both cases, the second check can safely be

moved over the call to f and merged with the first check.

With effect inference we can determine which of the two cases applies and
correctly move (or not move) the check upwards. Figure 8 describes the type
and effect inference rules for Schemeβ . Judgments are of the form Γ `E e :
τ ! x, meaning that — according to environment Γ — expression e has type
τ and assigns to variables in the set x. We use ? to denote all variables that
are assigned to in the program, which can be known by traversing the AST.

Type-level functions are denoted with
x
Π α1...n.τ , where x is the set of variables

mutated by the function, or ? if this is unknown.
The type- and effect inference rules are as follows:

– There are two rules for looking up the types of variables: TE-var-mut as-
signs variables type ? if they are a member of ?. Otherwise, TE-var performs
type environment lookup as usual.

– TE-const is unmodified with respect to the paper.
– TE-if returns an or-type consisting of the types of the two branches, and

its effect is the union of both branches’ effects.
– TE-let again uses Chain to chain the types of the expression and body

together. The effect is the union of the effects of both subexpressions, but
without the bound variable x.

– The type returned by TE-lambda is a type-level function with given pa-
rameters and body type. This function type is annotated with the effects of
its body. The lambda expression itself has no effects.

11

Γ `E e : τ ! x

x ∈ ?
Γ `E x : ? ! ∅

(TE-var-mut)
Γ (x) = τ

Γ `E x : τ ! ∅
(TE-var)

Γ `E c : Typeof(c) ! ∅
(TE-const)

Γ `E e1 : τ1 ! x1 Γ `E e2 : τ2 ! x2

Γ `E (if s e1 e2) : τ1 ∨ τ2 ! x1 ∪ x2
(TE-if)

Γ `E ex : τ1 ! x1 Γ, x : τL `E e : τ ! x τL = Leaves(τ1)
Γ `E (let (x ex) e) : Chain(τ1, τ) ! x1 ∪ x \ {x}

(TE-let)

Γ, x1 : α1, . . . , xn : αn `E e : τ ! x α1, . . . , αn fresh

Γ `E (lambda (x1 . . . xn) e) :
x

Π α1...n.τ ! ∅
(TE-lambda)

Γ `E si : τi ! ∅ ∀i ∈ [0 . . . n]
`f = Label((s0 s1 . . . sn))

Γ `E (s0 s1 . . . sn) : Apply(τ0, `f , τ1 . . . τn) ! FunEffect(τ0)
(TE-apply)

Γ `E (set! x s) : void ! {x}
(TE-set)

Fig. 8: Inference of side effects

12

– TE-apply constructs its return type using the same Apply function as the
paper. The effects of a function application entirely depend on the output
of the FunEffect function, shown in fig. 9. This function analyzes the type
τ0 of the value being applied and returns an overestimation of the variables
being assigned to. Applying a known type function results in the same effect
as the function, while applying a type variable results in the ? effect.

– Finally, TE-set has type void and the intended effect.

FunEffect(
x

Π α1...n.τ) = x
FunEffect(τ1 ∨ τ2) = FunEffect(τ1) ∪ FunEffect(τ2)

FunEffect((τt ?= τ1)
`c
`b
→ τ) = FunEffect(τ)

FunEffect(α) = ?
FunEffect(τ) = ∅

Fig. 9: Auxiliary functions for type- and effect inference for Schemeβ

The type ? is inspired from gradual typing [3], where it means “any type”.
In this work types are only used to statically eliminate type tests however, so
primitive operations involving variables in ? will always perform a type test.
The idea is that after check mobility and simplification, most of the type tests
on such variables are merged.

It should be possible to improve the accuracy of type inference for mutated
variables. Such improvements come at the cost of increased complexity and trans-
formation time. The difference would be most noticeable in code that only ever
assigns values of a single type to variables, as shown in Listing 1.3. It defines a
simple counter function that returns a higher number every time it is called.
Because count is assigned to on line 4, it has type ? and therefore the counter
function also has type ?. All uses of the function will require a type test even
though counter will never return anything but a number.

1 (define count 1)
2
3 (define (inc)
4 (set! count (+ count 1))
5 count)

Listing 1.3: Example of type-preserving mutation

check introduction proceeds as in the paper: checks are inserted around func-
tion application expressions, according to their type. The inferred effects will be
used in the next step, namely to restrict check mobility.

2.3 Blame Prediction with Mutation

After having defined the semantics of a mutation-enabled Schemeβ and shown
how to perform type- and effect inference, we now turn to check mobility. As

13

mentioned in the paper, it is very important that check mobility does not change
the semantics of the program. There were two invariants:

1. checks on variables may not escape the let expressions that bind them, and
2. checks may not escape lambda expressions.

We now add a third, namely

3. checks on mutable variables may not skip over expressions that potentially
assign to them.

To illustrate this third point, consider the code in Listing 1.4.

1 (define (foo x) ; type of x is
unknown

2 [number? x] (set! x (+ x 1)) ; type of x becomes
number

3 (set! x (to-string x) ; type of x becomes
string

4 [string? x] (string-append "Hello, " x))

Listing 1.4: Restrictions on check mobility

The string? test on line 4 may not skip over the set! on line 3, as the type of x
is changed there. Before line 3, the type of x will be number.

We present an updated set of rules for check mobility in fig. 10. Most of the
rules are the same as in the paper, but the new and modified rules require some
explanation:

– The FE-set rule needs to process a potential lambda expression passed as
argument.

– FE-let is similar to the rule in the paper: only the checks in the body
that do not involve x are propagated. However, instead of using the mask
function, it now uses the Push function. This function takes a list of variables
that cannot be used in propagated checks and a precondition; it returns a
precondition that can be propagated upwards (p↑) and a precondition that
must remain (p↓). Applying this to the let expression shows that p↓ consists
of preconditions which mention the bound variable x or any of the mutated
variables x, while p↑ consists of the precondition which do not.

2.4 Check Simplification with Mutation

The check simplification rules proposed in the paper still apply, with one impor-
tant caveat: check–check simplification on a variable in the x set may not jump
over an expression that possibly modifies the variable. Consider the program in
Listing 1.5. It first uses the variable x in an addition, then sets it to the result of
applying f to x and 5, and finally tries to use it as a number again. In this case
the function f is unknown, so it might return a number or it might not. In the
second case, eliminating the check on line 4 would result in a wrong prediction.

14

e→ e′ ↑ p
e→P [p]e′

(FE-program) c→ c ↑ #t (FE-const)

s→ s′ ↑ #t

(set! x s)→ (set! x s′) ↑ #t
(FE-set) x→ x ↑ #t (FE-var)

si → s′i ↑ #t ∀i ∈ 1 . . . n

[p](s1 . . . sn)→ (s′1 . . . s
′
n) ↑ p

(FE-apply)

s→ s′ ↑ #t e1 → e′1 ↑ p1 e2 → e′2 ↑ p2

(if s e1 e2)→ (if s [p1]e
′
1 [p2]e

′
2) ↑ p1 ∨ p2

(FE-if)

ex → e′x ↑ px e→ e′ ↑ p x = Effects(ex) 〈p↑, p↓〉 = Push(x ∪ x, p)

(let (x ex) e)→ (let (x e′x) [p
↓]e′) ↑ px ∧ p↑

(FE-let)

e→ e′ ↑ p
(lambda (x1 . . . xn) e)→ (lambda (x1 . . . xn) [p]e′) ↑ #t

(FE-lambda)

Fig. 10: Check mobility in the presence of side effects

Push(x, (τ? c)`b) = 〈(τ? c)`b , (τ? c)`b〉
Push(x, (τ? x)`b) = 〈(τ? x)`b , (τ? x)`b〉 if x /∈ x

= 〈#t, (τ? x)`b〉 if x ∈ x

Push(x, p1 ∧ p2) = 〈p↑1 ∧ p↑2, p
↓
1 ∧ p↓2〉

Push(x, p1 ∨ p2) = 〈p↑1 ∨ p↑2, p
↓
1 ∨ p↓2〉

where 〈p↑1, p
↓
1〉 = Push(x, p1), 〈p

↑
2, p
↓
2〉 = Push(x, p2)

Fig. 11: Auxiliary functions for check mobility

15

1 (check (number? x)
2 (let (y (+ x 1))
3 (set! x (f x 5))
4 (check (number? x)
5 (+ x 1))))

Listing 1.5: Example where check-check simplification is not appropriate

2.5 Mutation Patterns

Having shown how blame prediction needs to be adapted to deal with mutation,
in this section we present how blame prediction applies to three commonly used
idioms involving mutation.

Idiom 1: Caching Consider the code in Listing 1.6. The goal of this code is to
cache the result of an expensive computation. The variable cached-value holds
a cached value1, while the variable cached? is used to remember whether the
expensive computation has taken place.

1 (define cached-value #f)
2 (define cached? #f)
3
4 (define (get-or-compute)
5 (if cached?
6 cached-value
7 (begin (set! cached? #t)
8 (set! cached-value (expensive-computation))
9 cached-value)))

Listing 1.6: Caching expensive computations

At the start of the program, both cached? and cached-value contain a
value of type boolean. After invoking get-or-compute once, cached-value
will contain the value computed by expensive-computation. According to the
type inference above, however, cached-value has type ? rather than the specific
type computed by expensive-computation.

Idiom 2: Wrong initial types Listing 1.7 is taken from the fft program in
the Gabriel benchmarks [4]. The program calculates the Fast Fourier Trans-
form (FFT) of two given vectors areal and aimag. The objective of the bench-
mark is to measure the speed of arithmetic computation, so in order to minimize
creation of garbage, all variables are defined up front in a big let expression and
later overwritten using set! to intermediate or final values. However, this causes
the type to change; for example the set! expressions on lines 6 and 7 change
the types of the values in ar and ai from number to vector.
1 This caching mechanism could also be implemented using a combination of delay
and force, two Scheme primitives for delayed evaluation. We avoid this method
because few other languages support these primitives.

16

1 (define (fft areal aimag)
2 (let ((ar 0) (ai 0)
3 (i 1) (j 1)
4 (k 0) (n 0)
5 (tr 0) (ti 0))
6 (set! ar areal)
7 (set! ai aimag)
8 (set! n (- (vector-length ar) 1))
9 ...
10 (let l3 ()
11 (cond ((< i j)
12 (set! tr (vector-ref ar j))
13 (set! ti (vector-ref ai j))
14 (vector-set! ar j (vector-ref ar i))
15 (vector-set! ai j (vector-ref ai i))
16 (vector-set! ar i tr)
17 (vector-set! ai i ti)))
18 ...
19 (set! j (+ j k))
20 (set! i (+ i 1))
21 (if (< i n) (l3) 'done))
22 ...
23 #t))

Listing 1.7: Example of wrongly typed initial values

Let us consider what this means for blame prediction. The vector-ref and
vector-set! operations on lines 12–17 require ar and ai to be of type vector.
These checks will move upwards to the beginning of the function at line 12.
They cannot be eliminated further because of the condition on line 11. However,
ar and ai are declared as numbers on line 2, so an implementation of blame
prediction that is not aware of type-changing assignments will predict an error
at the top of the let, even though there is none.

Idiom 3: Type changes at a distance Listing 1.8 defines a common helper func-
tion to perform an arbitrary operation on a file and write back the results. The
operation to be performed is defined in the process function, which is passed in
by the programmer. The process function should return a string, otherwise the
write-file built-in will raise a type error. The implementation of blame predic-
tion as described in the paper will generate a check for (string? input) around
write-file and immediately float it up below the read-file. At run-time,
this check will always succeed, as read-file indeed returns a string. Instead,
the check should remain right before the call to write-file, as process might
return something other than a string.

1 (define (with-file-do filename process)
2 (let ((input (read-file filename)))
3 (set! input (process input))
4 (write-file filename input)))

Listing 1.8: Example of changes at a distance

17

2.6 Proof of Safety

In this section we show that the extensions made to the blame prediction trans-
formation do not affect program correctness.

Correctness of Effect Inference Central to this proof is the effect infer-
ence from section 2.2: for any given expression e, it must correctly identify the
variables x it modifies. We start by proving that the type and effect inference
over-approximates this set of variables, ie. that the expression might assign to
any of the variables in x, but may not assign to any variables outside of x.

As a simple example, consider the snippet below:

1 (if (even? x)
2 (set! even (+ even 1))
3 (set! odd (+ odd 1)))

It modifies either even or odd, but which variable exactly depends on the value of
x. Therefore we over-approximate the set of variables it modifies as {even, odd}.

Lemma 1. Let e be a Schemeβ expression; then the judgment Γ ` e : τ ! x over-
approximates the set of variables mutated by e as x. We define “over-approximation”
as follows: for all sets of mutated variables xo observed from program execution,
xo ⊆ x.

Proof. By case analysis on the type- and effect inference rules:

– TE-var, TE-var-mut and TE-const analyze variable references and con-
stant expressions, which can have no side effects.

– TE-if over-approximates the set of mutated variables by taking the union
of the mutated variables of both branches.

– TE-let similarly over-approximates by taking the union of variables mu-
tated both in the expression and the body.

– TE-lambda correctly states that a lambda expression by itself does not
mutate any variables. The type returned contains an over-approximation of
all variables set in the body, which is used later.

– TE-apply asserts that both the function expression and its arguments can-
not mutate any variables, as they are simple expressions. The only variables
mutated by a function application are those as returned by the FunEffect
helper function. For the most part it simply traverses the given type, except
for the following kinds of types
• Function types, as stated above, contain an over-approximation of the

types modified by their body; they are simply returned.
• In a function application, function types could be bound to any possi-

ble function. FunEffect over-approximates by assuming all variables are
mutated (?). This is an over-approximation because it also includes vari-
ables local to the current function, which cannot possibly be affected by
external functions.

18

• Applying other concrete type will result in an error, therefore no variables
can be set.

– TE-set states that a set! expression mutates its variable, which is exactly
the intended effect.

Program Properties after Blame Prediction

Lemma 2. The check mobility and simplification stages preserve the following
properties:

1. check expressions never refer to unbound variables;
2. check expressions verify the same values as the preconditions they guard.

We begin the proof of lemma 2 with check mobility.

Proof. By induction over the mobility rules.

– FE-program simply captures any preconditions that escape the program
and reinserts them.

– FE-const, FE-set and FE-var do not propagate up any preconditions.
– FE-apply simply propagates any preconditions attached to it. This is the

base case, as any preconditions start from the function application expres-
sions.

– FE-if lifts the preconditions p1 and p2 out of its branches. Property 1 is
preserved because an if expression does not introduce new bindings, and
property 2 is preserved because the condition s cannot contain any set! ex-
pressions.

– FE-let is the most important rule in regards to the two properties. Regard-
ing property 1, it must ensure that the preconditions to be propagated do
not mention x, as that would introduce a reference to an unbound variable.
Regarding property 2, preconditions on variables mutated by the expression
ex may not be lifted out of the body. Both are satisfied by the Push function:
it separates p into p↑ and p↓, where p↑ is guaranteed not to contain any
references to x or any of the variables x mutated by ex. Moreover, lemma 1
states that ex mutates at most the variables returned by the Effects function.

– FE-lambda, as before, prevents any preconditions from floating out of the
lambda expression.

Proof. For the check simplification stage, we simply enumerate the simplifica-
tions:

– Or–true simplification removes preconditions of the form #t ∨ p, where
p would never be evaluated.

– And–check simplification merges multiple identical preconditions on the
same variable in an aggregate precondition. From the previous stage we
know that these preconditions would not reference unbound variables or
check values different from the blame label, so this is fine.

19

– Check–literal simplification removes checks on literals when they can
statically be proven true. It does not touch preconditions on variables.

– Check–check simplification, finally, has the potential to violate the sec-
ond property. The first property cannot be altered: we remove an innermost
check expression which must already satisfy the first property, and we merge
it with the outermost check expression, which must also already satisfy it.
For expressions of the form (check (τ? x) (CONTEXT (check (τ? x) . . .))), the
innermost check may only be merged with the outermost check if CONTEXT
is known not to modify x (ie. where x remains the same throughout CON-
TEXT). By relying on the over-approximation of lemma 1, we only perform
this simplification when this is the case.

Traces and Trace Semantics Before we can prove the three properties de-
scribed in section 5, we need to extend traces to record the changing types of
variables. To obtain traces, we execute the program in a modified version of the
semantics presented in section 2.1. The modified semantics build up a trace while
evaluating the program. Figure 12 shows the most important modified rules, the
rest simply thread the trace through the evaluation.

T ::= s · T | ε | err-blame(p) | err-use(p)
s ::= use(p) use step, as before

| check(p) check step, as before
| `← τ Update memory at ` to type τ

H, E , ex,T H1, vx,T1

` fresh E ′ = E [x→ `] H2 = H1[`→ vx]
τ = typeof(vx) T2 = T1 · (`← τ) if x ∈ ?, otherwise T2 = T1

H2, E ′, e,T2 H3, v,T3

H, E , (let (x ex) e),T H3, v,T3

(ET-let)

H, E , p,T H, vp,T
If vp = #f, raise a err-blame(p) error.
H, E , e,T · check(E [p]) H1, v,T1

H, E , (check p e),T H1, v,T1

(ET-check)

H, E , s,T H, v,T H1 = H[E [x]→ v]
τ = Typeof(v) T1 = T · (E [x]← τ)

H, E , (set! x s),T H1, void,T1

(ET-set)

Fig. 12: Modified semantics for generating traces

In these tracing semantics, rules take the form H, E , e,T H′, v,T′, meaning
that evaluating expression e with heap H and environment E returns a value
v and new heap H′, while trace T is extended to T′. Traces can consist of a

20

use(p) or check(p) step from the paper, as well as a “set type” step `← τ . This
step indicates that a memory location belonging to a mutable variable has been
set, potentially changing its type to τ . We track memory locations rather than
variable names, as a recursive function invocation can cause multiple copies of
the same variable name to appear in a trace. Appending a step s to a trace T is
denoted as T · s.

The modified rules are as follows:

– ET-let evaluates the expression ex and updates the heap as before. If the
variable being bound is a member of ?, the trace is amended to note that
the newly allocated memory location now contains a value of type τ . If the
variable being bound is never assigned to, it is not recorded in the trace.

– ET-check records the fact that the precondition p has been tested. We
use the syntax E [p] to denote “replace all variable references in p with their
location in the heap”.

– ET-set updates the trace to note that the variable x has been updated.

To illustrate the tracing semantics, let us examine the trace produced by the
program Listing 1.9.

1 (let* ([counter 0]
2 [add! (lambda (x)
3 (let ((new-counter (+ counter x)))
4 (set! counter new-counter)))])
5 (display counter)
6 (add! 5)
7 (display counter)
8 (add! 2)
9 (display counter))

Listing 1.9: Example program for tracing semantics

The trace is then:

T = [`c ← int︸ ︷︷ ︸
line 1

, check(number? `c), `c ← int︸ ︷︷ ︸
line 6

, check(number? `c), `c ← int︸ ︷︷ ︸
line 8

]

The first part of the trace shows how the let expression assigns type int to the
memory location `c, which it allocated for the variable counter. The memory
location of add! is not recorded, as it is not a member of ?. The second part
of the trace is the invocation of add! on line 6, which adds 1 to counter (the
check), then stores the result back (the ← part). The third part of the trace is
identical to the second part.

This trace exhibits two important properties:

1. First, variables (or rather the memory locations they point to) are always
initialized with a type. It is an error to refer to a variable before it is bound,
similar to the first lemma of the paper.

21

2. Second, every check refers to the type of the value that was last assigned
to a particular memory location. We could therefore rearrange checks in a
trace, as long as they do not skip over an assignment of the variable(s) they
inspect.

Proof of equivalences Having defined traces for Schemeβ with mutation, we
now turn to proving the three equivalences from section 5. They are reproduced
below for easy reference.

Value Preservation
Iff P runs to completion and produces a value v, P′ produces the same value
v.
Formally: P v ⇔ P′ v.
Use–Blame Equivalence
If P raises an error, the blame predicted program P′ must predict blame.
Formally: P err-ω ⇒ P′ err-blame(p).
Blame–Use Equivalence
If P′ predicts blame, the original program P must raise an error.
Formally: P′ err-blame(p)⇒ P err-ω.

Lemma 3. Check introduction guards all type tests that could fail in primitive
operations with a check expression.

Proof. The proof for this is analogous to a proof in the paper. Mutable vari-
ables always have type ?, as per rule TE-var-mut. Therefore, any use of these
variables will generate a check expression, trivially satisfying the property.

Proof of Value Preservation

Proof. We prove each direction separately.
⇒: Given that P v, prove that P′ v.
Analogously to the proof in the paper, we start by comparing the trace T of
P with T′ from the blame predicted program P′. T returned a value, so every
use(p) succeeded. check introduction will insert a check expression to guard every
primitive operation that might fail (see previous lemma). Further, the mobility
and simplification stages will move these check expressions up, as long as 1) no
unbound variables are referenced, and 2) the preconditions verify the same val-
ues as the use expressions. For every check in T′, there is a use in T′ (and thus
T) that requires the same predicate to be true. Every check and use expression
therefore succeeds, thus T must not raise an error and produce a value.

⇐: Given that P′ v, prove that P v.
The trace T′ of program P′ is equivalent modulo check to the trace T of program
P. In other words, removing the checks from T′ yields T. T′ succeeds, so T must
also succeed, and thus program P must produce the same value as program P′.

22

Proof of Use-Blame Equivalence

Proof. Evaluation of the program P raises an error on a use(p). We discriminate
on the form of p:

1. p = (τ? c): a check expression would be generated and propagated as high
up as possible, the proof is analogous to that of the paper.

2. p = (τ? x), with x 6∈ ?: the check experssion for this precondition is prop-
agated as high as possible, up to the binding of x or the nearest enclosing
function. The proof is also analogous to that of the paper.

3. p = (τ? x), with x ∈ ?: in this case, the check expression is propagated up to
the most recent assignment of x. Lemma 2 ensures that both the check and
the use expressions verify the type of the same value. Therefore, at the very
latest the check expression will predict blame for the use expression.

Proof of Blame-Use Equivalence

Proof. P′ evaluates to an err-blame(p) error, which must be raised by a check(pk)
expression in P′. The proof is analogous to that in the paper, the only difference
is the presence of ` ← τ steps in the trace, but lemma 2 guarantees that these
do not affect the values tested by check expressions.

3 Conclusion

In this technical report we developed support for recurstion and mutation in
Schemeβ .

For recursion the key problem is the infinite types produced by the check
inference phase: functions may refer to themselves with arbitrary conditional
types beforehand. Our solution consisted of splitting every infinite type into
paths and expanding paths until a fixpoint is reached. This fixpoint then con-
tains both paths that end in a concrete return type, and paths that end in an
(already visited) recursive invocation. The paths with a concrete return type are
reassembled into finite types.

For mutation, we started by defining a modified semantics of Schemeβ that
allowed for variable assignment. This semantics featured an explicit environment
that mapped variables to heap locations, and a mutable heap that was threaded
through the evaluation. Next, we defined type- and effect inference for Schemeβ .
This allowed us to approximate the variables changed by every expression in the
program. Finally, we restricted the check mobility and simplification phases to
make sure check expressions are only simplified or moved upwards in the program
if the contents of the variable they examine has not changed in the meantime.

References

1. Peyton Jones, S.: The Implementation of Functional Programming Languages.
Prentice-Hall, Inc. (May 1987)

23

2. Waddell, O., Sarkar, D., Dybvig, R.K.: Fixing Letrec: A Faithful Yet Efficient Im-
plementation of Scheme’s Recursive Binding Construct. Higher-Order and Symbolic
Computation 18(3-4) (December 2005)

3. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: SFP ’06: Pro-
ceedings of the 2006 Workshop on Scheme and Functional Programming. (2006)
81–92

4. Gabriel, R.P., Masinter, L.M.: Performance of Lisp systems. In: LFP ’82: Proceed-
ings of the 1982 ACM symposium on LISP and Functional Programming. (1982)
123–142

