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ABSTRACT
This paper presents our vision of applications as feature
clouds, providing software services that are composed dy-
namically from a set of available fine-grained features. Our
feature cloud programming model realizing this vision, re-
lies on context-oriented programming technology, enabling
new or adapted features to be added to or removed from run-
ning applications on demand, according to contextual infor-
mation, and taking into account feature dependencies. As a
proof of concept, we implemented a prototype of an on-board
car system running on a mobile device, using an instantiation
of our feature clouds programming model for JavaScript.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features; D.1.m [Programming Techniques]: Miscellaneous

General Terms
Design, Context-oriented programming, Dynamic software
composition

Keywords
Context-oriented programming, Software-as-a-Service, Fea-
tures, Dynamic software adaptation

1. INTRODUCTION
Computer and computing technology are rapidly evolving

towards highly interconnected computing devices that can
adapt promptly to contextual information about their exe-
cution environment, user preferences and available services.
This evolution has been triggered by changes in hardware
technology such as smartphones and cloud computing. We
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observe that software development technology is lagging be-
hind to cope with these new technologies, causing current-
day applications to miss important opportunities of deliver-
ing improved services on demand to its users.

Software technology has evolved from monolithic off-the-
shelf products to offering software products that can be cus-
tomized to match the specific needs of particular clients. Soft-
ware products can vary in the amount and kind of services
they offer, in the way in which they present such services to
their users, or in the flexibility they offer to adapt their ser-
vices to cope with changing situations. For example, with the
advent of Software-as-a-Service (SaaS) [15], users can obtain
temporary access to (parts of) products as needed. Using
Context-Oriented Programming (COP) [3], the offered ser-
vices or the behavior of those services can be adapted, even at
run time, to respond to new situations arising in, or informa-
tion coming from, the surrounding execution environment of
the system.

Traditional programming technology is currently not yet
well-equipped to support the development of applications in
such highly dynamic settings as it faces three key challenges.
Firstly, services offered by such software systems need to be
modularized and composed at a fine level of granularity. Such
support is required to enable the customization and evolution
of specific system features for different users, devices or sit-
uations. Secondly, fine-grained features should be able to be
composed dynamically into complete services. Dynamic com-
position is required since particular services, or parts of ser-
vices, may be temporarily requested by users or may need to
adapt to particular situations arising in the execution context
of the application. Thirdly, since such fine-grained dynamic
composition may give rise to subtle interaction problems as
services are composed, appropriate solutions are needed to
ensure that the requested features can be effectively com-
posed into coherent services without inconsistencies between
the features.

To provide such support for the dynamic composition of
software services as sets of fine-grained features that can be
activated and deactivated dynamically, we put forward the
feature clouds programming model. Our model is based on
COP which adequately supports the ability to dynamically
modify a system to its run-time environment. As such, it
provides a good basis for the next generation of SaaS systems
offering features on demand. In particular, COP enables dy-
namic adaptivity of the system’s behavior to its surrounding
execution environment, which could be used for the dynamic
composition of features according to particular situations.
Thus, our model could foster further the advancement and



flexibility of such SaaS applications. For example, it could be
used to compose the most appropriate services required by
a user according to its type of connectivity (no connectivity,
WiFi, 4G, LAN, . . . ), availability of additional services, partic-
ular platform or device used, current location, or the battery
level or remaining memory of the device. The notion of con-
text from COP is used as a basis to modularize applications
into many different fine-grained features, each of which can
be (de)composed dynamically, in a consistent way, to achieve
the most appropriate system behavior.

2. FEATURE CLOUDS
To achieve our vision of building software applications

as clouds of features, offering different services that can be
added to the application on demand or depending on context
changes, we advocate the usage of Context-Oriented Pro-
gramming (COP). This technology satisfies the three main
properties we believe to be essential to achieve service com-
position as dynamically evolving clouds of features, namely:
(1) fine-grained feature definition, (2) support for dynamic behav-
ior adaptation, and (3) managing feature interaction. Section 2.1
explains the main characteristics of COP used to provide sup-
port for each of these properties. Section 2.2 then discusses
how these properties are used to conceive feature clouds.

2.1 Context-Oriented Programming
Context-oriented programming is a programming para-

digm conceived to enable dynamic behavior adaption of soft-
ware systems. It allows programmers to define fine-grained
pieces of behavior specific to particular contexts and to ac-
tivate or deactivate them according to specific situations in
the surrounding execution environment, sensed through, for
example, a sensor network. In what follows, we refer to these
fine-grained pieces of behavior as behavioral adaptations, and
the situations of the surrounding execution environment in
which they are applicable as contexts.

Dynamic adaptation to the surrounding environment is
achieved in COP via three main stages: definition, selection
and composition of contexts and behavioral adaptations. To
explain each of these stages we use the Context Traits lan-
guage [6], a COP extension of JavaScript. The concepts in-
troduced here are illustrated on our running example of an
on-board car system, which will be presented in full detail
in Section 3. Please keep in mind that most of the concepts
presented here are not specific to the Context Traits language
but apply to most other COP languages [13] as well.

Context definition.
In COP, contexts are defined as first-class entities of the

system. Contexts reify situations, extracted from raw infor-
mation about the surrounding execution environment, that
are semantically meaningful for the system being build. For
example, in our on-board car system, to reify a situation in
which the car is moving and an SMS must be answered, we
would define an Easy Answer context. Snippet 1 shows how
this can be defined in Context Traits.

var EasyAnswer = new cop.Context({
name: ’easyanswer’,
description: ’Quick answer to SMS’});

Snippet 1: Context definition.

Behavioral adaptation definition.
In order to adapt the behavior of a running system, COP

languages allow to associate behavioral adaptations with
each context. Behavioral adaptations modify the behavior
originally defined in the system either by overriding or ex-
tending it. For example, for the Easy Answer context we
may want to override the default SMS sending behavior by
one that allows a driver to answer quickly just by selecting
one answer from a short list of pre-encoded messages. Such
behavioral adaptations are introduced to (resp. withdrawn
from) the system through dynamic composition whenever
their associated context becomes active (resp. inactive).

In most COP languages, behavioral adaptations are de-
fined as regular methods of the system. However, these
method definitions are not necessarily linked with the reg-
ular modules of the system (e.g., an object or class). Rather,
these methods are associated to a particular context. Snip-
pet 2 shows two behavioral adaptations associated with a UK
Speed Gauge context, as defined in the Context Traits lan-
guage.

1 RoyalSystem = T r a i t ({
2 var CONV_RATIO = 0.621371192;
3 getSpeed: function(msg) {
4 _val = t h i s .proceed();
5 Math.round _val * CONV_RATIO; }
6

7 getHtml: function() {
8 display.setGaugeDisplay( t h i s .proceed().

replace("km/h", "mph")); }
9 });

10

11 UKSpeedGauge.adapt(SpeedGauge , RoyalSystem);

Snippet 2: Behavioral adaptation definition and association
with context.

The UK Speed Gauge context reifies the behavior of how to
display the car speed when driving in the UK. The behavior
associated with this particular context is therefore to display
the car speed according to the UK measure system (i.e., the
royal system). The behavioral adaptations of Snippet 2 de-
fine precisely this behavior. The first behavioral adaptation
(getSpeed) takes the default speed value obtained from the
speed sensor of the car, and converts it into its equivalent in
the royal system. The second behavioral adaptation (getHtml
) adapts the default display of the user interface to ensure
that the unit of velocity shown to the user corresponds to the
value of the displayed speed —that is, mph instead of km/h.
Finally, the adapt construct on Line 11 associates these two
behavioral adaptations with the UK Speed Gauge context as
adaptations of the default Speed Gauge behavior.

Two things are worth noting about this definition of be-
havioral adaptations. First, in the Context Traits language,
behavioral adaptations are defined as traits. Traits [4] are a
mechanism to achieve fine-grained modularization and reuse
in software systems. Traits define groups of behavior (i.e.,
methods) that are as small and cohesive as possible. Hence,
traits represent an appropriate abstraction to modularize be-
havioral adaptations associated to particular contexts.

Secondly, the behavioral adaptations can access the behav-
ior provided by other behavioral adaptations or the default
behavior of the system by means of the proceed() construct as
is the case for getSpeed (Line 4) and getHtml (Line 8). Proceed
is a reuse directive similar to super calls in object-oriented lan-



guages. By using proceed the system calls the instantiation
of the current behavioral adaptation on a context with less
priority according to context composition. In the example
of the getSpeed behavioral adaptation associated with the UK
Speed Gauge context, proceed is used to get the speed value
as defined by the default getSpeedmethod defined in the base
system (in metric system units).

Context selection.
Contexts should be activated (resp. deactivated) dynam-

ically whenever the situations of the surrounding execution
environment they reify are sensed present (resp. not present).
The process of selecting the contexts appropriate to the cur-
rent situation of the surrounding execution environment of
the system is managed by a so-called context discovery mod-
ule. This module gathers raw information about the system’s
environment through a sensor network, and upon process-
ing it selects the relevant contexts for the situation at hand.
For example, an acceleration above 1000rpm obtained from
the acceleration sensor of the car could be interpreted as “the
car is moving”. In such situation the Easy Answer context
is selected (activated); in any other situation it should be de-
selected (deactivated). Snippet 3 shows how this activation
and deactivation policy of the Easy Answer context would be
defined in the Context Traits language.

acc_sensor.EventListener(’accel_reading’,
function(info) {

i f (info.reading >= 1000)
EasyAnswer. a c t i v a t e ();

e lse EasyAnswer.d e a c t i v a t e (); })

Snippet 3: Gathering and activation of contexts.

Context composition.
The traits mechanism provided by Context Traits for defin-

ing behavioral adaptations is also used for composition pur-
poses. The composition mechanism of Context Traits requires
two elements: a collection of traits and a composition policy.
Each trait is defined by a set of methods it provides, and a set
of methods that it requires.

The idea for the dynamic composition of behavior is that,
given a collection of traits, we take the union of all their pro-
vided and required methods. Note that there is no priority
order in the union of traits, hence, composition conflicts may
arise when different traits provide the same method signa-
tures but with different implementations. When such con-
flicts arise they must be resolved explicitly by means of a
composition policy. Different composition policies have been
defined in COP languages to automatically compose adapta-
tions according to the execution environment [13].

A composition policy can be seen as a function that, given
a set of adaptations (i.e., traits) to compose, provides a res-
olution set. That is, it states which of the methods in the
composition are used, with their ordering, avoiding conflicts.
In Context Traits, the default resolution strategy is to use the
activation age of contexts, but other composition policies can
be defined as required. The context age composition policy
gives precedence to behavioral adaptations associated with
the contexts activated most recently. This means that in a
situation where two contexts offer a behavioral adaptation
for a same method, the selected behavioral adaptation will
be the one associated with the context activated the latest.
Policies are applied in a given precedence order, if a conflict

cannot be resolved by a given policy, then the policy with
the next precedence is applied until no conflicts remain or no
other policies can be applied. When no policy is defined, the
context age policy is used to resolve all composition conflicts.

The RoyalSystem trait defined in Snippet 2 declared the
behavioral adaptations associated with the UK Speed Gauge
context, which were designed to override the default behav-
ior of the Speed Gauge context for calculating and displaying
the speed in the on-board car system. This means that we
are required to use a composition policy in which, whenever
these two contexts are active, the behavioral adaptations pro-
vided by UK Speed Gauge are applied before those provided
by the Speed Gauge context. In Context Traits, such a policy
can be expressed explicitly as shown in code Snippet 4.

cop.manager.addObjectPolicy(SpeedGauge ,
[RoyalSystem],

return function(UKSpeedGauge, SpeedGauge) {
return T r a i t .override

(UKSpeedGauge, SpeedGauge); });

Snippet 4: Composition policy definition.

Context dependency relations.
Aside from the composition problems tackled by compo-

sition policies, other composition errors can arise when com-
posing contexts. Inconsistencies may arise due to assump-
tions made by contexts about the presence or not of behav-
ioral adaptations provided by other contexts. Managing and
making explicit such assumptions has become an increas-
ingly important concern among COP languages. Existing so-
lutions amount to defining context dependency relations [1, 8,
12] which describe the interaction of a context (de)activation
with respect to the (de)activation of other contexts defined in
the system. For example, an exclusion dependency relation
between two contexts describes that both contexts cannot be
active at the same time. Whenever a context is to be activated
or deactivated, a context manager verifies its context depen-
dency relations with other contexts. Only if no inconsisten-
cies are found during verification, the desired (de)activation
of the context is allowed to take place. In Section 2.2 we
present the context dependency relations we incorporated in
the Contexts Traits language to manage interaction between
features as they are dynamically (de)activated.

2.2 The Feature Clouds Programming Model
In our vision of applications as feature clouds, the ser-

vices of a software system are composed dynamically upon
demand from users, and by adapting their features so that
they are the most appropriate (i.e., offer optimized function-
ality) according to the current executing environment of the
system. For this reason we position feature clouds at the
meeting point of three research directions, namely the highly
dynamic software systems offered by COP, the modulariza-
tion and composition of software products as proposed by
feature orientation, and the accessibility and scalability of
software services offered by SaaS technology. We discuss
here the conceptual and technical underpinnings of feature
clouds.

Feature clouds break the assumption of regular feature-
oriented systems, where services or software products are
defined and composed up front in a structured way, e.g.,
using feature diagrams [9]. Instead, services are composed
dynamically by combining their independent features or by



request of users, possibly including features that depend on
the selected ones.

We identify COP as central to the development of feature
clouds, based on the facilities it offers for fine-grained fea-
tures, dynamic adaptation and feature interaction, as men-
tioned in Section 2.1. In feature clouds we introduce the
concept of contexts as features [11]. Taking advantage of simi-
larity between the concepts of COP and FOP [2], behind the
curtains of our feature clouds model, features are defined as
contexts.

Fine-grained features.
The property of fine-grained features is obtained directly

from the definition of contexts. As contexts determine the
minimal set of functionality to define or adapt for a particu-
lar situation of the system, features are therefore equated with
contexts. Features can be defined to provide only specialized
pieces of behavior, instead of complete services. Software
services are then defined by composing several of these fine-
grained features. The advantage of gathering services as a
composition of features, is that localized pieces of behav-
ior can be modified without having to modify the complete
service. Moreover, it allows services to be extended or cus-
tomized by adding specialized features that reuse the behav-
ior of previously defined ones, by means of proceed. Such a
mechanism is normally not supported in traditional feature-
oriented programming, where features are defined as closed
components and feature customizations would duplicate the
behavior of the original feature.

Dynamic adaptation.
The property of dynamic adaptation follows from the abil-

ity to adapt to the surrounding context of execution combined
with the ability to reuse previously defined behavioral adap-
tations, as put forward by COP. Different features customiz-
ing the behavior of a service for a particular situation can be
defined. Upon context activation (resp. deactivation), a fea-
ture will dynamically become part of (resp., be removed from)
the service if and only if it is the most appropriate feature
according to the information obtained about the surround-
ing execution environment. In the feature clouds model we
propose a Feature Discoverer module which is in charge of
acquiring information about the surrounding execution en-
vironment of the system, and to (de)activate the respective
features according to the obtained information and the con-
ditions specified for each feature, as shown in Snippet 3.

Feature interaction.
Feature interactions are handled by extending the notion

of context dependency relations and composition policies to
the case of features. As previously mentioned, composition
policies dictate the order in which behavioral adaptations are
composed whenever multiple active features specialize the
same behavior. At a higher level, desired and undesired in-
teractions between features can also be expressed by means of
dependency relations. Such relations are used to express as-
sumptions that features make about the presence or absence
of other features. For example, to group sets of features that
go together, to ensure that other needed features are avail-
able, or to verify absence of conflicting features in a service
configuration.

The original Context Traits implementation did not pro-
vide context dependency relations. Therefore, taking inspi-
ration from other COP languages such as Subjective-C [5]

that do provide support for context dependency relations,
we extended the Context Traits language by introducing six
types of dependency relations for feature clouds. These re-
lations were defined according to the needs observed in the
case study of the on-board car system (cf. Section 3), and are
presented below using examples taken from that case. Other
types of relations could also be defined as needed. For more
information on these dependency relations we refer to [10].

Dependencies between features are expressed by annotat-
ing a feature definition with the type of relation and the name
of the corresponding feature. An example of using context
dependency relations is shown Line 3 of Snippet 5.

Combination The combination dependency defines a kind of
‘virtual’ feature as an aggregation of more specialized
features. Activating the aggregated feature triggers
the activation of each of its constituent features. Con-
versely, when all the constituent features become active,
the aggregated feature is considered active as well. For
example, a UK Driving feature could be declared as a
combination of several more primitive translation fea-
tures such as the UK Speed Gauge which converts the
units of the Speed Gauge from km/h to mph.

Requirement When a feature requires another feature, its ac-
tivation is only allowed to take place whenever the re-
quired feature is already active. For example, an SMS
Outbox feature can only be activated if a more basic SMS
feature on which it relies is already active.

Inclusion When a feature is included by another feature, it
is automatically activated as a consequence of activat-
ing that other feature. For example, a high-level SMS
Sending feature that provides an easy-to-use interface
to send SMS messages could include a more primitive
SMS Outbox feature in order to be able to send messages.

Suggestion A feature may suggest other features to be in-
stalled that are related to a given feature. However,
the activation of these related features is not enforced.
For example, the Easy Answer feature, which has to do
with safety, suggests the Safe Driving feature. This
relation is not taken into account when activating or
deactivating features, but is only used as an indication
of relevant related features in the Feature Store, as will
be exemplified in Figures 3 and 4.

Exclusion Incompatible features exclude each other. In such
a case, activation of a feature is prevented if any of
its excluded features (or features excluding it) are ac-
tive. For example, the Easy Answer feature is mutually
exclusive with an Easy Contacts feature because they
both adapt the SMS Sending feature in different incom-
patible ways. Only one of them can be active at a time.

Subsumption A feature may subsume multiple other fea-
tures. This dependency is similar to the combination
dependency, but differs from it in that the activation of
all subsumed features in the relation does not automat-
ically imply activation of the subsuming feature. An
example of such a subsumption relation is the Speed
RPM Gauge feature which subsumes the Speed Gauge
and RPM Gauge features. The Speed RPM Gauge feature
displays a combined speed and RPM gauge rather than



two separate gauges for the speed and RPM, as illus-
trated in Figure 1. Indeed, when displaying the com-
bined Speed RPM Gauge (Figure 1a), it makes no sense
to still display the individual RPM Gauge and Speed
Gauge (Figure 1b) separately as well. The purpose of
the subsumption relation is to replace a set of features
by a feature that subsumes the behavior provided by all
subsumed ones, since it may be desirable to keep the
behavior provided by the subsumed features indepen-
dent. Feature replacement only takes place when the
subsuming feature is explicitly activated.

(a) (b)
Figure 1: Activation of a comprehensive feature (a) and its
two independent subsumed features (b).

3. AN ON-BOARD CAR SYSTEM
As a concrete illustration of our feature clouds research vi-

sion in which applications are composed from a set of features
on demand, let us now take a closer look at the case of our
on-board car system. This system can dynamically provide
features such as a car dashboard, communication facilities,
driving assistance, and satellite navigation.

Modern on-board car systems have become full-blown soft-
ware systems that consist of a variety of different interacting
features and that can access a large amount of context infor-
mation coming from car sensors or external sources. Such sys-
tems should no longer ignore their surrounding environment
by keeping their behavior and functionality fixed and rigid.
On the contrary, they should be able to activate or deactivate
certain features dynamically according to the surrounding
context, and be flexible enough to allow the dynamic addi-
tion or removal of features —that is, when someone adds new
car equipment or functionality to the system.

We implemented such an on-board car system, to study
if and how the COP paradigm could provide an appropri-
ate mechanism to build dynamically adaptable context-aware
systems as run-time compositions of interacting features [10].
Our prototype of such an adaptive feature-oriented on-board
car system for the Android mobile platform can interface
with a car through a generic OBD1 Bluetooth adapter, as de-
picted in Figure 2. The on-board car system was tested in
real life with a Nissan Primera car, an OBD Bluetooth adap-
ter plugged into the car, and connected over Bluetooth with
a Samsung Galaxy Nexus i9250 running Android 4.3.

The on-board car system initially provides a few native
features such as an Internet feature providing internet access
when the device is connected to the internet (through WiFi,
3G or similar), or an SMS feature providing short message

1With the publication of the European directive 98/69/EC,
since 2002 it is mandatory for every car in Europe to be
equipped with an OBD (On-Board Diagnostics) interface.

Figure 2: Bluetooth connection and exchanges between an
Android device and an OBD Adapter.

service facilities. The system and its accompanying services
are divided in three main modules.

3.1 Feature Store
In our feature clouds model, additional features can be

added or removed at run time. A first way of obtaining such
features is through a so-called Feature Store, where drivers
can select what additional features they (no longer) desire for
their car system. As illustrated by Figures 3 and 4, the Feature
Store is akin to app stores as exist for the iOS, Android, or
Windows Mobile platforms. It lists all the known, available
or suggested features with their rating and price, and it allows
drivers to select and (un)install the features they desire.

Figure 3: Screen capture of the Feature Store.

Figure 4: Screen capture of a detailed feature page.

This Feature Store contains a variety of dashboard fea-
tures (e.g., a Speed Gauge, an RPM gauge, or Statistics
on the driver’s journeys), communication features (e.g., SMS
Sending or SMS Notification), driving assistance features
(e.g., Safe Driving or Economic Driving), and many more.
Figure 5 shows a screenshot of an Android device used as a



car dashboard, where several of these features (Speed Gauge,
RPM Gauge, Statistics and SMSPanel) have been installed.

Figure 5: Screen capture of the car dashboard.

Currently, the Feature Store provides an exhaustive list all
available features. In our vision however, ideally the Fea-
ture Store should present a list of available services (possibly
filtered according to the state of the surrounding execution
context), where each service is aware of the features it re-
quires, and when selected gets composed automatically from
the available fine-grained features, thus avoiding cluttering
the Feature Store and avoiding the users from having to select
each individual feature separately.

3.2 Feature Discoverer
The Feature Discoverer provides the ability to dynamically

(de)activate features in the system. The role of the Feature
Discoverer is to gather data coming from external sources
(e.g., internet connectivity, or the device’s battery status) and
integrated car sensors. According to this available informa-
tion, the Feature Discoverer dynamically activates or deacti-
vates the features appropriate for the situation at hand.

Examples of features that could be activated through the
Feature Discoverer are the Easy Answer and UK Driving fea-
tures. UK Driving provides dedicated driving assistance for
driving in the UK. This feature is activated automatically as
soon as it is detected that the car is located in the United
Kingdom, for example, using geolocation. The Easy Answer
feature, if installed, would adapt the SMS Sending feature
when the car is moving. Whereas the normal SMS Sending
feature would allow the driver to type and send SMS mes-
sages, the Easy Answer feature would only allow to respond
to an SMS with a single touch by selecting a response from a
short list of pre-encoded responses like: “Sorry, I can’t answer
your call. I’m driving!”. This is illustrated in Figure 6.

Figure 6: The Easy Answer feature at work.

3.3 Feature Manager
The management of the (de)activation of features as a con-

sequence of the (de)activation of other linked features is del-
egated to the Feature Manager. The Feature Manager contains
a collection of all installed and active features and their de-
pendencies. The Feature Manager implements different al-
gorithms to activate and deactivate features based on those
dependencies. Additionally, the Feature Manager is also in
charge of applying the policy rules (explained in Section 2.1)
whenever features are to be composed.

3.4 Working with Feature Clouds
Having explained how the on-board car system is divided

in three main modules, let us now take a closer look at how
the application itself can be designed as a cloud of features.
As an example, we focus on the features related to the Speed
Gauge service of the on-board car system. The feature cloud
associated with this Speed Gauge service is shown in Fig-
ure 7, defining all fine-grained features that could compose
it. Each of these features can be independently requested
by users, yielding their composition while taking into ac-
count their dependencies with other features as defined by
the feature dependency relations. Note that the structure of
the feature cloud shown in Figure 7 is not modified when
features are (de)activated. Feature (de)activation only makes
the feature (and their associated features through context de-
pendency relations) (un)available in the system. Structure of
a feature cloud is modified when features are defined and
published/removed in/from the Feature Store (or they are as-
sociated with a particular service in our vision).

SpeedGauge

SafeSpeedGauge

UKSpeedGauge

EcoDriving

OBDSpeed

OBDRPM

RPMGauge

Statistics

OBD
StatisticsDisplays

SafeDriving

UKDriving

SpeedRPMGauge

Combination
Requirement Exclusion
Subsumption Inclusion

Suggestion

 Speed Gauge Service 

Figure 7: Speed gauge feature cloud.

Each of the features defined in this cloud defines or spe-
cializes one specific behavior, for example, the Safe Speed
Gauge feature offers assistance while driving. Other features
offer a dedicated behavior adapted to particular situations,
as is the case for the UK Speed Gauge which extends the be-
havior of the Speed Gauge features where the former feature
extends the behavior of the latter, as shown in Snippet 2.

The overall Speed Gauge service is composed and adapted
dynamically from the activated features in its cloud. For ex-
ample, the default Speed Gauge behavior is adapted when-
ever users location changes from Europe to the UK with the
activation or deactivation of the UK Driving feature. Upon
activation, the behavior of the service will seamlessly adapt
from displaying the speed in the metric system to displaying
it in the royal system. The speed is changed back to the metric
system upon its deactivation.

Snippet 5 shows how the UK Speed Gauge feature is de-
fined as a fine-grained feature that can adapt the behavior of



1class window.UKSpeedGauge extends Feature {
2

3 @combination = ["speedgauge", "ukdriving"];
4

5 constructor: function() {
6 Feature.call( this , "ukspeedgauge"); }
7

8 RoyalSystems = T r a i t ({
9 //defined in Snippet 2

10 });
11 UKSpeedGauge.adapt(SpeedGauge , RoyalSystem);
12

13 a c t i v a t e : function() {
14 Feature.call( t h i s );
15 SpeedGauge.init();
16 t rue; }
17

18 d e a c t i v a t e : function() {
19 Feature.call( t h i s );
20 SpeedGauge.init();
21 t rue; }

Snippet 5: UK Gauge feature definition in Context Traits.

the default Speed Gauge feature dynamically. Line 3 shows
how the UK Speed Gauge feature is defined as a combina-
tion of the Speed Gauge and UK Driving features, ensuring
that the correct speed reading is displayed to users as their
geolocation changes.

4. DISCUSSION AND FUTURE WORK
In this section we discuss some of the current limitations

of our feature clouds programming model, as well as the
extensions it would require, to turn it into industrial reality.

Granularity of features.
Traditional approaches usually adopt a component-based

development process to realize service composition and adap-
tation, by defining course-grained components to be com-
bined and integrated into full-fledged systems at run-time.
More recent approaches have started looking into composing
systems from more fine-grained features [7]. At this finer
granularity level, features are described as sets of behavior
rather than full components. Such fine-grained behavior may
even cut across different system modules. Following this
evolution, with the use of dynamic feature (de)activation,
we have explored the usefulness of new SaaS models that
dynamically assemble services from very fined-grained fea-
tures [16].

In this paper, we proposed using traits as basic units of
adaptivity. Since traits are groups of methods each defining
a behavioral adaptation, we achieve fine-grained adaptivity
at the level of methods. At the same time, traits provide a
convenient composition mechanism to combine these meth-
ods in small cohesive units dealing with a related behavior,
which can then be associated to particular execution contexts.
The definition of features as contexts (and thus traits), allows
us to provide specialized behavior to particular situations in
the surrounding execution environment, and offers a modu-
larization mechanism for the units of adaptation that is finer-
grained than full components or classes, yet coarser-grained
than independent individual methods.

Third party features.
The ability to dynamically compose features and to define

behavioral adaptations of existing features offers interesting

opportunities to vendors for providing third party features
to be included in already existing software systems. The fea-
ture clouds programming model has the potential to realize
this vision, by allowing vendors to deploy to and remove
from the cloud their owned features. Such a service deploy-
ment process can be partially managed through the Feature
Store. However, there is still a need for defining a common
vocabulary, definitions and agreements on how and when
to activate or deactivate these features and how they should
interact with the already existing features in the feature cloud.

Features need to use a common ontology, provide a con-
crete usage API and dedicated specialization interface speci-
fying which assumptions can be made about them and under
what conditions their services are to be used (e.g., context
activation conditions). Such specifications, together with the
dependency relations between the features, could serve as a
contract between the developer of the original system and
the service provider.

Composition and run-time verification.
Since systems are composed from different features at run

time, and especially if we take into account the possibility
of having third party features, it is important for the differ-
ent features to define their assumptions, expectations and
dependencies with other features up front. To ensure that
the composed system exhibits the expected behaviour and
that no unexpected interactions arise at run-time, the con-
tracts specified by the different features should be verified at
run-time when the features are composed, and when features
get activated or deactivated the feature dependency relations
should be taken into account.

In previous work [1] we explored how and what formalisms
could be used to verify the conformance of context depen-
dency relations at run-time, and thus provide more guaran-
tees on the consistent functioning of the system. The types of
dependencies discussed in Section 2.2 could be extended or
modified by taking inspiration from relevant dependencies
and formalizations that have been proposed in the product-
line or feature orientation communities. Furthermore, other
run-time verification techniques should be explored to pro-
vide more guarantees on the correct behavior of the system
after composition.

Security issues may also arise in a setting where services
are composed dynamically from a cloud of features devel-
oped by different vendors. We therefore need techniques to
verify and ensure security aspects at run time as features are
composed, such as ensuring system integrity, protecting the
system from harmful feature code or services anomalies, and
protecting sensitive data. To protect the system from harmful
features, for example, we could rely on a mechanism for the
run-time inspection and verification of adapted code. Ideas
from symbolic execution [14] could be used to inspect the
code of features as they are composed at run time.

Feature clouds infrastructure.
Services provided by software systems not only require

to adapt their behavior to particular situations of their sur-
rounding context, but often need to adapt their state, data, or
presentation layer as well. The development of our case study
for feature clouds was not different. Sometimes a simple be-
havioral adaptation, like the UK Speed Gauge feature which
provides a reading of the vehicle’s speed using the royal mea-
sure system, requires some boilerplate code to ensure that the



display is refreshed upon activation and deactivation of the
feature, as shown in Snippet 5.

To avoid such boilerplate code and in order to be able to
adequately adapt the data and presentation concerns of soft-
ware systems as well, a more holistic vision of the feature
cloud model is required to truly realize it. To deal with the
data and presentation concerns, inspiration can be taken from
recent research in context-aware and adaptive information
systems and user interfaces, but would still need to be inte-
grated within the feature clouds model in order to provide a
comprehensive programming model.

5. CONCLUSION
In this paper, we presented our vision of features on de-

mand, where, as opposed to being monolithically structured
blocks conceived for a particular purpose, user, or context of
usage, we see software applications rather as clouds of fea-
tures that are composed on the fly from sets of finer-grained
features. Particular services are not pre-composed in a core
system, but rather are dynamically composed from a set of
available features or adaptations of existing features, as long
as they are consistent with each other.

To achieve this goal, context-oriented programming is an
appropriate and effective underlying technology, precisely
because it supports the key properties needed for conceiving
feature clouds: definition of fine-grained features describing
new or adapted behavior, the ability to associate these fea-
tures with particular execution contexts, declaration of de-
pendencies between features, and dynamic composition of
features depending on the execution context, declared de-
pendencies and chosen composition policies.

To validate our claim, we implemented a feature-oriented
programming extension on top of the Context Traits progra-
mming language extension for JavaScript. This model was
successfully used to build an on-board car system, interfacing
with and adapting to the execution context of a real car. The
system provides a Feature Store offering a variety of features
that can assist drivers, a Feature Discoverer which gathers rel-
evant information about the surrounding environment and
activates or deactivates features accordingly, and a Feature
Manager which is aware of the different composition policies
and interaction relations and which takes these into account
whenever features are (de)activated.

Thanks to its intrinsic properties we thus believe COP to
be an appropriate technological base which has the potential
to realize the development of industrial software systems,
which are built from a cloud of features by dynamically com-
posing services from a set of features on demand.
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