
Modeling and Analyzing Self-Adaptive
Systems with Context Petri Nets

Nicolás Cardozo1,2, Sebastián González1, Kim Mens1, Ragnhild Van Der Straeten2, and Theo D’Hondt2

1 ICTEAM Institute, Université catholique de Louvain. Louvain-la-Neuve, Belgium.
2 Software Languages Lab, Vrije Universiteit Brussel. Brussels, Belgium.

e-mails: {nicolas.cardozo, s.gonzalez, kim.mens}@uclouvain.be, {rvdstrae, tjdhondt}@vub.ac.be

Abstract—The development of self-adaptive systems re-
quires the definition of the parts of the system that will be
adapted, when such adaptations will take place, and how
these adaptations will interact with each other. However,
foreseeing all possible adaptations and their interactions is
a difficult task, opening the possibility to inconsistencies or
erroneous system behavior. To avoid inconsistencies, self-
adaptive systems require a sound programming model that
allows to reason about the correctness of the system in spite
of its dynamic reconfigurations. This paper presents context
Petri nets, a Petri net-based programming model for self-
adaptive systems. This model provides a formal definition
of adaptations and their interaction, as well as a consistent
process for their inclusion in the system. Besides serving as
an underlying run-time model to ensure that adaptations and
their constraints remain consistent, context Petri nets allow
to analyze properties such as reachability and liveness in
the configuration of self-adaptive systems. Context Petri nets
thus are a convenient tool to model and analyze the dynamics
of self-adaptive systems, both formally and computationally.

Index Terms—Self-adaptive systems, Petri nets, dynamic
behavior adaptation, context awareness.

I. Introduction

Current-day computing devices have evolved from
stand-alone computers to highly mobile systems with
access to rich context information. Applications devel-
oped with context in mind can leverage the full potential
of these systems by adapting their behavior dynami-
cally according to sensed context changes. To support
developing such applications, self-adaptive systems [9]
emerged, allowing the definition, composition, and man-
agement of behavioral adaptations according to the sys-
tem’s surrounding context at run time.

Management and analysis of adaptations is key to the
development of self-adaptive systems, to ensure that dy-
namic adaptations do not introduce errors at run time. To
assure that adding or removing behavioral adaptations
does not yield unexpected application behavior, most
self-adaptive system architectures propose an external
adaptation engine. Such engine is in charge of gathering
information about the surrounding context, and reason-
ing about available adaptations and their appropriate-
ness. Another alternative to implementing self-adaptive
systems is the internal adaptation approach [11], which
intertwines the application logic with the adaptation

logic. Whereas the internal approach simplifies the com-
position and run-time infrastructure for interaction and
management of adaptations, it does not provide any
facilities to test or maintain the system and is not
scalable. The external approach, on the other hand, is
heavy-weight, requiring dedicated middleware for the
implementation of self-adaptive systems. However, the
external approach is a highly reusable approach, allow-
ing the configuration of the engine for different systems.

This paper proposes a Petri net-based formalization
and programming model to meet the tradeoff between
the external and internal approaches for the implemen-
tation of self-adaptive systems. The proposed progra-
mming model is coupled with a programming language
realizing the Context-Oriented Programming (COP) par-
adigm [12]. COP languages allow to dynamically add
and remove behavioral adaptations at run time. Addi-
tionally, the formal basis of the proposed programming
model enables us to separate the modeling and analysis
of behavioral adaptations from the system’s core logic.

We use our Petri net-based model for two main pur-
poses. On the one hand, it provides a concrete semantics
for the definition of adaptations and their interaction.
On the other hand, it allows to analyze the dynamics of
adaptations at design and run time, allowing to prove
the coherence and consistency of adaptation definitions.

II. Dynamic Behavioral Adaptations

Self-adaptive systems tackle the problem of system
reconfiguration and redeployment by the introduction
of dynamic adaptations. In particular, the behavior of
the system may be adapted whenever more appropriate
behavior is available [9]. To enable adaptability, the
system needs to be able to reason about itself and its
surrounding context at run time. Self-adaptive systems,
hence, propose an adaptation process shown in Fig. 1.
The context sensing module gathers information about
the system’s surrounding context. The analysis engine
module reasons about gathered information to select
appropriate behavioral adaptations. The context manager
module takes selected behavioral adaptations and com-
poses them with the system’s application logic. Finally,
the application behavior module is the observable behavior
of the system, which can have an effect on its context.

Context
Sensing

Analysis
Engine

Application
Behavior

Context
Manager

Fig. 1: Adaptation process for self-adaptive systems.

COP programming languages [12] have been specially
engineered for dynamic behavioral adaptation, by allow-
ing the addition and removal of behavior at run time.
Such behavioral adaptations take place based on the
sensed context of execution —that is, the reification of
semantically meaningful situations in which the system
executes [7]. Such situations can be endogenous (e.g.
low battery charge, high CPU load) or exogenous (e.g.
city location, weather conditions). With our notion of
context, we put forward the circumstances under which
a system executes as first-class entities that can be dealt
with by the system. Whenever one of such situations is
sensed, the corresponding context becomes active, and
as a consequence the associated behavioral adaptations
are dynamically deployed in the system [12]. When such
particular situation no longer holds, the corresponding
context becomes inactive and the associated behavioral
adaptations are withdrawn from the system.

We use Subjective-C [7], a language extension of
Objective-C, as representative example of a COP lan-
guage. In Subjective-C, contexts are declared through the
@context(CPUHighLoad) construct —in this case declaring
a context representing that the system is running with
high CPU load. The activation state of a context can
be modified by means of two additional constructs,
@activate(CPUHighLoad) and @deactivate(CPUHighLoad).
These constructs respectively add and remove behav-
ioral adaptations associated with context CPUHighLoad.
Finally, the behavioral adaptations for a particular con-
text are defined by prepending a @contexts annotation
to a regular method definition, as shown in Snippet 1.

@contexts CPUHighLoad
- (Image *) decodeFrom:(Stream)stream {

Image frame;
// CPU-friendly decoding algorithm...
// ... though of less quality
return frame;

}

Snippet 1: Adaptation to CPUHighLoad context.

The language abstractions provided by COP lan-
guages, such as the one illustrated in Snippet 1, allow to
modularize the system by clearly differentiating between
base logic and adaptation logic. COP languages address
the problems of reusability and scalability of internal
approaches for the implementation of self-adaptive sys-
tems. However, to the best of our knowledge there are
no COP languages that provide means to analyze and
test behavioral adaptations for correctness. The analysis
engine module illustrated in Fig. 1 is thus missing. In
the following sections we show how we fill this gap.

III. Modeling Self-Adaptive Systems
To deal with the dynamics of behavioral adaptations

in self-adaptive systems, we introduce a formal and run-
time model called context Petri nets (CoPNs) [4]. The
CoPN formalism provides a precise definition of contexts
and their dynamic activation and deactivation. Addition-
ally the formalism allows to define interaction between
behavioral adaptations at run time. The verification of
such interaction is explained in Section IV.

A. Context Petri Nets
This section formally defines CoPN and maps its

elements onto COP concepts.1

Definition 1: A context Petri net is a 9-tuple
P=<Pc,Pt,Te,Ti, f , f◦, ρ,L,m0> defined as a reactive Petri
net [6] with inhibitor arcs [5], static priorities [1], and
token colors [8], where Pc is the set of context places,
Pt is the set of temporary places, Te is the set of ex-
ternal transitions, Ti is the set of internal transitions, f
is the flow function defining arcs between places and
transitions, f◦ is the flow function defining inhibitor arcs
from places to transitions, ρ is the function assigning
transitions priorities, L is the set of token colors, and m0
is the initial marking of the CoPN.

Places and transitions in a CoPN are given a label
representing their intention. For example, a place labeled
Pr(A) corresponds to context A preparing to activate, and
a transition labeled act(A) corresponds to the activation
of context A. Note that different transitions may have the
same label. In such a case transitions are differentiated
by their input (•t and ◦t) and output (t•) places.

Definition 2: A CoPN corresponding to a singleton
context, A, is defined as CA=<Pc,Pt,Te,Ti, f , f◦, ρ,L,m0>,
with context place Pc = {A}, temporary places Pt =
{Pr(A),Pr(¬A)}, external transitions Te = {req(A), req(¬A)},
internal transitions Ti = {act(A), deac(A)}, the priority
function ρ is given by the rules ∀ te ∈ Te, ρ(te) = 0, and
∀ ti ∈ Ti, ρ(ti) = 2, L = {black}, the flow function for
inhibitor arcs has an empty domain, and f is defined as:
f (req(A), Pr(A))=1, f (Pr(A), act(A))=1, f (act(A), A)=1, f (A,
deac(A))=1, f (req(¬A), Pr(¬A))=1, f (Pr(¬A), deac(A))=1. In
this particular case, the initial marking is m0(A) = 1.

Pr(A)
0

req(A)

2

act(A)

A 0

req(¬A)

Pr(¬A)
2

deac(A)

Fig. 2: CoPN PA for context A.

Fig. 2 shows the visual representation of the singleton
CoPN CA. Hereafter, transition priorities are omitted
from figures, as they can be deduced from the color
of the transitions: the darker the color the higher the
priority.

1An implementation of CoPN as the run-time model of Subjective-C
is available at http://released.info.ucl.ac.be/Tools/Context-PetriNets.

http://released.info.ucl.ac.be/Tools/Context-PetriNets

Places in CoPNs capture the possible states of contexts:
• Context places (solid circles in Fig. 2) represent the

context itself (e.g. context CPUHighLoad).
• Temporary places (dashed circles in Fig. 2) represent

preparatory states for a context, easing the consistency
verification and composition processes. The prepara-
tory places Pr(A) or Pr(¬A) are used to process requests
to respectively activate and deactivate a context A.
Section IV-A illustrates the use of temporary places
to manage consistent context activation.

Transitions represent actions that can be taken on the
state of a system. In the case of CoPN, these actions
correspond to context activations and deactivations. Ac-
tivation and deactivation of contexts do not occur im-
mediately, but need to be requested first and processed
carefully, since the request may be denied if such action
would violate constraints imposed by other contexts.
• External transitions (white squares in Fig. 2) are used to

request a context activation or deactivation in response
to changes in the surrounding environment.

• Internal transitions (black squares in Fig. 2) deal with
interactions between contexts as discussed in Sec-
tion III-C. Internal transitions trigger the actual acti-
vation or deactivation of contexts.

Tokens represent context activations. The state of a con-
text is determined by the current marking of the CoPN.
In Fig. 2, context A is active if the place labeled A contains
a token; prepared for activation if place Pr(A) contains
a token, and prepared for deactivation if place Pr(¬A)
contains a token. The number of tokens in a context
place represents the number of times the context has
been activated.
Token colors represent the scope in which context activa-
tions take place. As a convention for CoPNs we use black
for context activations with global scope (i.e. adaptations
for the whole system), and we use other colors for local
context activations (i.e. adaptations for one execution
thread) [3]. There can be as many tokens as different
local activations are requested.
Inhibitor arcs provide the possibility to verify the ab-
sence of tokens in a place. Inhibitors model interaction
between contexts, for example to express that a context
can be activated only if some other context is inactive.
Inhibitor arcs are illustrated as circle-ended arcs (().

B. Dynamics of CoPNs

CoPNs are not static structures. On the contrary,
CoPNs make it possible to represent and track the
changes that occur in the surrounding environment
while the system runs. CoPNs can thereby be used as
run-time representations of contexts and their dynamic
changes. The following descriptions explain the way
context state is encoded in a CoPN, and how such state
evolves according to encoded CoPN constraints, given
P= <Pc,Pt,Te,Ti, f , f◦, ρ,L,m0>.

• A transition t is enabled at a marking m for a color l ∈ L,
written m[t〉l if ∀ pin ∈ •t, f (pin, t) ≤ ml(pin), ∀ pin ∈ ◦t,
m(pin) = 0, and @ t′ such that ρ(t′) > ρ(t) and m[t′〉l

• Transition firing for a color l ∈ L, leads from marking m
to marking m′, written m[t〉lm′, where ∀ l ∈ L and ∀ p ∈
Pc ∪ Pt, m′(p) = m(p) − f (p, t) + f (t, p).

• External transitions are fired with the regular may fire
semantics of Petri nets. That is, if a transition is en-
abled, it may fire. In our model, external transitions are
fired as a consequence of a change in the surrounding
environment.

• Internal transitions are fired with a must fire semantics.
That is, if an internal transition is enabled it must fire.
Whenever two internal transitions are enabled, they
fire non-deterministically.

• A global activation holds also as local activation: black
plays the role of any other possible color [3].

C. Context Dependency Relations in CoPN

In a COP system, contexts can depend on each other.
That is, a context (de)activation can take place, or be
refused, as a consequence of the (de)activation of other
contexts. The interaction between contexts can be en-
coded by connecting transitions of a context with places
of another one via (inhibitor) arcs. Such interactions
constitute context dependency relations describing the acti-
vation and deactivation of a context with respect to other
interacting contexts.

CoPN currently supports seven context dependency
relations, these are: implication (–I), requirement (–J), ex-
clusion (�–�), causality (–�), suggestion (- -�), conjunction
(→), and disjunction (–�). Due to space limitations, we
only show the definition of the implication and require-
ment dependency relations. Each context dependency re-
lation is defined by a type and the set of singleton CoPNs
between which the interaction is defined. Each context
dependency relation is constructed by the application of
two functions ext and cons, which respectively extend a
set of singleton CoPNs and constraint the activation and
deactivation of contexts. Other dependency relations are
defined in a similar fashion.

Definition 3 (Implication): Implication dependency re-
lations help encode, for example, containment between
two physical contexts (e.g. Brussels–IBelgium), or pro-
vision of services (e.g. WiFi–IConnectivity).

Formally, the implication dependency relation (A–IB)
between two singleton CoPNs CA and CB, is defined as
the tuple <I,CA,CB>. The CoPN representing an implica-
tion dependency relation, P=<Pc,Pt,Te,Ti, f , f◦, ρ,L,m0>
is obtained by the disjoint union of each of the singleton
CoPNs (P = CAtCB), and the application of the functions
extI and consI over P.
extI is defined as extI:(P, < I,CA,CB >) 7→ P′, such

that CA,CB ⊂ P and P′=<Pc,Pt,Te,T′i , f ′, f ′◦, ρ,L,m0>,

where T′i = Ti ∪ {deac(A)}, f ′(t, p) = f (t, p), and

f ′(p, t) =

1 if p = A ∧ t = deac(A)
f (p, t) otherwise

f ′◦(p, t) =


1 if p = B ∧ t = deac(A)
1 if p = Pr(B) ∧ t = deac(A)
f◦(p, t) otherwise

The extI function introduces a deactivation transition,
deac(A)2 for the source context of the dependency rela-
tion. This transition deactivates A whenever B is inactive
and it is not preparing to activate.
consI is defined as consI:(P, < I,CA,CB >) 7→ P′, such

that CA,CB ⊂ P and P′=<Pc,Pt,Te,Ti, f ′, f◦, ρ,L,m0>,
where f ′(p, t) = f (p, t), and

f ′(t, p) =


1 if A ∈ t • ∧ A < •t ∧ p = Pr(B)
1 if A ∈ t • ∧ B < ◦t ∧ p = Pr(¬B)
f (t, p) otherwise

The arcs introduced by consI respectively represent
that: for every activation of A for which A is not an input,
B is requested for activation, and for every deactivation
of A for which B is not an inhibitor, B is requested for
deactivation. Fig. 3 illustrates the CoPN representing the
implication dependency relation < I,CA,CB >.

Pr(A)req(A)

act(A)

deac(A)

A

req(¬A)

Pr(¬A)

deac(A)

Pr(B)req(B) act(B) B

req(¬B)

Pr(¬B)

deac(B)

Fig. 3: Implication dependency relation (A–IB).

Definition 4 (Requirement): Requirement dependency
relations are commonly used when one situation can
occur only if another one is already taking place (e.g.
HDVideo–JLandscapeOrientation).

Formally, the requirement dependency relation (A–JB)
between two singleton CoPNs CA and CB, is defined as a
tuple <Q,CA,CB>. The CoPN representing a requirement
dependency relation, P=<Pc,Pt,Te,Ti, f , f◦, ρ,L,m0> is
obtained by the disjoint union of each of the singleton
CoPNs (P = CAtCB), and the application of the functions
extQ and consQ over P.
extQ is defined as extQ:(P, < Q,CA,CB >) 7→ P′, such

that CA,CB ⊂ P and P′=<Pc,Pt,Te,T′i , f ′, f ′◦, ρ,L,m0>,
where T′i = Ti ∪ {deac(A)}, f ′(t, p) = f (t, p), and

2The deac(A) label given to the transition is only used to easily
identify it, however this label has no semantics.

f ′(p, t) =

1 if p = A ∧ t = deac(A)
f (p, t) otherwise

f ′◦(p, t) =

1 if p = B ∧ t = deac(A)
f◦(p, t) otherwise

The extQ function introduces a deactivation transition,
deac(A), for the target context. This transition deactivates
A whenever B is inactive.
consQ is defined as consQ:(P, < Q,CA,CB >

) 7→ P
′, such that CA,CB ⊂ P and

P
′=<Pc,Pt,Te,Ti, f ′, f◦, ρ,L,m0>, where

f ′(p, t) =

1 if A ∈ t • ∧ A < •t ∧ p = B

f (p, t) otherwise

f ′(t, p) =

1 if A ∈ t • ∧ A < •t ∧ p = B

f (t, p) otherwise

The arcs introduced by consQ represent that, for every
transition activating A, the transition is enabled if and
only if B is active. Fig. 4 illustrates a CoPN representing
the requirement dependency relation < Q,CA,CB >.

Pr(A)req(A)

act(A)

deac(A)

A

req(¬A) Pr(¬A)

deac(A)

Pr(B)req(B) act(B) B req(¬B) Pr(¬B)

deac(B)

Fig. 4: Requirement dependency relation (A–JB).

D. Composition of CoPNs

COP systems generally comprise multiple contexts.
A CoPN is generated in three steps, given a definition
of contexts and context dependency relations. First, all
singleton CoPNs are united into a single CoPN. Second,
the CoPN is extended according to all context depen-
dency relations. Finally, the CoPN is constrained by
adding arcs between contexts as required by all context
dependency relations. The composition operator defined
next generates a CoPN given a set of singleton CoPNs
and a set of context dependency relations.

Definition 5: Lest S be a set of singleton CoPNs,
and R be a set of context dependency relations. The
composition of the contexts in S using the context
dependency relations in R is defined as a CoPN
P=◦(S,R)=cons(ext(union(S),R),R), where union(S) is
the disjoint union of all members of S into a CoPN P′′,

ext(P′′,R) 7→ P′ is the application of extR, ∀R ∈ R, and
cons(P′,R) 7→ P is the application of consR, ∀R ∈ R.

The constructive process by which CoPNs are com-
posed ensures the satisfiability of all constraints imposed
by all context dependency relations defined in the set R.

Example 1: Let S={A, B, C} and R={<I, A, B>, <Q, A, C>}.
The composed CoPN, P = ◦(S,R), is shown in Fig. 5.

Pr(C)

req(C) act(C)

deac(A)

C req(¬C) Pr(¬C)

deac(C)

Pr(A)

req(A) act(A)

deac(A)

A

req(¬A)

Pr(¬A) deac(A)

Pr(B)req(B) act(B) B

req(¬B)

Pr(¬B)

deac(B)

Fig. 5: Composed CoPN P = ◦(S,R).

Note that in the constraining function of the impli-
cation dependency relation, consI, takes into account
all transitions defined in the CoPN —from all singleton
CoPNs and those added by the two context dependency
relations. As a result, the dashed arc (deac(A),Pr(¬B)) is
added in Fig. 5 following the second case of the flow
function extension of consI.3

Finally, note that in CoPN contexts and context depen-
dency relations are not explicitly encoded by developers,
rather they are defined through a dedicated DSL [7,
4]. This definition automatically composes the CoPN,
following the process described in Definition 5.

IV. Analysis of Context Petri Nets
Having defined a formal model for contexts in self-

adaptive systems, this section explores the analysis ca-
pabilities of such model. CoPNs offer two kinds of anal-
yses. One analysis takes place at run time, and verifies
the consistency of context activations with respect to the
firing rules of CoPNs and the conditions imposed by
context dependency relations. The second analysis takes
place at design time, and reasons about the structural
coherence of the CoPN and its static properties.

A. Run-Time Consistency Verification
Before explaining the process by which consistency of

context activations is verified, we explain first what does
it mean for a CoPN to be consistent.

3Here the arc is dashed to easily identify it, but this convention does
not have a special semantic meaning.

Definition 6: Let m a reachable marking of a CoPN P.
A step Υ, from m is defined as a finite sequence of tran-
sitions t0, t1, . . . , tn where t0 ∈ Te and t1, . . . , tn ∈ Ti, such
that m[t0〉m1[t1〉 . . .mn[tn〉m′. We say that m′ is reachable
from m via step Υ, and write it as m[Υ〉m′.

Definition 7: A CoPN P is said to be in a consistent state
for a marking m iff ∀ p ∈ Pt, m(p) = 0.

Definition 8: Let P be a consistent CoPN, then Υ is a
consistent step of P for a marking m, iff m[Υ〉m′, and m′

is a consistent state.
The activation process for a consistent CoPN is as

follows: whenever a request to activate or deactivate a
context A is triggered in the system, the corresponding
external transition req(A) or req(¬A) is fired in the CoPN,
and no other external transition is fired until there are
no more internal transitions to be fired.

Definition 9: We define the state of a COP system as
a triplet < P,Σ, m̃ > given by its CoPN P with current
marking m, where Σ ⊆ Ti is a set of transitions to be
fired, and m̃ the last consistent state of P.

To simplify the notation, the rules introduce two auxil-
iary predicates, enabledm(T) = { t ∈ T | t is enabled } and
markedm(P) = { p ∈ P |m(p) > 0 }.
Rule 1: External transition firing occurs only at the
beginning of a step Υ when P is in a consistent state
m̃4 and Σ is empty. After firing an external transition,
the marking of the CoPN is modified, possibly enabling
transitions in Ti. Such transitions become the elements
in the set Σ.

(1)
m = m̃, Σ = φ, t ∈ Te, m[t〉m′

< P, φ, m̃ >→< [m/m′]P, enabledm′ (Ti), m̃ >

Rule 2: Internal transition firing. If the set Σ is not
empty, firing one of the internal transitions with highest
priority yields a new marking m′ of the CoPN. The new
marking possibly enables some transitions in Ti, which
become the elements of Σ.

(2)
t ∈ Σ, m[t〉m′

< P,Σ, m̃ > → < [m/m′]P, enabledm′ (Ti), m̃ >

Rule 3: Evaluation termination. When there are no more
internal transitions in the priority set Σ, two cases are
possible. In the first case, if there are marked temporary
places in the CoPN, all changes to the CoPN are rolled
back by reverting to the last consistent state m̃:

(3.1)
Σ = φ, markedm(Pt) , φ

< P, φ, m̃ > → < [m/m̃]P, φ, m̃ >

In the second case, if no temporary places are marked,
we finish the step by turning the current marking m of
the CoPN into the new consistent state m̃:

(3.2)
Σ = φ, markedm(Pt) = φ

< P, φ, m̃ > → < P, φ,m >

4Its current marking m equals the last consistent state m̃.

Theorem 1: Let P be a consistent CoPN. Every ter-
minating step Υ, triggered by a request to activate or
deactivate a context A ⊆ P, is a consistent step.

Proof: After firing an external transition, without
loss of generality req(A), reduction rule (1) leads to the
marking of at least one temporary place Pr(A). There are
two cases for marking of temporary places:
1) If no internal transition is enabled after the external
transition firing (i.e. if Σ = φ), reduction rule (3.1) is
applied, which rolls back P to its original consistent
state. Thus, Υ is a consistent step.
2) If on the contrary, there are transitions in Ti to be fired,
reduction rule (2) is applied as many times as needed.
Every time, reduction rule (2) modifies the marking of
P to a new marking m′. When eventually the set Σ
becomes empty, one of the two Reduction rules (3.1)
or (3.2) can by applied: rule (3.1) is applied when there
remains a marked temporary place. The CoPN is then
reverted back to its original consistent state, making Υ a
consistent step; rule (3.2) is applied when no temporary
place remains marked. Reduction rule (3.2) then updates
to the new marking m′ which is consistent because no
temporary places are marked. Υ is a consistent step.

If a step Υ leads to an inconsistent state —that is, it
leads to reduction rule (3.1)— then the step is oblivious
to the system and the CoPN is reverted to the last consis-
tent state. Whenever a context activation or deactivation
is disregarded, this anomaly is reported back to the
user providing the reason why the context (de)activation
did not take place, for example “context A cannot be
activated because context A is preparing to activate and
cannot complete the operation (context B is inactive).”

Example 2: To demonstrate the dynamics of context
activation and deactivation in CoPN, consider the se-
quence of commands σ = (@activate(C), @activate(A),
@activate(A), @deactivate(C)) for the CoPN c shown
in Fig. 5 with an empty initial marking, m0(p) = 0 ∀p ∈ P.

After @activate(C), @activate(A) and @activate(A)
have been processed completely, the CoPN reaches a
consistent state m, where m(C)=1, m(A)=2 and m(B)=2,
as illustrated in Fig. 5. Execution of the @deactivate(C)
command, triggers the firing of external transition
req(¬C) yielding a new marking m1, where m1(Pr(¬C))=1,
m1(C)=1, m1(B)=2, and m1(A)=2. For this marking the only
enabled internal transition is the deactivation transition
deac(C). Firing this transition (since it must happen)
yields a marking m2, where m2(C)=0, m2(B)=2, m2(A)=2,
and m2(Pr(¬C))=0. Here, transition deac(A) (between con-
texts A and C) becomes enabled because place C is no
longer marked. Firing this transition yields a mark-
ing m3, where m3(A)=1, m3(B)=2, and m3(Pr(¬B))=1. At
this point (the same) transition deac(A) is enabled, and
deac(B) becomes enabled. Since the two transitions have
the same priority, they can fire at random. Suppose
that deac(B) fires first. This leads to a marking m4,

where m4(A)=1, m4(B)=1, and m4(Pr(¬B))=0. This marking
does not enable any new transition. However, transition
deac(A) is in Σ, and must thus fire. The firing yields
marking m5(B)=1, and m5(Pr(¬B))=1, enabling transition
deac(B). Firing the transition yields an empty marking,
which is consistent.

B. Design-Time Coherence Analysis

To provide a more comprehensive analysis of self-
adaptive systems, we extended the consistency verifi-
cation of context activations with a reasoning engine
to analyze incoherences that may be introduced while
defining context dependency relations. So far CoPNs are
ensured to always be consistent. However, the definition
of context dependency relations may not always be
coherent, in the sense that contexts may not be reachable.

Definition 10 (Coherence): A coherent CoPN is such that
all context places are reachable, and there are no infinite
steps.

Petri nets provide a set of properties based on the
dynamics of transition firing. These properties can be
used to identify conflicts in CoPNs. The most interesting
properties to analyze about CoPNs are reachability and
liveness. Given an initial marking, reachability verifies
whether certain markings could ever occur in a Petri net.
In the context of CoPNs, such analysis could be used to
identify if a particular configuration of active contexts
is possible, given an initial system state. Liveness (in its
stronger version) means that no matter the marking of a
Petri net, it is always possible to eventually fire all of its
transitions. In the context of CoPNs, this could be used
to verify if context activations (internal transition firings)
can ever take place.

CoPNs pose a challenge when it comes to analyzing
these properties. In the general case, Petri net analyses
are undecidable in the presence of inhibitor arcs. How-
ever, there are conditions under which it is possible to
analyze Petri nets with inhibitor arcs, in particular when
there is only one, and also for primitive systems [10, 2].

To analyze CoPNs we unfold them to regular Petri
nets. The unfolding is based on bounding the CoPN
and stripping it down of its reactive and priorities se-
mantics. Removing the reactive and priorities semantics
is not a problem, given that these Petri net extensions
can be unfolded to regular Petri nets without affecting
their semantics [6, 1]. Unfortunately, giving a bound
to the CoPN changes the initial semantics. Contexts
are disallowed from activating beyond the bound, so
transition firing sequences may become invalid (they do
not reach a consistent state) because internal transitions
may be disabled due to one of their outputs having
reached its capacity. The unfolding of CoPNs is based
in the unfolding of primitive systems [2]: (1) Every
inhibiting place p with capacity N (p ∈ ◦t for some
transition t) is replaced by a set of places {pi

|i = 0, . . . ,N};
having a token in place pi represents place p having i

tokens. (2) Inhibitor arcs to the transition t such that
the inhibiting place p < t• are substituted by the arcs
(p0, t) and (t, p0). (3) Each transition t incident to p is
replaced by a set of transitions, each of which manages
a specific representation of the contents of place p by
means of places pi: (a) if p ∈ t• then t becomes the set
{ti
|i = 0, . . . ,N−1}; when ti fires, it removes a token from

pi and adds a token to place pi+1; (b) if p ∈ •t, then t
becomes the set {ti

|i = 1, . . . ,N}; when ti fires, a token is
removed from pi and added to pi−1.

From the transformation algorithm, we know that ev-
ery accepted sequence of consistent steps in the unfolded
Petri net is also an accepted sequence in the initial CoPN
because the unfolding restricts the number of tokens in
each place. This can be used, for example, to find the
incoherence in the CoPN of Fig. 6.

deac(B) deac(A)

Pr(A)req(A) act(A)
A

req(¬A) Pr(¬A) deac(A)

Pr(B)req(B) act(B)
B

req(¬B) Pr(¬B) deac(B)

Fig. 6: Incoherent CoPN composition A–IB ◦ B–IA.

Once the CoPN has been unfolded into a bounded
CoPN without inhibitor arcs, it can be analyzed by ex-
isting Petri net analysis tools such as LoLA [13]. LoLA is
able to reason about reachability and liveness properties
for the complete net, or particular markings, places or
transitions.

Based on the context dependency relations defined
in the CoPN, it is possible to analyze if the behavioral
adaptations associated to each context will be available
or not. Testing Petri net properties with LoLA requires
the representation of the Petri net and the target state/ele-
ment to be analyzed. Reachability analyses test final
states of the CoPN; for example, if there is an state in
which places A and B would be marked, and no other
place would be in the CoPN of Fig. 6. Liveness analyses
test if there are reachable states in which a particular
transition is no longer fireable; for example, to test if the
rightmost transition labeled deac(A) is dead.

In addition to the response to whether a property test
is successful or not, LoLA can also provide outputs con-
taining the state reached by the Petri net, and the firing
sequence that led to such state. This information can be
used by the developer to further assess validity with
respect to the firing semantics of CoPNs (Section III-B).

V. Validation

As validation of our approach we developed a Mobile
City Guide application using Subjective-C and CoPNs.
The Mobile City Guide enables tourists visiting a city to
navigate through the city’s Points of Interest (POIs). The
focus of this case study is on CoPN’s compositionality,
and analysis of system properties.

The application provides the possibility to create, cus-
tomize and follow city tours based on a selection of POIs.
The application consists of three main features:
F.I. Tour Creation & Selection: This feature allows users
to create and select city tours based on a list of available
POIs. A tour can be followed in two modes: if the device
has a GPS, there is a GuidedTour mode which guides
users throughout the city according to a predefined route
of POIs; in FreeWalk mode, users walk freely around the
city and can see directions to the POIs of their interest.
F.II. City Navigation: The application provides map or
compass navigation to hop between POIs in the city,
which can for example be used in FreeWalk mode when
no GPS is available.
F.III. POIs Display & Information: POIs and their in-
formation can be displayed according to user-defined
preferences such as UserLanguage, TargetAudience, or
UserInterests.
These features can be enhanced further according to the
environment in which the application executes.
1) A Language context allows to adapt displayed in-
formation to a particular language, such as English
or French, where French–ILanguage and English�–
�French. The language is either determined by ge-
ographical position (e.g. UK or France), for which
Language–JPositioning, or can be selected by the user
in the application preferences via UserLanguage, where
UserLanguage�–�Language. These contexts target the
behavior of feature F.III.
2) A Connectivity context allows to fetch additional
information about POIs whenever an internet connec-
tion is available: WiFi–IConnectivity. This can be
used to stream POI descriptions as a VideoStream
or AudioStream, (Connectivity–IAudioStream). Since
video streaming is power consuming, VideoStream is
only available if the device has a HighBattery level,
hence VideoStream–JHighBattery. These contexts tar-
get the behavior of features F.I and F.II.
3) A TimeOfDay context is used to display images associ-
ated with POIs. Depending on whether it is Day or Night
(Day–ITimeOfDay), either images taken during the day or
during the night are displayed. The TimeOfDay context
also modifies the order in which POIs are displayed,
according to their visiting hours. These contexts target
the behavior of features F.I and F.III.

The initial model of the Mobile City Guide consisted
of 20 contexts and 12 context dependency relations. The
LoLA test cases expressing the conditions imposed by

these context dependency relations are automatically
generated, resulting in 57 test cases. Analyzing the re-
sults obtained through LoLA, it was possible to iden-
tify incoherences in the CoPN definition, for example
between the Language–UserLanguage interaction with
respect to the behavior of the VideoStream adaptation.
After iterating over the adaptation model to address the
identified problems, the adaptation model currently con-
sists of 32 contexts and 34 context dependency relations.

VI. RelatedWork
ASSL [14] is a formal tool for modeling embed-

ded systems with adaptive characteristics. ASSL allows
to specify events coming from the hardware as self-
management policies. However, ASSL does not provide
a means to reason about the system. Zhang and Cheng
[16] propose a model-based approach that separates the
adaptive behavior from the regular behavior. This ap-
proach introduces state transfers, and global invariants
that can be verified at run time by means of model
checking. FORMS [15] is a high-level formal model
specification proposed for the definition of self-adaptive
systems. FORMS enables to describe and reason about
architectural characteristics of self-adaptive systems.

The work presented in this paper differs from these
approaches in that it takes a programming language per-
spective in contrast of an architectural approach. Similar
to FORMS, our definitions allow to formally describe
the adaptation dynamics of the system and interaction
between adaptations, to reason about the composition
of adaptations, and additionally to verify adaptation
consistency at run time.

VII. Conclusion
The management of self-adaptive systems has proven

a challenging task. Composition of adaptations may lead
to unexpected or contradictory behavior if not dealt
with carefully. Although the study of these problems is
still incipient, a few modeling techniques have already
been proposed. Unfortunately, these techniques are not
entirely satisfactory, as many lack means to reason about
the system. Those which support analyses are restrictive
in the kind of adaptations they allow.

We propose the CoPN model as a formal and run-time
model that enables the definition and analysis of self-
adaptive systems. CoPNs allow the expression of adapta-
tion dynamics, and closes the gap between specification
and implementation of adaptations, allowing to ensure
that context activations do not lead to inconsistent sys-
tem states at run time. CoPNs ensure that composition
of contexts will not break the constraints imposed by
context dependency relations in the running system.

From our experience so far, context Petri nets have
proved suitable both as a formal tool and as run-time
representation of context in self-adaptive systems.

References
[1] F. Bause. On the Analysis of Petri Nets with Static

Priorities. Acta Informatica. 1996.
[2] N. Busi. Analysis of Petri Nets With Inhibitor Arcs.

Theoretical Computer Science 275 (2002).
[3] N. Cardozo, S. González, and K. Mens. Uniting

Global and Local Context Behavior with Context
Petri Nets. Intl. Workshop on Context-Oriented
Programming. 3. ACM Press, 2012.

[4] N. Cardozo, J. Vallejos, S. González, K. Mens, and
T. D’Hondt. Context Petri Nets: Enabling Consis-
tent Composition of Context-Dependent Behavior.
Intl. Workshop on Petri Nets and Software Engi-
neering. CEUR-WS.org, 2012.

[5] G. Chiola, S. Donatelli, and G. Franceschinis. Pri-
orities, Inhibitor Arcs, and Concurrency in P/T Nets.
Intl. Conf. on Application and Theory of Petri
Nets. 1991.

[6] R. Eshuis and J. Dehnert. Reactive Petri Nets for
Workflow Modeling. Application and Theory of
Petri Nets 2003. Springer, 2003.

[7] S. González, N. Cardozo, K. Mens, A. Cádiz,
J.-C. Libbrecht, and J. Goffaux. Subjective-C: Bring-
ing Context to Mobile Platform Programming.
Intl. Conf. on Software Language Engineering.
Springer-Verlag, 2011.

[8] K. Jensen. An Introduction to the Theoretical As-
pects of Coloured Petri Nets. A Decade of Concur-
rency, LNCS 803 (1994).

[9] R. Laddaga. Self-adaptive software. Tech. rep. 98-
12. DARPA BAA, 1997.

[10] K. Reinhardt. Reachability in Petri Nets with In-
hibitor Arcs. Electronic Notes in Theoretical Com-
puter Science 223 (2008).

[11] M. Salehie and L. Tahvildari. Self-adaptive soft-
ware: Landscape and research challenges. ACM
TAAS 4.2 (2009).

[12] G. Salvaneschi. Context-oriented Programming: A
Software Engineering Perspective. Journal of Sys-
tems and Software (2012).

[13] K. Schmidt. LoLA: a low level analyser. Intl. Conf.
on Application and theory of Petri nets. Springer-
Verlag, 2000.

[14] E. Vassev and M. Hinchey. The ASSL approach
to specifying self-managing embedded systems.
Concurr. Comput. : Pract. Exper. 24.16 (2012).

[15] D. Weyns, S. Malek, and J. Andersson. FORMS:
Unifying Reference Model for Formal Specification
of Distributed Self-Adaptive Systems. ACM TAAS
7.1 (2012).

[16] J. Zhang and B. H. C. Cheng. Model-based de-
velopment of dynamically adaptive software. Intl.
Conf. on Software engineering. ACM, 2006.

http://ceur-ws.org

	Introduction
	Dynamic Behavioral Adaptations
	Modeling Self-Adaptive Systems
	Context Petri Nets
	Dynamics of CoPNs
	Context Dependency Relations in CoPN
	Composition of CoPNs

	Analysis of Context Petri Nets
	Run-Time Consistency Verification
	Design-Time Coherence Analysis

	Validation
	Related Work
	Conclusion

