
Distributed Debugging for Mobile Networks

Elisa Gonzalez Boixa, Carlos Nogueraa, Wolfgang De Meutera

aSoftware Languages Lab
Vrije Universiteit Brussel

Pleinlaan, 2 1050 Brussel Belgium

Abstract

Debuggers are an integral part, albeit often neglected, of the development of dis-
tributed applications. Ambient-oriented programming (AmOP) is a distributed
paradigm for applications running on mobile ad hoc networks. In AmOP the
complexity of programming in a distributed setting is married with the network
fragility and open topology of mobile applications. To our knowledge, there is
no debugging approach that tackles both these issues. In this paper we argue that
a novel kind of distributed debugger that we term an ambient-oriented debugger,
is required. We present REME-D (read as remedy), an online ambient-oriented
debugger that integrates techniques from distributed debugging (event-based de-
bugging, message breakpoints) and proposes facilities to deal with ad hoc, fragile
networks – epidemic debugging, and support for frequent disconnections.

Keywords: distributed debugging, distributed object-orientated applications,
event-loop concurrency, mobile networks

1. Introduction

Debugging software is an essential part of the development process of any
application. This task, which in sequential programs is already difficult, is fur-
ther complicated in a distributed environment [1]. When debugging a distributed
program, developers must deal with the inherent non-determinism of concurrent
processes. This complicates the debugging task since an error detected on a run
might not manifest itself in the debugging session. The lack of global clock and
communication delays makes impossible to determine whether a process is not
making progress as expected or has just failed. Furthermore, developing debug-
ging tools for distributed applications is difficult since the mere presence of the
debugger might exacerbate this non-determinism by affecting the way in which

Preprint submitted to Journal of Systems and Software November 25, 2013

the program behaves. Computations performed by the debugger may affect the
order in which processes are executed, making the reproduction of a rare erro-
neous condition even rarer. This condition akin to the Heisenberg Uncertainty
principle, is known as the probe effect [2, 3].

In this paper, we focus on providing debugging support for ambient-oriented
applications: distributed applications running on mobile ad hoc networks that are
built on the ambient-oriented programming paradigm [4]. Ambient-oriented pro-
gramming (AmOP) extends the object-oriented paradigm with a set of abstractions
to deal with the hardware characteristics of mobile ad hoc networks, namely, the
fact that network disconnections are frequent, and devices can appear and disap-
pear as the user moves about. A central principle in the AmOP paradigm is that all
distributed communication is non-blocking, i.e asynchronous. Ambient-oriented
applications thus employ a concurrency model without blocking communication
primitives (e.g. the actor model [5], event loop concurrency [6]).

In order to support the construction of ambient-oriented applications, the soft-
ware development process itself has to become more systematic. Software tools
contribute to this task. This has motivated research in integrated development en-
vironments (IDEs) and other tools such as debuggers and profilers. Nowadays
developers typically edit, compile and debug their programs in a single integrated
environment. Distributed applications, in particular, ambient-oriented applica-
tions are not different in this regard. However, the omnipresence of failures in
mobile ad hoc networks requires us to rethink the design and implementation of
software tools. This work therefore investigates tool support for MANET applica-
tions in the form of a debugger that handles partial failures. Since partial failures
may percolate from the underlying distributed system layers up to the graphical
user interface of an application, the need arises for managing partial failures up to
the tool level.

Distributed debugging techniques and the debuggers developed to date have
either been designed for parallel computing (e.g., p2d2 [7], TotalView [8], Node
Prism [9]), for grid computing (e.g., Net-Dbx [10], and IC2D [11]), or for general-
purpose distributed computing in fixed, stationary networks (e.g., Amoeba[12],
Causeway [13], and Millipede [14]). None of these debuggers have been explic-
itly designed for applications running on mobile networks. They lack the neces-
sary features to deal with the difficult task of debugging distributed asynchronous
applications which run on a radically different network topology, in particular, to
deal with the effects of partial failures. After all, debugging requires a thorough
understanding of the application being debugged, as well as the programming
model on which it is built. Because of this, we claim that a new kind of debugger

2

is required specifically for ambient-oriented applications.
In this paper, we present an ambient-oriented debugger: a distributed debug-

ger that must support the characteristics of AmOP (non-blocking, distributed com-
munication and inherent concurrency) while catering for the constraints of the am-
bient environment (frequent disconnections, mobile participants), and managing
the intrinsic difficulties of writing a debugger such as the probe effect. We then
introduce REME-D —for Reflective, Epidemic MEssage-oriented Debugger—,
an implementation of this idea in AmbientTalk [4] (a distributed object-oriented
language designed for mobile ad hoc networks). REME-D is a breakpoint-based
debugger that adapts the notions of sequential debugging, such as step-by-step
execution and state introspection, to ambient-oriented debugging. REME-D com-
bines these features from sequential debuggers with a message-oriented architec-
ture based on event-driven debuggers [7, 15, 16, 13, 17]; resulting in a simple,
familiar but powerful debugging toolbox. In order to deal with the dynamic na-
ture of the debugging session, in REME-D encountered devices are “infected”
with the debugging session, thus terming REME-D an epidemic debugger.

The rest of this paper is structured as follows. Section 2 illustrates the difficul-
ties ambient-oriented applications by means of a running example and identify the
challenges in ambient oriented debugging. Section 3 sketches the requirements for
ambient-oriented debuggers and proposes a reference architecture. These require-
ments are realized in REME-D, our proof-of-concept ambient-oriented debugger
for AmbientTalk presented in section 4. Relevant aspects of the implementation
of REME-D are presented in section 5. In order to obtain a first assessment of
the utility our debugger we conducted a user-study discussed in section 6. After
discussing related work, section 8 presents a summary of the paper and discussion
on our approach.

2. Motivation

Before describing the features of an ambient-oriented debugger, we highlight
the need for such a technique by discussing the challenges of debugging MANET
applications. To this end, we use an application scenario that we will also use as
the running example throughout this paper.

2.1. Running Example: the Mobile Shopping Application
Consider an adaptation of the scenario of the shopping application found in [13]

that runs on mobile devices. When the user checks out the shopping cart, the

3

application implements a protocol for handling purchase orders similarly to well-
known shopping websites such as amazon.com. Before the shop can acknowl-
edge an order, it must verify three things: 1) whether the requested items are still
in stock, 2) whether the customer has provided valid payment information and 3)
whether a shipper is available to ship the order in time.

Figure 1 gives a graphical overview of the checkout protocol (verifying the
aforementioned requirements) modelled via a distributed object-oriented system
where communication between devices is asynchronous. For simplicity, we use
explicit callback objects to return the result of an asynchronous computation.
When the user check outs the shopping cart in the shopping application UI, the
checkoutCart message of the service object on the user’s smartphone is sent
which in turn sends go to the user’s session object created in the buyer process
at the shop. In response to a go message, the buyer sends out three messages to
the inventory, the credit bureau, and the shipper services called partInStock,
checkCredit and canDeliver.

partInStock(teller,pIds)

serviceObject
@smartphone

sessionForUser
@shop

checkoutCart()

serviceObject
@inventory

checkCredit(teller,
clientInfo)teller

@shop

create

serviceObject
@creditBureau

serviceObject
@shipper

canDeliver(teller,
shippingInfo)

receive(b)

result

receive(b)
run(b)

receive(b)

order
[b]place

go()

Figure 1: The shopping checkout protocol.

The teller object is created and passed as an argument in each of the above
mentioned messages, serving as a callback object to collect the answer of the
three services. A teller actually is an abstraction implementing an asynchronous
adaptation of the logical and operator. It is initialized with a number indicating
how many affirmative replies it should receive, and the callback object to notify. In
this example, the teller is initialized to 3 replies, and the callback object to notify is

4

the session object residing at the buyer. Once the teller receives the three expected
replies, it sends back to the session object a run(true) message if all received
replies were true; otherwise, run(false). The buyer then places the order
only if all the requirements become satisfied. Once the order has been placed, the
buyer contacts a warranty broker to propose a warranty for the purchases item to
the client.

2.2. Challenges of Debugging Ambient-Oriented Applications
Debugging distributed applications is hard because it is difficult to determine

the what caused a bug because it may affect or depend on many nodes in the net-
work or specific sequences of messages between the nodes. For example, consider
a bug manifests itself in the mobile shopping application when returning an erro-
neous result for the checkoutCart message in Figure 1. In order to find what
caused the bug, one can use a distributed debugger to start examining the execu-
tion of the run message from the shipper (as it denotes the request that produced
the erroneous result). In the worst case, one also needs to examine the receive
messages from the shipper, credit bureau and inventory processes, and so on. De-
spite being a small example, this may already imply the inspection of 4 different
nodes, and the understanding of the whole shopping checkout protocol.

Debugging ambient-oriented applications is even harder because of the rad-
ically different nature of the network topology in which they run and the pro-
gramming model on which are built. In a non-blocking programming model, each
received message is processed to completion (there are no blocking receive opera-
tions), nodes are subject to data deadlocks (a node will not hang due to a race con-
dition but it may not make any progress because it requires the answer of another
one), and relevant parts of the application involve pipelining [18] (if a particular
component generates returns incorrect results, other components may not detect it
immediately when messages are pipelined). The network topology of mobile ad
hoc networks, on the other hand, incurs in a high ratio of unanticipated network
failures (due to device mobility) which further complicates the debugging pro-
cess because nodes may disconnect and reconnect while executing/debugging an
application, and the faulty nodes may not be present at the time the bug manifests.

These observations has led us to identify two challenges that need to be ad-
dressed in order to enable distributed debugging in a mobile environment:

Message-oriented debugging. In non-blocking concurrency models, non-determi-
nism is limited to the order in which asynchronous messages are processed since

5

a message is executed atomically, i.e no external thread can interleave on each in-
struction while a message is being processed. As such, a debugger should be able
to trace asynchronous messages exchange between different processes and allow
developers to establish a happened-before relation [19] between them. In sequen-
tial debugging, a call stack trace is often used to establish a happened-before re-
lation between function calls. This aids users to find when an error occurred by
answering the question “What likely caused this to happen?” [13]. However, in
a non-blocking concurrency model, at the beginning and end of processing each
message, the call stack is always empty. This means that there is no trace of the
path taken to reach the current execution point outside of a process; thus inter-
process communication history is lost. It is precisely this inter-process commu-
nication that is essential to understand the behaviour of a distributed application.
It is also important to note that the distance between the cause of an error and its
manifestation (i.e., error latency [1]) can be larger in a non-blocking concurrency
model. Recall the bug that manifested itself by returning an erroneous value of the
checkoutCart message. In this case, the erroneous value is returned in an asyn-
chronous message sent after eight asynchronous messages has been processed as a
result of the checkoutCart message. In order to find what caused the bug, in the
worst case, the entire “happened-before” relation chain must be considered, ex-
amining the messages to/from the shipper, credit bureau and inventory processes.
In short, a debugger designed for a non-blocking concurrency model must be able
to trace message passing between communicating parties, leading to the concept
of message-oriented debugging.

Open debugging. In traditional distributed debugging, the debugger may need to
interact with the runtime system in order to manage the different processes which
a distributed application consists of [20]. Given the dynamic nature of MANETs,
the number of processes that comprises an application is unknown when the de-
bugging session is started. In our running example, one may assume that while
debugging the bug manifested on the return value of the checkoutCart message,
the three processes contacted for placing an order are known. However, once the
order has place, the application will search in the network a warranty broker which
is discovered in an ad-hoc manner only if the end-user specifies that would like
to obtain warranty quotation for certain items. Indeed, ambient-oriented appli-
cations typically have to discover and collaborate with other partner applications
when they meet in the environment as the device moves about. For example, in a
mobile chat application, it is not possible to know beforehand how many partici-
pants will participate in a chat. As a result, a debugging session will consist of an

6

undetermined, fluctuating number of processes according to the applications dis-
covered in the network. Because of this, a debugger must be able to dynamically
add an application to an ongoing debugging session at runtime, i.e., the debugging
session must be open. Furthermore, the debugger must also allow objects to leave
the debugging session without affecting the rest of the participants as devices may
leave the network at any time. Finally, a distributed debugger designed for a mo-
bile environment needs to be able to operate in a deployed mobile application
since the correctness of a mobile system may depend on network states as well as
the unpredictable mobility of devices.

The above two characteristics have been distilled from the analysis of the im-
plications of the hardware phenomena inherent to mobile networks on the design
of a distributed debugger. We henceforth refer to distributed debuggers that adhere
to them as ambient-oriented debuggers (AODs). In short, an AOD should be able
to deal with messages passed between communicating parties and provide control
over the flow of asynchronous messages, as well as being able to be dynamically
deployed on mobile devices when necessary.

3. Overview of an Ambient-Oriented Debugger

We now describe the design and implementation of an AOD built around two
central ideas: (1) to adapt features from breakpoint-based debuggers to a non-
blocking concurrency model based on the event loop concurrency model [13],
and (2) to treat the debugging process as an ambient-oriented application itself
which adapts its behaviour to the changes on the network configuration.

We have implemented an AOD for AmbientTalk[4], a distributed object-oriented
language designed for mobile ad hoc networks. Although the current prototype
implementation of such an AOD is done in AmbientTalk, its principles are in-
dependent of the implementation language and could be developed in other lan-
guages and software platforms for mobile networks built non-blocking concur-
rency models (e.g., White [21], iScheme [22]).

Features of an Ambient-Oriented Debugger
We detail four major features of our AOD: state inspection, stepping, causal

link browsing, and epidemic debugging. The later is unique to ambient-oriented
debuggers while the others are inspired by features of traditional debuggers adapted
to AmbientTalk’s event loop concurrency model.

7

State Inspection. An AOD is designed as a breakpoint-based debugger providing
users with visibility and control over the target application. The debugger’s em-
phasis is placed on the asynchronous communication. In a non-blocking concur-
rency model, an application consists of a number of processes (denoted as actors)
that execute part of the application, and communicate with other actors by means
of asynchronous message passing. These messages are the focus of AOD. When
an actor is suspended, users can inspect the actor’s state which consists of the
objects hosted by the actor as well as the actor’s mailbox. An AOD only allows
the inspection of actors whenever they are suspended, and this can only happen
between turns. A turn corresponds to the execution of an asynchronous message
and runs till completion before the next message is served. Since turns are exe-
cuted atomically, allowing actors only to be suspended between turns respects the
non-blocking concurrency model.

Stepping and breakpoints. To control the debugged application, users can place
breakpoints to mark “interesting points” in the execution of the program at which
the developer wishes to inspect the state. In an AOD, such interesting points take
the form of messages exchanged between actors. As such, breakpoints are place
on messages rather than on instructions as traditional breakpoint-based debuggers.
In a non-blocking communication model, there are two places in which the debug-
ger may check if a message hits a breakpoint: when the actor serves a message
that needs to be sent to another actor (i.e., on the actor’s outgoing message queue),
and when the actor serves a message that needs to be received by one of its objects
(i.e., on the actor’s incoming message queue). We denote by breakpointed mes-
sage a message which has hit a breakpoint and will pause the actor’s execution
when it reaches the head of an actor’s message queue.

Applying breakpoints on messages it also allows defining meaningful stepping
semantics at the message passing level. In AODs, stepping consists of executing
the target application one turn at a time. As in a sequential breakpointed de-
bugger, three kinds of step commands are offered: step-over, and step-into and
step-return a turn. In the next section, we detail the concrete semantics of differ-
ent breakpoints and step command supported in our concrete implementation of
an AOD.

Causal Link Browsing. Causal link reconstruction allows the user to browse the
history of messages sent and received in a turn. In sequential debuggers, the call
stack gives the developer an idea of how the application has reached its current
state. Unfortunately, in a non-blocking concurrency model, the call stack is empty

8

at the end of each turn, thus providing no information to the debugger. Since all
inter-actor communication is performed via asynchronous message passing, a tra-
ditional call stack is of no use in establishing the history of the distributed be-
haviour of the application. Rather, a partial order of messages sent and received
would accurately reflect the distributed behaviour of the application. An AOD
records the exchange of asynchronous messages during the execution of the de-
bugged application, and then lets users browse the obtained message trace.

Maintaing a partial order of message sent and received provides an order of
activation of computations similar to the call stack in sequential debugging. How-
ever, the root cause of a bug may be not accessible anymore on the call stack when
a bug manifest itself [23]. In order to assist the process of finding the root cause of
a bug, AODs adopt an event-driven approach and also records the history of turns
generated by the application. Users can query the turn from where a message orig-
inated and the message that was being processed in that turn, thus establishing a
happened before relation between messages. The developer can then interactively
unravel the causal links that led to the currently inspected message.

Epidemic Debugging. One of the most distinctive features of AOD is its ability to
respond to the dynamic nature of MANETs namely frequent disconnections and
the lack of infrastructure. In order to deal with such hardware characteristics spe-
cific to the mobile environment in which applications are being debugged, AOD
should itself be built as an ambient-oriented application and rely on non-blocking
communications to control the actors participating in a debugging session.

In addition, an AOD provides epidemic debugging which allows the debug-
ging infrastructure to be dynamically installed on newly discovered actors, a pro-
cess akin to an infection in which the debugger spreads to devices joining the
debugging session. As a result, applications can take part in a distributed debug-
ging session without having to explicitly be configured as a participant before-
hand. Devices can leave the debugging session at any point in time —either due
to communication failures or in response to a user action— without disrupting the
debugging of the remaining participants.

3.1. Architecture
State inspection, stepping, causal link browsing, and epidemic debugging al-

low our AOD to successfully deal with the challenges of debugging ambient-
oriented applications explained in Section 2.2. Firstly, state inspection allow de-
velopers to assert the state of the program, by exposing the state of the objects
within an event-loop. Stepping and causal link browsing respond to the challenge

9

of message-oriented debugging. As ambient applications follow a non-blocking
concurrency model, the passing of messages becomes the determining factor in
the control-flow of the distributed application. As such, stepping allows develop-
ers to control the flow of messages from one node in the application to another;
while causal link browsing allows the developer to back trace a message to its
originating node. This control must be performed under the networking realities
of ambient-oriented applications, i.e., participating nodes can frequently discon-
nect and reconnect. This means that the AOD itself must cope with the second
challenge: open debugging. To address this, the communication between the de-
bugger and the application nodes must be done in an ambient-oriented manner.
Furthermore, as new nodes might be spontaneously discovered by the application,
the AOD must adapt to include them in the debugging session; that is to allow
developers to inspect the state and received messages, and control the execution
of nodes that were not present in the network when the debugging session com-
menced. Epidemic debugging is the feature that enables our AOD to cope with
this challenge.

Figure 2 gives an overview of the architecture of the ambient-oriented debug-
ger. When debugging an ambient-oriented application, there may exist several
devices running parts of the application. As such, debugging support will be dis-
tributed over two or more devices. In this case, Figure 2 shows three devices, two
of which have joined the debugging session. The device which starts the debug-
ging session of an application is called the debugger device. A device which joins
the debugging session at a later point in time is called an infected device. Finally,
there may be devices in the network which are conceptually running part of the
target application, but which do not form part of the debugging session. This can
happen because e.g., they are out of communication range of the debugger device,
or because they do not run code relevant to the part of the application being de-
bugged. A device can opt out of being debugged, i.e., it will never be infected.
Allowing devices to explicitly opt-out of a debugging session prevents the most
obvious security issues.

As also shown in Figure 2, the debugger device runs two virtual machines
(VM): one hosting the debugging infrastructure, and one hosting the target appli-
cation. The debugger VM consists of two components: the coordinator debugger
actor (or just debugger actor), and the debugger front end through which the user
can interactively control the target application. Each actor participating in the de-
bugging session contains a dedicated object (denoted in grey in the figure) called
local (debugger) manager implementing the main debugging features previously
described. The debugger actor serves as a central manager between the debugger

10

local
manager

 Debugger Actor

Debugger
Front-end

Debugger Device Infected Device

Target Application VM
Device

Debugger VM

commands

events

debugger
manager

 Actor Actor
Target Application VM

Target Application VM

Far reference Local reference

Figure 2: An ambient-oriented debugging session distributed over two devices.

front end and all actors participating in a debugging session. Communication be-
tween the debugger manager and the local managers is bidirectional and happens
via asynchronous message passing. As usual, users can control a debugged appli-
cation via the debugger front end, which issues debug commands in response to
the user’s actions (e.g., set a breakpoint, etc.). In response to those commands, the
corresponding local manager perform some action (e.g., pausing the actor execu-
tion) and inform the debugger actor of their state by sending debug events.

4. REME-D: an Ambient-Oriented Debugger in AmbientTalk

We now describe a concrete prototype implementation of an ambient-oriented
debugger in AmbientTalk called REME-D. REME-D is a Reflective Epidemic
MEssage-oriented Debugger that has been implemented as the debugger module
of the AmbientTalk IDE for Eclipse (IdeAT)1. As such, it relies on the Java GUI
components provided by the Eclipse Debug API as a front end, and AmbientTalk
VMs for the debugger logic. Thus REME-D is itself an ambient-oriented applica-
tion written in AmbientTalk. REME-D’s front end offers three views: actor view,
state inspector and editor, as shown in Figure 3.

1The IdeAT plugin is available to be installed from the Eclipse update site at http:
//tinyurl.com/ideat, and its documentation is available at http://tinyurl.com/
ideatdocs

11

Figure 3: Eclipse plugin showing a REME-D debug session.

4.1. Viewing the Actor State
REME-D supports state inspection of actors whenever they are suspended

(i.e., in a pause state). In particular, users can view the state of an actor reachable
from the actor’s behaviour object, and the messages that wait in the actor’s mes-
sage queue to be processed. Notice that while an actor’s execution is paused, the
state of its objects remains static. This is due to the fact that user interaction with
a debugged actor happens in between turns. Non-paused actors can still send mes-
sages to a paused actor. These messages are queued, and displayed in the paused
actor’s message queue. The message queue of a pause actor can only grow until
it is resumed again. Actor’s are paused either by means of a “pause” command
(similar to pausing a thread of execution in a traditional debugger), or as a result
of a breakpoint activation or a stepping command. When an actor is suspended,
the corresponding local debug manager delays the processing of the message at
the head of the queue, until it receives the command to resume execution.

Figure 3 (top right) shows the actor state view. In it, the actor contains a
customer and a shoppingCart object, and a go message emitted by an actor
with the id -1774115976 awaits processing in the actor’s message queue. The
developer can interactively unfold each object represented in the actor state view.

4.2. Breakpoints Catalog
REME-D provides a catalog of breakpoints which combines breakpoints on

messages with breakpoints existing in sequential debugging. Breakpoints in REME-

12

Meth
od

 br
ea

kp
oin

ts

Sy
mbo

l b
rea

kp
oin

ts

Code breakpoints
Conditional breakpoints

Sender breakpoints
Receiver breakpoints

On entry breakpoints
On exit breakpoints

Mes
sa

ge
 br

ea
kp

oin
ts

Mes
sa

ge
 re

so
lut

ion
 br

ea
kp

oin
ts

Mes
sa

ge
 co

nd
itio

na
l b

rea
kp

oin
ts

Role

Designation

Objective

Figure 4: REME-D’s breakpoint catalog provided to users.

D can be classified according to three basic properties: role, designation and ob-
jective. Role determines the place at which the breakpoint is set. We distinguish
between breakpoints placed in the actor’s outgoing message queue (called sender
breakpoints), and actor’s incoming message queue (called receiver breakpoints).
Designation denotes the way that a user defines a breakpoint. Either in a line of
code (called code breakpoints), or as a predicate condition about the state of a
message (called conditional breakpoints). Objective denotes when the execution
should be suspended. Suspending either the actor’s execution when a message
reaches the head of the message queue, (a) before the message is executed (called
on entry breakpoints) and (b) after the message is executed (called on exit break-
points).

Figure 4 places the 5 different breakpoints offered in REME-D in this tax-
onomy. In this section, we highlight the most relevant breakpoints with respect
to ambient-oriented debugging. The whole breakpoint taxonomy can be found
elsewhere [24].

Message breakpoints A message breakpoint defines a breakpoint on a line of
code of an asynchronous message send. In Figure 3 this is indicated in the editor
by a blue dot next to the go asynchronous message. The actor’s execution pauses
when the breakpointed message reaches the head of the message queue, before the
receiver invokes the method corresponding to the asynchronous message.

Message resolution breakpoints A message resolution breakpoint defines a

13

breakpoint on a line of code of an future-type message send, o<-m()@FutureMessage
in AmbientTalk. The actor execution pauses when the message carrying the re-
turn value of the computation reaches the head of the message queue of the sender
actor. This means that execution is paused after the future-type message is pro-
cessed but, before the sending actor processes the message with the return value
of the computation.

Message conditional breakpoints A message conditional breakpoint defines
a breakpoint on a conditional expression about a message. It allows users to stop
execution whenever the result of an expression is true, without having to predict a
particular message send or reception where this may happen. This expression is a
boolean predicate over a message in the queue of an actor and the receiver of the
message. The actor’s execution pauses when the result of the conditional expres-
sion is true for a message that reaches the head of the given message queue(s),
before the message is processed.

Peer-to-peer is a recurring architecture in ambient-oriented applications in
which a single object plays the roles of both client and server. Since all devices
have the same source code, REME-D provides support to specify on which device
a breakpoint should be active. The developer can set particular devices for which
each breakpoint is active manipulating the breakpoint properties through the UI.

4.3. Stepping
As in a sequential breakpointed debugger, REME-D offers three kinds of step

commands: step-over, and step-into and step-return a turn. In addition, we provide
a variation of step-over called step-until.

Step-Over Stepping over a turn allows the user to observe how the state of the
actor changes as it processes incoming messages. A step-over command instructs
the local manager to process a single message —the one at the head of the queue—
and return the actor to the paused state. In addition, the local manager keeps track
of all outgoing messages that should be sent during that turn, allowing the user to
inspect them.

Step-Into Stepping into a turn allows the user to navigate the consequences
of processing a given message, i.e., the messages sent to other actors in that turn.
When the user instructs REME-D to step into the current turn, the local manager
will perform a step-over and mark all outgoing asynchronous messages as break-
pointed messages. As a result, at the end of step-into, the current actor (i.e., the
one on which the command was invoked) and all the actors receiving messages
sent on that turn are paused. Figure 5 shows the debug view after having stepped
into a turn, notice all actors that received a message are also paused.

14

Figure 5: Debug view after a step-into command.

Step-Return Step-returning a turn allows the user to return from a message
which has been stepped into. When the user instructs REME-D to step return
from a future-type message, the local manager will perform a step-over of the
message, and mark the message sent with the return value of the computation
as a breakpointed message. As a result, at the end of step-return of a future-type
message, the actor that sent the message is paused when the future associated with
the message becomes resolved.

Step-Until A step until command takes a conditional expression about a mes-
sage, and instructs the local manager to pause the execution again when a message
that satisfies the given condition is at the head of the message queue. A step-until
command is specially handy when debugging distributed interactions in which the
same message is sent several times to an object with different state (e.g., taking
different argument values).

4.4. Browsing Causal Links
In REME-D, each message contains debugging information about the trace

of messages from which the message originated. A trace of messages consists
of a list of < identifier, selector > tuples which contains the identifier of the
turn in which the message send got created, and the selector of the message being
processed in that turn. When a message is sent, the local manager attaches the list
of tuples for the message being processed to the message, and then adds a new
tuple with the debugging information for that turn.

REME-D allows users to query the turn from which a message originated.

15

When an actor processes a message from the message queue, the local manager
stores a < id, cause, effects > tuple corresponding to the turn identifier, the
selector of the message being processed (denoting the cause of the turn), and the
list of all outgoing messages sent during the turn (denoting the effects of the turn).

4.5. Open Debugging
REME-D is an ambient-oriented application in which communication is non-

blocking. This means that REME-D sends debug commands and receives events
from participating actors via asynchronous message passing. When a local man-
ager detects a communication failure with the debugger manager, it removes all
breakpoints and resumes the actor if necessary. This allows REME-D to handle
frequent disconnections in a graceful manner.

To debug the behavior of an application when it is disconnected, REME-D
provides the user with the possibility of simulating the disconnection of a device.
This is achieved by having the local manager on the “disconnected” device cut
communication with other devices, while maintaining it with the debugger man-
ager (so that the user can still control the actor from REME-D’S UI).

4.5.1. Epidemic Debugging
As previously mentioned, in AmOP devices spontaneously discover each other,

forming ad hoc networks in which they collaborate to perform a task. Debugging
such applications requires flexible debugging sessions, in which the participants
of a debug session can change as the distributed application evolves.

To support this, REME-D’s debugging sessions are not constrained to a fixed
configuration. The user does not need to define a-priori which devices will par-
ticipate in the session. Instead, REME-D operates in an epidemic fashion, spon-
taneously adding new devices to the current debugging session whenever they
interact with actors participating in the session.

When a debugged device interacts with a device outside the debugging ses-
sion, REME-D will automatically extend the session so that the new device can
be controlled by the debugger. Concretely, upon receiving a breakpointed mes-
sage, REME-D deploys a local manager to the receiver actor and the VM is said
to be infected. The local manager then announces its presence to the debugger
manager, which adds the actor information to the debugging session and sends
back debugging information (e.g., the active breakpoints). Developers can control
whether a device is susceptible to infection by means of the -Xdebug option.

16

createMessage(name,

args,tags)

Creates a message from name, arguments and type tag an-
notations.

send(receiver,msg) Sends a message asynchronously to the receiver.
schedule(receiver,msg) Adds a message to the actor’s message queue.
serve() Dequeues a message from the actor’s message queue and

process it.

Table 1: Reflective Operations overridden by the debugger actor mirror

@Debug Annotation used to mark messages as a debugging command from
the debugger actor.

@Pause Annotation used to mark messages that require pausing the receiver
actor. It is used both by breakpointed messages and messages sent
during step-into command.

Table 2: Annotations on Asynchronous Messages

5. Implementation

As previously mentioned, we implemented a prototype of REME-D for Am-
bientTalk programs. The prototype has been built reflectively in the AmbientTalk
language itself. The debugger actor has been implemented as an AmbientTalk
actor while the local debugging manager as a meta-actor protocol. An meta-actor
protocol is similar to a meta-object protocol (MOP) [25], but it allows developers
to introspect on or alter the default semantics for an actor instead of an object.
In AmbientTalk, a meta-actor protocol is implemented as a special type of object
called an actor mirror [26]. Due to space constraints, we sketch the implemen-
tation of the debugger actor and the local manager. A comprehensive description
can be found in [24].

Debugger actor. The debugger actor keeps an up-to-date list of connected
actors in the debugging session. The list is updated whenever an actor loses con-
nectivity by registering a callback that is invoked whenever a device disconnects
from the network. In response to user’s action, the debugger actor sends an asyn-
chronous message to the corresponding local manager(s). Those messages are an-
notated with a Debug annotation so that a local manager can distinguish between
application-level and debug-level messages. Annotations used in the REME-D
prototype are shown in Table 2. When a user sets a message breakpoint in the UI,
the debugger actor informs all local managers about the source line corresponding
to the send statement.

17

Debugger actor mirror. The actor mirror implementing the local debugging
manager, called debugger actor mirror, implements the necessary interface meth-
ods for each debugging command in order for the debugger actor to control the
actor. In addition, it alters the default language semantics for message sending
and receiving to implement the described REME-D features. Table 1 shows the
list of methods that this actor mirror overrides to this end 2.

The createMessage and send methods reify the default semantics for
sending of asynchronous messages of an actor. The debugger actor mirror over-
rides the createMessage method to add a Pause annotation (c.f. table 2) in
a message to be able to pause the receiver actor. A message is also extended to
include information about the sender object in order to build the event history for
browsing causal links. The send method was overridden to notify the debugger
actor about messages being sent from an actor.

The schedule and serve methods, on the other hand, reify the default
semantics for message receiving. The schedule method is called right before a
message is added in the message queue of an actor. It is overridden to implement
the pause command. When an actor receives a pause command, the actor changes
its state to paused. If the actor is in a pause state when schedule is called, the
incoming message is buffered and the debugger actor is notified of the arrival of
a new message. The debugger actor in turn updates the UI representation of the
message queue in the inspector. This semantics are not applied for debug-level
messages. If the incoming message has a Debug annotation, the default semantics
of schedule are applied and the debugger actor is not notified. The servemethod
is called when a message is dequeued, before being processed. It was overridden
to implement the resume and step commands. The first thing that serve checks
is the message’s annotations. If the message has a Debug annotation, it is directly
processed (as it represents a debug-level message sent by the debugger actor). If
the message has a Pause annotation, the actor state is changed to pause, and
the debugger actor is notified of its suspension. Before processing a message, we
check whether a message has a breakpoint. Each message carries the source line
number where it was created. In AmbientTalk, this corresponds to the place where
the <- was used, i.e. the asynchronous message send statement. The method thus
checks whether this line number corresponds to any of the ones received from the
debugger actor.

2For a complete description of the reflective API of AmbientTalk, we refer the reader to a
dedicated publication [26].

18

Infecting AmbientTalk VMs. As explained before an actor becomes infected
when it receives a breakpointed message. This has been implemented by alter-
ing the default semantics for messages annotated with the Pause annotation. In
AmbientTalk it is possible, at runtime, install a new meta-actor protocol on an
existing actor overriding an actor’s MOP methods. When a message is annotated
with Pause, the method responsible for processing the message is also over-
ridden to be able to install the debugger actor mirror on the receiver actor. The
only requirement for infecting an actor is thus, that the receiving actor knows the
source code for the debugger actor mirror. The source code is included in the
default AmbientTalk standard library, and thus accessible to any created actor.

5.1. Discussion
A side-effect of REME-D’s reflective implementation is that it is amenable to

scripting using AmbientTalk. Rather than interact with the debugger, scriptable
debuggers[27, 28] allow programmers to manipulate the execution of the target
program through a script. Scripts consume events emitted by the base program
(e.g., function invocation, program termination), and send commands to the ma-
nipulate the control-flow of the program or query its state.

REME-D exposes the full debugger API to the programmer. Developers can
then leverage this API to either extend the debugger’s functionality (e.g., new
kinds of breakpoints) or at debug-time execute scripts that automate debugging
commands (e.g., stepping an actor until a particular message is processed). The
Eclipse plugin has been extended with a console connected to the VM running
the debugger manager, called AT Debugger Manager. Scripts that automate de-
bugging commands can be launched from within the console connected to the AT
Debugger Manager.

The fact that both REME-D and the scripts are implemented in AmbientTalk,
also allows the programmer to profit from the event-loop concurrency model of-
fered by AmbientTalk. As previously explained, scriptable debuggers consume
events generated by the program under study. As such, many scriptable debug-
gers [29, 30] resort to call-backs to control the debugger. Debug scripts in REME-
D can integrate future-typed messages to send commands to the subject programs,
thus reducing the reentrant style of programming that is endemic to callbacks.

The scriptable facilities offered by REME-D open the door to the automatiza-
tion of debugging tasks normally assigned to developers. One interesting possi-
bility is that of automatic generation of breakpoints [31]. Automatic generation
of breakpoints tries to predict interesting points in the execution of the program
which might shed a light in the nature of a bug. Zhang et. al. recently propose

19

an approach called BPGen, which leverages various static analyses to identify
possibly buggy statements and tag them with a breakpoint. While REME-D’s
infrastructure lends itself to such implementations, their realization remains the
subject of future work. In terms of automatization, REME-D’s implementation is
currently limited to the process of infection. As explained in Section 4.5.1, when
an actor in the debugging session interacts with (i.e., sends a message to) an actor
outside the session, the REME-D runtime automatically includes it in the session,
rendering the newly-found actor under the control of the debugger manager.

Implementation Status. As previously mentioned, REME-D has been inte-
grated with the AmbientTalk IDE for Eclipse as the debugger module. Neverthe-
less, REME-D can run independently of this particular front end, e.g there exists
another front end written in Java Swing [32]3. There are a number of features
which are not currently integrated in the Eclipse IDE including causal link brows-
ing and simulating network disconnections. These features need to be accessed
via the console connected to the AT Debugger Manager.

6. Validation

In order to assess the usability of an ambient-oriented debugger, we performed
an empirical study. When selecting a methodology to follow for the experimental
validation we take into account the following points: First, we are testing a new
tool. Second, the AmbientTalk user base is relatively small (estimated to 8 active
researchers, and around 100 occasional programmers including master students
and outside contributors). Third, we see debuggers as program comprehension
tools, and therefore for the first empirical evaluation, we conducted a qualitative
rather than a quantitate evaluation.

From these observations, we selected a quasi-experiment [33], since our ex-
periment complies with the guidelines outlined in [34]. Quasi-experiments allow
for the investigation of cause-effect relations, in cases in which randomization is
not used. While this sort of experiment does not allow us to make any founded
claim regarding the usability of REME-D, it allows us to assess whether partici-
pants of the experiment change their view on the difficulty of debugging ambient-
oriented applications because of the use of an ambient-oriented debugger. Quasi-
experiments have been successfully used in the domain of software engineering
as pointed out by Kampenes et. al. [35]. Nevertheless, it is well-known that they

3Screenshots of the Swing front end are available at http://tinyurl.com/al6cfxb

20

are subject to concerns regarding the validity of observations from the experiment
which we discuss later in Section 6.2 following Kampenes et al. guidelines.

We opt for a one-group pretest-posttest quasi-experiment design [33] in our
user study. The experiment consists of one group of 22 participants which is sub-
ject to a test (pretest), that is followed by a series of tasks carried out by the partic-
ipants. Then the experiment is concluded with second test (posttest) 4. Pretest and
posttest employ the same questions varying the independent variable, i.e., intro-
ducing REME-D. By comparing the pretest and posttest results, we can measure
how the exposure to REME-D influenced the perception of ambient-oriented de-
bugging, and which features of REME-D were deemed useful by participants.

The questionnaires used for the pretest and posttest employ close-end matrix
questions in which participants need to rate a number of statements on a five-point
Likert scale, (i.e., a 1-5 scale ranging from “totally disagree” to “totally agree”). In
order to avoid bias, we intermingle consecutive positive and negative statements.

Pretest. The pretest measured the expectations prior to using REME-D. It con-
sists of 22 statements structured along four themes: (1) Participant’s background,
(2) Development experience(3) Attitude towards debugging and (4) Expectations
from an ambient-oriented debugger.

Debugging Assignment. Each participant was asked to complete a number of
tasks relative to the debugging process of an AmbientTalk application. We em-
ployed the mobile shopping application described in Section 2.1. For the purpose
of the experiment we seeded two errors, one in the shopping check-out protocol
depicted in Figure 1, and one in the interaction with the warranty broker. Both
errors are a case of misleading return values errors, as described in [18].

In the first task, the participants were asked to use REME-D to find out why
the shopping checkout protocol did not work properly and fix the problem. The
second task described the extension to the shopping checkout protocol in which
the buyer contacts a (faulty) warranty broker to propose a warranty for the pur-
chases item to the client. Participants were asked to dynamically launch a war-
ranty broken outside the debugging session and interact with it to determine what
the problem was.

4All the raw data including all the material and 22 filled pre/posttests questionnaires is available
at http://tinyurl.com/av7b5ya.

21

Posttest. The posttest consists of 24 statements structured along four themes: (1)
Assignment experience (2) Value of an ambient-oriented debugger (3) UI Experi-
ence, and finally (4) Value of REME-D features, divided in two kinds of questions
–how often they used each of the features provided by the debugger, and whether
they found them useful. In both pretest and posttest, space was provided for par-
ticipants to write down comments they had about the tool and the assignment.

6.1. Results
We now discuss the main results from the experiment by first discussing the

participant’s profile, and then comparing the results of the pretest and the posttest.

6.1.1. Participants profile
The participants were recruited from within the computer science department

of our university, in particular, they were all enrolled in a master (13 partici-
pants) or PhD program (9 participants). All participants had previous experience
with AmbientTalk. Figure 6 shows a boxplot with the profile of the participants.
In general, the participants consider themselves experienced developers (A), al-
though not distributed development experts (B). And, although they are familiar
with Eclipse (D), they do not have large experience in the use of its debugger (K).

Figure 7 provides a summary of the participants’ attitude towards debugging
in a radar diagram5. The participants strongly agree that debuggers are a helpful
tool to find bugs in programs (I), and in general agree that debuggers aid in the
understanding of programs (J). Participants also acknowledge that debugging dis-
tributed programs is hard (H), and that better tools can prevent bugs (G). More
importantly, participants agree on the need for a debugger for AmbientTalk (P).

6.1.2. Pretest-Posttest
Overall, REME-D was well-received by the participants. As can be seen in

Figure 9a, although most participants were positive with respect to the value of
REME-D as a tool to help them find bugs in their programs, their answers in the
posttest are more spread. This indicates that although good, REME-D did not meet
their expectations. Further discussion with the participants revealed their doubts
about the suitability of the assignment, as some of them did not seem convinced
that the types of bugs included are representative of real bugs. This is further
discussed in the section about threats to validity.

5Each branch represents a single question; the bold line shows the average and the colored
surface indicates the range of given answers

22

A B C E K

1
2

3
4

5

Figure 6: Experience of the
participants: (A) develop-
ment experience (B) dis-
tributed development expe-
rience (C) understanding of
AmOP in AmbientTalk (E)
Eclipse experience (K) on-
line debuggers experience.

!"

#"

$"

%"

&"

'"
("

)"

*"+"

,"

Figure 7: Participants’ at-
titude towards debugging:
(G) development tools can
prevent a lot of bugs (H)
debugging distributed pro-
grams is hard (I) debuggers
are a helpful tool to find er-
rors in programs (J) debug-
gers are a helpful tool to un-
derstand programs (P) a de-
bugger for AmbientTalk is
needed.

P R T V W X

1
2

3
4

5

Figure 8: Participants’
appreciation of the features
of REME-D. (P) message
breakpoints (R) step-into
command (T) step-over
command (V) pause actor
command (W) control over
program execution (X)
infection of VMs.

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

-‐-‐	 -‐	 0	 +	 ++	

(a) Finding bugs

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

-‐-‐	 -‐	 0	 +	 ++	

(b) Understanding

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

-‐-‐	 -‐	 0	 +	 ++	

(c) General easing of pro-
gramming in AmbientTalk

Figure 9: Comparison of the participants’ pretest (grey) and posttest (black) impressions;
X axis depicts the 5-point Likert scale, and Y axis is the number of participants that
selected each point.

23

O Q S U

1
2

3
4

5

Figure 10: Participants’
usage of the features of
REME-D. (O) message
breakpoints (Q) step-into
(S) step-over (U) pause
actor.

!"

#"

$"

%"

&"

'"
("

)"

*"+"

,"

Figure 11: Participants’ ex-
perience with REME-D’s
UI in Eclipse: (K) Features
are clear and accessible
in the UI (L) Actor view
gives a good overview of
the state of the application
(M)Debug Element View
gives a good overview of
the state of an actor (N)
REME-D is helpful but
needs a better user inter-
face.

!"

#"

$"

%"

&"

'"
("

)"

*"+"

,"

Figure 12: Participants’ ex-
perience with the assign-
ment: (A) the assignment
was too easy (B) the as-
signment was very inter-
esting (C) the assignment
represents the kind of bugs
I have encountered in Am-
bientTalk (D) I would have
liked more time to com-
plete the assignment (E) I
had enough help in com-
pleting the assignment.

Regarding the usefulness of REME-D as a program understanding tool, all
participants indicate that the tool helps them to understand AmbientTalk programs
(Figure 9b). This is evidenced by seeing a larger number of participants giving
higher evaluations in the posttest (black bars are to the left of gray ones).

Similarly, for the use of REME-D as a means to make ambient-oriented pro-
gramming in AmbientTalk easier (Figure 9c), results show that most participants
are more positive in the posttest. It is interesting to remark that 4 out of 22 partic-
ipants change their opinion on this point after working with REME-D. We regard
this result as encouraging since all participants stated in the pretest that they un-
derstand the principles of ambient-oriented programming in AmbientTalk.

6.1.3. Features of REME-D
In general (see Figure 8), participants seem to value message breakpoints,

step-into command, pause command and the infection of other VMs (all means
scored 4). Participants were rather neutral towards step-over command and the

24

control over the execution of an AmbientTalk program. This seems to be corre-
lated with the low usage of these features, as can be seen in Figure 10.

Regarding the effectiveness of the representation of REME-D’s features in the
Eclipse IDE, the opinions of participants in the posttest were reasonably positive.
Figure 11 provides a summary of the participants’ experience with REME-D’s UI
in a radar diagram. Most participants did appreciate the actor and debug element
views provided in the Eclipse IDE (L and M). In addition, all participants find
REME-D’s UI easy to use with the exception of one participant who “strongly
disagreed”. That participant was totally disappointed with REME-D’s UI; he is
also the only participant who did not find debugging features clear and accessible
in the UI and strongly disagree when asked about the usefulness of the actor and
debug element views. Not surprisingly, he is one of the 4 participants that strongly
believe that in essence REME-D is helpful, but it requires a better UI.

6.2. Threats to validity
As previously mentioned, a quasi-experiment study does not allow us to make

any generalized claims regarding the usability of REME-D. Instead, quasi-experi-
ments do allow us to observe how potential users perceived our tool. However,
quasi-experiments are subject to concerns regarding the validity of the obser-
vations resulting from the experiment. According to the guidelines for quasi-
experimental research designs, we now sketch the threats to internal and external
validity of the experiment, as well as the measures taken to mitigate them. Internal
validity considers the validity of cause-effect inferences made during the experi-
ment, while external validity considers the validity of generalized inferences (or
how wrong we are when making generalized observations from the study).

Internal Validity. The analysis of the experiment’s outcomes assumes that REME-
D is the only factor influencing the dependent variables. However, several factors
may have potentially interfered in the participants’ perception of REME-D.

First, the introductory demonstration might have biased participants towards
using the REME-D’s features shown to them. To counter this effect, we ex-
plained all features of REME-D but only showed participants where they could
find REME-D features in Eclipse, and the basic REME-D views. Participants
were told they could use any feature they liked.

Second, the assignment executed by our participants might be too simplistic
or hard. To assess this risk, the posttest included a set of questions to measure the
participants’ experience with the tasks performed in the assignment. Figure 12
provides a summary of the participants’ experience with the assignment in a radar

25

diagram. The results show that participants generally did not find the assignment
too hard (question A) with the exception of two participants, and find the experi-
ment interesting to do (question B).

Finally, the duration of the experiment may also have influenced the internal
validity. The results, shown in Figure 12, reveal that participants do not seem to
have experienced time pressure (D) and were satisfied with the help received to
complete the assignment (E).

External Validity. A risk exists concerning the composition of the group of partic-
ipants: since all participants were computer science students or researchers, they
might not form a representative sample of software developers. This is mitigated
by the different degrees of expertise that the participants reported. Furthermore,
participants were allowed to ask questions about the technology involved in the
study at any time.

With respect to the task, although it has been used in previous research efforts
in debugging [13], the risk remains of it not being representative of a real-world
ambient-oriented application. Finally, the bugs seeded in the application may
not have been representative of real-world bugs. Considering that we wanted to
limit the amount of time necessary to execute the assignment, the risk exists that
the assignment did not capture the complexity associated with real-life bugs in
ambient-oriented applications. Indeed, results show that participants did not find
the assignment to be representative of the kind of bugs they encountered while
developing in AmbientTalk (question C in Figure 12).

6.3. Discussion
6.3.1. Experiment Design

When considering the user evaluation of the tool, we opted for a qualitative
rather than a quantitative user study. The reason for this choice lies in our view of
debuggers as a program comprehension tool rather than a bug finding one. Indeed,
debuggers do not find bugs as bug finding is a testing activity. Rather debuggers
allow developer to test hypotheses about the cause of a bug. Because of this obser-
vation, the perception of the debugger by programmers is essential to its success.
Nevertheless, we acknowledge the utility a quantitative evaluation of REME-D,
for example verifying that the cause of a bug is indeed found faster when using
the debugger that when not. The evaluation we have performed of the tool allows
us to assert REME-D’s suitability (whether the features of REME-D attack issues
that the programmers find problematic), before answering the question of REME-
D’s performance (whether the use of REME-D makes bug-fixing faster). In this

26

regard, the one-group pre-test/post-test experimental design we chose allows us to
test out whether participants see the problems REME-D tackles as real by asking
questions in the pretest such as “Inspecting the mailbox contents is essential to
debugging AmbientTalk programs”. At the same time the experiment allows us
to test whether the participants believe that REME-D addresses those problems
in a satisfactory manner, by asking questions in the post-test such as “The Debug
Element View (which displays the mailbox) gives a good overview of the state of
an actor”.

6.3.2. Participant’s impression of REME-D
While working with REME-D, participants encountered a number of issues

related to REME-D’s UI. While we provided work-arounds for these issues, we
believe they influenced the participant’s perception of the tool. Participants were
also slightly confused by the way the tool presents the actor participating in the
debugging session in the actor view. Three participants explicitly included in the
posttest comments to improve this view, e.g., “actors should get names instead of
line numbers”.

Interestingly, more than half of participants (12 out of 22) left feedback on
the pretest or posttest questionnaires. All the pretest comments are about desired
features in the debugger. In contrast, the posttest comments mainly included sug-
gestions to improve REME-D’s UI. In particular, 3 participants complained about
the stepping functionality (e.g., “stepping-in was not very perfect. I got lost on
where the current execution step was [..]”), and three more about the limitations
of message state inspection. Other comments refer to extensions to the existing
functionalities of the debugger. Most notably, the ability to inspect any kind of
object and not only those reachable from the actor’s behavior.

Table 3 summarizes the comments left by participants regarding features they
would like an AmbientTalk distributed debugger to exhibit. In the table, for each
feature, a count of the number of comments that refer to it is made. Also, features
on the table are grouped by whether the feature was present in the tool at the time
of the study, whether it was implemented in subsequent versions or whether it is
still to do.

7. Related Work

A lot of research has been conducted in developing debugging tools and tech-
niques for concurrent and distributed systems, resulting in a large number of tools.

27

Feature description #comments
Expected features supported in REME-D at the time of the study
inspecting actor state 5
inspecting mailbox contents 4
breakpoints 3
step-by-step execution 2
pause command 1
Expected features supported in current version of REME-D
inspecting state inside of an object 3
simulation of disconnected scenarios 2
message history 2
breakpoints extensions 2
decoupling of debugger core functionality from Eclipse IDE 1
Expected features interesting for future research in REME-D
mapping breakpointed messages to lines of code 1
better visualization of actor view 1
adding message view 1

Table 3: Summary of comments about expected features.

In 1993, Pancake and Netzer published one of the most relevant bibliographic ef-
forts in the field including 293 entries [36]. This effort persisted in their online
bibliography [37] which, on the last update in 1997, counted no less than 659 en-
tries about technical reports, journal and conference papers, and Phd dissertations
dealing with parallel and distributed debuggers. Many of those techniques are
nowadays outdated because of the rapid advances in the latests years in both hard-
ware and software [20], e.g., GUI-based front ends for debuggers is nowadays a
given.

In this section, we highlight a number of distributed debuggers which have
influenced the design of REME-D in significant ways. Since REME-D lies at the
intersection of two families [3] of debuggers, namely breakpoint-based and event-
based debuggers, we highlight related work in both domains. We also compare
our approach with current proposals aimed at debugging or understanding web
applications that rely on JavaScript. We deem these approaches related, as the ex-
ecution model of AJAX-based applications strongly resembles that of distributed
event-loops which REME-D targets.

28

7.1. Breakpoint-based Debuggers
Breakpoint-based debuggers execute the program in debug mode under the

control of a debugger that allows programers to pause/resume program execu-
tion, inspect program state, and perform step-by-step execution. Most distributed
breakpoint-based debuggers see as building blocks processes that communicate
with each other by means of message passing. Essentially, each process is con-
trolled by a sequential debugger, and coordination between them is carried out by
a centralized console or GUI. Most-well known examples of these types of debug-
gers include research prototypes like p2d2 [7], Node Prism [9], Net-Dbx [10], and
CDB [20], and commercial debuggers such as TotalView [8], IBM’s Distributed
Debugger [38], and Allinea DDT [39]. In this work, we also take a breakpoint-
based approach as its features provide a simple but fundamental debugging tool-
box.

One of the main critiques to the aforementioned debuggers is that the level
of granularity of commands is limited and too-fine grained as the focus is on the
source code, making debugging complicated and the amount of information over-
whelming [14]. Millipede [14] aims to solve this by introducing a multi-level
debugging approach which consists of three levels: the sequential level (control-
ling the intra-process execution), the message level (controlling messages inter-
changed between processes), and finally a protocol level (concerned with com-
munication protocol). Message level breakpoints are a suitable breakpoint model
for a non-blocking concurrency model, but they are rather low level abstractions
since they only allow to stop and step the execution of one PVM API call. The
message breakpoint proposed in REME-D has been inspired by Wismuller’s mes-
sage breakpoints [17]. In [17], a message breakpoint stops all receiver processes
of the next message sent by a process. The combination of a message breakpoint
with a traditional breakpoint on the send statements provides similar semantics to
REME-D’s step-into command. REME-D’s breakpoint catalog transcends Wis-
muller’s message breakpoints since it also provides breakpoint semantics for fu-
ture type message passing.

Some of the breakpoint-based debuggers allow to set breakpoints on state-
ments of one process (e.g., TotalView) or a set of processes (e.g., p2d2, Node
Prism). Being able to set breakpoints on a set of process is specially interesting
in the context of ambient-oriented applications since a number of devices share
same source code. REME-D’s support to specify on which device a breakpoint
should be active has been inspired by p2d2.

The main feature lacking in current distributed debuggers to fit mobile net-
works is a means to deal with frequent disconnections. For the most part, dis-

29

tributed debuggers assume a stable network infrastructure. Fragile communication
channels are assumed to be handled at the application level, i.e., communication
failures are seen as an application-level errors. However, in a mobile setting, it is
desirable that the debugger gracefully deal with network disconnections. A rel-
evant exception is TotalView which supports open debugging sessions to some
extent by relying on the underlying MPI middleware to manage and connect to
new or independently started processes. This gives a degree of freedom in the
configuration of a debugging session, making it attractive for an ambient-oriented
debugger. However, in contrast to REME-D, the target application still needs to
be compiled in a special way in order to be able to interact with TotalView’s de-
bugging agent before it can be dynamically included in the debugging session.

7.2. Event-based Debugging Tools
Event-based debuggers [3] conceive the execution of a program as a sequence

of “events”. An event may be a MPI API call, read/write memory, send/receive
functions, etc. Event-based debuggers record the trace of the events generated by
the application (often called event history) during its execution. The event his-
tory can then be used to either browse the events once the application is finished
[13, 16], or to replay the execution of a program in order to recreate the condi-
tions under which the bug was observed [40, 15, 12, 41]. Analysis of this his-
tory varies from presenting the raw data to the user for inspection, to relying on
graph-based analysis methods, or supporting graphical visualization techniques
(e.g., time-space diagrams [42, 43], message and process order views [13]).

Event-based debuggers have been criticized mainly because of the overhead of
collecting and saving information. Also browsing an event history does not scale
since manually inspecting huge traces becomes cumbersome and difficult [3].
As such many research efforts have focused on reducing the amount of events
recorded or presented to the user [23, 15, 44, 12]. Nevertheless, event-based de-
buggers fit well with a non-blocking concurrency model as message sends and re-
ceipts can be represented as separate events. A partial order of such events would
accurately reflect the behaviour of a distributed application. Some approaches ex-
plore a partial order of the event history based on the happened before relation
for browsing [13] or replay [15, 8, 7]. The happened-before relation shows how
events potentially affect each other [19], allowing developers to identify poten-
tial places that caused a bug and as such, offering a similar functionality as stack
traces in sequential debuggers. REME-D adapts event histories based on the hap-
pened before relation to a breakpoint-based debugger by allowing developers to
browse causal links for messages in the current execution context.

30

Within the field of event-based debugging tools, REME-D’s closest work is
Causeway [13], a message-oriented distributed debugger for the language E[6].
E is a distributed language designed for writing secure peer-to-peer distributed
programs for open networks from which AmbientTalk’s inherits its non-blocking
concurrency model. In contrast to REME-D, Causeway is a post-mortem debug-
ging tool. As such, programmers have to run over and over a program until the bug
would appear, making the reproduction of a rare erroneous condition even rarer.
Moreover, as remarked by Dao et al. in [45], reproducing the spectrum of possible
states that a distributed application can be in and exposing the application to them
before its deployment may be not feasible. This is more exacerbated in ambient-
oriented application due to the dynamic environment in which they run. The open
debugging support is thus essential feature that saves the programmer from hav-
ing to restart the program to recreate the conditions of errors, since the debugger
can attach to a running application and devices can be incorporated dynamically
to a debugging session at runtime. This feature is unique to an ambient-oriented
debugger, and not supported by Causeway.

7.3. Other Approaches
A number of distributed debugging techniques have been proposed for pro-

gramming models besides object-orientation, such as actors. IC2D [11] is a graph-
ical environment for monitoring and managing distributed ProActive applications
(running on a grid). In order to monitor ProActive computations, it provides
graphical visualisation including views to visualize the topology of active objects,
and message sends and receipts for selected active objects. These visualization is
equivalent to the REME-D’S Debug and Actor State views described in section 4.
IC2D also allows to interactively add a new or existing mobile active object to
any running ProActive node as well as to move active objects to other nodes dis-
played by IC2D. However, in contrast to REME-D, unanticipated ProActive active
objects cannot be added to existing debugging sessions.

AJAX and JavaScript-based approaches. Modern web applications rely on
AJAX [46] and JavaScript to provide a high degree of interactivity with the user.
These web applications move away from the traditional page-based navigation,
into one in which the document rendered by the browser is changed on the fly as a
response to asynchronous communications with the application server. Similarly
to ambient-oriented applications, AJAX programs work as communicating event
loops processing user interface events as well as asynchronous messages from a
server.

31

While most tools that aid developers in debugging these applications (such
as FireBug6 and the Chrome DevTools7) concentrate on the client side behaviour
alone, little attention has been payed at the debugging or comprehension of the
interaction between the client and the server. A notable exception is FireDetec-
tive by Matthijssen et. al [47]. FireDetective traces the execution of both client
(JavaScript) and Server (JavaEE) applications, and provides a unified visualiza-
tion. In contrast to the previously discussed Causeway debugger, FireDetective
is not a post-mortem debugger, but rather the traces are visualized as they occur.
The main aim of FireDetective is the same as REME-D’s: to provide insight into
the causal relations (happens-before) hidden by the use of asynchronous message
passing present in AJAX and AmbientTalk respectively. FireDetective, however,
is not a debugger since it does not provide direct control over the execution of
either client or server. Augmenting FireDetective with the debugging commands
provided by REME-D would prove to be an interesting direction of future work.

While there exist some JavaScript libraries such as Q8 that offer future-type
message passing. To the best of our knowledge, no debugging support is provided
for those libraries. As such, developers cannot place breakpoints on asynchronous
messages that will stop when the future is resolved such as in REME-D. Stepping
commands such as the step-return or step-into proposed in REME-D would ease
the debugging of future-type message passing interactions in the web.

8. Discussion and Conclusion

In ambient-oriented programming, the complexity of programming in a dis-
tributed setting is married with the network fragility and open topology of mo-
bile applications. Debugging under this conditions makes it so that existing ap-
proaches are insufficient, and a new kind of debugging, that we term ambient-
oriented debugging is warranted. We identify two main challenges that ambient-
oriented debugging must address: message-oriented debugging and open debug
sessions. To address these challenges, we introduced an online ambient-oriented
debugger called REME-D.

REME-D’s principal contribution lies in that it implements the features of
ambient-oriented debuggers as an ambient-oriented application which incorpo-
rates breakpoint-based debugging methodology where the focus is placed on the

6http://getfirebug.com/
7https://developers.google.com/chrome-developer-tools/
8https://github.com/kriskowal/q

32

exchange of asynchronous messages between actors. More concretely, REME-D
adapts features from breakpoint-based debuggers to event loop concurrency —
actor state inspection, message breakpoints, stepping over or into turns— , while
incorporating for online usage features from post-mortem, message-oriented de-
buggers —browsing causal links.

REME-D proposes epidemic debugging as a mechanism to address the open-
ness of AOD: it can install itself on newly discovered devices, a process in which
REME-D spreads to devices joining the debugging session. Devices can leave the
debugging session, either due to communication failures or in response to a user
action, without disrupting the debugging of the remaining participants. REME-D
implements those features by exploiting AmbientTalk’s reflective API, resulting
in a modular, reusable and flexible design that shows that it is possible to build tool
support in tandem with the programming support for dealing with partial failures.

Considering the results of the user study, we distill three valuable insights.
First, the features that participants actually expected from an ambient-oriented
debugger were indeed supported in REME-D. This observation is based on the
analysis of both the pretest statements and the suggestions that participants freely
left on space provided for comments. Second, participants valued REME-D as
a program understanding tool suited to make ambient-oriented programming in
AmbientTalk easier. Finally, the Eclipse UI interface is relevant to how users
perceive and value the features of REME-D, and it requires further attention.

We can foresee several avenues for future work. First, further effort must be
spent on the UI of the prototype. The user study revealed that the UI components
from the Eclipse Debug Plugin, designed for sequential debuggers, are not fit for
an AOD. Instead, a custom-made UI which provides the user with graphical rep-
resentations for AOD concepts (e.g., incoming and outgoing messages) is needed.
Second, further support for causal link navigation should be implemented. So far,
REME-D allows developers to see from where a message comes from, but not the
state of the actor that sent it (at the moment it was sent). This is due to the decou-
pling in time between a message send and a message being processed. In order
to address this, back-in-time debugger techniques, where the state of an actor is
saved as part of the causal link of a message, should be explored. Finally, we
would also like to develop a dedicated UI for the Android platform in order to ex-
plore “live debugging” of applications running on mobile devices, by permitting
developers to control a debugging session, not from an IDE but from the device
itself.

33

Acknowledgements

Elisa Gonzalez Boix and Carlos Noguera are funded by the MobiCraNT project
of the Brussels Institute for Research and Innovation (Innoviris).

References

[1] W. H. Cheung, J. P. Black, E. Manning, A framework for distributed debug-
ging, IEEE Software 7 (1990) 106–115.

[2] J. Gait, A debugger for concurrent programs, Software: Practice and Expe-
rience 15 (1985) 539–554.

[3] C. E. Mcdowell, D. P. Helmbold, Debugging concurrent programs, ACM
Computing Surveys 21 (1989) 593–622.

[4] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J. Dedecker, W. De Meuter,
Ambienttalk: object-oriented event-driven programming in mobile ad hoc
networks, in: Inter. Conf. of the Chilean Computer Science Society (SCCC),
IEEE Computer Society, 2007, pp. 3–12.

[5] G. Agha, Actors: a Model of Concurrent Computation in Distributed Sys-
tems, MIT Press, 1986.

[6] M. Miller, E. D. Tribble, J. Shapiro, Concurrency among strangers: Pro-
gramming in E as plan coordination, in: Symposium on Trustworthy Global
Computing, volume 3705 of LNCS, Springer, 2005, pp. 195–229.

[7] R. Hood, The p2d2 project: building a portable distributed debugger, in:
Proc. of the SIGMETRICS symposium on Parallel and distributed tools
(SPDT), ACM, New York, NY, USA, 1996, pp. 127–136.

[8] C. Gottbrath, Deterministically Troubleshooting Network Applications,
Technical Report, TotalView Technologies, 2009.

[9] S. Sistare, D. Allen, R. Bowker, K. Jourdenais, J. Simons, R. Title, A scal-
able debugger for massively parallel message-passing programs, IEEE Par-
allel Distrib. Technol. 2 (1994) 50–56.

[10] P. Neophytou, N. Neophytou, P. Evripidou, Debugging MPI grid applica-
tions using Net-dbx, in: European Across Grids Conference, Lecture Notes
in Computer Science, pp. 139–148.

34

[11] F. Baude, A. Bergel, D. Caromel, F. Huet, O. Nano, J. Vayssière, Ic2d: In-
teractive control and debugging of distribution, in: Proceedings of the Third
International Conference on Large-Scale Scientific Computing-Revised Pa-
pers, LSSC ’01, Springer-Verlag, London, UK, UK, 2001, pp. 193–200.

[12] I. J. P. Elshoff, A distributed debugger for amoeba, SIGPLAN Not. 24
(1989) 1–10.

[13] T. Stanley, T. Close, M. Miller, Causeway: A message-oriented distributed
debugger, Technical Report HPL-2009-78, HP Laboratories, 2009.

[14] E. Tribou, J. Pedersen, Millipede: A multilevel debugging environment for
distributed systems, in: Proc. of the Inter. Conf. on Parallel and Distributed
Processing Techniques and Appl. (PDPTA), volume 1, Las Vegas Nevada,
USA, pp. 187–193.

[15] R. H. B. Netzer, B. P. Miller, Optimal tracing and replay for debugging
message-passing parallel programs, in: Supercomputing ’92: Proceedings
of the 1992 ACM/IEEE conference on Supercomputing, IEEE Computer
Society Press, Los Alamitos, CA, USA, 1992, pp. 502–511.

[16] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, I. Stoica, X-Trace: A perva-
sive network tracing framework, in: 4th USENIX Symposium on Networked
Systems Design & Implementation, Cambridge MA, USA, pp. 271 – 284.

[17] R. Wismüller, Debugging message passing programs using invisible mes-
sage tags, in: Proc. of the European PVM/MPI Users’ Group Meeting on
Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Springer-Verlag, 1997, pp. 295–302.

[18] G. Kola, T. Kosar, M. Livny, Faults in large distributed systems and what we
can do about them, in: Proceedings of the 11th international Euro-Par con-
ference on Parallel Processing, Euro-Par’05, Springer-Verlag, Berlin, Hei-
delberg, 2005, pp. 442–453.

[19] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communications ACM 21 (1978) 558–565.

[20] X. Wu, Q. Chen, X.-H. Sun, Design and development of a scalable dis-
tributed debugger for cluster computing, Cluster Computing 5 (2002) 365–
375.

35

[21] J. Quigley, The white programming language, 2007. CODE Group,
Illinois Institute of Technology. http://dijkstra.cs.iit.edu/
code/white.

[22] E. Bainomugisha, J. Vallejos, E. G. Boix, P. Costanza, T. D’Hondt,
W. De Meuter, Bringing scheme programming to the iPhone Experience,
Software: Practice and Experience 42 (2012) 331–356.

[23] G. Pothier, E. Tanter, J. Piquer, Scalable omniscient debugging, in: Pro-
ceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented
programming systems and applications, OOPSLA ’07, ACM, New York,
NY, USA, 2007, pp. 535–552.

[24] E. Gonzalez Boix, Handling Partial Failures in Mobile Ad hoc Network Ap-
plications: From Programming Language Design to Tool Support, Ph.D. the-
sis, Vrije Universiteit Brussel, Faculty of Sciences, Software Languages Lab,
2012.

[25] G. Kiczales, J. D. Rivieres, D. G. Bobrow, The Art of the Metaobject Proto-
col, MIT Press, Cambridge, MA, USA, 1991.

[26] S. Mostinckx, T. Van Cutsem, S. Timbermont, E. Gonzalez Boix, E. Tanter,
W. De Meuter, Mirror-based reflection in AmbientTalk, Software: Practice
and Experience 39 (2009) 661–699.

[27] G. Marceau, G. Cooper, J. Spiro, S. Krishnamurthi, S. Reiss, The design and
implementation of a dataflow language for scriptable debugging, Automated
Software Engineering 14 (2007) 59–86.

[28] Y. P. Khoo, J. S. Foster, M. Hicks, Expositor: Scriptable time-travel de-
bugging with first-class traces, in: Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, IEEE Press, Piscataway,
NJ, USA, 2013, pp. 352–361.

[29] P. C. Bates, Debugging heterogeneous distributed systems using event-based
models of behavior, ACM Trans. Comput. Syst. 13 (1995) 1–31.

[30] R. A. Olsson, R. H. Crawford, W. W. Ho, A dataflow approach to event-
based debugging, Software: Practice and Experience 21 (1991) 209–229.

36

[31] C. Zhang, D. Yan, J. Zhao, Y. Chen, S. Yang, Bpgen: an automated break-
point generator for debugging, in: Software Engineering, 2010 ACM/IEEE
32nd International Conference on, volume 2, pp. 271–274.

[32] P. J. Astudillo, A Distributed Back-in-Time Debugger for Ambient-Oriented
Programs, Master’s thesis, Vrije Universiteit Brussels, Faculty of Sciences,
Software Languages Lab, 2012.

[33] D. Campbell, J. Stanley, Experimental and Quasi-Experimental Designs for
Research, Houghton Mifflin Company, 1963.

[34] M. K. A., Quasi-experimental evaluations. part 6 in a series on practical
evaluation methods, Research-to-Results Brief (2008).

[35] V. B. Kampenes, T. Dybå, J. E. Hannay, D. I. K. Sjøberg, A systematic
review of quasi-experiments in software engineering, Inf. Softw. Technol.
51 (2009) 71–82.

[36] C. M. Pancake, R. H. B. Netzer, A bibliography of parallel debuggers, 1993
edition, in: Proceedings of the 1993 ACM/ONR workshop on Parallel and
distributed debugging, PADD ’93, ACM, New York, NY, USA, 1993, pp.
169–186.

[37] C. M. Pancake, R. H. B. Netzer, Bibliography on parallel and distributed de-
buggers, 2004. http://liinwww.ira.uka.de/bibliography/
Parallel/debug_3.1.html (captured in June 2012).

[38] M. S. Meier, K. L. Miller, D. P. Pazel, J. R. Rao, J. R. Russell, Experiences
with building distributed debuggers, in: Proceedings of the SIGMETRICS
symposium on Parallel and distributed tools, SPDT ’96, ACM, New York,
NY, USA, 1996, pp. 70–79.

[39] A. DDT, The Distributed Debugging Tool, Technical Report, Allinea,
2012. http://www.allinea.com/Portals/90122/docs/
user-guides-and-technical-docs/allinea-ddt-3.
1-user-guide-may-2012.pdf (captured May 2012).

[40] N. Thoai, D. Kranzlmüller, J. Volkert, Shortcut replay: A replay technique
for debugging long-running parallel programs, in: Proceedings of the7th
Asian Computing Science Conference on Advances in Computing Science:

37

Internet Computing and Modeling, Grid Computing, Peer-to-Peer Comput-
ing, and Cluster, ASIAN ’02, Springer-Verlag, London, UK, UK, 2002, pp.
34–46.

[41] T. J. LeBlanc, J. M. Mellor-Crummey, Debugging parallel programs with
instant replay, IEEE Trans. Comput. 36 (1987) 471–482.

[42] M. Frumkin, R. Hood, L. Lopez, Trace-driven debugging of message passing
programs, in: 12th International Parallel Processing Symposium, IPPS ’98,
IEEE Computer Society, Washington, DC, USA, 1998, pp. 753–762.

[43] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. Bruce,
I. Karen, L. Karavanic, K. Kunchithapadam, T. Newhall, The paradyn par-
allel performance measurement tools, IEEE Computer (1995).

[44] M. RONSSE, D. KRANZLMULLER, Rolt(mp) - replay of lamport times-
tamps for message passing systems, PROCEEDINGS OF THE SIXTH
EUROMICRO WORKSHOP ON PARALLEL AND DISTRIBUTED PRO-
CESSING - PDP ’98 (1998) 87–93.

[45] D. Dao, J. Albrecht, C. Killian, A. Vahdat, Live debugging of distributed
systems, in: Proceedings of the 18th International Conference on Compiler
Construction: Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009, CC ’09, Springer-Verlag, Berlin,
Heidelberg, 2009, pp. 94–108.

[46] J. J. Garrett, Ajax: A new approach to web applications, http://
adaptivepath.com/ideas/essays/archives/000385.php,
2005. [Online; Stand 18.03.2008].

[47] N. Matthijssen, A. Zaidman, M.-A. Storey, I. Bull, A. van Deursen, Con-
necting traces: Understanding client-server interactions in ajax applications,
in: Proceedings of the 2010 IEEE 18th International Conference on Program
Comprehension, ICPC ’10, IEEE Computer Society, Washington, DC, USA,
2010, pp. 216–225.

38

