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ABSTRACT

JavaScript programs are highly event-driven, resulting in
‘asynchronous spaghetti’ code that is difficult to maintain
as the magnitude programs written in the language grows.
To reduce the effects of this callback hell, various concepts
have been employed by a number of JavaScript libraries and
frameworks. In this paper we investigate the expressive-
ness of two such techniques, namely reactive extensions and
promises. We have done this by means of a case study con-
sisting of an online collaborative drawing editor. The editor
supports advanced drawing features which we try to model
using the aforementioned techniques. We then present a
discussion on our overall experience in implementing the ap-
plication using the two concepts. From this, we propose a
roadmap of how to improve support of programming event-
driven web applications in JavaScript.

Categories and Subject Descriptors

D.1.5 [Software Programming Techniques|: Object ori-
ented programming; D.3.3 [Programming Languages]:
Language Constructs and Features

Keywords

Javascript, Callbacks, Reactive programming, Promises, Event

Streams, Behaviours, Futures

1. INTRODUCTION

JavaScript has been identified as the most dominant lan-
guage in the web [5]. From its conception, the design of
the JavaScript language was primarily targeted for the web
browser [17]. As such, the main focus at the time was to
provide ways to improve user interaction. The language
therefore provides support for user interaction employing an
event-driven style of programming,.

Though the asynchronous nature of the language lends
itself well to building responsive web applications, it also
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gives birth to a variety of challenges. The most notable one
that has recently gained high recognition among JavaScript
enthusiasts is the asynchronous spaghetti[16]: deeply-nested
callbacks that have dependencies on data that have been
returned from previous asynchronous invocations.

Since callbacks are common in JavaScript, programmers
end up losing the ability to think in the familiar sequential
algorithms and end up dealing with an unfamiliar program
structure. A program might be forced to shelve program
execution aside and continue when a return value becomes
available in the unforeseen future while in the meantime ex-
ecution continues performing some other computation. This
structure forces programmers to write their applications in
a nested hierarchy of callbacks, inevitably leading to what
is termed as callback hell or the pyramid of doom [21].

In the next sections we present two increasingly popu-
lar approaches that have been proposed as a solution to
these problems in the JavaScript context: reactive program-
ming [9] and the concept of promises [10]. We describe these
two approaches and apply them on a non-trivial online draw-
ing application using the standard version of JavaScript, EC-
MAScript5'. At the same time we also compare the imple-
mentations when necessary and observe the lessons learnt
from these experiences.

2. THE PROBLEM WITH CALLBACKS

Callbacks are used in event-driven programming to ob-
tain results of asynchronous computations. Rather than an
application blocking on a potentially indeterministic event,
the execution semantics of the application shifts from the
programmer, relinquishing control of the event when the in-
vocation happens and registering a method with the intent
of reacting when the event is performed.

Utilizing these callbacks in large-scale applications leads
to a mix of collocated code fragments that are not easily
composable and creates complex flows that force the pro-
grammer to pass the callbacks around in order to utilize
their delayed values as illustrated in Listing 1. In this sce-
nario of a chat application, there are three asynchronous
calls: the first one registers a user to a chat server (line 1),
the second asks the server for an available room to join (line
2) and the third broadcasts an initial chat message (line 3)
to users in the room.

As aresult, callbacks become hard to understand, particu-
larly when the control flow of an application require handling
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of multiple events together, or of events that depend on one
another. The programmer is forced to write boilerplate code
in order to orchestrate the asynchronous operations.

Listing 1: Nested Callbacks

group of independent asynchronous calls as shown in List-
ing 3 in the Q library using Q.all. This listing computes
the Fibonacci of two numbers through promises.

Listing 3: Composing Promises

1 registerToChatOnServer(username,function(rooms){
2 joinAvailableRoom(rooms, function(roomname){

3 sendChatToAll(roomname, msg, function(reply){
4 showChatReply(reply);

5 )

6 1

7))

3. JAVASCRIPT PROMISES

One approach to deal with the problem imposed by call-
backs has been in the use of promises. In 1976, Daniel Fried-
man and D. Wise [10] originally proposed the term promise
as a proxy object that represents an unknown result that is
yet to be computed.

Most implementations regard promises as immutable once-
resolved promises as per the CommonJS Promises/A spec-
ification [12], which states that a promise can be rejected
or resolved once and only once, to prevent unanticipated
changes in behaviour. They furthermore encapsulate asy-
nchronous actions, acting much like a value returned from
the result of a computation only that the value may not
be available at the time. Promises therefore represent the
eventual completion and result of a single asynchronous op-
eration.

The most common term used for JavaScript promises are
the thenables, as a developer uses then to attach callbacks
to a promise when it is either fulfilled or an exception is
realised®>. In line 1 of Listing 2 we use Q.fcall of the
Q [21] library which creates a promise from the returned
value of asynchronous invocations. It is important to note
that then also returns a promise, implying that promises can
be chained together. Listing 2 shows chaining of promises
(lines 1-4) using the Q library. The listing performs similar
functionality as the previous scenario of Listing 1, where pre-
defined functions in lines 1-3 perform asynchronous requests
to the server.

Listing 2: .then() in Q
Q. fcall (registerToChatOnServer)

.then(joinAvailableRoom)
.then(sendChat)
.then(function (reply){

showChatReply (reply)

},function (error){

// catch error from all async operations
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.done();

3.1 Composing Promises

In most libraries, promises are higher-level abstractions.
Therefore in addition to chaining, they can also be passed
around and their operations composed easily — unlike asy-
nchronous callbacks. A programmer can perform a number
of high-level operations on promises such as composing a

2A third callback, a progress notifier for the promise can
also be attached, as per the Promises/A specification

1 fibpromise = Q.all(]

2 computeFibonacci(n—1),

3 computeFibonacci(n—2)

4 )

5 fibpromise.spread(function (resultl, result2) {
6 //resolver for both operations..

7  console.log(resultl + result2);

8 }),function(err){

9 //error occurred
10 });

)

To react to fibpromise we attach a resolver in line 5. The
Q library provides Q.spread, which allows the arguments of
the individual elements in a composition to be sent to the
resolver. In this case, fibpromise awaits for both fibonacci
sequences to be computed before it passes the results to the
resolving function (line 5) which then sums the results (line
7).

3.2 Alternative Approaches

Within the domain of web development, there exist other
frameworks which provide the abstractions for implemen-
tation of promises apart from the Q library. These include
AngularJs®, a JavaScript MVC-based framework for web ap-
plications, and Dart?, a class-based web programming lan-
guage.

The AngularJs promises were inspired by Q and are simi-
lar to Q’s promises. However, the functionality provided by
AngularJs’ promises are a subset to those provided in Q in
order to make them accustomed to the framework’s execu-
tion style. It therefore lacks useful features such as promise
chaining.

Dart promises (recently re-implemented as Dart futures),
are also similar to Q’s promises, with Completers used to
manage the futures. Dart also contains a Futures interface
for easily creating multiple future objects. We however did
not use Dart since the aim of this experiment was to focus
on mainstream technologies, i.e. JavaScript. Dart is a sep-
arate specialized language and currently lacks full support
for integration with normal JavaScript applications.

Outside the web, promises are widely employed as abstrac-
tions in the domain of concurrent and distributed languages.
The distributed, actor-based language AmbientTalk [6] uses
similar concepts known as futures for non-blocking remote
invocations, which can composed by grouping. Argus [13]
provides promise pipelining, similar to the aforementioned
promise chaining. Fignale [19] provides future combinators
to compose delayed actions in a scatter/gather pattern.

3.3 Summary

Promises provide an elegant fall-back from the nested call-
back problem. JavaScript code that is hard to follow can
potentially be replaced with a more structured design. In
comparison to callbacks, promises provide a portable en-
capsulation mechanism capable of being passed around As
a result, promises afford programmers the convenience of

3http://angularjs.org
“http://dartlang.org



Discrete Events Continuous Events
Flapjax Event Streams Behaviors
Baconjs Event Streams Properties
ReactJs Data Flows Data Flows
RxJs Observables Observables
Dart Streams Streams
AngularJS Bindings

Figure 1: Reactive JS Libraries: Terminology

handling them as first class objects, a great advantage given
asynchronous mechanisms they represent.

4. REACTIVE JAVASCRIPT

The reactive programming paradigm has recently gained
attention in the web development domain. This is because
contemporary web applications communicate with servers
and provide enhanced user interactions. As such, program-
mers need to deal with time-varying events involving various
web-related concepts such as long-polling XHR requests [§],
and persistent HT'TP connections in Comet [4].

Reactive programming abstracts time-varying events for
their consumption by a programmer. The programmer can
then define elements that will react upon each of these in-
coming time-varying events. Furthermore, abstractions are
first-class values, and can be passed around or even com-
posed within the program.

Most reactive programming solutions support two kinds
of reactive abstractions which model continuous and discrete
(or sparse) time-varying values. The discrete time-varying
values are most commonly referred to as event streams. These
can be described are asynchronous abstractions for the pro-
gressive flow of intermittent, sequential data coming from a
recurring event. For example, mouse events can be repre-
sented as event streams. On the other hand, continuous val-
ues over time are usually referred to as behaviours or signals.
These can be thought of abstractions that represent unin-
terrupted, fluid flow of incoming data from a steady event.
For example, a timer can be represented as a behaviour.

Support in JavaScript reactive programming is catego-
rized by dedicated languages and extensions. Dedicated re-
active languages require the programmer to develop their
applications using the language that eventually compile to
JavaScript for use in the web. Examples are Flapjax (as a
language) and Elm [7]. Libraries and extensions provide ad-
ditional constructs that extend the JavaScript language with
reactive constructs when applied to various elements in a
program — e.g. Flapjax (as a library) and Bacon.js [11]. Fig-
ure 1 shows the variations of terminologies in time-varying
reactive abstractions in the web development context.

With these kinds of abstractions, programmers need not
explicitly trigger a recomputation of time-varying data —
reactive libraries extend JavaScript with automatic recom-
putation of reactive values in the program.

Consider as an example of the use of reactive program-
ming a time-ticker in Flapjax [15], shown in Listing 4. Line
1 creates a timer behaviour that produces a value after ev-
ery 100 milliseconds. Since the behaviour returns a value
to microsecond precision, we divide the value by 1000 to

Explicit Lifting Implicit Lifting
Flapjax 4 v
Baconjs X v
ReactJs 4 X
RxJs x 4
Dart v X
AngularJs X v

Figure 2: Reactive JS Libraries: Lifting

show the time in seconds in line 3. We then insert the be-
haviour within the DOM element with the ID timer-div on
a webpage, line 5. The value of the timer will therefore be
continuously updated and displayed on the page.

Listing 4: A timer in Flapjax
var timer = timerB(100);
var seconds = liftB(
function (time){ return Math.floor(time / 1000);}
,timer);
insert DomB (seconds, timer—div’);
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An obvious implication of this is that the values in expres-
sions that depend on the reactive values need to be reactive
themselves. If a variable gets assigned the timerB behaviour
then the variable should be converted to a reactive variable
itself, since updates from the behaviour will affect the vari-
able. This process is known as lifting.

A number of JavaScript libraries implicitly perform lift-
ing for the programmer — e.g. in Bacon.js. For some, the
programmer has to perform lifting of reactive expressions
manually — such as in React.js. A third category of libraries
offer both implicit and explicit lifting — for instance Flapjax,
which if used as a library the programmer perform lifting
explicitly but if used as a compiler the code is transformed
implicitly. This is illustrated in Figure 2.

In order to correctly recompute all the reactive expressions
once a event stream or behaviour is triggered, most libraries
construct a dependency graph [2] behind the scenes. When-
ever an expression changes, the dependent expressions are
recalculated and their values updated. In the timer example
of Listing 4, a time change that happens from line 1 triggers
the re-evaluation of the function in line 3 which subsequently
updates the value inserted in line 5.

4.1 Composing Event Streams & Behaviours

For avoiding the callback nightmare described in Section 2
and maintaining such interactions in their programs, one
useful abstraction for programmers is composing reactive
abstractions that replace the asynchronous callbacks. For
instance, instead of having three separate callbacks to sepa-
rately handle mouse clicks, mouse moves or mouse releases,
we can compose them as a single event stream which re-
sponds to all the three events. Most JavaScript libraries
provide this kind of fundamental support. For example, in
Bacon.js, properties (or behaviours) can be composed using
the combine operator [11].

A different approach to composing event streams is through
Flapjax’s mergeE, where instead of combining two event
streams, it always throttles the latest stream that comes in



from either event. We show an example in Listing 5. Here
we create a timer event stream that is triggered after ev-
ery 10 seconds (line 1), and another stream that is triggered
whenever a user clicks on the save-button (line 2-3). In line
4 we create a save event stream that is triggered whenever
either the timer elapses or the save button is clicked, calling
the doSave function (line 5).

Listing 5: Flapjax: Merging Event Streams
1 var saveTimer = timerE(10000); //10 seconds
2 var saveClicked =
3  extractEventE(’save—button’,’click’);
4 var save = mergeE (saveTimer,saveClicked);
5 save.mapE(doSave); //save received data

4.2 Alternative Approaches

Within the web domain, there are other frameworks pro-
viding some reactive abstractions such as Dart and Angu-
larJs, introduced in Section 3.3. AngularJs exposes some
level of reactive programming semantics in its data/variable
bindings. The framework’s MVC architecture allows up-
dates in models to trigger updates in client-side views, and
vice-versa. This results in automatic synchronization of data
between the model and view components. AngularJs there-
fore contains implicit lifting with bindings behaving similar
to event streams. For the Dart language, event streams and
behaviours are both known as Streams, to which a Sub-
scriber can attach a Listener. Also, a programmer can
attach several listeners to one event stream, which broad-
casts its changes. Dart exposes constructs for programmers
to explicitly lift their applications to use reactive program-
ming in a separate Stream APIL.

Outside the web domain, functional reactive programming
is common in fields related to event-driven and data-flow
programming. FrTime [3], an extension to Scheme, con-
sists of time-varying signals and event sources representing
continuous and discrete values respectively. Native scheme
functions called on these values are implicitly lifted, and the
language supports functional operators such as map-e and
filter-e akin to Flajax’s mapE and filterE. Similar oper-
ators are present in Scala.React [14]. Scala.React provides
next and delay dataflow methods that suspend calls until
an event stream or a signal (i.e. behaviour) emits a value,
after which the object continues execution. These can be
used to orchestrate delayed calls and reduce complexity in
programs with asynchronous semantics.

4.3 Summary

To summarize, support of reactive programming concepts
in JavaScript can be distinguished as reactive languages that
compile to JavaScript e.g. the Dart language, and libraries
or extensions to the language that expose some reactive ab-
stractions for programmers e.g. Bacon.js. These libraries
also use slightly different terminologies of their abstractions,
and some expose the important distinction between event
streams and behaviours.

Existing web applications wishing to take advantage of re-
active abstractions either need to rewrite their applications
using dedicated languages and compiling them for the web,
or manually lifting of various parts of their applications to
use reactive semantics.

clienta clientb

Figure 3: Drag operation by two clients a and b

clienta clientb

Figure 4: Result a distributed drag operation of Figure3

In the next sections we put these abstractions into prac-
tice for the implementation of a multi-user drawing editor.
We then discuss the support provided and identify its short-
comings.

5. CASE STUDY

In this section we describe our implementation of a col-
laborative drawing application in the JavaScript language®.
The application follows a multi-user, session-based approach
where several users are connected via the web, sharing the
same canvas.

In addition, the application incorporates some advanced
distributed user interactions which employ composition of
events such as a multi-user interaction. We present an exam-
ple of such an interaction, consider two users participating in
the same drawing session of the application. One user starts
to drag a drawn shape to the right, while at the same time
a different user in the same session drags the same shape
to the left (Figure 3). Instead of the application recogniz-
ing two separate sequential interactions (e.g. drag-right and
drag-left respectively), the application recognizes this as a
single distributed resize interaction. As a result, instead
of moving the shape, the application reacts by causing the
shape to resize. The result is depicted in Figure 4 where the
shape is stretched in both directions.

5.1 Architecture

We illustrate the architecture of our drawing application
in Figure 5. To support a multi-user interaction mechanism
through the web browser we employed a Node.js server since

5The source code can be cloned from GitHub at
https://github.com/mtafiti/promise-and-react
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Figure 5: Application architecture

it provides a server-side environment for JavaScript.

On the client side, we implemented the drawing editor us-
ing the HTML5 canvas which supports primitives that pro-
vide rendering of elements through JavaScript operations.
The effect of the choice of technology for the canvas is dis-
cussed later in Section 6. To sum up, both the server and
the client (web browser) are implemented in the JavaScript
language.

We use websockets to provide the interconnection between
our application on the client side and the server side. How-
ever, in order to avoid manually maintaining the websocket
connections between them we employed the NowlJs pack-
age®. NowlJs allows us to call methods on the server with-
out having to explicitly manipulate data packets on a web-
socket connection. It also manages the inconsistencies in
implementations of websocket communication across differ-
ent browsers.

For providing abstractions for promises, we use the Q [21]
library in the clients, whereas for the reactive abstractions
we used the Flapjax library [15] in both the Node.js server
and the client side.

5.2 Implementation

In this section we discuss the implementation of the draw-
ing application with support for multi-user interactions. We
highlight the most relevant parts in the use of futures and
reactive programming, namely, supporting drawing sessions
and implementing a multi-user interaction.

5.2.1 Plain drawing editor

The first step was to implement a plain drawing editor
where users can draw shapes. The canvas listens to local
mouse events from the user to capture and model interac-
tions. It renders shapes in a canvas by implementing a re-
fresh operation after a number of milliseconds. If there is
any change in a shape’s properties it is updated using the
canvas’ rendering engine.

Shttps://github.com/Flotype/now

5.2.2 Composing local user interactions

Next we modelled local user interactions as Flapjax event
streams. For example, we have implemented a moving shape
interaction by composing the action as a single event stream.
More concretely, we model one complete drag gesture as a
single, composed, merged event of a mouse down followed
by a number of mouse move events, ending with a mouse
up — as shown in Listing 6”. The dragE composed event
stream now contains the merged streams of the three actions
representing a complete drag event.

Listing 6: Moving a shape
function mouseDownAndMoveE (canvas) {
return extractEventE(canvas,”mousedown”)
.mapE(function(md) {
return extractEventE(canvas,”mousemove”)
.mapE(function(mm) {

b

10 function mouseDownMoveAndUp(element){
11 var downMoveAndUpE =
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12 mouseDownAndMoveE (element)
13 .mergeE(mouseUpE(element));
14 return downMoveAndUpE;

15 }

16 var dragE = mouseDownMoveAndUp(canvas);
17 dragE.mapE(function(e) {

18 //update shape...

19 });

Given the combined mergeE event stream, line 18 attaches a
handler that is triggered whenever the complete drag event
is detected.

5.2.3  Supporting drawing sessions.

For joining a drawing session a client has to perform a se-
quence of events, similar to the example shown in Listing 1.
First the client needs to initiate a registration request on
the server, for some authentication. If acknowledged, the
client subsequently requests for an available room to join. If
successful, the client has joined a room, and sends an intro-
ductory message to the rest of the clients in the room.

Listing 7 shows the implementation of the above sequence
of events. A client remotely signals to the server for reg-
istration through the function registerOnServer using the
now construct of NowlJs in line 1. The last argument to this
invocation is a the callback to be executed once the asy-
nchronous call returns. The server responds with the room
list rooms, and the user proceeds to choose one room to join
its drawing session (line 4). The client then sends a ‘hi’
message to all clients in the room (line 6). On the server we
append the user’s id to the list of users.

"We follow the conventions set by Flapjax of a suffix E to repre-
sent an event stream.



Listing 7: Joining a session - without promises

Listing 9: Joining a session - with promises

1 now.registerOnServer(name,function(resl,rooms){

2 if (resl == true){
4 now.joinAvailableRoom(rmname,function(res2){
5 if (res2 == true){
6 var msg =‘‘Hi everyone, I am ” + name;
7 now.sendChat ToAll(roomname, msg,
8 function (response){
9 console. log(response);
10 :
11 }
12}
13

Notice already that there is an emergence of nesting and
that orchestrating these nested asynchronous calls starts to
be a burden to the programmer. This is a problem because
most libraries supporting remote asynchronous invocations
in JavaScript such as NowJs do not support promises. As
a result, a programmer would need to interface remote asy-
nchronous invocations with promises by manually creating
and resolving promises once the asynchronous invocation re-
turns.

To solve this issue, we added a layer of abstraction on
top of NowJs by implementing a helper function fnpromise
on the client side®. fnpromise (shown in Listing 8) as-
sists in transforming callback-based functions which make
invocations to our server through NowJs into promise-based
functions. The helper takes the now-based function fn and
creates and returns a promise (line 3 and line 14) that is
resolved once the function completes (line 8) or is rejected
if it returns an error (line 12).

Listing 8: Creating a promise-based function

1 function fnpromise(fn){

2 return function(){

3 var deferred = Q.defer();

4 fn.apply(this,arguments.slice (). concat(cb);
5 .

6  function cb (err, value){

7 if (error == null) {

8 deferred. resolve ((arguments.length > 2) ?
9 Array.prototype.slice . call (arguments, 1) :
10 value);
11 } else {
12 deferred. reject (new Error(error)); }
13
14  return deferred.promise;
15
16 }

With the helper function, we can now chain our asynchro-
nous callbacks with less effort. For our initialization opera-
tion, we pass our functions for registering a user, joining a
room and sending an introductory message to be chained as
promise-returning functions, illustrated in Listing 9.

8Inspired by http://bit.ly /trypromise

function err(msg){ console.log("Error: ” + msg)}
pl = fnpromise(now.registerOnServer);
p2 = fnpromise(now.joinAvailableRoom);
p3 = fnpromise(now.sendChat ToAll);
pl(name)
.then(function(res){
return p2(res);
},err)
.then(function(rmname){
return p3(rmname, msg);
}err)
12 .then(function(response){
13 console. log(response)
14 },err)
15 .done();

— =
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pl, p2 and p3 in lines 2 and 3 respectively are promise-
returning functions that can be chained together (or even
composed if they were independent). If any errors are en-
countered then the chaining is aborted and the err function
is invoked — line 7 for p1 and line 10 for p2, displaying an
error message to the console (in function err, line 1).

5.2.4 Advanced distributed user interactions

Distributed drag operation. For composing our multi-
user operation described in the introduction of Section 5,
the server orchestrates the drag operations performed by the
users in order to identify whether two users are participating
in a distributed action.

In order to realize this, we create a dictionary in the server
dictInteractions that stores the interactions that clients
are performing. On the client side, we create an event stream
that sends a request to the server whenever the user performs
a drag operation, such as the one already mentioned in List-
ing 6. Only this time in Listing 10 line 7 we register the drag
on the server and proceed with the drag operation once this
is completed, providing the logic to update the shape from
line 8.

Listing 10: Multi-user drag interaction

1 function mouseDownAndMoveE (canvas) {
2 return extractEventE(canvas,”mousedown”)

3  .mapE(function(md) {
4
5 return extractEventE(canvas,”mousemove”)
6 .mapE(function(mm) {
7 now.registerDrag(shapeid, shape, function(){
8 //update shape on canvas
9 b
10 });
1 })
12 }

When the server receives notification that a client has
started dragging by a call on registerDrag represented in
line 1 of Listing 11, it proceeds to create an event stream
reqE (line 6), which will sporadically trigger events on the
client to proceed with the drag operation. The client then
updates the shape information when the function cb is called
(line 8).



Listing 11: Distributed interaction event stream
1 now.registerDrag = function (shpid, info, cb){
2 var reqE;

3 if (! distInteractions .contains(this.user.id)){

4  reqE = distInteractions.getStream(this.user.id );
5 }else {

6 reqE = receiverE();

7 distInteractions .add(this.user.id, reqE, info);
8 reqE.mapE(function(val){

9 cb(val);
10 });
11}
12 reqE.sendEvent(info);
13 }

The conditional in line 3 checks if the same client initiated
a previous drag gesture. If so the server retrieves the event
stream (line 4), in order to notify the client of the new up-
date. If not, the server creates another event stream for this
client and stores it in a dictionary containing all users and
the interactions they are currently (in line 7). The server
completes by triggering the event stream using the Flapjax
primitive sendEvent as shown in line 11.

In the case where one client stops the drag interaction,
the server receives this event and deletes the client’s entry
in the dictionary, completing the interaction.

Distributed resize interation. To detect a distributed
resize operation, we need to modify the code in Listing 11.
Consider that there is already a client12345 that is par-
ticipating in the drag operation. In the dictInteractions
dictionary, we already have a client with the associated event
stream and the last invoked arguments.

Listing 12: Distributed interaction invocation
if (! distInteractions .isEmpty() &&
! distInteractions .contains(this.user.id)){
var streams = distInteractions.getAllStreams();

/]

streéms.forEach{function(stream) {
stream.sendEvent((isComposed:true, args:allinfo});

})7

When another client contacts the server to perform a sep-
arate drag operation, the server looks up in the dictionary
to see whether there is already a client performing a drag®,
as in line 1 of Listing 12. If one is present, then all clients
should be notified that a distributed resize has been realized,
and thus we retrieve all streams and trigger their events to
all clients. The server triggers the events with a status value
which indicates to the client that the event should be han-
dled as a composed interaction, as shown in line 2 of Listing
13.
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Listing 13: Detecting distributed interaction - client
1 now.registerDrag(shapeid, shape, function(res){

if (res.isComposed){
//distributed resize realized

} else {

//normal drag with res.arg

Ik
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9For clarity, we omit an additional check of the same shape in
the code listing

5.3 Summary

We have been able to represent an advanced user inter-
action in our distributed drawing application with the help
of reactive programming and promises. Although they pro-
vide good abstractions for reacting to events in an elegant
way, with current approaches the programmer still has to
manually encode advanced interactions based on the incom-
ing events that these abstractions represent and to manually
interface remote asynchronous invocations with promise ab-
stractions.

6. LESSONS LEARNT

Using reactive and promise-based abstractions allows us
to de-clutter our code from nested asynchronous callbacks.
It also allows us to represent events, which are common in
JavaScript programs, as first-class citizens. This is particu-
larly important in structuring and maintaining programs as
opposed to implementing them using native asynchronous
callbacks.

Nevertheless, in the process of developing our drawing ap-
plication we have made observations regarding challenges
with the programming support in Q and Flapjax, as well as
other observations pertinent to application development in
JavaScript. We summarize the challenges in this section.

Dependent promises. Although promises offer a con-
venient way of representing and composing callbacks, we ob-
served a problem when chaining a number of promises. As
pointed out by the creators of the Q library[21], we found
that nested promise resolve and reject callbacks were still
present whenever we had chained promises dependent on
results of previous promises.

This dependence exposes a different manifestation of the
asynchronous spaghetti code problem, only this time it is
applied to promise resolver and rejecter functions. As a
concrete example, consider Listing 14. Here, we create three
promises where each successive function depends on data
from the preceeding functions. After registering to a random
drawing room in line 5 and adding a client to a room in line 7,
we now want to load the drawing canvas data for the room.
For this we need the data from the first two invocations,
leading nest the thens as in line 8-11.

Listing 14: Nested promises
1 function authenticate() {

2 pl = fnpromise(now.registerRandomRoom);
3  p2 = fnpromise(now.addClient ToRoom);
4 p3 = fopromise(now.loadCanvasData);
5 pl(nickname)
6  .then(function(roomname){
7 return p2(clientld, roomname);
8 //nested since we need client id and roomname
9 .then(function(noofusers){
10 return p3(clientld, roomname);
11
2
13 .done();
14 }

Lifting non-reactive components. The methodology
used to implement the drawing application was through an
incremental development process. We started from building
a vanilla drawing editor and added distributed functional-
ity such as the distributed drag and resize operations in an
incremental way. As such, we performed manual lifting of



various components of our drawing application in order to
support the reactive programming semantics.

While Flapjax and other similar libraries have support
for lifting non-reactive components, we observed that this
process was unnecessarily complex as opposed to starting
out with a reactive language or library that performs implicit
lifting of various reactive elements in the program.

Event streams vs. Behaviours. During our implemen-
tation of the reactive components of the drawing application
it became apparent to us that event streams were better
suited for the reactive implementation of our scenario. This
is because an event stream can update its dependent val-
ues whenever the event itself is triggered, unlike behaviours
which can trigger recomputations continuously. This dis-
tinction is particularly important when abstracting remote
events and user interaction as reactive components, improv-
ing on the responsiveness of the application.

Distributed event streams. In our implementation we
modelled event streams as reactive components that listen
to events coming from a websocket and expose them to lis-
teners. We create separate event streams on the client and
the server and trigger the event stream when data from the
websocket is detected. This manual management of events
coming from distributed sources with separate event streams
within one application shows that there lacks distributed ab-
stractions for event streams.

Inconsistencies in promise implementations. Dur-
ing the implementation of the drawing application, we tested
several libraries providing support for the concept of pro-
mises, such as jQuery [18] and FuturesJS [1]. Although
they provide the same concept, the different implementation
strategies with respect to the Promises/A specification [12]
may have an impact on the effects of an application. For
instance, jQuery’s deffereds have a slight difference in prop-
agating errors in chained promises whenever a rejected non-
promise value is returned. This may lead to undetected
rejections or exceptions when chaining promises in an appli-
cation.

The choice of the drawing mechanism. When consid-
ering a drawing GUI mechanism that is supported in HTML
an initial solution is to employ DOM-tree elements, such as
SVG (Scalable Vector Graphics). Most JavaScript libraries
supporting reactive programming abstractions have support
for DOM-tree elements. However, SVG models drawing el-
ements as DOM elements with special constructs for ren-
dering shapes on a web-page. Most reactive programming
libraries in JavaScript do not support these advanced types
of DOM elements.

For our case study we therefore used a HTML5 canvas
as the drawing component of choice. This in effect means
that reactive support is only for the top-level canvas DOM
element since a HTML5 canvas does not not represent its
items in the web-page’s DOM tree'’. We therefore could
not model the shapes drawn by the user as reactive objects
natively. This choice resulted in having to model operations
performed by the end-user as manual event streams, as in
Listing 10.

7. RESEARCH ROADMAP

In this section we present the research possibilities that

10Tt can be viewed as a rendering component with no support for
a scene graph [20]

this experience has availed, while reflecting on some of the
research challenges that were encountered.

Chained Promises Hell. From the previous section we
identified that promises that depend on values from previ-
ous promises in the chain are still prone to nesting. Using
the Q library, we noted that dependent, chained promises
can lead to the pyramid of doom and other complexities
that are attributed to orchestrating asynchronous callbacks.
Techniques alleviating this specific type of problem evident
when manipulating promises are a possible research path to
follow.

Improving Explicit Lifting. It is apparent that ex-
isting JavaScript applications incorporate reactivity in their
development to add reactive elements to it. This forces pro-
grammers to perform manual lifting, a process which this
experiment has identified as having potential to be convo-
luted. A possible research area could be to investigate fur-
ther support for lifting, such as providing a number of lifting
operators.

Distributed Reactive Programming. We have men-
tioned how we modelled event streams listening to changes
from our websocket abstractions on both the server side and
the client side. To avoid this manual implementation, an al-
ternative approach can be to provide a reactive abstraction
that traverses both the server and the client. This approach
could even go further and implement a reactive abstraction
that traverses from client to client (e.g. browser to browser),
abstracted over a server.

Event streams and behaviours in practice. We have
mentioned our experience of modelling most of our reactive
elements as event streams. As a matter of fact, our only im-
plementation of a behaviour was a timer at the client which
was calmed down to trigger after every second, essentially
becoming an event stream. In the end, we are left ques-
tioning the practicality of behaviours in large-scale reactive
implementations of JavaScript applications.

8. CONCLUSION

Callbacks have been accused of being the modern ‘goto’
statements in asynchronous programming. The use of pro-
mises and reactive programming abstractions has been pro-
posed as a solution to dealing with these kinds of complexi-
ties introduced by callbacks.

While reactive programming is more natural in program-
ming web applications due to its asynchronous nature, it
lacks support for distribution of reactive abstractions it ex-
poses. On the other hand, although promises are a positive
step in eliminating the problems encountered when orches-
trating a number of asynchronous callbacks, they introduce
problems when used with dependent values leading to nested
resolving functions.

In this paper, we have reported on our experiences in de-
veloping a collaborative drawing application. The experi-
ence has highlighted some of the less obvious issues that a
programmer may encounter. In addition, we have described
some of our observations of the development process, com-
plete with possible problems and some research areas that
could uncover solutions in the future. Investigating some of
these problems may open up research areas that may prove
to be vital in the JavaScript world, given the prominence
of programming with asynchronous semantics due to its dis-
tributed architecture.
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