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Abstract
Applying imperative programming techniques to process
event streams, like those generated by multi-touch devices
and 3D cameras, has significant engineering drawbacks.
Declarative approaches solve these problems but have not
been able to scale on multicore systems while providing
guaranteed response times.

We propose PARTE, a parallel scalable complex event
processing engine which allows a declarative definition of
event patterns and provides soft real-time guarantees for
their recognition. It extends the state-saving Rete algorithm
and maps the event matching onto a graph of actor nodes.
Using a tiered event matching model, PARTE provides up-
per bounds on the detection latency. Based on the domain-
specific constraints, PARTE’s design relies on a combination
of 1) lock-free data structures; 2) safe memory management
techniques; and 3) message passing between Rete nodes. In
our benchmarks, we measured scalability up to 8 cores, out-
performing highly optimized sequential implementations.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent programming; D.3.4 [Program-
ming Techniques]: Processors; I.5.5 [Pattern Recognition]:
Implementation

General Terms Algorithms, Design, Performance

Keywords multimodal interaction, gesture recognition,
Rete, actors, soft real-time guarantees, nonblocking, com-
plex event processing, multicore
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1. Introduction
To improve the quality of interactions between users and
computers, interest in multi-touch input, gesture recognition,
and speech processing on consumer hardware has recently
emerged. To power more natural user interfaces, primitive
sensor readings, collected by multiple devices, need to be
correlated to create higher-level events.

Hard-coding these complex correlations in imperative
programming languages is cumbersome, error-prone, and
lacks flexibility [14]. On the other hand, the domain of ma-
chine learning requires a lot of training data to build a sta-
tistical model of the gesture. Gathering and manually an-
notating this data (in positive and negative examples) and
additionally parameterising important features, is time in-
tensive. Hammond and Davis [12], Scholliers et al. [20], and
Hoste et al. [14] demonstrate that declarative definitions for
sketch recognition, multi-touch gestures, or multimodal cor-
relation have important benefits on multiple levels. Firstly,
they provide important software engineering abstractions to
help the programmer to express their intended event pat-
terns. Secondly, they offer an alternative solution compared
to ad-hoc implementations when training data is lacking or
hard to gather. Finally, expert programmers are able to re-
fine their event correlations with explicit programming code.
These declarative approaches all require an inference en-
gine, which compares sensor events with declarative rules
describing the gestures.

The Rete algorithm [7] is one possible foundation for
such inference engine. It is a forward-chaining, state-saving
algorithm that is used to build rule-based expert systems.
More concretely, declarative gesture approaches benefit
from it as the execution engine incrementally interprets the
events of various input sources based on predefined patterns,
i. e., rules defining the possible interactions of a human with
a computer. Since the majority of the information is con-
stant, the Rete algorithm minimizes the necessary compu-
tation that has to be performed whenever a new event takes
place, and a corresponding fact has to be is asserted into
the knowledge base. As such, it reduces the computational
overhead of continuous pattern matching.

In a multimodal system with many possible interactions,
the required computational power outgrows easily what to-
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day’s processors provide in terms of sequential performance.
This is problematic for real-time server-sided pattern recog-
nition, for instance to process surveillance camera-input, as
well as for embedded devices and mobile phones with var-
ious sensors such as an accelerometer, gyroscope, multi-
touch, proximity-sensor, and a microphone. A wide range
of applications has been proposed to utilize such sensors by
extracting meaningful information from the raw data, com-
monly called gesture recognition. Examples include discov-
ering a when a phone is dropped, detecting whether the user
is “throwing” data to another device1, and performing multi-
touch gestures to quickly access information2. Additionally,
in certain multimodal applications, this information must be
correlated to speech-based input. Fusing these primitive and
higher-order events easily becomes excessive for a single
processing unit, such that utilizing the steadily rising degree
of available parallelism becomes a necessity to provide the
required degree of real-time interactivity to the users.

We present here a variation of the Rete algorithm called
PARTE, built on a graph represented by a set of actors, that
provides both scalability and responsiveness. The contribu-
tions of our work are:

Design and implementation of PARTE, a parallel Rete en-
gine tailored towards recognition of user interaction pat-
terns with soft real-time 3 guarantees.

Validation of PARTE’s real-time guarantees by charac-
terizing the execution properties of the implemented al-
gorithm, ensuring freedom of unbounded loops and free-
dom of blocking concurrent interactions.

Validation of PARTE’s practicality by showing the scal-
ability of the parallel implementation and demonstrat-
ing that the sequential overhead compared to CLIPS4, a
highly optimized sequential implementation, can be over-
come in the parallel case.

The remainder of this paper is structured as follows: first,
in section 2 we will provide a more detailed discussion of the
context of multimodal input systems, their requirements and
constraints, and the assumptions we can make. Then, in sec-
tion 3, we will describe our solution, PARTE, in detail and
discuss the parallel Rete algorithm used. Afterwards, we will
evaluate the resulting system in section 4, characterizing its
execution semantics both with respect to non-blocking be-
havior and with respect to unbounded loops, as well as pre-

1 Hoccer, exchanging data using gestures.
Youtube: http://www.youtube.com/watch?v=eqv8Q6M1O6Y
2 Gesture Search for Android
http://www.google.com/mobile/gesture-search/
3 In soft real-time systems, the usefulness of results degrades past their
deadline, while in hard real-time systems the usefulness drops to zero on
a missed deadline. Hence, delays in a soft real-time system undermine
the system’s quality of service, where delays in hard real-time systems
undermine the system’s correctness
4 CLIPS: A Tool for Building Expert Systems, Gary Riley, 13 March 2011
http://clipsrules.sourceforge.net/

senting the performance evaluation. Finally, we will contrast
our approach with the related work in section 5 and summa-
rize our conclusions and future work in section 6.

2. Context and Requirements
The domain of gesture recognition comes with a set of prop-
erties that is different from many domains in which Rete-
like inference engines are commonly used. Since we utilize
these particularities of the problem domain in the design of
PARTE, we will sketch the application domain briefly and
detail a list of requirements for inference engines in this do-
main.

2.1 Inference Engines for Gesture Recognition
To provide a high-quality user experience, an inference en-
gine used for gesture recognition has to correlate events in
a timely manner: when a user for instance interacts with a
system through a multi-touch interface, changes should be
reflected immediately and with a predictable delay to give
the user a natural feedback. The same is true for a broader
multimodal interaction: when a user gives a series of voice
and gesture commands, the right action should be performed
without random delays that confuse the user about whether
the command has been accepted or not.

Multimodal systems such as Mudra [14] embed inference
engines which only tap the computational power of a sin-
gle processing unit. However, the rise in sequential process-
ing power offered by single processing units is stagnating,
because efforts to increase clock-speed, instruction-pipeline
depth, memory-bus width, and cache size, offer diminish-
ing returns. This severely limits the possible number of pat-
terns, their complexity, and the rate of events the system can
handle. The only way to recognize more complex user inter-
action patterns without undermining the user experience by
increased delays, is to embrace parallel processing power.

In addition to recognizing patterns in a timely manner
(i. e., low latency), the system also needs to guarantee pre-
dictable response times (i. e., predictable, real-time latency).
This ensures that the system always feels interactive and re-
sponsive. Akscyn et al. [2] show that long delays in interac-
tive systems can distract users, and even cause them to stop
using the system altogether. Consider for instance a user of
a multi-touch gesture recognition system, who taps a certain
location. If the user interface does not reflect this change
within the timeframe users have grown to expect, they will
assume the command was not received, and may tap again.
When the system then finishes processing the overdue ges-
tures, the action will be executed twice. Users will rightfully
blame the gesture recognition system for this mistake. To
prevent such errors, the detection of complex user interac-
tion patterns should happen within a timeframe that can be
predicted reliably up front.

However, the requirements of responsiveness and pre-
dictable runtime conflict: to offer the best performance on
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Figure 1. Contextual Framework

current hardware, the rule engine needs to use the available
parallelism, while to ensure responsiveness it should provide
soft real-time guarantees. Existing rule engines do not com-
bine both requirements. They either are single-threaded in
nature, or do not guarantee predictable worst-case execution
times.

To give an example, Figure 1 visualizes the data-flow
of the multimodal approach presented by Hoste et al. [14].
Event sources such as multi-touch displays, skeletal track-
ing [21], accelerometer readings or the history of RFID tags
contain potential valuable patterns that need to be processed.
This unified architecture allows for low-level events to be
processed using machine learning-based approaches, as well
as declarative definitions. Fusion and refinement of resulting
higher-level events can be handled by consecutive declara-
tive rules.

Given these observations, we will use a tiered architec-
ture for event processing. In this architecture, rules of tier N
can consume only events that were generated by lower-level
tiers (1 to N − 1). It enables developers to easily modular-
ize and compose their rules. For instance, a wave gesture
can be composed of two lower-level gestures flick right and
flick left, which themselves where extracted from the low-
level skeletal data provided by a Kinect5 system. A declar-
ative approach enables this kind of efficient composition
and helps developers to improve gesture recognition code.
Enforcing tiering however, implies that a rule of tier N
should not insert additional lower-level events to help pat-
tern classification on lower levels. Although certain multi-
modal use-cases benefit from using high-level event infor-
mation to improve the accuracy of lower-level event detec-
tion [14], avoiding feedback loops is required for computa-
tional predictability.

Finally, the application layer uses a publish-subscribe
model to register for high-level events processed by the in-
ference engine. Depending on the application, it is useful to
support different subscription modi. Topic-based subscrip-
tions are used to filter by the type of the event and are
the most common ones. However, for instance GUI compo-

5 Kinect, Microsoft’s motion sensing input device
http://www.xbox.com/kinect/

nents use content-based subscriptions to only react on events
that happen at a specific spatial location. To enable such
application-specific usage, the system needs to provide the
necessary extensibility.

This contextual framework is tailored to the domain of
multimodal interaction and gesture recognition and guided
the design of PARTE. However, similar properties can be
found in the broader context of Time Series Analysis and
Complex Event Processing, including domains such as al-
gorithmic stock trading and monitoring security breaches.

2.2 Requirements and Assumptions
By restricting the generality of the Rete algorithm and tai-
loring it to our application domain, we can make design de-
cisions that simplify the implementation and enable us to
achieve the desired properties.

The main target for the system will be commodity mul-
ticore hardware. Thus, we will assume shared memory be-
tween cores and the presence of a cache hierarchy with mem-
ory coherency guarantees.

An important requirement to achieve bounded execution
time is that rules are constructed without feedback loops.
Based on the practice of tiering, which we outlined in sub-
section 2.1, we will disallow direct feedback loops and as-
sume that the results always represent higher-level events,
i. e., events from a higher tier in the system. Those events
may then be fed (“asserted”) back into the same inference
engine, but will activate a disjoint subgraph of the Rete net-
work: when the rule causing the assertion was on tier n, all
rules which cause the event were on tiers equal to or lower
than tier n, whereas every rule activated by the newly as-
serted fact is on tiers strictly greater than n.

Since the ordering of events is an application specific is-
sue, it needs to be handled explicitly as part of the rules. A
higher-level event might require the timestamp of the first
low-level event in a sequence, the last one, or the time span
in which all the related lower-level events occurred. The
choice of this timestamp or time span depends on the se-
mantics of the declarative rule, so this choice cannot be au-
tomated. Such information therefore needs to be constructed
and provided to the next tier explicitly, if temporal order be-
tween higher-level events needs to be known.

Related to this assumption is our interpretation of the se-
mantics of events as being permanent. Thus, for the intended
use case, it is not necessary to enable retraction of facts, i. e.,
events will not be removed from the system as part of the
action of a rule. Instead, we assume that a higher level rule
can always subsume events if necessary. This enables us to
avoid the need for conflict resolution: conflict resolution is
commonly used in rule-based systems to order the execution
of rule activations, and enable retraction of facts and sub-
sumption of rule activations. For the intended use case, how-
ever, it is desirable that all rules will always be triggered and
subsumption is deferred to a higher-level tier. The ordering
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hence does not determine the result, and conflict resolution
serves no purpose.

The semantically indefinite validity of events entails that
the data structures representing events are not removed from
working memory by the rules themselves, hence must be re-
moved automatically by the system to prevent the working
memory from growing unboundedly. For this, a sliding win-
dow of events which are relevant to the current reasoning
process can be used. We will require events to be correlated
by timestamp, so that the temporal dependencies between
events can be used to statically compute their maximum use-
ful lifespan: at any point in time, only those events can be
part of a new pattern, for which there exist rules correlating
them with other events that occurred within the lifespan of
the first event.

Classic rule-based engines are employed in business en-
vironments in long-running systems that need to be adapt-
able and allow changes to the rule set at runtime to avoid
downtime. However, this leads to additional complexity and
is not required for the given scenario. Thus, we assume that
in games and user interface applications only static sets of
rules are used and that it is sufficient to determine the set of
rules at startup time.

A final requirement is that all event sources have an upper
bound on the rate with which they emit events. This upper
bound is necessary to enable an estimation of the maximal
load of the system.

Summarized, the important assumptions are:

• Rules are free of feedback cycles and produce results for
a higher-level tier only.

• Activations of different rules do not require ordering.

• Temporal dependencies are solved in an application spe-
cific way by rules.

• Events never need to be retracted from the system. Event
subsumption is done on a higher tier. Preventing memory
leaks is handled by making events expire when they are
no longer useful for the reasoning process.

• The set of rules is known and fixed at startup time.

• All event sources have an upper bound on the rate with
which they emit events.

Based on these assumptions and the previously given
context, the requirements for a parallel gesture recognition
engine are the following:

Soft Real-Time Guarantees The detection of user-interaction
patterns has to complete in a predictable amount of time
to give the user appropriate feedback.

Efficiency Beside providing predictability, the rule process-
ing has to achieve sufficient efficiency to satisfy con-
straints on the response time required for interaction with
humans. Miller [17] identified three threshold levels in
human attention, based on the order of magnitude of sec-

onds that one has to wait. Response times in the order
of tenths of seconds are perceived as instantaneous and
response times of around one second are perceived as a
fluent interaction. For a system detecting user-interaction
patterns, the interaction should at the very least be flu-
ent, and preferably instantaneous, i. e., in the sub-second
range.

Scalability on Multicore Hardware The performance of
the system needs to improve with an increase in the num-
ber of available processing cores, relying on a shared-
memory architecture.

Optimized for Continuous Event Streams The production
system has to be tailored for complex event processing
on event streams with a bounded event rate. The event
streams are assumed to be infinite and processing has to
be online (in contrast to off-line batch processing sys-
tems).

Extensibility and Embeddability The system needs to sup-
port user-defined functions to process and correlate events,
and to produce results on rule activation to be extensible.
Domain specific tests are required to facilitate for in-
stance testing of spatial properties of coordinates. For
embedding into existing systems, it is necessary to pro-
duce the expected result format by invoking callbacks or
sending messages to the consuming tier.

3. PARTE
PARTE is a production system using a variant of the Rete
algorithm to detect user-interaction patterns. To that end, it
transforms a set of declarative if-then rules into a directed
acyclic graph, and uses this graph to match facts. PARTE
is designed to be scalable on parallel systems, as well as
to satisfy the requirements and assumptions described in
subsection 2.2.

This section first describes how the solution is embedded
into the context of gesture recognition, and how it interacts
with the main components in such an environment. Then,
the architecture of PARTE is described and a high-level
overview over the solution strategy is given. Finally, we
detail the solution and discuss implementation decisions that
are essential to satisfy the posed requirements.

3.1 Architecture and Embedding into Gesture
Recognition Context

As outlined in subsection 2.1, inference engines such as
PARTE are mediating between the raw input devices and
high-level consumers such as application logic. For engi-
neering reasons, such systems use tiered architectures to
gradually enrich the semantics of the events. PARTE can be
applied at multiple tiers in such an architecture. In such a
scenario, PARTE would process incoming lower-level events
from the a set of event sources, based on a given set of rules
which describe relevant patterns that need to be recognized
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in these event streams. Thus, PARTE is part of the middle-
ware for building such applications.

Figure 2 depicts the architecture of PARTE with poten-
tial input sources on the left, and potential consumers at the
right hand side. Rules, the templates describing the facts’
structure, and the facts themselves are to be encoded as S-
expressions and get converted to the internal representation
by a set of parsers. A pool of threads is maintained by the en-
gine, as well as a task queue on which the actors are sched-
uled. Finally, reentrant evaluator functions are provided to
evaluate the test-expressions specified by the rules.

The Rete network itself is constructed from the set of
rules inserted into PARTE at startup time. The rule parser
converts the rules to an abstract syntax tree (AST), validat-
ing their semantics while doing so. From the AST, it then
builds the directed acyclic graph as prescribed by the Rete
algorithm [7]. When multiple nodes are required which se-
lect for the same type of event, the parser reuses the first
node selecting for that type it created. More involved node-
reuse and optimization strategies are not yet implemented.
After computing the Rete graph, PARTE computes the in-
dices (“lexical addresses”) of slots within facts and of facts
within partial matches. As such, once the system is running,
lookup of attributes can be replaced with a constant-time in-
dexed memory access. Finally, PARTE creates a set of ac-
tors and links them up to each other to constitute the Rete
network.

Apart from the nodes in the Rete network themselves, the
Rete algorithm requires another data structure: the agenda.
This agenda reifies the FIFO queue of I/O actions to and
from PARTE that have to be performed. The only form of
input which PARTE accepts at runtime comes in the form
of the assertion of new facts, for which assert agenda items
are used. When the agenda task processes an assert agenda
item, the event specified in that item is propagated to the
inboxes of the Rete network’s entry nodes. Inversely, to
communicate results to the outside world, PARTE supports
user-defined functions, which result in the scheduling of user

(defrule detectZShape

?hA <- (horizontal-drag)

?hB <- (horizontal-drag)

?diagonal <- (down-left-drag)

(test (endMeetsStart ?hA ?diagonal ))

(test (endMeetsStart ?diagonal ?hB))

(test (chronologically

?hA ?diagonal ?hB))

=> (reportZShapeCenteredOn

(avg ?hA.startX ?hA.endX

?hB.startX ?hB.endX)

(avg ?hA.y ?hB.y)))

Listing 1. A possible rule for gesture recognition

function agenda items on the agenda. When such an item is
processed, the corresponding callback function is called.

Since user-defined functions are plain C functions, they
can technically perform whatever I/O or other time-consuming
and/or blocking operation they want, but are presumed not
to do so. If a rule should require something which is not nor-
mally considered a good match to event-processing, such as
reading from a file, the user-defined function should dispatch
the job of reading the file to a worker thread provided by the
application hosting the PARTE engine, in a non-blocking
way. That thread can then read the file and assert an event
into the systems with the contents of the file.

In addition to the assert and user function agenda items,
PARTE currently supports print and terminate agenda items
which respectively print a string to the console and halt
the engine, and could technically have been implemented
in terms of user function agenda items. PARTE does not
support retract agenda items, since in our event processing
context, facts get removed from the fact base automatically
when they expire.

Items on the agenda are processed sequentially, but in
parallel with the processing of network nodes. Because of
its interaction model, the agenda is represented by an actor
as well.

The S-expression in Listing 1 gives an example of a high-
level motion gesture rule that can be processed by PARTE.
The expression defines the rule detectZShape, which de-
scribes how two horizontal drags and a down-left drag can
combine into a Z-shape. Line by line, the rule binds two
events of type horizontal-drag to the variables ?hA and
?hB, and binds an event of type down-left-drag to the
variable ?diagonal. Then, it uses the user-defined functions
endMeetsStart and chronologically to verify that the
shapes follow each other both spatially and temporally. As a
consequent to the recognition of the Z-shape, the rule spec-
ifies that the callback reportZShapeCenteredOn should
be called, passing the average x and y slots of the shape’s
points. Figure 3 shows a Rete graph and the flow of the facts
along the edges when the facts at the lower-left corner are
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join {?hA, ?hB}
Join Node
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[Hor1],
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Join Node

[Hor1, Hor1],
[Hor1, Hor2],
[Hor2, Hor1],
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[Hor1, Hor1, Diag], [Hor1, Hor2, Diag],
[Hor2, Hor1, Diag], [Hor2, Hor2, Diag]

process (reportZShape...)
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[Hor1, Hor2, Diag]
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[Hor2]

(down-left-drag
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Asserted Facts:

Figure 3. Flow of data through the Rete network specified
by the rule in Listing 1

asserted into the Rete network. Lists delimited by square
brackets denote tokens, the units of communication between
the nodes in the network.

3.2 Parallel Execution Model
For the description of the execution model, we will use the
metaphor of the actor model [1] to map each node of the Rete
network to its own actor, executing independently. While
such an approach does not enable us to utilize potential data
parallelism for the matching inside a node, it enables a high
degree of parallelism throughout the network. Even in sit-
uations where only parts of an actor network are used fre-
quently, this approach enables pipeline parallelism, enabling
scaling on multicore processors.

Furthermore, the directed acyclic graph (DAG) structure
of a Rete network, and its structural properties in terms
of edges between nodes provide a ideal foundation to ap-
ply non-blocking data structures to gain predictable upper
bounds for execution time. We utilize these characteristics
to provide the desired real-time properties.

Execution Model As indicated above, the individual actor
nodes of the Rete network are the parallel units of compu-
tation. The DAG of the Rete network thereby forms a task-
dependency-graph for the match phase of the fact process-
ing. This means that every actor node needs only wait for
information from their predecessors in the Rete graph, and
only send data to their successors in the Rete graph. This
entails that the same spatial and temporal efficiency that the
Rete algorithm offers for matching facts to rules, also en-
sures low contention for shared resources: every node’s com-
munication channel is contended for by at most two prede-
cessors and its own thread of control.

The Rete algorithm’s approach of passing tokens between
nodes makes it map very well on message-passing between
actors. Especially, since the step of processing an incoming

process (test *)
Beta-Test Node

join {?hA, ?hB, ?diagonal}
Join Node

process (reportZShape...)
Terminal Node

is (horizontal-drag)
Type Test Node

is (down-left-drag)
Type Node

Thread pool

Task Queue
1. is (down-left-drag)
2. process (test *)
3. process (reportZShape...)

Threads
T1 T2 T3 T4

T3 Q'd

Agenda
Incoming Event Queue T1

join {?hA, ?hB}
Join Node T2

T4

Q'd

Q'd

Figure 4. A potential runtime snapshot of a PARTE system
detecting the pattern specified in Listing 1

token can be seen as an atomic operation by the rest of the
system that does not require the notion of shared memory.
In the implementation of PARTE, the nodes of the Rete net-
work have an inbox, which is realized with a nonblocking
queue, in which predecessors put the incoming tokens. A
node dequeues tokens from its inbox one-by-one for pro-
cessing. Because of the nonblocking nature of the inboxes,
we avoid the potential for deadlocks and livelocks.

To prevent starvation, every actor, i. e., every Rete node
and the agenda, are scheduled on a thread pool using a
round-robin scheduler. Figure 4 shows a possible snapshot
of a running PARTE system which contains only the rule
specified in Listing 1. Four threads are allocated in the thread
pool, meaning four of the seven actors can be active at the
same time. The other three actors remain queued on the task-
queue.

Non-Blocking Data Structures The only form of inter-
thread communication on which PARTE depends comes in
the form of messages sent to actors’ inboxes. Since some
nodes and the agenda have multiple predecessors in the Rete
graph, we chose the n-producer/m-consumer FIFO queue
design by Harris [13]. The list offers lock-free inserts at the
front and deletes at the back, and contention is localized to
only the element that is inserted or removed, meaning that in
lists with two elements or more, enqueueing and dequeueing
can happen simultaneously without interfering with each
other. Each node of the list consists of a pointer to the data
and a next-pointer. The queue always contains at least one
such node, with NULL-ed out data: the ‘dummy’ node.

To enqueue an element in the non-blocking queue, a new
list node is created, and its data pointer filled in. The al-
gorithm then enters a loop in which it tries to enqueue the
newly created node. To this effect, it grabs the current tail-
pointer of the queue, looks at its next-pointer, and if it is
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not NULL, help the other thread which must have been re-
sponsible for adding a new node past the tail, by attempt-
ing to atomically compare-and-swap the next-pointer to the
queue’s tail slot. If the tail’s next-pointer is NULL, then the
algorithm attempts to compare-and-swap its own newly cre-
ated node to the tail’s next-pointer. If that succeeds, the al-
gorithm breaks out of the loop; otherwise it keeps looping.
After breaking out of the loop, the algorithm still has to
compare-and-swap the newly created node to queue’s tail-
pointer, but if that fails (i. e., when another thread has over-
written the tail-pointer since), no correcting action has to be
performed: the other thread will have set the correct tail-
pointer. Because of the construction of the Rete network
with its limited number of producers and consumers, as well
as the semantics of how the lists are used, i. e., how items
are inserted, the retry-loop is bounded and local as well as
global progress are guaranteed.

Dequeuing works similarly, however, since all lists have
only a single consumer, a simple compare-and-swap on the
head-pointer to the head-pointer’s next-pointer is sufficient.
The case of the empty list is implicitly handled with the
dummy node.

Memory Management Since PARTE is implemented in
C++, memory management becomes an issue that needs
to be handled carefully. In our implementation, all facts,
i. e., tokens in the Rete network are handled by value and
the consumer is responsible for freeing them when they
expire. Expiration of events can be determined from the
data local to the actor in which the tokens are stored, and
therefore does not require a global synchronization effort
as is the case in systems where events are only removed
after a request for retraction has percolated through the Rete
network. PARTE makes use of the timestamps carried by
tokens to determine not only how long those tokens still
have to be preserved, but also to implement a logical clock
with which nodes can know what the oldest point in time is
from which their predecessors still may have unpropagated
events. By maintaining the invariant that tokens are always
propagated in-order, the node actors can know whether new
tokens that still can correlate with stored tokens can be
expected, and discard tokens for which this is not the case.

More complex is the situation of managing the list ele-
ments for the lock-free list implementation. Since they are
inherently subject to race conditions, we use a solution simi-
lar to reference counting proposed by Michael [16]. All oper-
ations on list elements must maintain a set of hazard point-
ers. The hazard pointers are kept in a contiguous piece of
memory, and their number depends on the number of threads
as well as the use of the data structure. Each thread is as-
sociated with a subset of these pointers for its own use.
Whenever an operation on a list takes place, a thread ex-
plicitly stores pointers to the elements which are in use in its
thread’s section of the hazard pointer array. When an element
is deleted from a list, a memory reclamation operation is trig-

gered, which iterates over the hazard pointers and conserva-
tively does not delete any list element which is referenced by
a hazard pointer. Since the hazard pointers are visited in as-
cending order of index in the hazard pointer array, any inter-
leaving of threads using the non-blocking linked-list and the
thread reclaiming the linked-list’s elements will encounter
at least all elements that are in use at that moment. To this
effect, the list’s operations may only shift hazard pointers in
increasing order of the index.

Because the number of hazard pointers per thread is a
small constant, and the number of threads is constant, the
amount of memory that is no longer in use, yet not yet
reclaimed, is bounded by a small constant per thread, and
a reasonably small constant in total.

4. Evaluation
In subsection 2.2, we outlined the requirements for a paral-
lel inference engine used in the context of parallel gesture
recognition. This section will discuss how PARTE satisfies
these requirements. First, we will discuss the general re-
quirements of how PARTE is optimized for complex event
processing (CEP) and how it is embeddable into existing
systems. The second part of the evaluation will evaluate the
soft real-time properties of PARTE by arguing that the gen-
eral algorithmic properties and the boundedness of the eval-
uation process provide the desired guarantees. Finally, we
will discuss the performance aspects by comparing the sin-
gle threaded performance of PARTE and CLIPS, as well as
demonstrating scalability of commodity multicore hardware.

4.1 Extensibility and Embeddability
PARTE is designed to be a middleware mediating between
the low level of event sources and the application level. To
that effect it is a self-contained system, managing its own
memory and interacting with other systems via a simple
API and callback methods. Applications using PARTE must
provide a ruleset and register user functions and callbacks.
Event sources need only inform PARTE of new events. The
inference engine is continuously running and processes the
incoming events as soon as they arrive, maximizing through-
put. Through this low coupling between PARTE and the
remainder of the system, PARTE is a reusable, easily em-
beddable software component. The notion of custom user-
defined test functions and actions enables PARTE to process
arbitrary events and produce output in whatever format the
application requires.

4.2 Continuous Event Streams
Since the input devices are assumed to continuously produce
events, PARTE was designed to handle expiration of facts
automatically to avoid unboundedly growing fact bases. The
sliding window mechanism explained in section 3.2 causes
the expiration of events which are no longer relevant. This
removes not only the burden of manual memory manage-
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ment from the application-level; it also reduces synchroniza-
tion overhead as retract messages need not be sent and pro-
cessed separately. This results in a speedup compared to a
version which would not use automatic expiration, as well
as improving the scalability.

4.3 Soft Real-Time
For the assessment of the real-time properties of PARTE,
we will rely on the algorithmic properties only. Thus, we
will disregard architectural issues such as microprocessor
architectures [6] and operating system aspects [15]. Instead,
we will give an informal argument to demonstrate that the
pattern matching is done in a bounded number of steps,
which all complete in a bounded amount of time.

We will therefore demonstrate the soft real-time proper-
ties of our system by showing that a predictable bound exists
on a) the time every turn of an actor requires; on b) the time
required for scheduling actors; on c) the time required for
passing messages between actors; on d) the amount of ac-
tors; and on e) the amount of turns per actor that are required
to detect a pattern.

For this first requirement, more information about the
inner workings of the actors is required. We introduced five
types of actors in Figure 3: the agenda, type test nodes, join
nodes, test nodes, and terminal nodes. In the case of the
agenda, type test nodes and terminal nodes, this requirement
is trivially met. They all perform a constant amount of work,
respectively executing one agenda item, performing a single
equality test, and scheduling a number of actions which
cannot change at run-time. For test nodes, the situation is
barely different: the arithmetic expressions and (in-)equality
tests they evaluate are fixed at compile-time, so an upper
bound on their runtime can be computed. For the join nodes,
the argumentation is a little more involved. The only variable
factors in a join node’s runtime, however, are the number
of variables to unify and the number of fields that have to
be bound to those variables. Both are explicitly specified in
the ruleset, and therefore known at the time the Rete graph
is being compiled. Thus, an upper bound on join nodes’
runtimes can be computed.

The next two requirements are closely related. Both the
task-queue and the actors’ inboxes are implemented as non-
blocking data structures. Since the structure of the Rete
algorithm limits contention on the actors’ inboxes, and Rete
nodes cannot generate an arbitrary amount of tokens before
having to wait for new incoming tokens, an upper bound on
the time required to enqueue and dequeue exists.

The requirement for an upper bound on the number of
actors is trivially met, as all actors are statically allocated at
startup time.

The last requirement is fulfilled thanks to tiering. By def-
inition, the Rete DAG is acyclic, and by enforcing tiering,
we prevent the possibility to make cyclic structures via the
feedback loop constituted by the agenda. As such, not only
the width but also the depth of the loop-unrolled graph is

bounded and known for a given ruleset. Since we require
a known upper bound on the rate at which events can be
asserted into the system, and communication happens via
FIFO queues, the maximum number of turns required be-
fore all events currently in the system are processed can be
computed.

By showing that an upper bound can be computed on the
amount of time PARTE requires to detect gestures, we have
demonstrated that PARTE offers soft real-time guarantees.

4.4 Performance Evaluation
To evaluate the performance of PARTE, we follow the
methodology proposed by Georges et al. [8]. The bench-
marks were executed on a Mac OS X 10.6.8 workstation with
two Xeon E5520 processors at 2.26 GHz. Neither Turbo-
Boost nor hyperthreading could be disabled. Thus, Turbo-
Boost can lead to up to 12% higher sequential than paral-
lel performance. However, the measurements of sequential
performance remain directly comparable. Both CLIPS and
PARTE were compiled with maximum optimizations (-O3)
using the GCC 4.2.1 compiler shipped with OS X.

Every benchmarked configuration is run at least 30 times,
and is automatically run additionally until a confidence level
of 95% is reached. The benchmark results in Figures 5 and
6 are visualized with beanplots to show the distribution of
measurements instead of simple overgeneralizing averages.

We used 13 different benchmarks for the evaluation.
Each benchmark consists of a set of rules and a set of pre-
generated events to be fed into the system. The benchmarks
include microbenchmarks to measure the performance of
variable binding, different fact sizes, unification, and β-tests.
Furthermore, we used a number of kernel benchmarks de-
signed after common gesture rules to assess the performance
of rules with complex tests, and tests that use computational
intensive user functions. For motion detection such tests are
typically trying to find the spacial relations of a group of
points and movements.

We will first look into the efficiency of our system by
comparing the runtime performance of PARTE running on
a single thread with the runtime performance of CLIPS.
CLIPS is an open-source and highly tuned sequential imple-
mentation of the Rete algorithm and forms the basis of mul-
tiple other production systems, such as PRAIS [9] and Lana
[3]. After our evaluation of the efficiency, we will look into
PARTE’s scalability by investigating the effect of increasing
the number of threads allocated for the system.

Efficiency To assess the sequential efficiency of our im-
plementation, we compare PARTE to CLIPS. Our goal is to
demonstrate that PARTE, in its current unoptimized state has
acceptable sequential performance characteristics in direct
comparison. Thus, the performance in kernel benchmarks
based on the gesture recognition use case as well as com-
putational intensive workload should be in the same order of
magnitude.
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Computational Intensive

Figure 5. Beanplot comparing CLIPS to PARTE in sin-
gle threaded execution. Microbenchmarks show architec-
tural overhead. Kernel benchmarks representing typical ges-
ture rules show competitive performance. Computational in-
tensive rules, typical for motion detection rules, show less
than 5% overhead.

Figure 5 depicts the results in form of asymmetric bean-
plots. For each benchmark, the results have been normal-
ized to the average of the CLIPS results. The distribution of
the CLIPS results are depicted in gray, while the results for
PARTE are shown in black.

The first graph shows the results for the microbench-
marks. They demonstrate the overhead of message-passing
and the performance cost compared to CLIPS. This over-
head comes partially from the by-value semantics used for
the messages and partially from the lock-free queues. Both
still have optimization potential, but such pathologic mi-
crobenchmarks will always point out the higher overhead
compared to a direct sequential implementation as employed
by CLIPS.

The second graph shows the results for kernel bench-
marks with characteristics found in the gesture recognition
rules used by Hoste et al. [14]. Here we see that PARTE de-
livers comparable single threaded performance on the same
order of magnitude as CLIPS, without its highly tuned im-
plementation.

The third graph shows results of computational intensive
rules, as they are found in complex motion recognition rules
that need to correlate spatial coordinates of many events.
These kind of rules are the most relevant for advanced uses
cases based on input devices such as massive multitouch or
3D cameras. Here, the evaluation of the test expressions is
the most intensive part, and PARTE has comparable perfor-
mance to CLIPS.
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Figure 6. Beanplot showing distribution of benchmark re-
sults for 1 to 8 worker threads.
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Figure 7. Speedup graph, showing PARTE’s scalability
with number of worker threads compare to ideal speedup
(dotted line).

Scalability A beanplot of the combined results of all
benchmarks is depicted in Figure 6. This graph gives an
impression of the distribution of all benchmark results for a
varying number of worker threads. The little accumulation
points along the runtime axis indicate the increased number
of measurements at that point, which coincide with specific
benchmarks. The horizontal bar indicates the average.

Figure 7 depicts results as a speedup graph to emphasize
the scalability of the system. The dotted line indicates the
ideal speedup—a speedup which increases linearly with the
amount of processors. The graphs show that PARTE scales
well in the average case. The system’s design offers the
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significant advantage of spreading the load over multiple
threads. When that load gets heavy, PARTE can effectively
benefit from the processing power of different processing
units. This form of pipeline parallelism is ideal for rules that
rely on complex tests such as used in gesture recognition.
For the intended use case, the parallel decomposition created
by PARTE enables the system to benefit from a close to ideal
scaling up to 8 worker threads.

4.5 Discussion
Our choice of actors as the unit of parallelization stems from
the strong similarity between the passing of tokens between
nodes in the Rete algorithm on the one hand, and message
passing between actors on the other hand. The actor model
provides a nice metaphor for the construction of a graph of
interlinked nodes which share data only by explicitly passing
it to their successors in the DAG.

Some limitations exist in the current version of PARTE.
Since test-expressions are separated from the nodes that
join two branches, negation-as-failure is not supported in
PARTE. Because of the parallel execution model, the im-
plementation of negation requires additional communication
and does not fit into the current model. However, gesture
recognition systems can work without a notion of negation,
but the addition of it would be worthwhile for other use
cases.

Furthermore, the coarseness of parallelization can further
be tuned, as in some situations the actor-based approach does
not expose all options for parallelism. Computational inten-
sive test functions such as required for gesture recognition
could benefit from parallelizing the match on facts inside
a node/actor. Inversely, in other situations the actor-based
implementation using message-passing and lock-free queues
imposes a high overhead which could be reduced by merging
nodes appropriately.

Another area that could be improved is PARTE’s sched-
uler for the actors, which focusses on correctness and real-
time properties. Currently, actors are scheduled although
their inbox is empty. Improved scheduling which preserves
soft real-time guarantees is planned for future work.

5. Related Work
The Rete algorithm is widely used, and has had many adap-
tations to both fit real-time requirements and to fit parallel
processing.

5.1 Parallel Rete
Gupta et al. [11] measure that the matching is the most
computationally expensive task and takes up to 90% of the
execution time in production systems. Consequently, most
effort has been dedicated to parallelizing the match-phase.

One of the best known Rete derivates focussing on paral-
lelism is the TREAT algorithm by Miranker [18]. In TREAT,
for every condition element, the matching facts are stored.

This makes TREAT a state-saving algorithm, but less so
than Rete, which in addition to those alpha memories stores
the matching sets of facts for combinations of condition el-
ements that appear in the rules, in beta memories. At the
other end of the spectrum is the production system pro-
posed by Oflazer [19], which stores the matching sets of
facts for every combination of condition elements, regard-
less of whether they appear in the rules. Both TREAT and
Oflazer’s machine diverged from the traditional Rete algo-
rithm to reduce the need for synchronization, thereby open-
ing options for parallelism. Both approaches had the foresee-
able drawbacks: TREAT spends a lot of time recomputing
matches for entire patterns, and the combinatorial explosion
made Oflazer’s machine consume a lot of working memory,
in addition to spending a large amount of time computing
combinations of facts which may never get used. PARTE,
which sticks to the traditional Rete algorithm has none of
these drawbacks. It does not decouple the different threads
of execution by performing too little or too much work to
be able to skip synchronizing, but instead focusses on reduc-
ing the overhead of the synchronization. In addition, it uses
automatic expiration of facts, which halves the number of
inter-node communication that has to take place compared
to Miranker’s and Oflazer’s system with manual retraction.

A different approach is taken by Aref and Tayyib [3],
whose distributed Rete algorithm Lana is an optimistic algo-
rithm, allowing the different processing elements to run with
minimal synchronization, informing a single central Master
Fact List of changes to the working memory, and backtrack-
ing when the updates of the multiple replicated Rete engines
conflict. Unlike in PARTE, the different entities running in
parallel in Lana are fixed, allowing less flexibility to redis-
tribute workload among the available processing units, and
by splitting up the Rete graph, common subgraphs cannot be
shared by multiple rules, requiring Lana to duplicate work
where PARTE could reuse computations. Moreover, the op-
timistic approach generates a degree of nondeterminism with
respect to run time which a real-time system like PARTE
cannot risk to incur.

Yet other systems use hierarchical blackboard systems on
which multiple agents concurrently work, and where every
‘row’ of nodes in the Rete network is reified as a differ-
ent blackboard in the knowledge base’s hierarchy. Examples
of such systems are the Parallel Real-time Artificial Intel-
ligence System (PRAIS) of Goldstein [9] and the Hierar-
chically Organized Parallel Expert System (HOPES) by Dai
et al. [5]. Semantically similar, but not using the blackboard
metaphor are for instance the parallel Rete system proposed
by Gupta et al. [10]: they also acknowledged that having
more than one token flowing through the graph at any one
time could be opportune for the execution speed. In their
paper, they proposed to give every node one or more inter-
nal threads of control. Their approach was conceptually very
close to ours, but was not specialized for event-processing,
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and supported conflict-resolution strategies like sequential
Rete implementations. Because of this, they had to omit all
conceptual optimizations which depend on temporal reason-
ing and many options for parallelism in the evaluation of the
rules’ consequents. Furthermore, their approach depended
on hardware task schedulers to enqueue and dequeue node
activations in a timely manner.

In general, previous approaches did not use the abstrac-
tion of actors like PARTE does. Their scheduling algorithms
could not transparently handle nodes and the agenda, and
they did not consider the nodes as self-contained elements.
Data-locality was achieved in an ad-hoc manner, in Gupta’s
case expecting the presence of processor-local private mem-
ory in addition to the caches and main memory.

5.2 Real-Time Rete
Real-time execution characteristics can be achieved in two
ways: 1) by guaranteeing for every task that it completes in
a known timeframe, and scheduling them such that they all
complete before their deadline; or 2) by assigning priorities
to tasks, and allowing the system to preempt lower-priority
tasks to ensure higher-priority tasks complete in time.

PARTE takes this first approach, and ensures that every
action taken by the inference engine completes in time –
unless unexpected load is put on the system by entities other
than PARTE. The Parallel Real-time Artificial Intelligence
System (PRAIS) of Goldstein [9] instead takes the second
approach, dropping the matching of lower-priority rules to
allow more important rules to be matched in time. Despite
being considered a real-time system, PRAIS can only offer
best-effort guarantees, as it is a distributed system depending
on TCP/IP for communication.

Sequential implementations such as the self-stabilizing
OPS5 production system by Cheng and Fujii [4] do offer
actual hard real-time guarantees, but their approach is not
viable for our problem domain: it requires lots of effort in the
generation of the ruleset to provide fault-tolerance on top of
the real-time guarantees. Their system is aimed at situations
where failure is catastrophic and must hence be avoided at
all costs. PARTE does not pose such severe restrictions on
the ruleset, and only requires tiering.

6. Conclusions and Future Work
The presented PARTE inference engine implements a vari-
ation of the Rete algorithm using actor semantics for Rete
nodes to achieve parallel execution. The system is designed
for continuous gesture recognition which requires soft real-
time execution guarantees and scalability on parallel sys-
tems. While PARTE utilizes the constraints of the domain to
achieve these properties, it remains applicable to the broader
domain of Complex Event Processing. This includes applica-
tions such as algorithmic stock trading and monitoring net-
work security.

PARTE achieves the desired scalability and soft real-time
guarantees by using a tiered architecture, lock-free queues,
and an actor execution model to provide upper bound guar-
antees on the event matching in a Rete network.

PARTE is compatible with existing single threaded in-
ference engines such as CLIPS from NASA. It has been
used as a replacement for CLIPS in the core infrastructure
of the multimodal Mudra framework [20]. PARTE provides
the benefits of transparent parallelization of declarative rules
as well as automatic event expiration.

Our preliminary performance evaluation used a number
of microbenchmarks, kernel, and computational intensive
benchmarks. The benchmark characteristics are representa-
tive for the gesture recognition and multimodal event pro-
cessing context. In the current unoptimized state of PARTE,
we achieve comparable performance to CLIPS. Further-
more, PARTE was demonstrated to scale on multicore sys-
tems with up to 8 cores, outperforming the inherently se-
quential implementation of CLIPS.

In future work, we will approach more efficient schedul-
ing of the Rete nodes as well as exposing more parallelism
opportunities by optimizing the Rete network. Support for an
efficient implementation of a negation operator is planned as
well.
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