
Verifying the design of an outsourced COBOL
system with IntensiVE

Andy Kellens, Carlos Noguera, Theo D’Hondt
Software Languages Lab
Vrije Universiteit Brussel

Pleinlaan 2
B-1050 Brussels, Belgium

Email: {akellens | cnoguera | tjdhondt }@vub.ac.be

Luc Jorissen, Bart Van Passel
inno.com

Heiststeenweg 131
B-2580 Beerzel, Belgium

Email: {luc.jorissen | bart.vanpassel }@inno.com

Abstract—Companies nowadays rely on outsourcing for the
implementation of their software. While outsourcing can reduce
the actual development costs for a piece of software, it can also
reduce a company’s control over the quality of the delivered
software. In light of obtaining maintainable software, it is
however important that the delivered software is well-structured
and obeys the various design rules that were postulated by
a company using an outsourcing partner. This paper reports
on a collaboration between academia and industry, where the
research tool IntensiVE has been applied to verify the design rules
underlying a large-scale COBOL system. We describe how the
IntensiVE tool was customized in order to support verification
of the COBOL system, and how this academic tool aided in
providing an initial quality assessment of the outsourced software
system.

I. INTRODUCTION

Outsourcing has become an important practice within the
software development industry. Rather than developing soft-
ware in-house, major companies rely more and more on
external partners to implement their software systems. While
this business model reduces the actual development cost of
the software, it can reduce a company’s control over the
quality of the delivered software. To manage the problems
associated with external quality, rigorous testing practices are
often put in place that ensure that the delivered software
exhibits the desired behavior. The internal quality of an
outsourced software system however also plays an important
role in the system’s success. For an outsourced system to
remain comprehensible and maintainable over an extended
period of time, it is imperative that the system’s source code
is well-structured and obeys the design guidelines and coding
practices imposed by the company that makes use of the
outsourcing partner.

This paper reports on our experiences in applying the
academic tool IntensiVE1 ([1], [2], [3]) in the context of an
industrial collaboration. The subject of this collaboration is a
recently developed, large COBOL system owned by one of the
major Belgian banks. While the actual design of the system
was performed in-house, the implementation of the system
was outsourced to an external partner. Due to the size of the
investment, considerable effort was spent in creating a modular

1see also http://www.intensional.be

design for the system. Since the bank intends to use and
maintain the system over an extended period of time, interest
was expressed in assessing whether the outsourced code obeys
the design, and in acquiring tool support for keeping source
code and design consistent throughout the life cycle of the
system.

IntensiVE is a mature academic tool suite that offers a
dedicated means for documenting structural design rules (such
as naming conventions, language idioms, design patterns,
module dependencies), and verifying the validity of these
design rules in the source code of a system. It consists
of a number of tools that provide both textual and visual
feedback regarding violations of design rules, and offers a
tight integration with the surrounding VisualWorks Smalltalk
development environment. In the context of the collaboration
reported in this paper, the tool suite has been extended and
customized in order to support a light-weight verification of
the design rules underlying the industrial system.

The contributions of this paper are two-fold. First, we
discuss the approach we took in verifying the various design
rules that underly the implementation of the industrial system.
Building upon our previous work [4] — that introduced our in-
frastructure for reasoning over COBOL systems — we discuss
the customizations to IntensiVE that enable us to automatically
verify the design documentation of the industrial case study
with respect to the source code. Second, we describe the
lessons learned from this case study, both from an academic
as from an industrial point of view.

This paper is structured as follows. Section II introduces
the COBOL system we investigate in this paper. We discuss
the motivations for the industrial partner to verify the design
information of this system. Section III provides a detailed of
the different kinds of design information our industrial partner
deemed interesting to verify. In Section IV we briefly discuss
the IntensiVE tool suite, how it was customized to support
reasoning over COBOL systems, and how IntensiVE supports
the verification of the design information underlying the case
study. The concrete results of this verification are discussed in
Section V-A. Before concluding this paper in Section VII, we
discuss the lessons learned from performing this case study in
Section VI.

II. CONTEXT AND PROBLEM STATEMENT

The system under investigation in this paper is a large-
sized (> 1 MLOC) industrial application that supports the
core activities (e.g., insurances and mortgages) of a major,
Belgian bank. Despite that work on the system started as
recent as 2005, the bank opted to develop the back-end of
this new system in COBOL in order to ease integration with
existing infrastructure. Assisted by the Flemish consulting
company inno.com, a large effort was spent from the start in
designing the system in a modular and extensible way using a
component-based methodology. The system is decomposed in
a number of components, each one implementing a number of
use cases. Each component consists of a well-defined interface,
and a set of associated database tables containing data local
to that component.

While the system was designed in-house, the implementa-
tion of the system was outsourced to an off-shore company.
As such, the Belgian bank and inno.com were interested in
assessing whether the source code of the novel system obeyed
the specified design of the system. In particular, they were
interested in evaluating the adherence to the design during the
development process, and in preventing design erosion.

The motivations for this are two-fold:
• Work on the system was planned over multiple iterations.

During each of these iterations novel functionality was
added to the system, or changes were made to the
already present functionality. To prevent these iterations
from having a negative impact on the internal quality of
the system, and to acquire an initial assessment of this
internal quality, the bank was eager to verify how well
the delivered source code of each iteration follows the
specified design.

• The system poses a considerable investment for the bank,
and is planned to be used over an extended period of time
(20+ years). Over this period, the bank expects to keep
the software maintainable — either in-house or using an
external partner. As such, it is imperative that subsequent
evolutions of the system remain consistent with respect
to the design of the system. If not, this can lead to design
erosion, resulting in a system that becomes harder to
understand and maintain.

III. CASE STUDY

In order to evaluate the internal quality of the system, our
industrial partner identified two kinds of design information
that must be verified: implementation guidelines and patterns
and the validation of sequence diagrams that represent use
cases.

A. Mapping object-oriented concepts onto COBOL programs

While the case study was designed in a component-based
fashion, the COBOL language provides little or no support
for this design paradigm. In a nutshell, a COBOL system
consists of a set of programs, each composed out of a number
of sections. These sections are then further broken down into
paragraphs. In COBOL, programs can call their own internal

sections/paragraphs, or can call the functionality of another
program. To reflect the modular decomposition of the system
in the actual source code, a set of implementation guidelines
and patterns were specified. These guidelines and patterns
describe how a component in the system is mapped onto the
language concepts offered by COBOL.

For each component, a layering scheme is used in which one
COBOL program serves as the interface of the component, a
number of programs implement the various operations offered
by the components, and a set of programs are dedicated
towards manipulating the database tables local to that com-
ponent. In order to preserve component boundaries, programs
belonging to one component should use the interface of the
other components instead of directly invoking the programs
belonging to that component. Similarly, database manipulation
within a particular component should be restricted to those
database tables that belong to that component; other operations
that wish to manipulate data should use the interface of the
component responsible for that data.

Within a COBOL program, a similar layering scheme is
used. One program can implement multiple operations, which
are each mapped onto a top-level section in that program. A
concrete implementation of the operation is then provided by
further delegating to other sections within the program. These
sections, in turn, can invoke the functionality offered by other
components, or can decompose the implementation by calling
auxiliary sections. The layering scheme however implies that
from within the implementation of one operation, no other
top-level (or higher-level) sections are invoked.

B. Implementation guidelines and patterns

To make the above implementation scheme explicit in the
source code, a number of naming conventions, implementation
guidelines and idioms are used. For example, the layering
of sections inside a particular COBOL program is reflected
by a naming convention that identifies the layer to which a
section belongs by prefixing the name of the section. Top-
level sections are prefixed with an ‘A’, second level with a
‘B’ and so on. In order for a developer not to violate the
layering scheme, an implementation guideline was put in place
that expresses that sections should only call sections starting
with the same prefix, or a prefix that follows that prefix in
the alphabet. Similarly, an implementation idiom is proposed
to ensure that — when calling one program from within
another — both caller and callee use the same (correct) data
definitions.

C. Sequence diagrams

Next to the set of guidelines describing how the source code
of the system should be structured, the design documentation
of the case study contains a technical specification of the
interactions between the various components and layers of the
system. This specification consists of a description of the use
cases of the system, that are expressed using UML sequence
diagrams.

SystemBorder EntryPoint
Program Program 1 Program 2

perform use case

invoke sub-operation 1

invoke sub-operation 2

invoke sub-operation 3

Fig. 1. Example of the description of a use case using a sequence diagram.

Figure 1 illustrates2 this kind of documentation. For a partic-
ular use case, the sequence diagram identifies the COBOL pro-
gram that is the point of entry for that use case, and describes
the interactions with other COBOL programs (representing an
interface to a component) that are necessary to handle the use
case.

For example, figure 1 describes a use case that is initiated by
calling a program EntryPoint from the SystemBorder
(e.g., a user request). In order to handle the use case, program
EntryPoint relies on the functionality offered by two other
programs, namely Program 1 and Program 2. More pre-
cisely, the implementation of the use case imposes a specific
order in which the other programs in the use case are called.
Our example shows that first operation sub-operation 1
on Program 1 should be called, then sub-operation
2 on Program 2 and finally sub-operation 1 on
Program 1 in order to correctly handle the use case. Note
that this ordering describes the relative ordering of the calls
within the sequence diagram. Intermixed with these calls, other
programs are allowed to be invoked (e.g., to deal with data
retrieval, error handling, logging, . . .). While not shown in
our example, the sequence diagrams can contain additional
information concerning the control-flow of the use case (such
as branching statements and loops). Given that this information
is expressed in a textual, informal way, we omitted it since it
is of no use to us while verifying the design information.

Despite the fact that design documentation of the use cases
is informal, it offers developers a wealth of information during
the execution of maintenance tasks. Whenever the system
needs to be altered, this documentation aids developers in iden-
tifying the entry point in the source code where the changes
need to be made. Furthermore, the description of how the
various components interact provides developers with an initial
understanding of how the particular use case is implemented
and thus can be adapted. Therefore, it is of interest to our
industrial partner to know how well these sequence diagrams
can be linked to actual source-code entities, and how well the

2The figure shows an abstract representation of how the system is doc-
umented. Due to a non-disclosure agreement, we are not allowed to show
concrete sequence diagrams from the case study.

source code obeys the description of the interactions between
COBOL programs that is contained within them.

If tool support is available to verify whether design docu-
mentation and source code are consistent, such tool support
can then also be used to co-evolve both artifacts upon evolution
of the system.

IV. VERIFYING THE DESIGN OF THE CASE STUDY USING
INTENSIVE

Although a manual assessment of the internal quality is
feasible, due to the system’s size such a process would be
impractical and tool support is needed. During the maintenance
phase of the system, development teams will strive for short
release cycles. These short cycles would require the design
of the system to be frequently verified, which — in case of
manual verification — would be time-consuming and not cost
effective.

In what follows, we discuss how our academic tool Inten-
siVE was applied to support the verification of the design
knowledge underlying the industrial COBOL system. We start
this section by providing a short overview of the IntensiVE
tool suite and how it can be used to document and verify
design rules. In particular, we take a look at how our tool was
customized for reasoning over COBOL systems.

For a description of how our customization of IntensiVE
was applied to verify the general implementation guidelines
and patterns that express the layering scheme within individual
components and the correct usage of data structures (cf.
§ III-B), we refer to [4]. In the remainder of the section,
we focus on describing the process of verifying the sequence
diagrams that document the use cases of the industrial system.

A. IntensiVE for COBOL

IntensiVE is a tool suite that is closely integrated with
the VisualWorks Smalltalk development environment, and that
offers developers a formalism and associated set of tools
for documenting and verifying structural design rules. Using
IntensiVE, design rules can be documented by means of
intensional views and by imposing constraints over these
intensional views.

An intensional view is a set of source-code entities (e.g.
classes, methods, functions, . . .) that conceptually belong
together. Rather than specifying this set of source-code entities
by enumeration, this set is defined by an intension, an exe-
cutable query that — upon evaluation — yields the set of enti-
ties belonging to the intensional view. IntensiVE uses the logic
program query language SOUL [5], a dialect of Prolog [6]
that is tailored towards reasoning over source code, to define
intensional views. SOUL is language independent, providing
libraries of predicates for reasoning over OO program written
in Smalltalk [7], [8], Java [8], [9] and C(++) [10]

An important step towards applying IntensiVE to the
COBOL system consisted of extending the SOUL with support
for querying COBOL programs.

In order to implement the design verification required by
the case study, SOUL was extended with:

• A parser for the COBOL dialect that was used at the bank
in order to obtain a queryable representation of COBOL
programs. To this end, we opted for an island-based
parser [11]. Such a parser does not extract a complete
reification of the source code, but will only extract a
structural representation of a subset of the language
constructs present in a language. Since our analyses do
not require access to all source-code elements, such an
island-based parser proved to be a good choice for dealing
with the inherent complexity of the COBOL language;

• A simple static analysis on top of these partial parse trees,
that extracts a call-graph and a data-flow graph from the
structural representation;

• A library of SOUL predicates that offers a declarative
means to query the information contained in partial parse
trees. This library also provides predicates to access the
information in the call-graph and data-flow graph.

To illustrate how IntensiVE is used to provide the function-
ality required by the industrial partner, we document a design
rule that expresses that all sections in a program can only
call sections in a lower layer (i.e. sections of which the name
prefix comes later in the alphabet). To document this design
rule, we create an intensional view Sections with callees that
consists of pairs of sections in the COBOL system in between
of which there is an invocation relationship:

if ?caller sectionPerformsSection: ?callee

While a full explanation of the logic program query lan-
guage SOUL lies outside of the scope of this paper, we
briefly describe the logic query that defines this intensional
view and, upon evaluation, calculates the set of entities be-
longing to that view. The query consists of a single logic
condition that expresses a relationship between two logic
variables ?caller and ?callee. To this end, the logic condition
expresses that there should exist an invocation relationship
between ?caller and ?callee that is verified using the predicate
sectionPerformsSection:. Note that in contrast to
Prolog, SOUL indicates logic variables by means of a question
mark, and that a keyword-based syntax (similar to Smalltalk)
is used to write down the predicates. Evaluation of the above
logic query by the SOUL logic solver will then result in that
the COBOL system is queried for all possible bindings of
the logic variables ?caller and ?callee for which the above
condition holds.

Actual design rules are documented by imposing intensional
constraints over intensional views. An intensional constraint
is a quantified condition that is applicable to the entities
belonging to one (or more) intensional views. Similar to
intensional views, this quantified condition is expressed using
the SOUL language.

For example, we document the above design rule by
creating an intensional constraint:

∀ ?invocation ∈ Sections with callees :
?invocation.caller isSectionWithName: ?callerName,
?invocation.callee isSectionWithName: ?calleeName,
[?callerName <= ?calleeName]

The above constraint expresses that for all elements (?invoca-
tion) belonging to the intensional view Sections with callees,
the calling section is only allowed to invoke sections that come
later in the alphabet. This design rule is verified by querying
both caller and callee for their name (which will be bound to
?callerName and ?calleeName respectively), and then verifying
in the last logic condition whether the ?callerName is smaller
(or equal) to the ?calleeName.

B. Sequence diagram verification

To verify the sequence diagrams that describe the use cases
of the system, IntensiVE was further customized. The process
for performing this verification consists of four steps:

• Exporting the sequence diagrams into a textual format
that can be read by IntensiVE;

• Importing the sequence diagrams into IntensiVE and
mapping them to the source code;

• Documenting the sequence diagrams in terms of inten-
sional views and constraints, and verifying the diagrams;

• Customized reporting regarding inconsistencies between
diagrams and source code.

In what follows, we provide a more detailed explanation of
each of these four steps.

1) Exporting the sequence diagrams: As a tool to describe
the sequence diagrams, our industrial partner used Rational
Rose. A first step in our process consists of automatically ex-
porting the documented sequence diagrams into a format that
can be read by our own tools. Using the internal VisualBasic
scripting engine that is offered by Rational Rose, we exported
all sequence diagrams in a textual format. For each of the
sequence diagrams, the name of the diagram was exported,
the program that serves as the entry point of the scenario, the
list of programs that contribute to the implementation of the
use case, along with the order in which these programs are
expected to be invoked.

2) Importing the diagrams into IntensiVE: IntensiVE was
extended with an importer such that the sequence diagrams
can be imported into our tool. This importer transforms the
textual format of the sequence diagrams into an internal
representation, that will be used during the actual verification
process. The importer is also responsible for mapping the
names of the COBOL programs that occur in the sequence
diagrams onto concrete COBOL programs in the source code.
By convention, the names of COBOL programs always consist
of eight characters. In the most trivial of cases, the program
names that occur in the sequence diagrams exactly match the
names of actual COBOL programs in the source code. A

detailed study of the documented diagrams revealed however
that slight variations on the naming scheme of the programs
occurred in practice:

• In the sequence diagrams, punctuation marks (hyphen-
ation, underscore) and spaces were sometimes present in
the program names;

• The system consists of both an online as well as a batch-
processing mode. For both modes, separate COBOL
programs were used, where the batch programs were
automatically generated from the online versions. Both
kinds of programs are identified by means of a differ-
ent naming convention. In the sequence diagrams, both
variants of these program names are used;

• Program names were occasionally prefixed or postfixed.
Based on this analysis of the naming schemes used in the

sequence diagram, our importer was implemented such that
the variations in the naming scheme were used when mapping
sequence diagrams onto concrete COBOL entities.

3) Documenting and verifying the diagrams: In order to
verify the imported diagrams,they are translated into the con-
cepts offered by the IntensiVE tool suite, namely intensional
views and constraints. The set of all sequence diagrams that
could be completely mapped onto source code entities (e.g.,
for which all program names in the diagram were found to be
corresponding to a concrete COBOL program), is represented
by the intensional view Sequence Diagrams. This intensional
view — defined using the SOUL query language — contains,
for each sequence diagram, a tuple (?diagram) consisting of
the name of the diagram (?diagram.name), the diagram’s entry
point (?diagram.entryPoint) and the sequence of programs that
should be called to implement the use case (?diagram.sequence).

Over this intensional view, an intensional constraint is
imposed that performs the verification of the sequence
diagram. This constraint is specified using the set of
predicates that are offered by IntensiVE to reason over
COBOL programs, and is described as:

∀ ?diagram ∈ Sequence Diagrams :
?mainline isSectionInProgram: ?diagram.entryPoint,
?mainline isSectionWithName: {∗MAINLINE∗},
?mainline sectionPerforms: ?section,
?section

containsOrderedCallsTo: ?diagram.sequence

This query consists of four logic conditions. The first two
conditions query the entry point ?diagram.entryPoint of the
sequence diagram for a section ?mainline, that is the main
entry point of the program. To identify this section, we rely
on the naming convention that this section contains the string
MAINLINE in the section name. The third logic condition
retrieves the sections ?section that get invoked from within
the ?mainline section. Finally, the fourth condition checks
whether the section ?section correctly calls the sequence ?dia-
gram.sequence. If such a section that implements the sequence
does not exist, IntensiVE will mark the diagram ?diagram as
a violation of the design documentation.

Section RETR-DATA-FEED

P1 P2 P3 P4P5P3 P7 P5 P9P10P6 P7P13P4

Fig. 2. Generated sequence diagram of a violation.

The definition of the intensional constraint makes extensive
use of the dedicated logic library for reasoning over COBOL
programs. Key to the process of verifying the sequence dia-
grams is the predicate containsOrderedCallsTo: that
verifies whether a particular section contains a sequence of
calls. Internally, this predicate makes use of the call-graph
analysis that is part of our framework to reason over COBOL.
The predicate verifies that, within the transitive control flow of
a particular section, a path exists that contains the sequence
of calls. Note that, since we cannot extract information re-
garding branching and loops from the sequence diagrams,
the containsOrderedCallsTo: predicate flattens the
branching information that was obtained from the call-graph
analysis and compares the documented sequence of programs
with this flattened call-graph.

4) Customized feedback regarding violations: By default,
IntensiVE provides textual and visual feedback regarding iden-
tified violations. Within the context of this industrial collabora-
tion, our tool suite was further customized to provide dedicated
feedback regarding violations between documented sequence
diagrams and the source code. In particular, a custom reporting
tool was implemented that offers the user a generated sequence
diagram for each of the violations identified by our tool, with
the violating edges indicated in red. Figure 2 demonstrates
such a generated diagram, with the names of the concrete
programs obfuscated. In the figure, we see the sequence
diagram of a use case named retrieveDataForFeeding.
Verification of this use case with respect to the source code
revealed that the implementation does not contain a section
that implements this sequence diagram correctly, and thus flags
it as a violation.

In case of a violation, our customization of IntensiVE
will identify the section in the entry point program that
best matches the sequence diagram. To this end, it uses the
information in the call graph to identify the section in which
the control flow exhibits the most overlap with the sequence di-
agram, and generate a sequence diagram for this section (such

Version LOC #diagrams parsing (sec) analysis (sec) verification (sec) total (sec)
Version 1 548 560 895 105 150 192 447
Version 2 665 220 917 134 228 204 566
Version 3 1 053 381 1366 413 479 288 1180

TABLE I
OVERVIEW OF THE THREE VERSIONS USED TO EVALUATE OUR APPROACH

Version #diagrams mappable unmappable % mappable consistent inconsistent % inconsistencies
Version 1 895 408 487 45.59% 326 82 25.15%
Version 2 917 476 441 51.90% 386 90 23.33%
Version 3 1366 763 603 55.85% 637 126 19.78%

TABLE II
RESULTS OF THE VERIFICATION ON THE THREE VERSIONS

as is the case in figure 2) with all expected — but missing —
calls indicated by a red, dashed line. In our example, we see
that our tool reports that section RETR-DATA-FEED is the
best match for the sequence diagram, but that in this diagram
four different calls to two distinct programs were missing or
were not called in the correct order. In case multiple sections
match the sequence diagram equally well, our feedback tool
will generate a sequence diagram for each of these matching
sections.

V. EXPERIMENT

As a validation of our approach, we have applied it a
posteriori to three different versions of the industrial COBOL
system. These three versions align with three major iterations
of the system in which novel behaviour was added. Next to
receiving the source code of these three versions, we also
received the Rational Rose documentation that was present
at the time that the version was delivered.

A. Results of the experiment

Table I provides more information regarding the size of
the system. The first to versions of the system consisted of
approximately half a million lines of COBOL code. In the
last version of the system, this amount of couple was almost
doubled to over one million lines. As for the number of
documented sequence diagrams, these vary from around 900
in the first two versions to almost 1400 in the last version.

Within the Table, we can also find the amount of time3

that was needed to parse the COBOL code using our island-
based parser, perform the static analyses (call-graph and data-
flow), and verify the sequence diagrams with respect to the
source code. As the table indicates, our customized support
for reasoning over COBOL is quite fast: the entire process
took from around 10 minutes for versions 1 and 2 up to 19
minutes for the last version. This seems to indicate that our
approach scales well with respect to the verification of a real-
life system.

The results of the verification can be found in Table II. First,
we see that over the three versions, about half of the delivered

3Measured on an Apple MacBook Pro 2.8Ghz Core Duo 2, with 4GB of
RAM.

sequence diagrams could be automatically mapped onto actual
source-code entities in the implementation. Surprisingly, as
the system grew larger (both in terms of lines of code as in
the number of sequence diagrams), the number of sequence
diagrams that could be automatically mapped increased with
ten percent (from 45% to 55%). As for the sequence diagrams
that could be mapped onto the source code, the vast majority
(75%) was found by our tool to be correctly implemented.
Similar to the evolution of the number of mappable diagrams,
the amount of inconsistencies dropped over time from 25% to
20%.

B. Analysis

1) Mapping the diagrams onto the source code: Despite
the fact that our approach takes variations into account when
mapping sequence diagrams onto concrete COBOL programs,
and that this set of variations was obtained by studying the
available sequence diagrams, our approach is only able to
map about half of the sequence diagrams in the system.
Analysis of the unmappable diagrams resulted in the following
observations:

1) In a small number of cases, the sequence diagrams
did not refer to concrete source-code entities (names
of COBOL programs), but referred to the names of
the components that were invoked (e.g. referring to a
component named “CostManager” instead of the name
of the program that implements the cost manager).
These cases represent an opportunity to further refine
the technical design by including the concrete program
names instead of the names of the components;

2) A number of use cases could not be mapped since
their corresponding implementation did not exist in the
version of the software that we analyzed. The design
documentation was not intended to be kept strictly
synchronized with the implementation, resulting in that
use cases were present which did not belong to the
behavior that was supposed to be implemented in that
particular version of the system. As development of the
system progressed, the amount of implemented use cases
should also increase, something which is supported by
our findings: in version 3 we were able to map 55%

of the diagrams to source code, as opposed to 45% in
version 1;

3) The majority of the sequence diagrams that could not be
mapped onto the source code referred to concrete source
code entities that were not present in the actual source
code of the system, but that were parts of other (external)
components of which we did not have the source code.

While our mapping to the source code might appear to behave
poorly on first sight, our above analysis showed that this was
caused by the fact that a large part of the diagrams in the
documentation were not applicable to the source code we were
investigating.

2) Analysis of inconsistencies: Our verification of the map-
pable sequence diagrams revealed that the vast majority of
the use cases could be found in the concrete implementation.
Given the relative small amount of inconsistent diagrams, we
manually analyzed the reported inconsistencies:

• Approximately a quarter of the identified inconsistencies
(version 1) down to 15% (version 3) were caused by the
fact that the documentation contained diagrams that were
not implemented in that particular version of the system.
While all programs in the sequence diagram were found
in the implementation, the concrete implementation of
these diagrams was not present yet and thus, could not
be found;

• Half of the inconsistencies occurred due to the order of
the calls in the source code not corresponding to the
specified order in the documentation. While all required
calls were present in the implementation, they occurred in
an order other than the one specified in the design. These
inconsistencies indicate possible improvements where
either the source code needed to be adapted in order to
implement the correct order, or where the documentation
needed to be updated in order to match to the actual
situation in the source code;

• Other inconsistencies were caused by sequence diagrams
of which one or more calls were not present in the
source code. While our tool was able to identify in these
cases the concrete section that implemented the use case,
particular calls that were present in the documentation
were omitted in the actual implementation.

C. Discussion

Our analysis of the industrial COBOL system using Inten-
siVE was able to provide the Belgian bank with an initial
quality assessment of the outsourced source code. This initial
assessment confirmed the bank’s impression that the deliv-
ered source code in general respected the design information
that was provided to the outsourcing partner, and that this
conformance with this design was upheld during subsequent
iterations of the system. We did find a number of violations of
the documented design rules that pointed out possible improve-
ments to source code and design documentation. Particular
improvements to the source code include correct adherence
to the imposed implementation guidelines and naming con-
ventions, and corrections to the source code to more closely

obey the specification of the use cases as detailed in the
sequence diagrams. With respect to the design documentation,
our tool identified a number of locations where the design
documentation could be updated to reflect the current situation
in the source code.

VI. LESSONS LEARNED

A. From an academic perspective

From an academic perspective, this case study quickly made
it clear that, in order to successfully apply an academic tool
to an industrial problem, a certain amount of pragmatism was
required.

As the IntensiVE tool suite was tailored towards reasoning
over object-oriented programs, written in languages such as
Smalltalk, Java and C++, one of our primary concerns in
performing this case study was extending our tool suite to
support COBOL. While IntensiVE was designed from the
start to be independent of the actual programming language
used, this support for COBOL still required a considerable
investment in effort and time. Given the specific nature of
the kinds of design rules that the bank requested to verify in
the system, we opted not to provide a full-fledged extension
to IntensiVE to reason over COBOL systems in general, but
rather provide a lightweight solution that was tailored towards
the case study and that could be extended on a by-need basis.
This resulted in a number of design choices such as the fact
that we opted for an island-based parser to extract only the
information necessary for our analysis from the source code
of the system, instead of investing a large effort in providing a
detailed parser that retrieves a complete representation of the
source code.

Similarly, the IntensiVE tool suite provides a tight integra-
tion with the surrounding development environment. One of
the goals of this integration was to support a methodology
in which the verification of the design information occurs
frequently (cfr. unit testing), and where the verifiable design
documentation created with IntensiVE becomes an active part
of the coding process. For this case study, such an integrated
approach was not required nor preferred by our industrial
partner. In order to monitor the progression of the quality of
the outsourced system, a tool that checks conformance of the
design with respect to the source code overnight suffices. As
such, we opted for the development of a non-intrusive tool
that generates a simple HTML report on the violations of the
documented design rules.

B. From an industrial perspective

This case study illustrated the use of dedicated tool support
to verify whether outsourced source code respected the design
rules that are imposed by a company that makes use of an
outsourcing partner. While for this case study the tool was
able to confirm the impressions of the industrial partner that,
in general, the outsourced system upheld the quality standards
put forward by the company, the case study also identified the
role that (academic) tools can play in providing a means to
assess this quality.

Although in this case the quality analysis happened a
posteriori, tools that allow for verifying the design rules
imposed by a company on its outsourcing partners could play
an important part in maintaining quality of the delivered source
code. One particular methodology to ensure that the internal
quality of an outsourced system is upheld is for a company that
relies on the services of an outsourcing partner to formalize
the design rules underlying the outsourced system, and to
share these formalized rules with the outsourcing partner. This
provides advantages for both parties involved. The outsourcing
company can incorporate the verification of the internal quality
of the software into their development process and can catch
violations of the intended design early on. Furthermore, they
can provide their client with a number of guarantees that the
design of the software has been obeyed. The company using
the outsourcing partner can use the documented design rules
to verify that the delivered source code obeys the required
design.

VII. SUMMARY

This paper reported on a case study where the academic tool
IntensiVE was used to document the design rules underlying
the implementation of an outsourced COBOL system, and
verify the validity of these design rules with respect to the
delivered source code. Key to this system was the unique
design methodology, where a component-based design was
put forward that is reflected in the source code by relying
on coding guidelines and naming conventions. Furthermore,
the various use cases for this system were documented using
sequence diagrams that describe how the different COBOL
programs in the system interact. The paper discussed how
IntensiVE was customized to support the verification of this
design documentation, and how the use of this academic tool
was able to provide an initial quality assessment of how well
the modular structure of the system is reflected in the source
code.

ACKNOWLEDGMENT

Andy Kellens is funded by a research mandate provided by
the “Institute for the Promotion of Innovation through Science
and Technology in Flanders” (IWT Vlaanderen). This research
is supported by the IAP Programme of the Belgian State.

REFERENCES

[1] J. Brichau, A. Kellens, S. Castro, and T. D’Hondt, “Enforcing structural
regularities in software using intensive,” Science of Computer Program-
ming: Experimental Software and Toolkits (EST 3), vol. 75, no. 4, pp.
232–246, April 2010.

[2] A. Kellens, “Maintaining causality between design regularities and
source code.” Ph.D. dissertation, Vrije Universiteit Brussel, June 2007.

[3] K. Mens and A. Kellens, “Towards a framework for testing struc-
tural source-code regularities,” in International Conference On Software
Maintenance (ICSM), 2005, pp. 679 – 682.

[4] A. Kellens, K. D. Schutter, T. D’Hondt, L. Jorissen, and B. V. Passel,
“Cognac: A framework for documenting and verifying the design of
cobol systems,” in Proceedsings of the 13th European Conference on
Software Maintenance and Reengineering (CSMR09), 2009, pp. 199–
208.

[5] R. Wuyts, “A logic meta-programming approach to support the co-
evolution of object-oriented design and implementation,” Ph.D. disser-
tation, Vrije Universiteit Brussel, January 2001.

[6] P. Deransart, A. Ed-Dbali, and L. Cervoni, Prolog: The Standard
Reference Manual. Springer-Verlag, 1996.

[7] K. Mens, I. Michiels, and R. Wuyts, “Supporting software development
through declaratively codified programming patterns,” in SEKE 2001
Proceedings. Knowledge Systems Institute, 2001, pp. 236–243, interna-
tional conference on Software Engineering and Knowledge Engineering,
Buenos Aires, Argentina, June 13-15, 2001.

[8] J. Brichau, C. De Roover, and K. Mens, “Open unification for program
query languages,” in Proceedings of the XXVI International Conference
of the Chilean Computer Science Society (SCCC 2007), 2007.

[9] C. De Roover, “A logic meta programming foundation for example-
driven pattern detection in object-oriented programs,” Ph.D. dissertation,
Vrije Universiteit Brussel, August 2009.

[10] C. De Roover, I. Michiels, K. Gybels, K. Gybels, and T. D’Hondt,
“An approach to high-level behavioral program documentation
allowing lightweight verification,” in Proceedings of the 14th IEEE
International Conference on Program Comprehension (ICPC06).
IEEE Computer Society, 2006, pp. 202–211. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/ICPC.2006.10

[11] L. Moonen, “Generating robust parsers using island
grammars,” in WCRE, 2001, p. 13. [Online]. Available:
http://computer.org/proceedings/wcre/1303/13030013abs.htm

