
Experiments with Pro-active Declarative Meta-Programming

Verónica Uquillas Gómez
Software Languages Lab

Pleinlaan 2
1050 Brussel

Vrije Universiteit Brussel
vuquilla@vub.ac.be

Andy Kellens
Software Languages Lab

Pleinlaan 2
1050 Brussel

Vrije Universiteit Brussel
akellens@vub.ac.be

Kris Gybels
Software Languages Lab

Pleinlaan 2
1050 Brussel

Vrije Universiteit Brussel
kris.gybels@vub.ac.be

Theo D’Hondt
Software Languages Lab

Pleinlaan 2
1050 Brussel

Vrije Universiteit Brussel
tjdhondt@vub.ac.be

Abstract
Program querying has become a valuable asset in the pro-
grammer’s toolbox. Using dedicated querying languages,
developers can reason about their source code in order to find
errors, refactoring opportunities and so on. Within Smalltalk,
the SOUL language has been proposed as one such language
that offers a declarative and expressive means to query the
source code of object-oriented programs.

Ever since its inception, SOUL has been used as the un-
derlying technique for a number of academic software en-
gineering tools. Despite its success, one of the problems
of SOUL is that, due to its backward chained implemen-
tation, it is less suited as a basis for such pro-active soft-
ware tools. Using SOUL, a developer has to launch the
queries over the system manually, rather than automatically
receiving feedback whenever the underlying source code is
changed. In this paper we present PARACHUT, an alterna-
tive logic query language that is based on forward chain-
ing and temporal logic and that allows developers to express
queries over the change history of the system. Furthermore,
PARACHUT’s data-driven nature makes it possible to pro-
vide instant feedback to developers when the source code is
changed, thus providing better support for pro-active soft-
ware tools.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Declarative meta-programming is the use of a declarative
programming language in order to reason about the imple-
mentation of software. Over the last ten years, this tech-
nique has been well studied at the Vrije Universiteit Brussel
and has led to the development of SOUL [19], the Smalltalk
Open Unification Language. SOUL is a PROLOG-like lan-
guage that exists in symbiosis with the underlying Smalltalk
language and that provides libraries of predicates to reason
over Smalltalk programs.

From its inception, SOUL has been used as a research
vehicle for a wide range of applications, such as architec-
tural verification [13], co-evolution of design and implemen-
tation [14] and aspect-oriented programming [6]. Further de-
velopment of the language has resulted in extensions to the
language such as template queries [1] and the implementa-
tion of libraries of predicates to support reasoning over other
programming languages such as Java, C(++) and Cobol.

One of the key characteristics of SOUL is that it is a
backward-chained language, meaning that program queries
that are written down in SOUL are resolved in a demand-
driven way: a user of the language has to launch a query
in order to retrieve all the results. This does not always
align well with the application domain of SOUL, namely
as an underlying platform for building software engineering
tools. First, this backward chaining results in that the same
query is always calculated again from scratch. For time
consuming queries, this can result in a serious overhead.
Second, the demand-driven nature of SOUL does not fit
well with the pro-active nature of some software engineering
tools. Rather than having to launch queries over the system,

PARACHUT 1 2009/9/11

these tools tend to work pro-actively, providing developers
with feedback whenever it becomes available.

In this paper we relate our experiences implementing
and using PARACHUT (Programming and Reasoning about
Changes using Time). PARACHUT is an alternative instan-
tiation of the concept of declarative meta programming that
aims at alleviating the above problems. PARACHUT dif-
fers from SOUL in two important ways. Firstly, rather than
working demand-driven PARACHUT reacts on changes in
the development environment in order to trigger the reason-
ing process over software. Secondly, it offers the developer
an immediate feedback of the reasoning process. To this
end, PARACHUT offers a forward chaining logic inference
engine implemented in Smalltalk. An additional advantage
of this forward chaining is that logic queries can be pro-
cessed incrementally rather than having to be computed from
scratch over and over again.

Furthermore, PARACHUT is not only triggered by changes
in the development environment, these changes are also rei-
fied into the knowledge base over which we can reason about
using PARACHUT. As a result, a user of the language can
not only access the current state of the system, but can also
query the change history that is built up during the develop-
ment process. In order to ease this reasoning over the history
of changes, PARACHUT incorporates temporal logic oper-
ators into the query language.

2. Logic Meta-Programming
Logic Meta-Programming is the use of a logic programming
language in order to reason about software systems. Key to
logic programming languages is that they are declarative:
rather than having to specify how one wants to calculate a
certain query over the source code of the system, one spec-
ifies what one wants. The inference engine of the logic pro-
gramming language will then resolve the query and return
the results to the user. As a result, logic programming lan-
guages are very suitable for writing meta-programs that rea-
son over software [3, 14].

In the past, logic meta-programming has successfully
been applied in software engineering to support problems
such as the co-evolution of design and implementation
[3, 14], or as a basis for aspect-oriented programming lan-
guages [8, 6].

As a particular instantiation of logic meta-programming,
the SOUL (Smalltalk Open Unification Language) has been
developed [19]. SOUL is an implementation of PROLOG in
Smalltalk, that offers a tight symbiosis with the underlying
Smalltalk system and that relies heavily on Smalltalk’s re-
flective capabilities in order to reason about programs.

On top of the SOUL language, libraries of predicates
have been built that allow for reasoning over Smalltalk, Java,
C(++) and Cobol programs. We illustrate SOUL’s syntax by
means of one example, namely the implementation of the
logic predicate classInHierarchyOf (see also Table 1)

that verifies whether one class is present in the inheritance
hierarchy of another class.

This rule is defined as:

1 classInHierarchyOf(?dirSubClass, ?superClass) if

2 subclassOf(?dirSubClass, ?superClass)

3
4 classInHierarchyOf(?indSubClass, ?superClass) if

5 subclassOf(?dirSubClass, ?superClass),

6 classInHierarchyOf(?indSubClass,?dirSubClass)

The above predicate consists of two rules. Without going
into details, the first rule states that a class is present in
the hierarchy of another class if it is a direct subclass of
that class. The second rule works for the transitive case:
there might be indirect subclasses underneath the root of the
hierarchy. SOUL’s syntax only differs slightly from PRO-
LOG’s, namely that SOUL uses the keyword if instead of
:- and logic variables are identified by a question mark (e.g.
?superClass) instead of being capitalized.

As mentioned above, SOUL is tightly integrated with
the underlying Smalltalk language, resulting in a symbiosis
between both languages. This symbiosis makes it possible
to use Smalltalk code within SOUL queries, either as a logic
condition or as a value that will be used in the computation.
In combination with the reflective capabilities of Smalltalk,
this easily allows us to query the classes, methods, . . . that
are present in the Smalltalk image. For example, the logic
predicate class that retrieves all classes in the Smalltalk
image (or that verifies whether its argument is a class) is
defined as follows:

1 class(?class) if

2 member(?class, [Smalltalk allClasses])

Smalltalk blocks included into SOUL queries are indicated
by means of square brackets ([]). In the implementa-
tion of the class predicate, the set of all classes is com-
puted by means of the Smalltalk expression Smalltalk
allClasses. This expression returns a collection of all the
classes that are present in the Smalltalk system. The class
predicate is defined then as all members of this collection of
classes.

Finally, SOUL is a backward chained language. This
means that the triggering of the resolution process is done
explicitly by means of the user of the language. In other
words, as soon as the user asks SOUL the answer to a par-
ticular query, the inference engine will retrieve all possible
solutions for that query. For example, consider the following
query:

1 if classInHierarchy (?class , [Collection])

Queries in SOUL are indicated by starting with the keyword
if. The query above will query the Smalltalk image and pro-
vide bindings for the logic variable ?class for all possible
classes that are present in the hierarchy of the Collection
class.

PARACHUT 2 2009/9/11

Rule Description
class(?class) ?class is a class
metaClass(?class, ?metaClass) ?class has meta-class ?metaClass
instanceVariableInClass(?class, ?instVar) ?class has instance variable ?instVar
methodInClass(?class, ?method) ?method belongs to ?class
methodCallsMethod(?class, ?method, ?methodR) ?method in ?class calls ?methodR
methodReferencesClass(?class, ?method, ?classR) ?method in ?class references ?methodR
methodUsesInstVariable(?class, ?method, ?instVar) ?method in ?class accesses ?instVar
namespace(?nameSpace) ?nameSpace is a namespace
classInNamespace(?class, ?nameSpace) ?class belongs to ?nameSpace
namespaceInPackage(?namespace, ?package) ?nameSpace belongs to ?package
package(?package) ?package is a package
classInPackage(?class, ?package) ?class belongs to ?package
bundle(?bundle) ?bundle is a bundle
packageInBundle(?package, ?bundle) ?package belongs to ?bundle
subclassOf(?subClass, ?superClass) ?subClass is subclass of ?superClass
classInHierarchyOf(?dirSubClass, ?superClass) if ?dirSubClass and ?indSubClass classes

subclassOf(?dirSubClass, ?superClass) are in the hierarchy of ?superClass
classInHierarchyOf(?indSubClass, ?superClass) if

subclassOf(?dirSubClass, ?superClass),
classInHierarchyOf(?indSubClass,?dirSubClass)

Table 1. Logic Predicates expressing the entities and relationships of Program Changes

3. PARACHUT
PARACHUT (Programming and Reasoning about Changes
using Time) is inspired by the idea of providing support
to developers during the software development process by
reasoning about past and current program changes.

In this paper, we propose a code assistant tool and pro-
gram query language that provides support that goes be-
yond the analysis of the current implementation of a sys-
tem, that performs an online analysis of software implemen-
tation at the development time in order to react to each pro-
gram change, and thus assists the developers in accomplish-
ing their tasks.

Our approach is an application of declarative meta pro-
gramming combined with temporal logic, and uses a forward
chainer as a reasoning engine to pro-actively provide feed-
back to the developers. The integration of those approaches
provides a powerful medium for reasoning about (past) pro-
gram changes.

3.1 Forward Chaining
We selected forward chaining as the underlying technique
to support reasoning over the source code of a system, and
the changes in such a system. Forward chaining is a data-
driven reasoning process, which generates all the possible
solutions from initial data. Typically, forward chainers are
implemented by means of the Rete algorithm [5]. While a
discussion of this algorithm lies outside the scope of this pa-
per, intuitively this algorithm works by representing a set of
logic rules as a network of nodes. At each level in the net-
work, a cache is used to store the intermediate results for
particular facts and rules. Whenever a new fact is added to
the reasoning engine, this fact is percolated throughout the
network and possible new conclusions of rules are reported.
While the initial starting cost of setting up the Rete network

can be quite expensive, and Rete networks are known to con-
sume lots of memory, the large advantage of this technique
is that changes in the fact base (in our case the changes per-
formed on the system) immediately and efficiently trigger
the calculation of new conclusions based on the rules. Fur-
thermore, due to the caching in the Rete network, intermedi-
ate results of computations are cached such that the inference
engine does not need to repeatedly calculate them.

The data domain of our problem are the source-code enti-
ties in the system that are represented by the changes that are
made to them. Each time a change is made, data represent-
ing such a change is provided to the inference engine. Our
rules reason over the source-code entities and changes, and
are used to infer new data whenever is possible. This new
data can in turn infer more data, and so on.

The above fundamental differences between the for-
ward chaining that underlies PARACHUT and the backward
chaining of SOUL result in that PARACHUT is an ideal
candidate reasoning engine to use as a basis for software
engineering tools that need to react immediately to changes
in the source code and pro-actively support their users with
feedback.

3.2 Temporal Logic Programming
The term Temporal Logic Programing [15] refers to a sub-
set of logic programming that has been used to describe ap-
proaches that represent temporal information within a log-
ical framework. Temporal Logic abstracts the explicit han-
dling of time and queries are evaluated to an implicit tempo-
ral context. PARACHUT makes use of this general definition
of Temporal Logic Programming in order to reason about the
current program changes against past program changes.

Temporal Logic Programming extends a logic program-
ing language with temporal predicates that reason about the

PARACHUT 3 2009/9/11

time information. They refer to past time (e.g. previous),
to the future (e.g. next), and others refer to past and future
time simultaneously (e.g. since). In our approach, we sup-
port some of those temporal operators, mainly past opera-
tors such as: mostrecent and allpast, and since. These
predicates are supported by integrating temporal reasoning
with our Rete network implementation. More concretely, we
extended the set of possible nodes in the Rete network with
temporal nodes that explicitly handle the time information
and make it accessible to the temporal predicates.

3.3 Stages of our Approach
Specifying the Declarative Meta Programs
PARACHUT reasons about the development process of an
object-oriented software system written in Smalltalk, specif-
ically about program changes.

As a first step we need to write the declarative meta-
programs in charge of describing and reasoning about the
program and the program changes made by a developer
while he is working on the source code. The logic rules and
facts describe the program changes (our domain) and the
process of reasoning about those changes.

The syntax and primitive predicates of PARACHUT (a
subset of which are listed in Table 1, along with an expla-
nation of the predicates) are as close to SOUL’s as possible.
Existing libraries of SOUL rules can therefore be re-used
in PARACHUT as well. The exception is that a few special
primitive predicates, and some syntactic sugar that is pro-
vided for them in SOUL, are not supported in PARACHUT.
These predicates provide a reflective facility for controlling
the backward chaining process. Naturally they can not be
supported by a forward chainer. Use of these predicates in
SOUL, and in PROLOG in general, is discouraged and it is
strongly recommended to only use them for optimizations
than can be easily removed.

In Figure 1, we present the library of predicates that was
written for the creation of our Rete network. As for tool
support, we leverage part of the user interface of SOUL in
order for a developer to write logic rules.

PARACHUT offers two different types of predicates. A
first type of predicate reasons over the actual source-code
entities that are present in the system at any given moment
in time. These predicates allow a user to express queries
that are similar to those expressed using the SOUL lan-
guage. However, since we track the changes that are made
to the system, we have more fine-grained information about
the history of the source code. In order to reason about
these changes, and the explicit time model they impose,
PARACHUT offers also a set of temporal predicates that
reason about the changes in the program and the temporal
relationships between these changes. To implement this, we
extended the Rete forward chaining algorithm with a Tem-
poral Rete component that supports such temporal reason-
ing. Therefore, since we have incorporated the notion of time

Figure 1. The library of logic rules that are used to create
our Rete network

Figure 2. Soul-Rete Browser

by means of the temporal predicates, our declarative meta-
programs are also temporal declarative meta-programs.

A program change is in turn represented by the entities
and relationships being modified in the source code, such as
classes, methods, instances variables, super classes, and so
on. PARACHUT does the reification of the program changes
by means of logic facts. They correspond to the set of facts
entered into, or retracted from the Rete network and the set
of facts being inferred by it.

Activating the Facts Reasoner
The component which is playing the role of facts reasoner
is the Temporal Rete. As mentioned above, it is a temporal
logic forward chaining inference engine that extends the
original Rete algorithm to produce a reasoner capable of
manipulating logic rules and a new set of temporal and non-
temporal nodes in the Rete network.

The Temporal Rete is responsible for parsing the logic
rules and for compiling them into a Rete network. Once the
network is created the inference engine is ready to perform
the reasoning process. Figure 2 shows the basic interface
used by a developer to create or remove a Rete network.

Tracing Changes
One of the components integrated in PARACHUT is Small-
Brother, a meta-program written in VisualWorks Smalltalk
by Roel Wuyts. SmallBrother observes the source code of
the underlying Smalltalk system and reports its clients of
changes in this source code. Within PARACHUT, this meta-
program is in charge of tracing the changes made by a devel-
oper for a further generation of the facts representing such
changes.

PARACHUT 4 2009/9/11

Figure 3. The Rete classification defined in StarBrowser

We receive the data captured by the tracer, such as the
type of change, and the objects involved in the change.
Next, we invoke our programs which generate the logic facts
mapping that data.

Creating and Adding Facts to the Rete Network
For each kind of change (addition, deletion or modifica-
tion), we create or select facts expressing those changes.
Our approach supports two representations of the program
changes as logic facts: changes expressed by the pres-
ence of the entities (.e.g class(?class)) and changes
expressed by the action performed by the developer (e.g.
addedClass(?class)). Although these facts are similar
they have a different meaning that impacts on the inference
process.

One implication of the use of temporal logic program-
ming is that each fact in the Rete network contains a
time interval for which it is considered true. When a fact
which represents an action is inserted in the network (e.g.
addedClass) it is considered true only at that point in time.
In other words, the fact of the example adding a class is only
true at the point in time at which the action was performed.
On the other hand, when a fact which represents the pres-
ence of an entity (e.g. class) is inserted in the network, it
is considered true from that point in time until∞. When the
entity is removed from the system, its corresponding fact’s
end time will correspond to the time at which the entity was
removed.

The process of adding facts ends when there are no more
facts to be processed. We want to emphasize that not only
the facts that arise from changes in the source code have
an impact on the results of the network. Since during the
reasoning process new facts are derived, these facts also get
inserted into the Rete network and can in turn result in that
other facts gets deduced, and so on.

Presenting Outputs to Developers
Our main goal was to develop an integrated (prototype)

Figure 4. The classifications created in StarBrowser to ex-
plore the Hash - Equals example

of a tool suite focusing on the underlying technology and
not on the presentation of output to developers. The facts
resulting from the reasoning process of the program changes
are stored in the Rete Network, and they are presented to
developers by means of the StarBrowser [20].

The StarBrowser is an easy customizable source-code
browser for VisualWorks. The goal of the StarBrowser is to
allow browsing the Smalltalk environment, classifying items
(objects, classes, methods, packages, etc.) and manipulating
these classifications and their contents using different kinds
of editors. The classifications are synchronized with the in-
formation they provide. Other tools are also integrated to or
in some cases extended the StarBrowser. Examples of such
integrations are: SOUL, IntensiVE [14], CodeCrawler [10],
CoBro-Nav [2].

Using this integration with the StarBrowser, a user of
PARACHUT can access the information in the Rete net-
work, and browse the nodes of the network (i.e. the logic
rules). Users can select which rules (nodes) they are inter-
ested in. For each of these selected rules, a classification is
added containing the elements that belong to the rule. When-
ever new results for these rules percolate out of the network,
they will be added to the corresponding classification in the
StarBrowser (see Figures 3 and 4).

4. Example queries
In this section, we present some example queries using
PARACHUT to demonstrate its utility as a pro-active code
assistant reasoning about program changes constrained to
past time. The combination of declarative meta program-
ming with temporal logic provides a mechanism to write
down more expressive logic rules capable of reasoning about
changes using time information.

PARACHUT 5 2009/9/11

The examples are classified in two groups. The first group
of examples is based on the Evolution Matrix [9] approach.
We provide representations of some of the patterns for
classes proposed by the Evolution Matrix. The second group
of experiments represent indicators for detecting (possible)
problems in the development process. They are applied to
small cases which allow to illustrate how the logic program
are enhanced by using temporal logic.

4.1 Evolution Matrix: shape-based patterns
The first two examples we show here are based on the Evo-
lution Matrix [11, 9] proposed by Michele Lanza. The Evo-
lution Matrix is a polymetric view that supports the under-
standing of the evolution of the classes of a software system
and the evolution of the system itself. Although the Evolu-
tion Matrix is more suited to study the evolution of a system
over an extended number of versions in order to provide a
macroscopic view of the system’s evolution, we here illus-
trate the use of PARACHUT on a smaller scale, by finding
interesting patterns in the fine-grained changes that can be
tracked using PARACHUT and that are inspired by the Evo-
lution Matrix patterns.

Using the Evolution Matrix, classes are categorized based
on the recurrent patterns observed in the matrix during their
evolution. One category is Shape-based patterns. These
patterns depend on the growing or shrinking of a class during
the different stages of the implementation. For this category
five types of classes were proposed, and we present the
examples of two of them: Pulsar and Supernova.

The Evolution Matrix uses metrics in order to establish
each type of classes proposed. Such as the number of meth-
ods of a class, the number of added methods between ver-
sions, etc. Figure 5 depicts a schematic Evolution Matrix.
A column represents a version of the software. A row rep-
resents the different versions of the same class. Finally, the
order of the classes in each column represents the order in
which they were created.

Figure 5. A schematic display of the Evolution Matrix

Note that with the Evolution Matrix, the analysis of
classes is performed over multiple versions of the system. In

our experiments we are considering a continuous reasoning
about program changes while the programmer is working on
the implementation, and we are not using specific metrics to
calculate the values for classifying the classes. Our approach
is used as a means to express rules that identify such classes
of interest based on the history of changes related to the
number of methods in a class.

Pulsar
A Pulsar class is a class that grows and shrinks continuously
during its lifetime. The growing stage indicates an increase
of functionality and the shrinking stage may indicate possi-
ble refactorings or a redesign. Note that a refactoring may
also make a class grow (e.g. when a long method is divided
in shorter ones). A Pulsar class reflects an increase or de-
crease in size in each new version of the implementation.
Figure 6 graphically depicts the evolution of a Pulsar class
upon evolution.

Figure 6. The visualization of a Pulsar class

We detect a possible Pulsar class by comparing the num-
bers of methods in three points in time.

1 pulsar(?class) if

2 pulsar(?class, ?len3, ?len2, ?len1)

3
4 pulsar(?class, ?len3, ?len2, ?len1) if

5 allConsecutiveSizes(?class,

6 ?len3, ?len2, ?len1),

7 escape (?val , [(?len1 * 2) = ?len2

8 and:[?len1 = ?len3]])

The first rule pulsar is the general entry point of the Pul-
sar pattern and invokes the second rule. The second rule
pulsar returns all Pulsar classes together with three lengths
of the classes (indicating the growing and shrinking of the
class). This rule uses the temporal predicate (allpast) by call-
ing the predicate allConsecutiveSizes to retrieve the length
of the class (i.e. the number of methods) at three different
points in time.

Our basic relation to establish a Pulsar class is defined
in the Smalltalk block assigned to the escape predicate. We
consider a class as possible pulsar if the initial size (?len1)
of the class got doubled over time (?len2) and afterwards fell
back to its original size (?len3). Note that this is only a pos-
sible interpretation of the Pulsar pattern. By interchanging
the Smalltalk block that compares the sizes of the class at
different points in time, other definitions can be used in this
rule.

This example also illustrates the symbiosis that we of-
fer from within PARACHUT with the underlying Smalltalk

PARACHUT 6 2009/9/11

system. Remember from above that within SOUL, a de-
veloper can use Smalltalk blocks within the logic program.
PARACHUT offers a similar feature by means of the escape
predicate.

Supernova
A Supernova class is a class that from a certain point in
time demonstrates a large growth. It can become a Red Giant
class (i.e. a class bigger than a Supernova class and which is
growing all the time). Some reasons of such a growth can be:
the application of refactorings that move functionality to this
class, adding functionality to retrieve data from data storage
classes, and so on. These classes may indicate an unclean
design or a possible introduction of bugs. The graphical
representation of this pattern is shown in Figure 7.

Figure 7. The visualization of a Supernova class

Similar to our rules for detecting possible Pulsar classes,
we detect a Supernova class by comparing the numbers of
methods at three points at time.

1 supernova(?class) if

2 supernova(?class, ?len3, ?len2, ?len1)

3
4 supernova (?class , ?len3, ?len2, ?len1) if

5 increasedSize(?class),

6 mostrecent(

7 canBecomeSupernova(?class)),

8 allConsecutiveSizes(?class, ?len3,

9 ?len2, ?len1),

10 escape (?val , [?len3 = (?len1 * 3)

11 and:[?len2 = (?len1 * 2)]])

12
13 canBecomeSupernova(?class) if

14 numberOfMethods(?class, 20)

The first rule supernova is the general entry point of
the Supernova pattern and invokes the second rule. The
second rule supernova returns all Supernova classes to-
gether with the three lengths of the classes in which they
are detected as Supernova. The first condition (line 5) of this
rule (increasedSize) verifies that the class size is increasing.
The second condition verifies that in the most recent past it
reached the minimum number of methods to be considered a
possible Supernova class (canBecomeSupernova), and after-
wards all the combinations of consecutive sizes are evaluated
to verify if the relation among the three lengths hold. In other
words, we verify that over the course of time, the size of the
class doubled and tripled, indicating the explosive growth.

The third rule canBecomeSupernova specifies the mini-
mum threshold for which we possibly consider a class a su-
pernova. For now this value is set to 20, but this can again be

interchanged with an actual value depending on the system
to which the rule is applied.

4.2 Indicators of Possible Problems
In this section, we present two examples to illustrate how
PARACHUT can be used in order to detect possible prob-
lems in an implementation based on program changes.
These experiments also show how the use of temporal pred-
icates allow us to express elegant rules.

Hash - Equals Rule
We demonstrate how we can use PARACHUT to verify a
typical Smalltalk rule of thumb. In order to ensure the correct
comparison of objects that are part of a collection, classes
in Smalltalk that implement the hash message should also
implement the = method, and vice versa. For a developer,
it might be interesting to immediately get feedback when
coding about this rule of thumb. E.g. if developers imple-
ment the = message on a particular class, getting feedback
reminding them to also implement the hash method can be
quite useful.

We emphasize that is also possible to express this exam-
ple using regular SOUL, however the main difference with
our representation is that regular SOUL is not pro-active (i.e.
does not react at the moment when the developer changes the
program).

1 classNeedsHash(?class) if

2 methodInClass(?class, =),

3 not(methodInClass(?class, hash))

4
5 classNeedsEquals(?class) if

6 methodInClass(?class, hash),

7 not(methodInClass(?class, =))

The rule classNeedsHash detects classes that have imple-
mented = and that have not implemented hash. This is done
by its two conditions (lines 2 - 3), respectively. Note that in
the moment a developer added the = method in class A, he
immediately will know that A also needs the hash method,
and such a warning will be reported until the hash method is
implemented.

The rule classNeedsEquals is the complementary rule to
classNeedsHash. It detects classes that have implemented
hash and that have not implemented =, by means of its two
conditions (lines 6 - 7).

In both rules the predicate methodInClass detects when
a method is implemented (i.e. exists) in a particular class.

Detecting possible refactoring opportunities
This example proposes two rules that detect a possible refac-
toring opportunity in the source code. If there are two meth-
ods with the same selector that belong to two sibling classes,
and if their parent class does not implement that common
selector, then this might indicate a possible refactoring op-
portunity. For example, a developer might, depending on
whether the two methods are identical, whether there are

PARACHUT 7 2009/9/11

other siblings implementing the method, and so on, decides
to introduce an abstract method, introduce an intermediate
class, or performs a push up refactoring.

1 duplicatedSelector(?classA,?classB,?method) if

2 addedMethodInClass(?classB,?method),

3 mostrecent(

4 addedMethodInClass(?classA,?method))

5
6 refactoringOpportunity(?superclass,?method) if

7 duplicatedSelector(?classA,?classB,?method),

8 subclassOf(?classA,?superclass),

9 subclassOf(?classB,?superclass),

10 not(addedMethodInClass(?superclass,?method))

To detect such possible refactoring opportunities, we define
two rules.

The rule duplicatedSelector allows us to detect when a
developer implements a method with the same name (i.e. se-
lector ?method) in two classes. This rule matches all changes
in the system in which the developer adds a new method
(using the addedMethodInClass predicate on line 2) named
?method to a particular class ?classB. A selector is consid-
ered a duplicate selector if before the addition of that method
to class ?classB, a method with the same name is also added
to a class ?classA.

The rule refactoringOpportunity detects possible refac-
toring candidates where there exists a common method
?method in two siblings, for which the parent class ?super-
class does not provide an implementation. As a first condi-
tion of this rule, the duplicatedSelector auxiliary pred-
icate we defined above will be used (line 7) to verify that
there are two classes ?classA and ?classB that implement
the method with name ?method. If these classes have the
same super class ?superclass (lines 8 and 9), and if this su-
perclass does not implement the method ?method, then this
situation is considered to be a refactoring opportunity.

Since we are using a forward chainer, a developer will
become aware while coding of such possible refactoring
opportunities. If the developer performs a refactoring, this
yet again will percolate throughout the Rete network which
will invalidate the above rule, resulting in that the refactoring
opportunity no longer is reported.

5. Related Work
5.1 Off-line analysis of source code repositories
A first group of related tools all use information available
in traditional versioning system such as CVS, SVN, and so
on, to perform an off-line analysis by using a wide range of
techniques (e.g. heuristics, metrics, algorithms, graphs). In
comparison to our approach, these tools allow only for an a
posteriori analysis of the changes. Furthermore, since they
work on snapshots of the system, the obtained changes that
are processed by these tools are generally coarse-grained.

Although a multitude of such approaches exists, we only
list a few in this section. For example there is the work of

Ying [21], where change patterns are used to analyze sets
of files that changed together in the past. DynaMine [12]
is a tool that allows for finding common error patterns from
the information available in a source code repository. Hassan
proposes the Top Ten List [7], a tool that highlights the ten
subsystems in a system that are most susceptible to contain-
ing faults in the near future based on the current states of the
project. Weissgerber and Diehl propose a technique to detect
and rank refactoring candidates from software archives [18].

5.2 On-line analysis of changes
A second group of tools use the information concerning
changes that is made available by integrated development
environments (IDEs), such as Eclipse, Pharo, VisualWorks,
etc. to monitor developers’ activity in order to perform an
on-line analysis of the system. These tools use a first-class
representation of the changes that are gathered directly from
the IDE in order to support software developers. Within the
Smalltalk community, we can discern two such approaches.
First, the SpyWare toolset by Robbes et al. [16] provides a
set of tools that use a first-class representation of changes
to support multiple program comprehension and reverse en-
gineering tasks. Second, ChEOPS [4] by Ebraert et al. uses
a first-class representation of changes as a means to record
the implementation of features in the software and to support
the composition of such features and the verification of other
possible compositions.

These approaches are complementary to the work we
have presented in this paper. As the underlying tool to record
the changes that are entered in our Rete network, we have
used the SmallBrother tool. Although this tool is able to
notify us of any changes in the source code of a system,
the degree of information that is provided by SmallBrother
is rather restricted. It would be interesting to experiment
with the change models that are proposed by SpyWare and
CheOPS to see what additional information about changes,
such as for example the annotations of changes that are
supported by CheOPS, could be made available in the query
language.

5.3 Time Warp
In earlier work we have introduced Time Warp [17]. Time
Warp is an extension of the SOUL language that offers a
means to query the history of a software system. To this end,
it leverages the information that is available in the FAMIX
meta-model for object-oriented programs and the HISMO
meta-model that represents the history of a software system.
Similar to PARACHUT, Time Warp also incorporates the
use of temporal logic in order to reason about the notion
of time that is inherent to the HISMO model. However,
since Time Warp is an extension of the SOUL language, it
suffers from the same problems with regard to supporting
pro-active software engineering tools. Furthermore, similar
to the off-line analysis tools we discussed above, the HISMO
model on which Time Warp is based offers a coarse-grained

PARACHUT 8 2009/9/11

representation of the changes, in contrast to the fine-grained
change model used by PARACHUT.

6. Conclusions and future work
In this paper we have presented PARACHUT. PARACHUT
is a novel temporal logic query language that originated
from the research of declarative meta programming at
the Vrije Universiteit Brussel. In contrast to the existing
SOUL language for reasoning over object-oriented pro-
grams, PARACHUT provides the following two innova-
tions. First, by using a forward chaining inference engine,
PARACHUT is able to support pro-active software engi-
neering tools. Rather than having to manually trigger queries
such as is the case with SOUL, changes in the source code
of an analyzed system will percolate throughout the logic in-
ference engine and novel results will immediately be shown
to users of the tool. Second, since PARACHUT has access to
a fine-grained change model of the software, it offers facili-
ties to exploit this change model by offering temporal logic
operators to reason about the temporal relations between
changes.

Although we have illustrated PARACHUT by means of a
couple of examples, these only scratch the surface of the ex-
pressive capabilities of PARACHUT. As an avenue of future
work, we therefore propose to further investigate libraries
of predicates that encode interesting knowledge that can be
presented to a developer while coding. For example, using
PARACHUT we could provide predicates that detect bad
smells, common errors, and so on and that alert a developer
pro-actively when such a bad smell or error is detected.

Furthermore — as we already discussed above — tools
such as SpyWare and CheOPS provide interesting change
models that appear to be richer than the change model we
obtained by using SmallBrother. It would be interesting to
incorporate these change models to investigate their impact
on the capabilities of PARACHUT.

Finally, in this paper we have not discussed any possible
scalability issues of our approach. However, when applied to
large systems, the use of a Rete network can result in a large
memory footprint. As such, we expect that further research
is necessary in order to provide an implementation of the
Rete that does not keep all the facts in memory, but e.g. uses
a relational database or other persistence mechanism.

Acknowledgments
Andy Kellens is funded by a research mandate provided
by the “Institute for the Promotion of Innovation through
Science and Technology in Flanders” (IWT Vlaanderen).
This research is supported by the IAP Programme of the
Belgian State.

References
[1] C. De Roover, J. Brichau, C. Noguera, T. D’Hondt, and

L. Duchien. Behavioral similarity matching using concrete

source code templates in logic queries. In ACM-SIGPLAN
Workshop on Partial Evaluation and Program Manipulation
(PEPM07), pages 92–102, 2007.

[2] D. Deridder. A Concept-Centric Environment for Software
Evolution in an Agile Contextards an Open Adaptive Devel-
opment Environment. PhD thesis, Vrije Universiteit Brussel,
Belgium, 2006.

[3] T. D’Hondt, K. De Volder, K. Mens, and R. Wuyts. Co-
evolution of object-oriented software design and implementa-
tion. In International symposium on Software Architectures
and Component Technology. Kluwer Academic Publishers,
January 2000.

[4] P. Ebraert, J. Vallejos, P. Constanza, E. Van Paesschen, and
T. D’Hondt. Change-oriented software engineering. In Pro-
ceedings of the international conference on Dynamic lan-
guages: in conjunction with the 15th International Smalltalk
Joint Conference 2007, pages 3–24, 2007.

[5] C. L. Forgy. Rete: a fast algorithm for the many pattern/many
object pattern match problem. In Proc. 18th IEEE Symp. on
Foundations of Computer Science, page 324341, Los Alami-
tos, CA, USA, 1990. IEEE Computer Society Press.

[6] K. Gybels and J. Brichau. Arranging language features for
more robust pattern-based crosscuts. In Aspect-Oriented Soft-
ware Development (AOSD), pages 60–69, 2003.

[7] A. E. Hassan and R. C. Holt. The top ten list: Dynamic
fault prediction. In Proceedings of the 21st International
Conference on Software Maintenance, September 2005.

[8] C. Herzeel, K. Gybels, P. Costanza, C. De Roover, and
T. D’Hondt. Forward chaining in halo: An implementation
strategy for history-based logic pointcuts. Elsevier Journal of
Computer Languages, Systems & Structures, 2008.

[9] M. Lanza. The evolution matrix: Recovering software evolu-
tion using software visualization techniques. In Proceedings
of IWPSE 2001 (International Workshop on Principles of Soft-
ware Evolution, page 3742, 2001.

[10] M. Lanza. Codecrawler - lessons learned in building a soft-
ware visualization tool. In In: Proceedings of CSMR 2003,
New York, pages 409–418. IEEE Press, 2003.

[11] M. Lanza. Object-Oriented Reverse Engineering: Coarse-
grained, Fine-grained, and Evolutionary Software Visualiza-
tion. PhD thesis, University of Berne, Switzerland, May 2003.

[12] B. Livshits and T. Zimmermann. Dynamine: finding common
error patterns by mining software revision histories. SIGSOFT
Softw. Eng. Notes, 30(5):296–305, September 2005.

[13] K. Mens. Automating Architectural Conformance Checking
by means of Logic Meta Programming. PhD thesis, Vrije
Universiteit Brussel, October 2000.

[14] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts. Co-evolving
code and design with intensional views: A case study. Elsevier
Journal on Computer Languages, Systems & Structures, 32(2-
3):140–156, 2006.

[15] N. Rescher and A. Urquhart. Temporal Logic. Springer-
Verlag, 1971.

[16] R. Robbes. Mining a change-based software repository. In
Procedings of the Fourth International Workshop on Mining

PARACHUT 9 2009/9/11

Software Repositories ICSE Workshops MSR ’07, pages 15–
15, 2007.

[17] V. Uquillas, A. Kellens, J. Brichau, and T. D’Hondt. Time
warp, an approach for reasoning over system histories. In
Proceedings of the joint International Workshop on Principles
of Software Evolution - Ercim Evolution workshop (IWPSE-
EVOL) (to appear), 2009.

[18] P. Weißgerber and S. Diehl. Identifying refactorings from
source-code changes. 21st IEEE International Conference on
Automated Software Engineering (ASE’06), 2006.

[19] R. Wuyts. A Logic Meta-Programming Approach to Support
Co-Evolution of Object-Oriented Design and Implementation.
PhD thesis, Department of Computer Science, Vrije Univer-
siteit Brussel, Belgium, January 2001.

[20] R. Wuyts and S. Ducasse. Unanticipated integration of devel-
opment tools using the classification model. Computer Lan-
guages, Systems & Structures, 30(1-2):63–77, 2004.

[21] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining change history.
IEEE Transactions on Software Engineering, Vol. 30, No. 9,
September 2004.

PARACHUT 10 2009/9/11

