
Christophe Scholliers, Wolfgang De Meuter
Software Languages Lab - Vrije Universiteit Brussel - Belgium

Coordination in Ambient Environments

 http://soft.vub.ac.be/~cfscholl

Transitivity

 TOTAM

 PAM Transactors

Efficien
cy

Synchr
onizat

ion

Atomici
ty

Quatre Mains

leave(msg)(2)
schedule()

(4)

ThreadPool

(5)

(7) Asynchronous call

(1)

(3)

Object

Thread executing
a message

Message

(6)

PAM

Actor

Runtime

Thread

execute(msg)

Message
(thread blocked)

Inbox

write

read

reply

read

o<-b()

schedule()

leave()

schedule() o<-a()

schedule()

leave()

(1)

(2)

(4)

(5)

(6)

T1 T2

a b

schedule()(3)

execute(b)

ba

execute(a)

Model

Motivation

Example

Motivation

O

O

{ {

Ambient References Ambient Chords

O

Async Call
Async Call

(3)

(2)(4)

(6)
(1)

(5)
Execution

Node X
Object

Return value
Invocation

Ambient

ExportO

O

Value

Value

(7)

(7)

(8)

(9)
Match

S1

S2
B

Model

xTuple Space

Descriptor

Tuple send

Descriptor send

Totam T3

Traditional T3

1

4

3

2

1

4

3

2

4

3

2

Totam T1

Traditional T1

1

4

3

2

Totam T2

Traditional T2

1

4

3

2

1

4

3

2

Motivation

Discovery

Context awareness

CommunicationPrivacy

Scarce resources

LindaLIMETOTA

Multiple TS,
Coordination
with Scopes

TeenyLIME
CAMA,L2imbo,
Evolving Tuples

TOTAM

Example

defTypeTag searchObject;
// All request items in the ambient
def ambientReference := ambient: searchObject;
//Seller One
ambientReference<-offer(new offer("Tv",150))@all;
//Seller Two
ambientReference<-offer(new offer("Radio",100))@all;

//Search protoype
def search := object: {

offer(one:[category = "tv"]),offer(two:[category="radio"])
 { |Senders|

Senders.return("I am intrested");
};

};

//Put search in the ambient
export: search as: searchObject;

Example

Motivation

def RWSched() { scheduler: {
def R := Category();
def W := Category();
def writing := false;
def readers := 0;
def schedule() {

if: !(writing) then: {
def executing := super.executeAllOlderThan(R,W);
readers := readers + executing;
if: (readers == 0) then: {

 writing := super.executeOldest(W);
};

};
};

 def leave(letter) {
 dispatchCategory: letter as:
 [[R, { readers := readers - 1 }],
 [W, { writing := false }]];
};

};};

Each tuple space has a tuple space descriptor.
Tuples are propagated to neighbours in the scope
 of the tuple.

While the actor model of concurrency is
well appreciated for its ease of use, its
scalability is often criticized. The fact that
execution within an actor is sequential
prevents certain actor systems to take
advantage of multicore architectures.

PAM relaxes event-loop-concurrency models by allowing the parallel execution of messages.

Xtofs Train Reservation

Hotel

Ticket

Seat

atomic: {
SeatReservation<-Book(day);
TicketReservation<-Book(day);

};

atomic: {
def day := Find(Hotel,Train);
Hotel<-Book(day);
Train<-Book(day);

};

1

Model

Example

Coordinating concurrent invocations from the ambient.

Model

Actor

Message

Transaction
 Log

Modelling, Verification and Evolution of Software

M VESo

Coordination of mobile
applications posses a
number of issues.
Devices should be able
to communicate with
each other without being
connected with each
other at the same time
while maintaining
privacy and limited
network traffic. Current
tuple based approaches
solve these issues
partially but none of
them solves all of them.

http://www.valerieherskowitz.com/images/photo-case_manager.jpg

