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Example

defTypeTag searchObject; 
// All request  items in the ambient
def ambientReference := ambient: searchObject;
//Seller One 
ambientReference<-offer(new offer("Tv",150))@all; 
//Seller Two
ambientReference<-offer(new offer("Radio",100))@all;

//Search protoype
def search := object: {

offer(one:[category = "tv" ]),offer(two:[category="radio"])
 { |Senders|

Senders.return("I am intrested");
};

};

//Put search in the ambient
export: search as: searchObject;
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def RWSched() { scheduler: {
def R := Category();
def W := Category();
def writing := false;
def readers := 0;
def schedule() {

if: !(writing) then: {
def executing := super.executeAllOlderThan(R,W);
readers := readers + executing;
if: (readers == 0) then: {

    writing := super.executeOldest(W);
};

};
};

 def leave(letter) {
  dispatchCategory: letter as: 
  [[R, { readers := readers - 1 }],
   [W, { writing := false }]];
}; 

};};

Each tuple space has a tuple space descriptor.
Tuples are propagated to neighbours in the scope
 of the tuple.

While the actor model of concurrency is 
well appreciated for its ease of use, its 
scalability is often criticized. The fact that 
execution within an actor is sequential 
prevents certain actor systems to take 
advantage of multicore architectures. 

PAM relaxes event-loop-concurrency models by allowing the parallel execution of messages.
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atomic: {
SeatReservation<-Book(day);
TicketReservation<-Book(day);

};

atomic: {
def day := Find(Hotel,Train);
Hotel<-Book(day);
Train<-Book(day);

};
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Coordinating concurrent invocations from the ambient.
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Coordination of mobile 
applications posses a 
number of issues. 
Devices should be able 
to communicate with 
each other without being 
connected with each 
other at the same time 
while maintaining 
privacy and limited 
network traffic. Current 
tuple based approaches 
solve these issues 
partially but none of 
them solves all of them.
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