Flexible features

Making feature modules more reusable

3
Peter Ebraert
Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussels, Belgium

pebraert@vub.ac.be

ABSTRACT

A growing trend in software construction advocates the en-
capsulation of software building blocks as features which
better match the specification of requirements. As a result,
programmers find it easier to design and compose different
variations of their systems. Feature-oriented programming
(FOP) is the research domain that targets this trend. We ar-
gue that the state-of-the-art techniques for FOP have short-
comings because they specify a feature as a set of building
blocks rather than a transition that has to be applied on a
software system in order to add that feature’s functionality
to the system.

We propose to specify features as sets of first-class change
objects which can add, modify or delete building blocks to
or from a software system. We evaluate this approach by
implementing a simple text editor in a feature-oriented way
and use the implementation to produce four different pro-
gram variations. This shows that our approach contributes
to FOP on three levels: expressiveness, composition verifi-
cation and bottom-up feature-oriented development.

Categories and Subject Descriptors

D.1.5 [Programming Techniques]: object-oriented pro-
gramming, feature-oriented programming; D.2 [Software
Engineering]: Reusable Software—coding techniques, soft-
ware verification, maintenance

General Terms

Algorithms, management, design, verification

*Research funded by a doctoral scholarship of the Institute
for the Promotion of Innovation through Science and Tech-
nology in Flanders (IWT Vlaanderen .

JrReseaurch funded by the Varibru research project initiated
in the framework of the Brussels Impulse Programme for
ICT supported by the Brussels Capital Region.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.

Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

Jorge VallejosT
Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussels, Belgium

jvallejo@vub.ac.be

Yves Vandewoude
Catholic University of Leuven
Celestijnenlaan 200A
3001 Leuven, Belgium

yves@stcham.org

Keywords

Separation of crosscutting concerns, Feature-Oriented Pro-
gramming, Change-Oriented Software Engineering

1. SOFTWARE SYSTEM VARIATIONS

A software product family is a set of variations of the
same software system. Developing all variations of a soft-
ware product family can be addressed in an ad-hoc way by
implementing one big system that contains all possible vari-
ations and which behaves differently depending on its con-
figuration. In a procedural or functional programming style,
the resulting code, however, would contain an [F-THEN
control statement at every place where the program chooses
which variant to produce. This kind of implementation lacks
modularity and reusability [13]. An object-oriented imple-
mentation would use polymorphism to implement the vari-
ation points. Then, each IF-THEN control statement is re-
placed by instantiating different subclasses of a class which
are modeling the specification of each variation. This ap-
proach would still require a significant amount of manual
labor [7]. The most important drawback of such approach,
however, is that it suffers from a combinatorial explosion
[11], as for every new funtionality, the number of variations
is multiplied by two.

A better alternative is to modularize a software system
based on the functionalities it provides. Modules which add
a functionality to the system are called features. Feature-
Oriented Programming (FOP) is the discipline that cen-
tralises features as the main development module. The
idea of FOP is to produce software variations by compos-
ing features. We find that the state-of-the-art approaches
to FOP (E.g. Mixin-layers [17], AHEAD [2], Lifting Func-
tions [14], Composition Filters [3], FeatureC++ [1] and AOP
approaches [10]) lack expressiveness and hinder the reusabil-
ity of feature modules.

None of the state-of-the-art approaches allow features to
express the deletion of software building blocks. Later in this
paper, we present an example where that is required. The
granularity the appraoches provide rarely reaches the state-
ment level and in case it does, it is limited. AHEAD, Lift-
ing Functions, Mixin-layers, FeatureC++ and most AOP
approaches do allow the specification of a feature that adds
a statement to an existing method by means of the super
call. This construct, however, only allows the expression of
a statement addition before and/or after the complete old
method behavior. With those approaches, it is not possible

to specify a feature that adds a statement between the state-
ments of an existing method. With the exception of Fea-
tureC++ and the AOP approaches, none of the above tech-
niques provide means to specify such features: they require
an alternative implementation of the crosscutting feature
depending on the features present in the composition, hin-
dering reusability. None of the approaches allow a bottom-up
approach to FOP that does not require specific language sup-
port. We believe such an approach to FOP might increase its
usability in an industrial context, where companies typically
do not want to alleviate from their development methodolo-
gies and exerted programming language.

We believe that selecting appropriates building blocks to
specify features does allow to overcome these issues of ex-
pressiveness and reusability. In the following two sections,
we propose a change-based model for FOP that does so.

2. CHANGE-BASED FOP

Other researchers pointed out the use of encapsulating
change as first-class entities. In [15] Robbes shows that the
information from the change objects provides a lot more
information about the evolution of a software system than
the central code repositories. In [4] Denker shows that first-
class changes can be used to define a scope for dynamic
execution and that they can consequently be used to adapt
running software systems. In this section, we first explain
a model of first-class changes and then show how to specify
and compose features as sets of first-class changes.

2.1 Change-Oriented Software Engineering
Change-Oriented Software Engineering (COSE) was first
introduced in [6]. It centralizes change as the main de-
velopment entity. In COSE, all operations a programmer
performs while making a software system are captured in
change objects. We illustrate COSE by an example: a

Buffer base program that follows the value object pattern
[8].

cla,ss Buffer
‘ ml?e%izg({buf)‘

Void set(int x) {
buf = x;

Figure 1: Source code (left) and change objects
(right) of the Buffer

Figure 1 shows the Java code of the Buffer feature. It
does not show what operations were performed in order
to produce this code. Actually, first the Buffer class was
added (B1). Afterwards, an instance variable called buf was
added (B1.1). Finally, the methods get (B1.2) with body
(B1.2.1) and set (B1.3) with body (B1.3.1) were added. In
COSE, these development operations are captured as first-
class change objects which are depicted in the right part of
Figure 1.

Afterwards, we extend the application with a Restore,
a Logging and a Multiple Restore feature which respec-
tively add the functionalities of restoring the value of the
buffer, logging the values of all instance variables whenever

a method of the buffer is executed and allowing the buffer to
restore more than one value. Figure 2 presents the code of
the adapted application. From left to right, the features Re-
store, Logging and Multiple Restore are implemented. The
corresponding change objects are presented in Figure 3.

class Buffer {
int buf = 0; @

class Buffer {
int buf = 05 Stack back = Stack new();
int back = 0; int getQ {
int get() L | logitO);
logitO;L1.3 return(buf);
return(buf);
class Buffer {) void set(int x) {
int buf = 0; void set(mt x){ logit();
@mt back = 0; logit(); ’bu 3 buf=x; @
int: get) | back = bee? back push(z);
return(buf); ’ }
} 3/_01 d restareO) { void restor
void set(int x) { 1ogit 113 logit(); ,
A buf = back.pop

back =buf; - :
’ buf = back;
buf = x; @
’u ,voidlogitQ { -

@vmd restore() { print(back);l L1 1\/
buf back; @ print(buf); /]_12/
} S -

} } }

void logit() {
print(ba,ck.to);
print(buf);

}

Figure 2: Source code of adding Restore (left), Log-
ging (middle), Multiple Restore (right)

OO OOOVOO O OO

Figure 3: Changes of Restore (left), Logging (mid-
dle) and Multiple Restore (right)

- |

: {AN\ \I

@ @ l’Ll 1 ’L12 ’Ll 4157 3,"
S

2.2 Explicit dependency Management

Some features depend on others in order to be able to
provide the functionality they implement. FODA diagrams
[9] (E.g; Figure 5) provide information about feature inter-
actions and express such dependencies. The dependency re-
lation is a binary relation that is transitive, anti-symmetric
and reflexive. COSE’s change objects are also related by
such a dependency relationship. All changes on which a
change ¢ depends on are called the parents of c. There are
two types of change dependencies: syntactic and semantic
dependencies [16].

Syntactic dependencies are enforced by the meta-model
of the programming language. We find that programming
language entities are related by the abstract syntax tree.
We call the dependencies that arise from this relation hi-
erarchical dependencies. We also distinguish invocative de-
pendencies: dependencies between the change that adds a
method invocation statement and the change that adds the
invoked method. An accessive dependency is found between
a change that adds an instance variable and the change that
adds an access to that instance variable. Finally, a creational
dependency exists between a change that removes or modi-

fies an entity and the change that added the entity, since an
entity can be removed only if it exists.

Consequently, a syntactic dependency is a dependency
that is needed to ensure the compilation of a program. Ex-
amples of a syntactic dependency are: a change that adds a
method depends on the change that created the class where
the method is added, or the change that adds an invocation
to a method depends on the change that added the method
that is invoked.

Semantic dependencies come from the domain knowledge.
Hence, the developer is responsable to establish these depen-
dencies. One possible semantic dependency is the common
intention of changes like the implementation of a feature.
A semantic dependency is a relation where the dependent
entity does not exhibit the desired behavior whenever the
entity on which it depends is not present in the expected
form. An example of a semantic dependence is when the
addition of an invocation to method m only exhibits correct
behavior if the body of method m is modified in a specific
way.

The syntactic dependencies between change objects are
included in the change model and presented by the arrows
in figures 1 and 3. The semantic dependencies are denoted
by grouping the change objects by their common intention:
the feature they implement (denoted by the line surrounding
the change objects).

2.3 Changes as feature building blocks

In our model, the change objects that represent the devel-
opment operations that were carried out to implement one
feature are grouped in a set of changes that represent that
feature. The dependencies between the change objects are
maintained within the change objects themselves to sensure
that the changes are aware of and can be queried for their
dependencies. Figures 1 and 3 present a view of the changes
of the complete Buffer application.

Dependencies are not confined within a single feature, but
can reach changes of other features as well. For example,
in Figure 3, changes within the Restore feature depend on
changes inside the Base feature which explicitely states that
the Restore feature depends on Base. Hence, feature depen-
dencies can be modeled by means of dependencies between
changes. Note that a well-modularized program would con-
tain only few cross-feature dependencies. The number of
cross-feature dependencies might provide a representative
metric to measure the coupling between the features of a
software system.

Because the features of the Buffer example are incremen-
tally implemented, some features do not only consist of ad-
ditions but also modifications and deletions of statements,
instance variable accesses or methods. For instance, the
Multiple Restore feature is created by modifying a state-
ment — to initialize back with an empty stack — and delet-
ing the statement that assigned buf to back and adding a
statement that invokes the push method of that stack. This
shows that our model allows the expression of features that
add, modify or remove very fine-grained building blocks like
statements.

2.4 Feature Composition

The composition of features is the mechanism that allows
the creation of a software variation based on the required
corresponding functionalities. In our approach, a composi-

validateComposition: features
features do: [:feature |
feature getChanges do: [:change |
(change isIndependent
|| change allDependenciesSatisfied)
ifTrue: [successful add: change]
ifFalse :[self depthFirstStrategy:change]

]

“List with:successful with:error

depthFirstStrategy: aChange

aChange changesOnWhichIDepend do: [:parent |
(successful includes: parent)
ifFalse: [(parent feature = aChange feature)
ifTrue: [parent isIndependent
ifTrue: [successful add: parent]
ifFalse: [depthFirstStrategy: parent]]

ifFalse: [error add: aChange]]

]

successful includesAll:
(aChange changesOnWhichIDepend)
ifTrue: [successful add: aChange]

Listing 1: Feature composition algorithm

tion C is valid if all parent changes of the change objects
of C are part of C. Hence, an invalid composition is the re-
sult of composing features that contain a change of which at
least one parent change does not reside in the composition.
Listing 1 presents an algorithm that verifies the validity of
a composition. It receives as input a list containing the fea-
tures of the required composition and the change objects
that specify the implementation of all the features. It re-
turns a list that consist of two lists. The successful list
contains the changes in the order in which they must be
applied to produce the required composition. The error
list consists of the changes that had to be omitted from the
composition because of unsatisfied dependencies.

In the best case, the order of the time complexity of this
algorithm is O(n), where n is the number of changes in the
composition. It occurs when all changes do not have de-
pendencies and can be added to the list directly without
calling the recursive method. In the worst case the order
is O(n * (n + e)) which is the result of applying n times a
depth-first search in a graph with n nodes and e edges. On
average, the order is O(n2) since the number of edges and
nodes are usually from the same order of magnitude.

The presented algorithm is naive and returns different re-
sults depending on the order in which the required features
are specified in the features parameter. In fact, it only pro-
duces a valid composition if the dependencies of the changes
of each feature are satisfied by the changes of its predeces-
sors in the features parameter. This limitation is not only
a technical issue, but is also a consequence from the way
features are specified in our model. We come back to this
issue in Section 5.

3. FLEXIBLE FEATURES

In our model a crosscutting functionality is implemented
by a feature that introduces changes that depend on changes
of more than one feature. A composition in which a fea-
ture is added without one of its dependent features is im-

mediately rejected. A quick and dirty solution would be
to provide a feature variation for each combination of the
features on which it depends. This kind of solution would
suffer from a combinatorial explosion, increase the coupling
between features and decrease reusability. We advocate an-
other solution which allows features to be partially deployed
in a composition. A feature that implements a crosscutting
functionality can be implemented as a set of changes that
does not have to be applied as a whole for a composition to
be valid. In contrast to a feature that has to be applied as
a whole (monolithic) we call features that can be partially
applied flezible features. When a flexible feature is deployed
in a composition, the composition algorithm should decide
which changes should be included to and which omitted from
the composition.

Figure 4: Compositions based on first-class changes

An example of such feature is the Logging feature in the
Buffer example (denoted by the dashed line surrounding
the change objects in Figure 4). The Logging feature con-
sists of the addition of a method which implements its main
functionality and several invocations that added to methods
introduced by other features. We argue that in such a case,
although the changes that add such invocations depend on
the changes that added the methods to which the former
change add their invocations, we should be able to omit
the former change from the composition to make it valid.
Figure 4 shows an example of a valid composition of Base
and Logging (on the right). Since in this composition, the
Restore feature is not present, the changes L1.2 and L1.5
from the Logging feature that depend on changes R1 and
R.2 are omitted, allowing to produce a valid composition.

Use of flezible features is not confined to describing cross-
cutting functionality. For instance, a feature that imple-
ments a facade pattern [8], would add a class and a method
for each complex service. It can be conveniently described
by a flexible feature allowing to be composed with a set of
features which not necessarily include all the services that
the facade class references. In a composition, the facade
class will provide only the methods which functionality is
indeed present in the composition.

Specifying a feature as flexible has to do with the seman-
tics of the feature and must be done manually by the devel-
oper. If a developer classifies a feature as flerible, this fea-
ture will be able to be included in all compositions. Compos-
ing a feature that was erroneously specified as flexible would
yield a useless program. Consequently, programmers should
understand the responsibility that comes with the power of
flexible features. Note that the compilation of the resulting
program can still be ensured by the syntactic dependencies
between the change objects as we explain below.

3.1 Compositions of Flexible features

In order to incorporate flexible features in our composition
model, the composition algorithm of Listing 1 is adapted.
The validateComposition method is provided with an ex-

validateComposition: features
features do: [:feature |
feature getChanges do: [:change |
(change isIndependent
|| change allDependenciesSatisfied)
ifTrue: [successful add: change]
ifFalse :[self depthFirstStrategy:change]

]

“List with:successful with:error with:warning

depthFirstStrategy: aChange
aChange changesOnWhichIDepend do:[: parent |
(successful includes: parent)

ifFalse: [(parent feature = aChange feature)
ifTrue: [parent isIndependent
ifTrue: [successful add: parent]

ifFalse: [depthFirstStrategy: parent|]

ifFalse: [aChange feature = #Flexible
ifTrue: [warning add: aChange]
ifFalse: [error add: aChange]

J]
]

successful includesAll:
(aChange changesOnWhichIDepend)

ifTrue: [successful add: aChange].
error size > 0
ifTrue: [warning removeAll]

~/

Listing 2: Improved feature composition algorithm

tra list for storing the changes that are omitted when de-
ploying a flexible feature that contains changes with unsat-
isfied dependencies. The depthFirstStrategy method is
also adapted in such a way that, whenever a change of a
flexible feature has an unsatisfied dependency, it is omit-
ted from the successful list and added to the warning list.
Listing 2 presents the improved composition algorithm that
can be used to compose flexible features. It has the same
order of time complexity as the previous version.

4. EVALUATION

In this section, we evaluate our model by implementing
FOText: a Feature-oriented implementation of a word pro-
cessor. We expect our model to allow the expression of
additions, modifications and deletions of building blocks up
to the level of a single statement. We expect our model to
allow a customised deployment of flexible features without
braking the validity of a composition. Finally, we assess
that our approach to FOP indeed does not require addi-
tional language support and as such allows bottom-up FOP
development.

4.1 FOText design

The FOText application provides a graphical interface in
which users may type and edit texts. It also provides a
menu — launched by the right mouse button — that allows
the execution of the editing functions that are provided by
FOText. FOText adheres to the Model- View-Controller de-
sign pattern [§].

Figure 5 presents the different features of the FOText ap-
plication and the relations amongst them. Features such
as: New, Open, Save, SaveAs, Print, Copy-Cut-Paste, Find,
SelectAll and Help are self explaining. The Compress fea-

FOText

File Print Help Compress Status_Title Edit

Open
Quit Save Find
New SaveAs SelectAll Copy-Cut-Paste

Rationale

compositionTtule The Compress is useful for low

resource environments. It would be
composed with the Open or Save
Open requires Save, SaveAs features.

Paste requires Copy, Cut

The Status_Tile feature would be
composed with the Open, Save or
New features.

Figure 5: FODA diagram of FOText

ture provides the the ability to compress the text files be-
fore they are saved, and decompresses them before they are
opened. The Status Title feature displays the name of the
opened file and the name of the file that is being saved in
the title bar of the FOText window. It also clears the win-
dow title bar when the user starts a new file. We specify the
latter two as flexible while the former nine are specified as
monolithic.

TextEditorController Editor ApplicationWindow

+applicationNamed — — — =
<<USEs>

+execute() \

N
/

|
Y
/ I ==use=
/ |
EditorController \

4 I
KeyboardProcessor

-theFileName <<lse>> <c<usgs>

+finchVindow () F
+savehlow(]) / I
+setlabel{ aString)
+menul)

+about()

+new()

+open()

+prirt()

+quit()

+zave()

+savels()

4
TextEditorView

Figure 6: Class diagram of FOText

The UML class diagram of the complete FOText appli-
cation is presented in Figure 6. The main class Editor
has a method execute that produces an instance of the
class ApplicationWindow. It provides the window to dis-
play and edit text. The execute method also creates an
instance of the class TextEditorView which is linked to an
instance of the EditorController and KeyboardProcessor
classes. The EditorController inherits from the Smalltalk
class TextEditorController and adds several functionali-
ties such as a method menu which is used to launch the FO-
Text methods that implement the different features. The
KeyboardProcessor captures the events originated from the
keyboard and is linked to an ApplicationWindow to embed
the text area into the window.

4.2 FOText implementation
We implemented FOText in a standard object-oriented

way in our favorite programming language and IDE: Visual-
Works for Smalltalk and used the ChEOPS tool [5] to log our
development operations as first-class change entities. At the
beginning of the development of a new feature, we informed
the IDE of its ID and type (flexible or monolithic). By doing
that, our tool is capable of keeping track of what changes
the features consist of. From the moment the changes are
captured in first-class objects, they can be used to compose
features and produce a family of program variations. Table
1 shows some statistics about the number of changes and
dependencies that were captured. Note that the numbers of
changes and dependencies are about the same size resulting
in an average time complexity of O(n?).

Feature # changes | # dependencies
Base 130 158
SaveAs 88 106
Save 65 74
Open 101 121
Copy_Cut_Paste 72 82
Find 86 98
SelectAll 89 102
Print 182 226
Help 137 154
Status_Title 159 193
Compress 151 147
Total 1260 1362

Table 1: Statistics of the size of FOText

The Base feature provides the main functionalities: a ba-
sic word processor that provides a window to type text and
a menu with two features: New and Quit. To this base pro-
gram, we incrementally add the implementation of the other
features. Most of those features add a new method to the
menu of the FOText application. Some of them, however,
also introduce modifications (e.g. the Open feature modifies
the menu method introduced by the Base feature) and dele-
tions (e.g. the Compress feature deletes several statements
and introduce new ones within existing methods).

£+ Add new class "Smalltalk_Editor” to package "FOText"
=4 Add InheritanceDefinitions
Add new empty instance method "initialize” to class "Editor”
Add new empty class method "new" to class "Editor”
i Add new empty class method "new” to class "Editor”
Add new empty class method "applicationName” to class "Editor”
_ Add new empty class method "applicationName: anObject” to class "Editor”

- Add new parameter to behavioural entity "applicationName: anObject” == anObject
Add assignment to behavioral entity "Editor applicationName " => write value of "anObject”
& Add new empty instance method "execute” to class "Editor”
Add new class "Smalltalk.EditorController” to package "FOText”
Remove empty class method "new” from class "Editor”
Remove invocation from behavioral entity "Editor new” =» *super new initialize
“4p Remove empty class method "new” from class "Editar”
£+ Remove invocation from behavioral entity "Editor.new” »> super new
i Remove invocation from behavioral entity "Editor.new” == *super new initialize
L@ Remove empty class method "new” from class "Editor”

Figure 7: FOText: List of logged changes

Figure 7 presents a ChEOPS view which hierarchically
presents the change objects that were captured implement-
ing the Base feature. It contains additions and deletions
of classes, methods, instance variable and statements. This
shows that (a) our model is capable of expressing features
that include deletions of program building blocks, (b) our
model allows features to specify operations up to the level
of statements and (c) that our approach allows to do FOP

while programming in an ordinary object-oriented program-
ming language.

4.3 Feature Composition

Our model allows the composition of a program varia-
tion by specifying the features that variation should include.
Some compositions, however, are not possible due to unsat-
isfied dependencies. Thanks to the fine-grained level of fea-
ture specification, our tools can check wether a composition
is valid. In case it is not, they can assist in resolving the
conflict.

We implemented an extension to ChEOPS that includes
the notions of monolithic and flexible features, the compo-
sition algorithm and a graphical engine that can produce
diagrams such as those depicted in Figures 8 - 11. As a
base for the graphical framework, Mondrian [12] was used.
In this section, we present four compositions which demon-
strate that our model and tools provide support to do FOP
and that they increase the reusability of features.

4.3.1 A valid composition

In this first scenario, we want a variation of FOText that
includes all features. Our tool informs that this composi-
tion is valid and depicts the change composition graph of
Figure 8.

Figure 8: Composition of all features

This composition involves 11 features which are specified
by 1260 changes. The time required to display the diagram
in Figure 8 was 281873 milliseconds (approximately 5 min-
utes) with a computer with 2GB of RAM and a processor
that clocks at 1.66GHZ. A closer inspection learned us that
our composition algorithm validated the composition in only
183 milliseconds and that the remaining 281690 milliseconds
were used by Mondrian for lay-outing all change objects.

4.3.2 Aninvalid composition

The second composition involves the Base and Save fea-
tures. Figure 9 depicts the result of this composition: The

changes belonging to the Base and Save features are respec-
tively depicted as red and green circles. The black nodes
represent the change objects from the error list: changes
that belong to the features in the composition which have
at least one unsatisfied dependency.

Figure 9: Composition of Base and Save

The graphical view of Figure 9 can be used to assist pro-
grammers to debug their compositions. By inspecting the
black nodes of the diagram in Figure 9, one can find out that
there are four changes from the Save feature that depend on
changes of the SavesAs feature. Consequently, in this imple-
mentation of FOText, the Save feature cannot be included
in a composition without including the SavesAs feature.
In case this is not desired, the developer can use the fine-
grained information of the inspected black first-class change
objects to adapt the implementation of the concerned fea-
tures.

4.3.3 Valid compositions by means of flexible features

Our approach provides flexible features which are deployed
in a specific way depending on the composition they belong
to. Consequently, a flexible feature provides a customized
functionality depending on the features that are present in
a composition. In the third and fourth scenario, we demon-
strate this by composing the flexible Compress feature with
different features.

We first compose Compress with the Base and SaveAs fea-
tures. Figure 10 shows this composition: Changes belonging
to Base, SaveAs and Compress are respectively depicted as
green circles, blue circles and yellow boxes. Note that Figure
10 contains a gray node that belongs to the Compress fea-
ture, but that will not be applied due to its dependency to
a change that does not reside in the composition (a change
of the Open feature).

In the final composition, we add the Compress feature
to a viewer version of FOText which is composed by the
Base and Open features. The result of this composition is
depicted by Figure 11. Changes of Base, Open and Compress
are respectively depicted as green circles, blue circles and

Figure 10: Composition of Base, SaveAs and Compress

yellow boxes. In this composition, several changes of the
flexible Compress feature are grayed out and omitted from
the composition (because they depend on changes of the
SaveAs feature).

A closer inspection of the gray entities of both figures
learns us that different change objects of the Compress are
concerned: C259 in Figure 10 and C261, C258, C229 in Fig-
ure 11. This shows how our approach and tools automati-
cally customize flexible features to make compositions valid.
It shows how this technique allows compositions that would
not be permitted by other FOP approaches, but which do
make sense. Consequently, this shows how our model allows
a customized feature deployment, improving the reusability
of features.

5. CONCLUSIONS AND FUTURE WORK

Procedural, functional and object-oriented programming
languages do not provide enough means to cope with soft-
ware variations. Adding a functionality to a family of soft-
ware variations by means of such a language can only be
accomplished by implementing the solution directly into the
code of each variation. That solution suffers from a combi-
natorial explosion and hinders reusability [11].

A better approach is to use Feature-Oriented Program-
ming (FOP), which allows the production of software vari-
ations by composing features. In FOP a feature is a mod-
ular building block that adds a functionality to a system.
The state-of-the-art approaches to FOP lack expressiveness
which is manifested by four problems we identified. All ap-
proaches specify features only by the addition or modifica-
tion of software building blocks. Moreover, the granularity
they provide rarely reaches the statement level. Thirdly,
none of them allow a bottom-up approach to FOP that does
not require a specific language support. Finally, most of

Figure 11: Composition of Base, Open and Compress

them do not provide means to manage features that imple-
ment crosscutting functionalities. We believe that specifying
features by means of change objects allow us to overcome
these issues.

We propose a change-based approach to FOP based on
the Change-Oriented Software Engineering model [6]. In
our model, features are specified by a set of changes that
have to be applied in order to implement the functionality
that feature offers. Changes model the operations (addition,
modification and deletion) of all kinds of software building
blocks (classes, methods, instance variables and statements).
Changes are instrumented with explicit dependencies which
provide information about the validity of feature composi-
tions.

We introduce flexible features as an appropriate concept
for modeling crosscutting features. A flexible feature is spec-
ified by a set of changes that does not have to be applied as
a whole in order to add the feature to a composition. We
present a composition verification algorithm that is capa-
ble of automatically customizing flexible features in such a
way that they never make a composition invalid. This im-
proves the reusability of features as they can be added to
any composition without having to adapt them.

We provide an implementation based on ChEOPS [6] that
captures the changes as first-class entities and that allows
the programmer to compose features. We also provide a
graphical tool based on Mondrian [12] that might assist in
debugging invalid compositions.

We evaluate our approach by implementing FOText (a
simple word processor) in a standard object-oriented pro-
gramming environment. We incrementally add eleven func-
tionalities to FOText of which two are specified as flexible
features. We use our tools to capture the development op-
erations in first-class change objects and produce four com-
positions of which we evaluate the validity.

The evaluation shows that our model overcomes the four
drawbacks we found in the state-of-the-art approaches () but

also reveals two opportunities for future work. First, the
evaluation shows that the usability of our graphical tools
decreases when the number of changes grows. This insinu-
ates that our model does not scale up. In order to tackle
this issue, one track of feature work is to introduce filters
that provide a customized view on the change objects, hid-
ing away unwanted level of detail. Second, the order in
which the features of a composition are specified influences
the result of the composition validity. The second track of
future work consists in overcoming this undesirable effect.
The problem can be partially tackled by adapting the com-
position algorithm. In order to fully overcome it, however,
a conceptual adaptation of our change-based model is re-
quired. In the current version, flexible features are specified
by an extensive set of changes, rather than an intensive de-
scription of that set. We envision to include higher-order
changes to represent intensions like: ” Add an invocation to
method m in all methods of class C”. This will again increase
feature reusability.

6. ACKNOWLEDGMENTS

We want to thank dr. Pascal Costanza and dr. Patrick
Heymans for their vauable feedback with regards to this
research. Also, we would like to acknowledge Leonel Merino,
who performed most of the evaluation of our FOP approach.
Finally, we want to thank the IWT and the Brussels Capital
Region who financed this research.

7. ADDITIONAL AUTHORS

Additional authors: prof. dr. Theo D’Hondt (Vrije Uni-
versiteit Brussel, email: tjdhondt@vub.ac.be), prof. dr.
ir. Yolande Berbers (Katholieke Universitei Leuven, email:
yolande@cs.kuleuven.be).

8. REFERENCES

[1] S. Apel, T. Leich, M. Rosenmdiller, and G. Saake.
Featurec++: On the symbiosis of feature-oriented and
aspect-oriented programming. In R. Gliick and M. R.
Lowry, editors, GPCE, volume 3676 of Lecture Notes
in Computer Science, pages 125-140. Springer, 2005.

[2] D. S. Batory. A tutorial on feature oriented
programming and the ahead tool suite. In GTTSE,
pages 3-35, 2006.

[3] L. Bergmans and M. Aksit. Composing crosscutting
concerns using composition filters. Comm. ACM,
44(10):51-57, 2001.

[4] M. Denker, T. Girba, A. Lienhard, O. Nierstrasz,

L. Renggli, and P. Zumkehr. Encapsulating and
exploiting change with changeboxes. In ICDL ’07:
Proceedings of the 2007 international conference on
Dynamic languages, pages 25-49, New York, NY,
USA, 2007. ACM.

[5] P. Ebraert, J. Vallejos, P. Costanza, E. Van
Paesschen, and T. D’Hondt. Change-oriented software
engineering. In ICDL ’07: Proceedings of the 2007
international conference on Dynamic languages, pages
3-24, New York, NY, USA, 2007. ACM.

[6] P. Ebraert, E. Van Paesschen, and T. D’Hondt.
Change-oriented round-trip engineering. Technical
report, Vrije Universiteit Brussel, 2007.

[7] D. B. Ed Jung, Chetan Kapoor. Automatic code
generation for actuator interfacing from a declarative

specification. In International Conference on
Intelligent Robots and Systems, 2005. (IROS 2005).
2005 IEEE/RSJ, pages 2839 — 2844, 2005.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, 1994.

[9] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-oriented domain analysis
(foda) feasibility study. Technical report,
Carnegie-Mellon University Software Engineering
Institute, November 1990.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented
Programming. Springer-Verlag, June 1997.

[11] T. Mé&nnist6, T. Soininen, and R. Sulonen. Modeling
configurable products and software product families.
In in Proc. of the International Joint Conference on
Artificial Intelligence (IJCAI-2001) - Workshop on
Configuration, 2001.

[12] M. Meyer, T. Girba, and M. Lungu. Mondrian: an
agile information visualization framework. In SoftVis
’06: Proceedings of the 2006 ACM symposium on
Software visualization, pages 135-144, New York, NY,
USA, 2006. ACM.

[13] S. Nakkrasae and P. Sophatsathit. A formal approach
for specification and classification of software
components. In SEKFE ’02: Proceedings of the 14th
international conference on Software engineering and
knowledge engineering, pages 773780, New York, NY,
USA, 2002. ACM.

[14] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. Lecture Notes in Computer Science,
1241:419-434, 1997.

[15] R. Robbes and M. Lanza. A change-based approach to
software evolution. Electronic Notes in Theoretical
Computer Science, pages 93-109, 2007.

[16] B. G. Ryder and F. Tip. Change impact analysis for
object-oriented programs. In PASTE ’01: Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering,
pages 46-53, New York, NY, USA, 2001. ACM.

[17] Y. Smaragdakis and D. Batory. Mixin layers: An
object-oriented implementation technique for
refinements and collaboration-based designs. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 11(2):215-255, 2002.

