Feature-oriented programming based on first-class changes

Peter Ebraert®, Theo D’Hondt
Programming Technology Lab — Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Brussel, Belgium
pebraert@vub.ac.be, tjdhondt@vub.ac.be

Abstract

A growing trend in software construction advocates the
encapsulation of software building blocks as features which
better match the specification of requirements. Feature-
oriented programming (FOP) is the research domain that
targets this trend. We argue that the state-of-the-art ap-
proaches to FOP are not satisfactory because they only pro-
vide top-down methodologies to FOP. We propose to specify
features as sets of first-class change objects which can add,
modify or remove building blocks to or from a software sys-
tem. We present ChREOPS, a proof-of-concept implementa-
tion of this approach and use it to show how this enables
bottom-up FOP.

1 Feature-oriented programming

Feature-oriented programming (FOP) is a programming
paradigm that targets the separation of concerns [15]. In
FOP, every concern is modularised as a separate feature:
a first-class entity that forms the basic building block of
a software system [4]. Features satisfy intuitive user-
formulated requirements on the software system and can be
composed to form different variations of the same software
product [2, 3].

Aspect-oriented programming (AOP) [12] is another
such programming paradigm. Aspects focus on the quan-
tification — by specifying predicates that identify join points
at which to insert code. Feature implementations are much
closer to framework designs. That is, to add a feature to
a framework, there are predefined building blocks that are
to be extended or modified. In such designs, there is lit-
tle or no quantification, but there are indeed “cross-cuts”.
Mixin Layers [17], AHEAD [5], FeatureC++ [1], Compo-
sition Filters [6] and Delegation Layers [14] are state-of-

*Research funded by a doctoral scholarship of the IWT Vlaanderen and
by the Varibru research project initiated in the framework of the Brussels
Impulse Programme for ICT supported by the Brussels Capital Region

the-art approaches to FOP that implement features by cross-
cuts.

The commonality between all these approaches is that
they all (a) allow a top-down methodology to FOP. This
means that, in order to do FOP with one of those ap-
proaches, the development methodology has to foresee fea-
ture modularisation from the start. We propose an approach
that provides a bottom-up methodology to FOP which can
be applied on any programming language and interactive
development environment (IDE). We believe that this might
popularise FOP in industry, where people do not want to
deviate from their development methodologies and environ-
ments.

2 Change-oriented programming

In [9] and [10] we propose change-oriented program-
ming (ChOP): an approach that centralises change as the
main development entity. Some examples of developing
code in a change-oriented way can be found in most IDEs:
the creation of a class through interactive dialogs or the
modification of the code by means of an automated refac-
toring. ChOP goes further than that, however, as it requires
all building blocks to be created, modified or deleted in a
change-oriented way (e.g. adding a method to a class, re-
moving a statement from a method, etc).

Together with us, other researchers pointed out the use of
encapsulating change as first-class entities. In [16], Robbes
shows that the information from the change objects provides
alot more information about the evolution of a software sys-
tem than the central code repositories. In [7], Denker shows
that first-class changes can be used to define a scope for
dynamic execution and that they can consequently be used
to adapt running software systems. In this section, we first
explain how ChOP works in practice. Then, we show how
ChOP enables a bottom-up FOP methodology that allows
a language-independent de- and re-composition of software
systems.

2.1 First-class change objects

In [9], we explain how a software system can be speci-
fied by a set of first-class change-objects that represent the
development actions that have to be taken to produce that
system. A classic way to obtain the changes between two
versions of a software system is based on the executing of
the Unix diff command on the abstract syntax tree of the
source code of both versions. Xing et al describe how this
is done in [19]. Another way is to log the developer’s ac-
tions in the IDE. In order to do that, the IDE needs to be
instrumented with functionalities to capture these actions in
first-class change objects. We opt for the latter approach
since it provides a more complete overview of all develop-
ment actions [16].

class Buffer
b Buffer

. 4 rte%ii(rz({bu_f) ./' ‘\.
I @3 6 @

v01d set(intx) {
buf = x;

}
}

Figure 1. Buffer: (left) source code (right)
change objects

Figure 1 shows the source code (on the left) of aBuffer
application. The change objects that represent the incre-
mental development actions taken to implement that version
of the Buf fer are depicted on the right. Those objects are
identified by a unique ID: B1 is a change that adds a class
Buffer, B1.2.1 is a change that adds an access of the
instance variable buf.

The dependencies between change objects are also main-
tained: B1.2.1 depends on the change that adds the
method to which buf is added (B1.2) and on the change
that adds the instance variable that it accesses (B1.1). We
distinguish between two kinds of dependencies: syntactic
dependencies — imposed by the meta-model of the used pro-
gramming language and exemplified above — and semantic
dependencies — that depend on domain knowledge and ex-
emplified in the following section.

2.2 Specifying features

The implementation of a functionality, yields a set of
change objects that are related by the functionality they im-
plement. Consequently, the specification of a feature boils
down to the grouping change objects. Figure 2 shows two
functionalities that we add to the buffer: Restore allows
the buffer to restore its previous value, Logging makes
sure that all methods of the buffer are logged when exe-
cuted. The change objects of each functionality are sur-

rounded with a line: The red changes represent a feature that
implements the Restore functionality, the blue changes
represent a feature that implements the Logging function-
ality. Note that some dependencies do not reside within one
feature. The number of such dependencies might provide a
representative metric to measure the coupling between the
features of a software system.

class Buffer {
int buf = 0; ’
int back = 0; @
int getQ) -
logitO;LL3 (R2)
return(buf); @

class Buffer { }
void set(int x) {

int buf = 0; set(nt ®@) @)

int back = 0; Lofglt((}%l.4_, =

int getQ { S ’ ’
return(buf); buf=x; @ @

} \)mid restargO {

void set(int x) { logit();fi15
back = buf; b
g buf = back;
buf = x; @

) (LT voidlogit) { -y | - JANNS - !
@vmd restore() { "~ print(back);L1y :@1.1,(L1.2,@1.4,J_1.5,\1_1.3,,'
buf = back; .@ print(buf);q; N ¥ ¥
} } A
} }

DOOOO

Figure 2. (left) Restore source code, (middie)
Logging source code, (right) change objects

TTAaAT Ny oo AY
|

«wry_Logging

14
|
|

The dashed line grouping Logging’s changes does not
only denote that these changes implement the Logging
feature, but also that Logging is a flexible feature. The dif-
ference between flexible (dashed line) and monolithic fea-
tures (full line) is that the latter can only be composed as a
whole, while the former can be composed partially as elab-
orated on below.

2.3 Software composition

In FOP, variations of a software system may be produced
by specifying a composition of the required features. In
our model, a feature composition is valid if the union of
the change sets that implement the features in that compo-
sition does not contain a change that has a dependency to a
change object that is not in the composition. Following this
definition, adding a flexible feature (like Logging) to a com-
position is always possible, as the change objects from such
feature could be excluded from the composition in case they
would have a dependency to a change object that is not in
the composition.

Change objects and the dependencies amongst them can
be visualised by a directed acyclic graph. The left part of
Figure 3 shows the graph of a Buf fer with the Restore
and Logging features. Change objects with a red full line
belong to the monolithic Rest ore feature. Change objects
with a blue dashed line belong to the flexible Logging.

1\) ’13.4\, fna’l’ﬁ
S ST

Figure 3. Composition based on first-class
changes

The right part of Figure 3 presents a composition of a
Buffer with Logging. L12 and L15 would cause the
composition to be invalid (according to the definition of va-
lidity given above). The problem is that those changes re-
spectively depend on R1 and R2 which are not in the com-
position. The semantic information stating that Logging
is flexible, allows the exlusion of L.11 and L15 from the
composition. This results in a valid composition that speci-
fies a buffer with a logging feature. The information about
what changes are not going to be applied (L11 and L15)
and the information about what actions can be taken to in-
clude those changes (R1 and R2) can be presented to the
developer to assist in fixing composition bugs.

3 Proof-of-concept implementation

Change and evolution-oriented programming support
(ChEOPS) is an IDE plugin for VisualWorks, which we
created as a proof-of-concept implementation of ChOP.
ChEOPS fully supports ChOP but also has the capability
of logging developers producing code in the standard OO
way. Behind the scenes, ChEOPS produces fine-grained
first-class change objects that represent the development ac-
tions taken by the developer. The UML class diagram of the
model’s core is presented in Figure 4.

We identify three possible actions a developer can take to
produce software systems: the addition, the removal and the
modification of software building blocks. We model those
commands with the classes Add, Remove and Modify re-
spectively. Together, they form the concrete commands of
the Command design pattern [11]. The Atomic Change
class plays the role of the abstract Command class in the
Command design pattern. Next to that, it also fullfils the
responsibilities of the Leaf participant in the Composite de-
sign pattern [11]. A Composite Change is composed of
Changes (which can in their turn be of any change kind),
that have to be applied as a transaction.

The syntactic dependency relation between changes is
modeled as a many-to-many relationship from Change to
Change. For speed optimisation, syntactic dependencies
are maintained in both directions. Every Change maintains
a reference to all changes that it syntactically depends on
and to all changes that syntactically depend on it. As for the

Feature Cha[nge changesOnWhichlDepend
id timeStamp
typeI hanges ?sAppIied
ﬁﬁzg feature| .:sz:n dependentChanges
parent [gpply -
undo affectingChanges
composites
Composite Atomic Subject
Change Change changeSubject
LT » add
apply apply remove
undo undo modify
Add Modify Remove FamixObject
sourceAnchor
apply apply apply commentsAt
undo undo undo

Figure 4. ChEOPS - Core Model

semantic dependencies, they are maintained by a reference
from Change to Feature. Feature is a collection class
that has a unique name, a type (Flexible or Monolithic) and
a set of changes of which it consists. ChEOPS maintains the
syntactic dependencies in an automatic way and supports
semantic dependencies by allowing the grouping of change
objects in a set that implements one feature.

The Subject of the change is a building block of the
programming language used to develop the software sys-
tem. The different building blocks of a programming lan-
guage are specified by the meta-model of that programming
language. As a meta-model, we choose the FAMOOS In-
formation Exchange (FAMIX) model because (a) it allows
the expression of building blocks till the level of statements
and (b) it provides a generic model to wich most class-based
programming languages (e.g. Java, C++, Ada, Smalltalk)
adhere.

belongsToClass

belongsToClass

InheritanceDefinition

invokedBy S Method ’ | Attribute
candidates drl'u\w-lﬂn{ i accessos
Invocation Access

Figure 5. Famix - Core Model

FAMIX was created to support information exchange
between interacting software analysis tools by capturing
the common features of different object-oriented program-
ming languages needed for software re-engineering activ-
ities [8, 18]. Figure 5 shows that the core of the FAMIX
model consists of Classes, Methods, Attributes and rela-
tions between them. Thanks to the Invocation and
Access relations, our model allows the specification of
changes on the level of granularity of statements.

4 Advantages

The major advantage of specifying features by change
objects is that it enables a methodology for bottom-up FOP.
Instead of having to design a complete feature-oriented ap-
plication up-front (top-down), our approach allows the de-
velopment of such an application in a standard OO way af-
ter which functionalities are decomposed in feature mod-
ules (bottom-up). In [13], Liu shows that Ahead can also be
used to do bottom-up FOP, but that it requires manual anno-
tation of all building blocks with information that denotes
the feature that building block belongs to. That is a tedious
task in comparison to our approach.

A second advantage of our approach is its expressive-
ness. While in the state-of-the-art approaches to FOP, a
feature can only be specified as a set of program building
blocks that might extend or modify existing building blocks,
our approach also allows the specification of deletion of
building blocks. Finally, our approach is applicable to any
programming language that has a meta-model specifying
its building blocks and the syntactic dependencies amongst
them. The decomposition of programs in feature modules
that contain changes and the recomposition algorithms to
produce valid software variations are unaffected by the as-
serted programming language.

5 Conclusions

We present feature-oriented programming (FOP) as a
good development technique to modularize software sys-
tems. We find the state-of-the-art approaches to FOP
not satisfactory because they only provide top-down ap-
proaches to FOP. We present a model of first-class changes
which can add, modify or delete building blocks to or from a
software system. We propose to specify features in terms of
those changes. The dependencies between the change ob-
jects provide the necessary information to validate feature
compositions. We present ChEOPS, a proof-of-concept im-
plementation of our approach and show how it can be used
to do bottom-up FOP and conclude that other advantages of
our approach include its expressiveness and applicability to
any programming language.

References

[1] S. Apel, T. Leich, M. Rosenmiiller, and G. Saake. Fea-
turec++: On the symbiosis of feature-oriented and aspect-
oriented programming. In R. Gliick and M. R. Lowry, ed-
itors, GPCE, volume 3676 of Lecture Notes in Computer
Science, pages 125-140. Springer, 2005.

[2] D. Batory, L. Coglianese, M. Goodwin, and S. Shafer. Cre-
ating reference architectures: an example from avionics. In
SSR ’95: Proceedings of the 1995 Symposium on Software
reusability, pages 27-37, New York, NY, USA, 1995. ACM.

[3] D. Batory and S. O’Malley. The design and implementation
of hierarchical software systems with reusable components.
ACM Trans. Softw. Eng. Methodol., 1(4):355-398, 1992.

[4] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. In Proceedings of the 25th Interna-
tional Conference on Software Engineering, pages 187-197,
Washington, DC, USA, 2003. IEEE Computer Society.

[5] D. S. Batory. A tutorial on feature oriented programming
and the ahead tool suite. In GTTSE, pages 3-35, 2006.

[6] L. Bergmans and M. Aksit. Composing crosscutting con-
cerns using composition filters. Comm. ACM, 44(10):51-57,
2001.

[7] M. Denker, T. Girba, A. Lienhard, O. Nierstrasz, L. Renggli,
and P. Zumkehr. Encapsulating and exploiting change with
changeboxes. In ICDL ’07: Proceedings of the 2007 inter-
national conference on Dynamic languages, pages 25-49,
New York, NY, USA, 2007. ACM.

[8] S.Ducasse and S. Demeyer. The FAMOOS Object-Oriented
Reengineering Handbook. University of Bern, 1999.

[9] P. Ebraert, J. Vallejos, P. Costanza, E. Van Paesschen, and
T. D’Hondt. Change-oriented software engineering. In
ICDL °07: Proceedings of the 2007 international confer-
ence on Dynamic languages, pages 3—24, New York, NY,
USA, 2007. ACM.

[10] P. Ebraert, E. Van Paesschen, and T. D’Hondt. Change-
oriented round-trip engineering. Technical report, Vrije Uni-
versiteit Brussel, 2007.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, 1994.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In M. Aksit and S. Matsuoka, editors, //th Eu-
ropeen Conf. Object-Oriented Programming, volume 1241
of LNCS, pages 220-242. Springer Verlag, 1997.

[13] J. Liu, D. Batory, and C. Lengauer. Feature oriented refac-
toring of legacy applications. In ICSE ’06: Proceedings of
the 28th international conference on Software engineering,
pages 112-121, New York, NY, USA, 2006. ACM.

[14] K. Ostermann. Dynamically composable collaborations
with delegation layers. In ECOOP '02: Proceedings of the
16th European Conference on Object-Oriented Program-
ming, pages 89-110, London, UK, 2002. Springer-Verlag.

[15] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Comm. ACM, 15(12):1053-1058, dec
1972.

[16] R.Robbes and M. Lanza. A change-based approach to soft-
ware evolution. Electronic Notes in Theoretical Computer
Science, pages 93—-109, 2007.

[17] Y. Smaragdakis and D. Batory. Mixin layers: An object-
oriented implementation technique for refinements and
collaboration-based designs. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), 11(2):215—
255, 2002.

[18] S. Tichelaar. Modeling Object-Oriented Software for Re-
verse Engineering and Refactoring. PhD thesis, University
of Bern, 2001.

[19] Z. Xing and E. Stroulia. Umldiff: An algorithm for object-
oriented design differencing. In Proceedings of the 20th
International Conference on Automated Software Engineer-
ing, 2005.

