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Abstract: Patterns have been proved useful in many problem domains. In the do-
main of software evolution, only behaviour-preserving patterns (e.g. refactorings)
have ever been proposed. This paper proposes to broaden the scope of change pat-
terns by means of a reification of any evolution efforts into styles. We define an
evolution style as a first-class entity which is specified once and can be applied
many times. Evolution styles allow the specification of (non) behaviour-preserving
change patterns. We exemplify the use of the evolution style concept by means of
two applications which evolve in a style-based way.

Keywords: Evolution styles, Change patterns

1 Introduction

It was Christopher Alexander, who first introduced the idea of capturing design ideas as patterns
[AIS77]. Being an architect, he was constantly confronted with similar problems concerning the
design of buildings and cities. For not having to re-solve similar problems over and over again,
he came up with patterns, which recorded the design decisions taken by many builders in many
places over many years in order to resolve a particular problem. In the late eighties, patterns
were introduced in the field of software design [BC87]. Design patterns for example, gained
popularity in computer science after the book Design Patterns: Elements of Reusable Object-
Oriented Software was published in 1994 by Gamma et al [GHJV94]. They defined a design
pattern as a general repeatable solution to a commonly occurring problem in software design.

Two decades ago, Opdyke introduced patterns in the domain of software evolution [Opd92].
A few years later, Fowler took up on that track and defined a “pattern” as an idea that has been
useful in one practical context and will probably be useful in others [Fow97]. Two years later,
Fowler presented a catalog of refactorings, which are patterns of change to a computer program
which improve its readability or simplifies its structure without changing its results [Fow99].

Changing requirements (e.g. the need to introduce secure transactions) make the evolution of
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computer programs inevitable. It has early been stressed that programs continuously need to
change to remain useful [LB85]. Some types of changes often show up in software engineering:
introducing privacy, transactions, security, logging, etc. [CHK+01]. Just like Alexander, Gamma
and Fowler, we think that those recurring problems can be solved by a dedicated solution. We
define a change pattern as a general repeatable solution to a commonly occurring problem in
software evolution. Change patterns are more general than refactorings, as they also allow ex-
pressing changes which alter the outcome of an application. As such, refactorings are change
patterns, while change patterns are not refactorings.

The rest of this paper is structured as follows. Section 2 illustrates how two very different
application architectures are facing changing requirements which impose similar changes on
the architectures. Section 3 presents the evolution style concept as a mean to specify those
changes as change patterns. In Section 4 we show that those evolution styles can be applied
on different applications to cope with their changing requirements. Finally, we stipulate the
concluding remarks and the tracks of future work in Section 6.

2 Problem statement

This section first introduces a banking application in Java with changing requirements. We spec-
ify an evolution scenario which is applied on the banking application to cope with its new require-
ments. We then introduce another application – a chat room – which is developed in Smalltalk,
and which is also a subject of changing requirements. We show that, while both applications
are very different, the changes they are undergoing are very related. This illustrates the need for
change patterns, which are specified only once and can be applied many times.

2.1 Banking application and its evolution

Assume the information system which manages the services of a bank depicted in Figure 1. This
application is implemented in Java. The Cashier is an employee of a Bank who performs a
Cashier Transaction. He can transfer, deposit and withdraw money from the Account
of the Customer.
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Figure 1: A Java banking architecture

The banking application of Figure 1 only includes one kind of account. Changing demands on
the market, however, impose the banking system to model different kinds of accounts. Saving
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accounts get a higher interest rate, but are limited in the transactions they allow. Deposit accounts
allow all kinds of transactions, but provide less interest. Next to that, money transfers can be sent
over a network while the privacy of the users must still be guaranteed.

To cope with the first requirement, we introduce different kinds of accounts by subclassing
the Account class with a SavingAccount class and a DepositAccount class. Next, the
transferMoney method is pushed down to the DepositAccounts class, so that it cannot
be called from a SavingAccount. These changes are annotated in red in Figure 2.

To ensure the customer’s privacy, the amounts sent over the network are encrypted. This is
done by adding an encrypt method to the CashierTransaction class and by invoking it
when committing the transaction (in the commit method). When the message is received by the
transfer method from the Account class, it needs to be decrypted by calling the decrypt
method, which was added to that class. These changes are annotated in green in Figure 2.
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Figure 2: The banking architecture after evolution

2.2 Chat application and its evolution

Consider the chat application depicted in Figure 3. This application is designed conform to
the class-based objected-oriented meta-architecture of Smalltalk. It originally consists of two
classes, User and Chatroom, which respectively maintain a reference cr and users to one
another. A user can subscribe to a chatroom using the register method and exchange text
messages with the rest of users of the chatroom using the send and receive methods. Text
messages sent to the chatroom are propagated to all the registered users.

send:(m: String)
receive:from:(m: String, s: User)
name()

username
User

users
get:from:(m: String, s: User)
register(u: User)
unregister(u: User)

 
Chatroom

cr

cr get: m from: self

Transcript show: 
(s name + ': ' + m)

^ username
∀ u ∈ users: 

u receive: m from: s

Figure 3: A Smalltalk chat architecture

Assume now we need to differentiate between registered and guest users. For doing so, we
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add two subclasses of User to the application program, RegisteredUser and Guest.The
difference between the two types of users is that the registered users can be identified by their
name in the chat room whereas the guests cannot: Accordingly, the username attribute of
User class is pushed down to the RegisteredUser class. Figure 4 shows this first feature
added to the application (in red).

send:(m: String)
receive:from:(m: String, s: User)
encrypt:(m: String)
decrypt:(m: String)

 
User

users
get:from:(m: String, s: User)
register(u: User)
unregister(u: User)

 
Chatroom

cr

name()
username
RegisteredUser

name()
 
Guest

cr get: (self encrypt: m) 
from: self

Transcript show:
(s name + ': ' +
s decrypt: m) ∀ u ∈ users: 

u receive: m from: s

^ 'guest'^ username

f (m)
f −1 (m)

Figure 4: The chat architecture after evolution

The second change incorporates to ensure the privacy of the users, which in this case corre-
sponds to encrypting and decrypting the messages when they are sent and received respectively.
In order to match these requirements, the architect needs to adds two methods to the User class,
encrypt and decrypt, which are called from within the send and receive methods re-
spectively. Figure 4 shows this second feature added to the application (in green).

2.3 The need for evolution reuse

Both applications are different: They are used in different areas (banking and communication)
and are even implemented in different programming languages (Java and Smalltalk). Despite
of their different nature, both the banking and the chat applications have been evolving in the
same way. First, two subclasses were introduced. Second, a method is pushed down to one
subclass. Third, a complex pattern for introducing encryption and decryption is applied to each
application.

The empirical observation of recurring change patterns shows the possibility to capture those
patterns as evolution practices. Refactorings were already proposed as best practices for improv-
ing the structure of applications [Fow99]. Refactorings, however, are not general enough, as they
only cover change patterns which do not change the observable behaviour of the software sys-
tem [Opd92]. Behaviour-changing change patterns (e.g. introducing encryption) are not covered
by refactorings. That is why we propose to generalize the idea of change patterns for Software
Evolution in evolution styles, which is elaborated on in the following section.

3 Evolution styles

The evolution style concept is a domain-specific specification of a solution for a recurring prob-
lem in software evolution. Styles specify a solution which can be applied over and over again
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and enhance the understandability of the software evolution by raising the level of abstraction of
undertaken changes. This section briefly describes the specification format of an evolution style.
For a more detailed explanation, we refer the reader to [SOTG06].

3.1 Specification

An evolution style is a first-class entity that can be referenced, queried and passed along. The
core of the meta-model of the evolution-styles is shown in Figure 5. Every evolution style
class possesses a name (allowing a communication about the different styles at a more abstract
level) and a goal (providing a textual explanation of the purpose of the evolution style). The
Domain of an evolution style corresponds to the meta-architecture on which that evolution style
is expressed. Its Header is a set of input/output parameters which are expressed on the building
blocks of the domain or the application. They can be specified as pre- and postconditions of the
evolution style. A Competence represents the sequence of changes that must be applied when
the evolution style is invoked. These changes are expressed on the building blocks of the domain
or the application.

Figure 5: Core meta-model of the Evolution Style

Developers can specialize and compose evolution styles. Specialization supports a
white-box reuse of existing specification, allowing a sub-style to supplement or redefine infor-
mations of a super-style. Composition supports a black-box reuse, allowing a complex style to
delegate changes to other styles, until basic styles. The next section provides three examples of
evolution styles which are specified in the a domain based on the [DTS99] meta-model.

3.2 Examples

Every evolution style is specified in a certain domain. We use Famix as the common domain
for the three evolution style examples which are about to follow. Famix provides a language-
independent model for class-based object-oriented source code. Both Smalltalk and Java pro-
gramming languages adhere to Famix, whose core is depicted in Figure 6.
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Figure 6: The FAMIX core [Based on [DTS99]]

Introducing a subclass – The basic AddSubClass evolution style captures the simple change
pattern for introducing a subclass of a class. It is specified as follows:

Name AddSubClass
Goal Add a new class as a specialization of an existing superclass.
Domain Famix
Header Parameters {Class super, String name}

Constraints {
pre: not existsClass(c, name, ?superClass)
pre: existsClass(super, ?name, ?superClass)
post: existsClass(c, name, super)

}
Competence c := Class new: name

c superclass: super

The parameters of this style are typed with building-blocks of the Famix meta-model. The con-
straints are specified in a logic programming style. The precondition not existsClass(c,
name, ?superClass) is a clause which verifies that there does not exist any class cwith the
name name with any superclass in the system. The postcondition existsClass(c, name,
super) states that after applying the evolution style, the system contains a class c named name
with a superclass super. A logic engine can be used to unify those variables to the values of
the styles’ parameters. Note that the competence of the pattern is specified in Smalltalk, but only
uses concepts of the Famix domain. It sends a new: message to the class class in order to
create a new class with name as its name. Afterwards, it sets the superclass of the new class to
super.

Shifting down a method – In order to specify a reusable evolution style, we propose a three-
step specification for this change pattern. First, we specify general two basic evolution styles
intended to add (or delete) a method m to a class target. The following code snippet show the
style for adding a method to a class. The equivalent style RemoveMethod which removes a
method from a class is omitted for the sake of brevity.

Name AddMethod
Goal Add a method to a class
Domain Famix
Header Parameters {Method m, Class target}

Constraints {
pre: existsClass(target, ?name, ?superClass)
pre: not existsMethod(m, target)
post: existsMethod(m, target)

}
Competence target addMethod: m

Proc. Software Evolution 2007 6 / 10



ECEASST

Secondly, we specify a TransferMethod style as a composition of the RemoveMethod
and the AddMethod styles. A TransferMethod verifies that all classes exist and that m is
a method of class source. The competence of this style applies the RemoveMethod style to
remove the method from source and applies the AddMethod style for every class in the target
enumeration to add m to each one of them. The following snippet shows the specification of the
style:
Name TransferMethod
Goal Cut/paste a method from a class to some other classes
Domain Famix
Header Parameters {Method m, Class source, Class[] targets}

Constraints {
pre: existsClass(source, ?name, source)
pre: existsClass(tar, ?name, source), member(tar, targets)
pre: existsMethod(m, source)

}
Competence RemoveMethod(m, source) apply

target do[:c ! AddMethod(m, c) apply]

Thirdly, we specialize the TransferMethod style to capture the push down method refac-
toring1. The PushDownMethod style supplements the inherited specification of its super-style
with an extra precondition to ensure that the target classes are subclasses of the source class,
and redefines the goal for a more precise semantics. Its competence consists of just invoking the
competence of its super-style.
Name PushDownMethod
Goal Push down a method from a superclass to some of its subclasses
Header Constraints {

pre: forall elementOf(c, enumeration), existsClass(c, ?name, source)
}

Competence super apply

Introducing Privacy – Finally, we propose a complex evolution style which encapsulates the
pattern that introduces privacy in an application adhering to the Famix meta-model. This style
adds an encryption method encM to a class senderC which is able to encrypt a parameter. It
then surrounds the invocation of a method receiverM in the senderM with an invocation of
the added encM method. On the receiver class receiverC it adds a decM method which is
able to decrypt a parameter and adds an invocation to it inside the receiverM method. The
IntroduceMessagePrivacy style is composed of three styles: the AddMethod style, the
EncapsulateInvocation style and the EncapsulateParamater style.
Name IntroduceMessagePrivacy
Goal Ensure privacy of exchanged messages between a sender and a receiver
Domain Famix
Header Parameters {Class senderC, Class receiverC, Method senderM, Method receiverM, FormalParameter par}

Constraints {
pre: existsClass(senderC, ?name, ?superClass)
pre: existsClass(receiverC, ?name, ?superClass)
pre: existsMethod(senderM, senderC)
pre: existsMethod(receiverM, receiverC)
pre: existsInvocation(senderM, receiverM, par)
post: existsMethod(encM, senderC)
post: existsMethod(decM, receiverC)
post: existsInvocation(senderM, encM, par)
post: existsInvocation(receiverM, decM, par)

}
Competence

Method encM := Method new: "encrypt:" parameter: "m" body: "f(m)"
AddMethod(encM, senderC) apply
Method decM := Method new: "decrypt:" parameter: "m" body: "f-1(m)";
AddMethod(decM, receiverC) apply
EncapsulateInvocation: par of: receiverM with: encM in: senderM
EncapsulateParamater: par with: decM in: receiverM

1 http://www.refactoring.com/catalog/pushDownMethod.html
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4 Validation

In this section, we validate the claim that evolution styles encapsulate change patterns which
are specified once and which can be applied many times. In order to do that, we go back to
the banking and chat applications which were explained in Section 2 and show that the three
evolution styles which were specified in Section 3 can be applied on both applications in order
to obtain the required application design.

Applying an evolution style consists in parameterizing it with the actual building blocks of the
considered architecture, verifying the header’s preconditions and executing the competence. In
case the preconditions cannot be verified, the style cannot be applied. The following sections
respectively describe how the evolution styles are applied on the banking and chat applications.

4.1 Style-based evolution of the banking application

Reconsider the banking application from Section 2.1. We now evolve that application by means
of evolution styles. The following code specifies the style-based evolution steps of the evolving
banking application. The evolution styles are invoked (like functions) with their parameters
being the building blocks of the banking architecture. Applying this change sequence on the
application, makes it end up in the architecture which is depicted in Figure 2.

AddSubClass(Account, "DepositAccount") apply
AddSubClass(Account, "SavingAccount") apply
PushDownMethod(transfer, Account, {DepositAccount}) apply
IntroduceMessagePrivacy(Transfer, commit, DepositAccount, transfer) apply

4.2 Style-based evolution of the chat application

Reconsider the Chat application depicted in Figure 3. The following code snippet shows the
evolution of that system, specified in an evolution style way. In comparison with the banking
case there is an additional invocation of a ModifyMethod style, which alters the definition of
the name method of the Guest class to make it return a ’guest’ string whenever invoked.

AddSubClass(User, "RegisteredUser") apply
AddSubClass(User, "Guest") apply
PushDownMethod(name, User, {RegisteredUser, Guest}) apply
ModifyMethod(name, Guest, "ˆ ’guest’") apply
IntroduceMessagePrivacy(User, send, User, receive) apply

4.3 Evaluation

Evolution styles specify a pattern of changes which can be applied to solve a recurring problem
in software evolution. Defining the styles is the subject of a difficult paradox. On the one hand,
the evolution style must be specific enough to encapsulate a solution for a well-defined problem.
On the other hand, the style must be as general as possible so it can be applied in many different
situations. This puts a burdan on the person who defines evolution styles.

Evolution style specifications include pre- and postconditions. While the preconditions help
to verify that the current application is in the right state to apply the evolution style, the post-
conditions provide information on what the state of the application will be after applying the
style. This information can be used to support the definition of valid sequences of evolution style
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invocations [KK04]. As such, evolution styles contribute to ensure application and evolution
consistency.

5 Related work

We distinguish between related work on patterns of evolution, and patterns for evolution. The
first kind attempts to extract commonalities in software evolution activities in order to improve
the understanding of evolution. In [NYN+02], the authors outlined recurring working force
schemas and recurring steps that are followed in the development of open-source systems. An-
other interesting work to that regard is [BKS03], in which the authors consider changes as a
phenomenon. They define life-cycle volatility vectors which allow to classify software applica-
tions based on the patterns in the changes which they undergo.

The second kind of work tends to help developers by providing recurring practices for various
purposes. Refactorings [Fow99] gained popularity and are now embedded in more and more
tools. The next step is to integrate patterns for evolution as a natural part in the way software
is developed. In order to do that, change classes [Dep07] and change boxes [Zum07] were
presented.

6 Conclusion and future work

Patterns are used to specify a solution for recurring problems in their domain and have been
proven useful in many different domains such as civil architecture, software design and software
evolution. In the software evolution domain, however, only limited use has been made of the
pattern principle as only behaviour-preserving patterns (e.g. refactorings) have been asserted.
Consequently, developers and architects have been forced to resolve the recurring problems con-
cerning behavioural change.

This paper shows that even very different applications (specified in different programming
languages and in different problem domains) can be the subject of similar change scenario’s
which require a similar adaptation of the application behaviour. We define an evolution style as
a domain-specific specification of a solution for a recurring problem in software evolution. An
evolution style has a name, a goal and consist of three major parts: (1) the domain – denoting
the meta-architecture, (2) the header – describing the style’s interface and (3) the competence –
specifying the actions which have to be applied in order to reach the style’s goal.

A catalog of different evolution styles should be defined in order to grasp the recurring prob-
lems in software evolution. Providing styles for all problems, however, is not possible. Conse-
quently, our major track of future work consists in the development of an extensible catalog of
evolution styles, which can be queried for patterns.
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