
Electronic Communications of the EASST
Volume X (2007)

Proceedings of the
Third International ERCIM Symposium on

Software Evolution
(Software Evolution 2007)

A Meta-model for expressing first-class changes

Peter Ebraert, Bart Depoortere and Theo D’Hondt

10 pages

Guest Editors: Tom Mens, Maja D’Hondt, Kim Mens
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

A Meta-model for expressing first-class changes

Peter Ebraert1, Bart Depoortere1 and Theo D’Hondt1

1 pebraert, bdepoort, tjdhondt@vub.ac.be, http://prog.vub.ac.be/
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2

B-1050 Brussel, Belgium

Abstract: First-class changes were proven to provide useful information about
the evolution history of software programs. The subjects of first-class changes are
expressed on the building blocks of the program which they affect. Those building-
blocks are described by a meta-model. The goal of this paper is to find a proper
meta-model to express first-class changes. We first establish four criteria for com-
paring different meta-models and form the basis of a taxonomy to classify them.
Afterwards, some meta-models are evaluated with respect to those criteria. Famix
is found as the best match with respect to the imposed criteria. Famix, however,
still has some minor shortcomings, which can be overcome by the extensions we
propose to it.

Keywords: Meta-model, software evolution,

1 Introduction

First-class changes are objects which represent change and can be referenced, queried and passed
along [EPD07]. They were proven to provide useful information about the evolution history of
software programs [RL07]. The subject of a first-class change object is expressed on the building
blocks of the program which they affect. Those building-blocks are described by a meta-model.
The goal of this paper is to find a meta-model suitable to express first-class changes.

The remainder of this paper is structured as follows. In Section 2, we establish four criteria
to which the meta-models need to adhere in order to be express first-class changes. Afterwards,
we use the established criteria in Section 3 to compare some existing meta-models and discuss
about them. Section 4 discusses about the meta-model which is found to be the best suited for
modeling changes and proposes some extensions to that meta-model. We conclude in Section 5
and provide some avenues of future work.

2 Criteria for meta-models

In order to compare the different meta-models, we first have to identify the criteria which are
important with respect to modeling changes. This section introduces four criteria which are
relevant with respect to modeling changes on software programs.

1 / 10 Volume X (2007)

mailto:{pebraert, bdepoort, tjdhondt}@vub.ac.be
http://prog.vub.ac.be/


A Meta-model for expressing first-class changes

Support for multiple programming languages – It is desirable to obtain a cross-language
specification of change types. Such a specification could be used as an intermediary format
for software evolution tools to study, compare and exchange information about the evolution of
applications which were possibly implemented in different programming languages. This would
bring along the extra advantages that the software evolution tools do not need to be specified for
each programming language separately, but rather on the cross-language specification itself.

A cross-language specification of change types can only be achieved if the meta-model of their
building blocks supports multiple programming languages. To accomplish this, the meta-model
must be as general as possible and thus omit language specific features.

Extensibility hooks – The expressiveness of artifacts is often to limited in order to reason
thoroughly about evolution facets of a software application. Especially when language-specific
features are omitted in the meta-model to support a cross-language specification. This can be
overcome by allow the core of the meta-model to be extended. Extending the meta-model, how-
ever, may decrease the degree of language independence (e.g. extending it to be able to cope
with language specific features). As such, a good balance between a cross-language core and
language specific extension possibilities must be established.

Derivable system invariants – Design inconsistencies should be avoided at all times. Apply-
ing changes on the design of an application, however, influence the design and could introduce
inconsistencies. In order to avoid that, system invariants – constraints that must be satisfied by
the system at any time – can be of great help. All different change types are annotated with pre-
and post-coniditions which verify wether an instantiation of that change type does not violate the
system invariants.

The system invariants are actually imposed by the meta-model. While some meta-models
provide an extensive list of the invariants, others only provide them implicitly. In both cases, we
require that the meta-model serves as a basis for deriving those invariants.

Easy information exchange – The cross-language specification of change types may be used
by the software evolution tools as an intermediary format to communicate. Therefore that specifi-
cation and the meta-model upon which it is based must be complete, consistent, easy to interpret
and can not contain any ambiguities. These properties are further referred to as easy information
exchange. A high degree of language independence increases the ease of information exchange
while a high degree of extensibility decreases the ease of information exchange. Therefore it is
important to find a good balance between language independence and extensibility.

3 Towards a taxonomy of meta-models

This section discusses four alternative meta-models and their support with respect to the previ-
ously defined criteria.

Proc. Software Evolution 2007 2 / 10



ECEASST

3.1 The Unified Modeling Language (UML)

UML is a general-purpose modeling language widely used in the world of software engineering
[BJR96, Gro99]. It includes a graphical notation used to specify, visualize, construct and docu-
ment designs. The UML specification consists of a meta-model that describes the language for
specifying UML models (e.g. class diagrams).

Support for multiple programming languages – UML supports the entire software develop-
ment process starting from analysis and design omitting implementation specific issues. There-
fore its meta-model is designed to model software systems implemented in various classed-based
object-oriented programming languages and thus supports multiple languages.

Extensibility hooks – The UML meta-model provides three extensibility mechanisms. Tagged
values permit users to annotate any model element with extra information (value) paired with a
keyword (tag). Figure 1 shows an example of a tagged value in the bottum right corner. It
is visualized as a note on the design while the keyword documentation is stored in the
background.

 

Language
Science
max: int

<<enumeration>>
CourseType

 
 
Enrollement

 
 
Student

0..*1 10..*

{enrollements.size() <= max
We can have maximum 

10.000 students in our school 

Figure 1: UML tagged values, stereotypes and constraints - Example

Stereotypes allow users to further specialize model elements, it is an extensibility mechanism
equivalent to inheritance. Figure 1 depicts an example of a stereotype: the enumeration
stereotype denotes that CourseTypes is an enumeration providing some defined types of
courses.

Users can apply semantic restrictions to model elements by using constraints which may be
specified in free-form text or in Object Constraint Language (OCL). OCL is a declarative lan-
guage that is part of the UML standard and is used for describing rules that apply to UML
models. An example of OCL is expressed in the left bottum corner of Figure 1. Students have
the possibility to enroll for courses from a certain type whereas each course type has a maximum
number of allowed students.

Derivable system invariants – System invariants can be derived from the meta-model’s el-
ements. They can be derived for instance, from the relationships between those entities, their
cardinalities or OCL constraints.

3 / 10 Volume X (2007)



A Meta-model for expressing first-class changes

Easy information exchange – UML is very expressive due to its large number of available
concepts and its extensibility mechanisms. This, however, makes it harder to exchange infor-
mation about UML models. Furthermore, there are some additional problems associated with
the UML meta-model specification which decrease the ease of information exchange. First, it is
incomplete, vague and inconsistent [HS01, RW99]. Second, modelers using OCL restrict their
audience since OCL is a complex language and few people can read and write it [Amb04]. As
such, we conclude that UML does not provide an easy information exchange.

3.2 RevJava

RevJava is a tool which operates on compiled Java code and checks if that software systems
is conform to specified design rules [Flo02]. Its meta-model defines all relevant concepts of a
Java software system (e.g. package, class or method) and the associations between them (e.g.
inheritance definition, method call or variable access).

Support for multiple programming languages – the meta-model is designed for modeling
Java-programs but it is general enough to capture the core concepts of software systems imple-
mented in other class-based object-oriented programming languages.

Extensibility hooks – RevJava’s meta-model is incorporated in the RevJava tool. The author
has not explicitly specified any extensibility mechanisms in the document describing the tool.

Derivable system invariants – system invariants can be derived from the Java meta-model
specification. All derived invariants however apply to the Java programming language and only
in some extent to other class-based programming languages.

Easy information exchange – RevJava’s meta-model is easy to read and understand since
its number of available concepts remains small. No extensibility mechanisms are specified by
RevJava. As such, we can conclude that it provides support for an easy information exchange.

3.3 FAMIX

FAMIX stands for FAMOOS Information Exchange Model and was created to support informa-
tion exchange between interacting software analysis tools by capturing the common features of
different object-oriented programming languages needed for software re-engineering activities
[DTS99, DD99, Tic01].

Figure 2 shows a conceptual view of the FAMIX model. On the left side, we see different
programming languages used to implement several case studies. On the right side, we see var-
ious experiments conducted by several software analysis tools on the provided case studies. In
the middle, we see the information exchange model that only captures the common features of
class-based object-oriented programming languages such as classes or methods. To cope with
language specific features, the FAMIX model can be extended by using the provided hooks rep-
resented by the grey bars at the bottom of the figure.

Proc. Software Evolution 2007 4 / 10



ECEASST

Figure 2: Conception of the FAMIX model (based on [DTS99])

Support for multiple programming languages – the FAMIX model is designed to model
software systems at source code-level independent from the implementation language. To achieve
language independence, the FAMIX model only captures common features of different class-
based object-oriented programming languages, omitting language-specific features. It thus sup-
ports multiple languages.

Extensibility hooks – The FAMIX model provides three extensibility mechanisms. New con-
cepts can be defined in order to specify new model elements. New attributes can be added to
existing concepts in order to store additional information in the model elements. Annotations
can be added by the user to any model element for attaching extra information to it.

Derivable system invariants – System invariants can be derived from the model’s elements.
They can be derived for instance, from the relationships between those entities, their cardinalities
or their constraints.

Easy information exchange – The FAMIX model was created to support information ex-
change between tools. Hence, it provides very good support for an easy information exchange.

3.4 Graph based alternative

Mens and Lanza suggest representing software systems as graphs. Program entities are then
represented by nodes, relationships between them by edges [ML02]. To accomplish that, they
specified a typed meta-model consisting of typed edges (e.g. inheritance and accesses) and typed
nodes (e.g. class or method). Multiple edges between two nodes are allowed and attributes can
be added to each node or edge.

Support for multiple programming languages – The meta-model behind the graph represen-
tation supports any programming language whose concepts can be represented by either nodes
or edges.

Extensibility hooks – The authors have not specified any extensibility mechanisms. Extensi-
bility seems possible but is definitely not eased by the provided meta-model.

5 / 10 Volume X (2007)



A Meta-model for expressing first-class changes

Derivable system invariants – System invariants can be derived from the meta-model’s spec-
ification.

Easy information exchange – The used meta-model is easy to read and understand since its
number of available concepts remains small. Extensibility is not encouraged. This helps in
providing an easy information exchange.

3.5 Comparison of alternatives

Table 1 shows an overview in which the stated criteria are compared against the different alter-
natives discussed in the previous sections. An “X” indicates that the corresponding criterium is
badly or not supported by the meta-model while a “V” indicates the opposite. The figure shows
that the FAMIX model scores the best of all explored alternatives as it supports all criteria.

Requirements/ Meta-Model UML RevJava FAMIX Graph
Support for multiple languages V V/X V V
Extensibility hooks V X V X
Derivable system invariants V V V V
Easy information exchange X V V V

Table 1: Comparison of alternatives

4 Extensions to FAMIX

Some software systems may never be shut down and require modifications to their source-code
at run-time. In those cases, it may be useful to capture the dynamic information of that running
system (e.g. the creation of a new instance). We propose to extend the FAMIX model with
notions that capture the state of a running system.

Any object-oriented programming language (e.g. Smalltalk or Java) defines entities unique
to that language. The second extension we propose copes with language specific artifacts in
order to derive Smalltalk specific changes (e.g. FAMIX multiple inheritance vs Smalltalk single
inheritance). The following two subsections respectively explore the extensions for dynamic
state and Smalltalk-specific features.

4.1 Extension for dynamic state

The FAMIX model does not provide any elements to store dynamic information such as living
instances of a particular class or the value of some global variable. It is however necessary
to store dynamic information whenever one wants to specify changes concerning the dynamic
software evolution. An example could be a garbage collecting functionality that removes all non-
referenced instances. The following subsections discuss the dynamic extension of the FAMIX
model.

Instance – The green parts in Figure 3 show the extensions regarding living instances of a cer-
tain class. A new class Instance (inheriting from the Object class) has been added which

Proc. Software Evolution 2007 6 / 10



ECEASST

Figure 3: Dynamic extension - Instance & Global Variable

keeps a reference to the class of which it is an instance (denoted by the isInstanceOf rela-
tionship). This enables an Instance instance to query the referenced isInstanceOf class
for all its defined attributes and methods. AttributeValue has been added to hold the value
of a particular Attribute belonging to an Instance instance (belongsToInstance).

Global variable – The orange parts of Figure 3 show the extensions regarding adding global
variables of any running program. GlobalVariableValue keeps a reference to the global
variable of which it holds the value (valueFor) which in its turn is an Instance instance.

4.2 Extension for Smalltalk

The FAMIX model serves as a meta-model for different implementation languages without spec-
ifying language specific artifacts. As such, it does not cover the Smalltalk-specific language
features. When expressing change types about Smalltalk programs, hoever, such extensions are
desirable. This section deals with this kind of extensions and is based on the work of Tichelaar
who extended the FAMIX model to capture Smalltalk’s language features [Tic01]. Extra modi-
fications are provided to capture information not suggested by Tichelaar. Following subsections
discuss these extensions: extensions suggested by Tichelaar are indicated with “(T)”, additional
extensions are denoted by “(*)”.

Class – Each Smalltalk class has an associated metaclass that describes it. This metaclass
does not have its own name hence Smalltalk generates a name by concatenating the base class
name with the “ class” String. FAMIX defines a Class class allowing to model both class
types. The orange parts in Figure 4 shows that one attribute has been added: isMetaClass, a
Boolean indicating whether or not the class represents a Smalltalk metaclass.

7 / 10 Volume X (2007)



A Meta-model for expressing first-class changes

Figure 4: Smalltalk extension - Class & Behavioral entity

Behavioral entity – Return types of methods are not explicit in Smalltalk. Tichelaar proposes
to populate declaredReturnClass and declaredReturnType with the most general
type of an object-oriented programming language namely Object. Tichelaar states that func-
tions are not used in Smalltalk which implies that the Function entity of FAMIX will never
be populated [Tic01]. Smalltalk, however, does allow block closures which are first-class anony-
mous functions that take a number of arguments and have a body. In our extension, we use the
Function entity to represent Smalltalk’s block closures.

The green part in Figure 4 shows that the BehavioralEntity class was extended with
an inferredReturnClass association which refers to all possible candidates for the return
type of the concerned behavioral entity. Tichelaar has pushed down the following attributes to
the Method entity. Each method has a unique signature and a isPureAccessor, which
is a Boolean that indicates whether or not the represented method is a pure getter/setter.

Figure 5 also shows that the belongsToProtocol relationship has been added. A protocol
is the name for a group of methods allowing to organize them. For instance the “accessing”
protocol groups all accessing methods (getters and setters).

An association between the Method and Package classes has been added as a method be-
longs to exactly one package in Smalltalk. The value of the belongsToPackage reference
may differ from the package in which the containing class is defined. The isConstructor
field indicates whether or not the behavioral entity creates and initializes new instances of its
containing class.

Structural entity – Smalltalk is a dynamically typed language meaning it does not require the
developer to explicitly type variables. Type checking happens at run-time and types of variables
are determined by the values assigned to them. Therefore Tichelaar proposes to populate the
declaredType field and declaredClass association with the most general type of an
object-oriented programming language: Object.

The green parts of Figure 5 reveal that the inferredClass association has been added
to the StructuralEntity class. This association refers to all possible candidates for the
type of the structural entity. Smalltalk allows initialization of attributes and global variables.

Proc. Software Evolution 2007 8 / 10



ECEASST

Figure 5: Smalltalk extension - Structural entity & Inheritance definition

That is why the initializationValue attribute has been added to the Attribute and
GlobalVariable classes. Furthermore, the position attribute has been added to the
LocalVariable class and maintains the index of the local variable in the behavioral entity’s
list of temporary variables. Smalltalk imposes that all attributes are protected and are only ac-
cessible within the defining class and its subclasses. Hence Tichelaar proposes to populate the
accessControlQualifier attribute with the “protected” Qualifier.

Inheritance definition – The FAMIX model allows multiple inheritance whereas Smalltalk
does not. In Smalltalk, classes always inherit from one single class (except the root class,
Object). The red part in Figure 5 depicts a constraint imposing single inheritance. Tichelaar
proposes to populate the index attribute of the InheritanceDefinition class with the
null value since in this case an index has no meaning. Inheritance in Smalltalk is always pub-
licly accessible: all methods (public) and attributes (protected) are inherited by the subclass and
have the same visibility.

5 Conclusion and future work

A meta-model can be considered as an explicit description of which building blocks (program
entities) are defined in the model of the programming language(s) adhering to it. A meta-model
is needed to derive first-class changes which are suitable units that can express the evolution of
a software system. This paper discusses four criteria for choosing the appropriate meta-model:
support for multiple programming languages, extensibility hooks, derivable system invariants
and easy information exchange. Four different meta-models were analyzed with respect to those
four criteria. The analysis reveals that Famix satisfies all four criteria.

The FAMIX model serves as a language independent meta-model and was introduced to
exchange information between different software analysis tools that study the architecture at
source-code level of class-based object-oriented software. Two extensions to the FAMIX model
are presented. The first extension involves the capability to express changes on the dynamic state
of a running system. The second extension copes with language specific artifacts in order to

9 / 10 Volume X (2007)



A Meta-model for expressing first-class changes

derive Smalltalk specific changes. The most important track of future work consists in testing
whether the extended Famix meta-model is expressive enough to specify first-class change types
on class-based object-oriented programming.

Acknowledgements: We want to thank the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT Vlaanderen), for providing Peter Ebraert with a doc-
toral scholarship, and as such financing this research.

Bibliography

[Amb04] S. Ambler. The Object Primer Third Edition Agile Model-Driven Development with
UML 2.0. Cambridge University Press, 2004.

[BJR96] G. Booch, I. Jacobson, J. Rumbaugh. The Unified Modelling Language for Object-
Oriented Development. Documentation set, version 0.9, Rational Software Corpora-
tion, 1996.

[DD99] S. Ducasse, S. Demeyer. The FAMOOS Object-Oriented Reengineering Handbook.
University of Bern, 1999.

[DTS99] S. Demeyer, S. Tichelaar, P. Steyaert. FAMIX 2.0 - The FAMOOS Information Ex-
change Model. Technical report, University of Berne, 1999.

[EPD07] P. Ebraert, E. V. Paesschen, T. D’Hondt. Change-Oriented Round-Trip Engineering.
In Atelier RIMEL: Rapport de recherche. Volume VAL-RR2007-01. 2007.

[Flo02] G. Florijn. RevJava: Design critiques and architectural conformance checking for Java
software. SERC, 2002.

[Gro99] O. M. Group. Unified Modeling Language 1.3. Technical report, Rational Software
Corporation, June 1999.

[HS01] B. Henderson-Sellers. Some problems with the UML 1.3 meta-model. In Proceedings
of the 34th Hawaii International Conference on System Sciences. IEEE Computer
Society, 2001.

[ML02] T. Mens, M. Lanza. A Graph-Based Metamodel for Object-Oriented Software Metrics.
Electronic notes in Theoretical Computer Science 72(2):12, 2002.

[RL07] R. Robbes, M. Lanza. A Change-based Approach to Software Evolution. Electronic
Notes in Theoretical Computer Science 166:93–109, 2007.

[RW99] G. Reggio, R. Wieringa. Thirty one Problems in the Semantics of UML 1.3 Dynamics.
1999.

[Tic01] S. Tichelaar. Modeling Object-Oriented Software for Reverse Engineering and Refac-
toring. PhD thesis, University of Bern, 2001.

Proc. Software Evolution 2007 10 / 10


	Introduction
	Criteria for meta-models
	Towards a taxonomy of meta-models
	The Unified Modeling Language (UML)
	RevJava
	FAMIX
	Graph based alternative
	Comparison of alternatives

	Extensions to FAMIX
	Extension for dynamic state
	Extension for Smalltalk

	Conclusion and future work

