
AmbientTalk: Object-oriented Event-driven
Programming in Mobile Ad hoc Networks

Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie Dedecker, Wolfgang De Meuter
Programming Technology Lab

Vrije Universiteit Brussel
Brussels, Belgium

tvcutsem|smostinc|egonzale|jededeck|wdmeuter@vub.ac.be

Abstract—In this paper, we describe AmbientTalk: a domain-
specific language for orchestrating service discovery and compo-
sition in mobile ad hoc networks. AmbientTalk is a distributed
object-oriented programming language whose actor-based, event-
driven concurrency model makes it highly suitable for composing
service objects across a mobile network. The language is a
so-called ambient-oriented programming language which treats
network partitions as a normal mode of operation. We describe
AmbientTalk’s object model, concurrency model and distributed
communication model in detail. We also highlight the major
influences from other languages and middleware that have shaped
AmbientTalk’s design.

Index Terms—distributed languages, actors, events, pub-
lish/subscribe, service discovery, service composition, mobile
networks, pervasive computing

I. INTRODUCTION

With the introduction of ever smaller, handheld computing
devices over the past few decades, there has been a tremendous
increase in research into mobile ad hoc networks. Such net-
works are composed of mobile devices equipped with wireless
communication technology and are often not administered.
This hardware constellation is often claimed to serve as a
fruitful basis for many pervasive and ubiquitous computing [1]
scenarios [2]. The network’s wireless capabilities, combined
with the mobility of the devices, results in applications where
software entities spontaneously detect one another, engage in
various collaborations, and may disappear as swiftly as they
appeared.

Although there has been a lot of active research with respect
to mobile computing middleware [3], there has been little
innovation in the field of programming language research to
tackle the issues raised by mobile networks. Although dis-
tributed programming languages are rare, they form a suitable
development tool for encapsulating many of the complex
issues engendered by distribution [4], [5]. The distributed
programming languages developed to date have either been
designed for high-performance computing (e.g. X10 [6]), for

Draft version. Revised version accepted at the XXVI International Confer-
ence of the Chilean Computer Science Society, SCCC 2007.

Tom Van Cutsem is a Research Assistant of the Fund for Scientific
Research, Flanders (F.W.O.). Stijn Mostinckx is funded by a doctoral schol-
arship of the Institute for the Promotion of Innovation through Science and
Technology in Flanders (IWT-Vlaanderen), Belgium.

reliable distributed computing (e.g. Argus [7]) or for general-
purpose distributed computing in fixed, stationary networks
(e.g. Emerald [8], Obliq [9], E [10]). None of these languages
have been explicitly designed for mobile networks. They lack
the language support necessary to deal with the radically
different network topology.

In this paper, we introduce AmbientTalk, a distributed
object-oriented programming language which has been de-
signed for mobile ad hoc networks from the ground up.
AmbientTalk is a small, dynamically typed object-oriented
language. What makes the language suitable for composing
services across a mobile network is its actor-based, event-
driven concurrency model in combination with its built-in
peer-to-peer, publish/subscribe service discovery abstractions.
AmbientTalk has previously been described as an exemplar
of the ambient-oriented programming (AmOP) paradigm [11].
We will revisit the key characteristics of the AmOP paradigm
in section III. The language described in this paper is actually
AmbientTalk/2, an updated version of the language as it is
presented in [11]. However, we will simply refer to the updated
language as AmbientTalk because it supplants its predecessor
while staying true to its fundamental characteristics.

The paper is structured according to three large parts. In
sections II and III, we describe the salient features of mobile
ad hoc networks in more detail, revisit the ambient-oriented
programming paradigm and motivate the need for novel pro-
gramming language support. Subsequently, in sections IV,
V and VI we introduce the AmbientTalk language itself.
We first describe its standard object-oriented features, then
its concurrent and finally its distributed language features.
The final part of the paper describes the advancements with
respect to previous work and discusses related work in the
field of programming languages and middleware which have
influenced the design of the AmbientTalk language.

II. MOBILE AD HOC NETWORKS

There are two discriminating properties of mobile networks,
which clearly set them apart from traditional, fixed computer
networks: applications are deployed on mobile devices which
are connected by wireless communication links with a limited
communication range. Such networks exhibit two phenomena
which are rare in their fixed counterparts:

• Volatile Connections. Mobile devices equipped with
wireless media possess only a limited communication
range, such that two communicating devices may move
out of earshot unannounced. The resulting disconnections
are not always permanent: the two devices may meet
again, requiring their connection to be re-established.
Quite often, such transient network partitions should not
affect an application, allowing both parties to continue
their collaboration where they left off. Dealing with
partial failures is not a new ingredient of distributed
systems, but these more frequent transient disconnections
do expose applications to a much higher rate of partial
failure than that which most distributed languages or
middleware have been designed for. In mobile networks,
disconnections become so omnipresent that they should
be considered the rule, rather than an exceptional case.

• Zero Infrastructure. In a mobile network, devices that
offer services spontaneously join with and disjoin from
the network. Moreover, a mobile ad hoc network is
often not manually administered. As a result, in contrast
to stationary networks where applications usually know
where to find collaborating services via URLs or similar
designators, applications in mobile networks have to find
their required services dynamically in the environment.
Services have to be discovered on proximate devices, pos-
sibly without the help of shared infrastructure. This lack
of infrastructure requires a peer-to-peer communication
model, where services can be directly advertised to and
discovered on proximate devices.

Any application designed for mobile ad hoc networks has
to deal with the above phenomena. Because the phenomena
are universal, an appropriate computational model can and
should be developed which eases distributed programming in
a mobile network by taking these phenomena into account
from the ground up. Moreover, because the effects engendered
by partial failures or the absence of remote services often
pervade the entire application, the above phenomena are not
easily hidden behind traditional library abstractions. Therefore,
distribution is often dealt with in dedicated middleware or
programming languages.

III. AMBIENT-ORIENTED PROGRAMMING REVISITED

In previous work, we have described an ambient-oriented
programming language as a programming language that ad-
heres to a set of well-defined characteristics [11]. The two
characteristics which deal directly with the hardware charac-
teristics of mobile networks described in the previous section
are detailed below.

A. Non-blocking Communication

In an AmOP language, all distributed communication is
non-blocking, i.e. asynchronous. The main reason behind
this strict asynchrony is that communicating parties remain
loosely-coupled. It is this loose coupling which significantly
reduces the impact of volatile connections on a distributed
application. With respect to communication, two degrees of

coupling between communicating parties can be distinguished,
as explained in detail in [12]:
• Decoupling in Time: The communicating parties do not

need to be online at the same time.
Decoupling in time implies that a sender may send a
message to a recipient that is offline, and a recipient
may receive and process a message from a sender that is
offline. This makes it possible for communicating parties
to interact across volatile connections. Decoupling in
time is directly inspired by the need to deal with the
intermittent disconnections inherent to mobile ad hoc
networks.

• Synchronisation Decoupling: The control flow of com-
municating parties is not blocked upon sending or receiv-
ing.
Synchronisation decoupling implies that a sending party
can employ a form of asynchronous message passing,
such that the act of message sending becomes decoupled
from the act of message transmission. Likewise, allowing
recipient parties to process messages asynchronously
decouples the act of message reception from the act of
message processing. Message transmission and reception
require a connection between sender and receiver, but
message sending and processing can be decoupled, al-
lowing communicating parties to abstract over the fact
whether the other party is online or not. This requirement
is again directly derived from the volatile connections
phenomenon in mobile networks. It allows parties to
perform useful work while being disconnected.

B. Ambient Acquaintance Management

An AmOP language should have built-in support for ambi-
ent acquaintance management: the discovery and management
of proximate devices and their hosted services. However,
the way in which communicating parties can discover one
another reveals yet another degree of coupling with important
repercussions in mobile ad hoc networks:
• Decoupling in Space: The communicating parties do not

need to know each other beforehand [12].
Decoupling in space implies that communicating parties
do not necessarily need to know one another’s exact
address or location. However, this means that commu-
nicating parties must rely on some mechanism other than
precise addresses or URLs to get to know one another.
Decoupling in space is an important property in mobile
ad hoc networks because they have a minimum of shared
infrastructure, making reliance on servers to mediate
collaborations impractical.

Ambient acquaintance management implies more that sim-
ply the discovery of new parties. It also implies that com-
municating parties must be able to keep an up-to-date view
of which participants are (dis)connected. At first glance, this
requirement seems to somewhat contradict the purpose of non-
blocking communication as described previously, because it
seems to state that a process is no longer able to abstract

over the state of the connection with communicating parties.
However, this is not necessarily the case if the aspect of
communication can be separated from the aspect of failure
handling by means of orthogonal mechanisms. Being aware of
the state of the connection of a participant is important because
due to the limited infrastructure in mobile ad hoc networks,
delivery guarantees for exchanged messages are often very
weak. Hence, communicating parties must sometimes take
explicit action when a participant disconnects.

IV. THE AMBIENTTALK LANGUAGE

In this section, we introduce AmbientTalk as an object-
oriented programming language. Even though AmbientTalk
is a domain-specific language for distributed programming,
it remains a full-fledged object-oriented language in its own
right. AmbientTalk inherits most of its standard language
features from Self, Scheme and Smalltalk. From Scheme, it
inherits the notion of true lexically scoped closures. From Self
and Smalltalk, it inherits an expressive block closure syntax,
the representation of closures as objects and the use of block
closures for the definition of control structures. AmbientTalk’s
object model is derived from Self: classless, slot-based objects
using delegation [13] as a reuse mechanism.

A. Running Example: the Ubiquitous Flea Market

We will describe AmbientTalk by means of a concrete
example ad hoc networking application, called the ubiquitous
flea market [14], later named AgoraM [15]. This example
application is meant to run on the cellular phone of the user.
Using the application, users can either advertise items they
wish to sell or place a demand for items they wish to buy. What
makes this example an ad hoc application is that buyers and
sellers are only matched when they are proximate, e.g. if they
have joined the same ad hoc network. For example, the flea
market applications could use the user’s personal area network
delimited by the cellular phone’s bluetooth communication
range. When a potential buyer/seller has been found for an
item, the user is notified and contact details are exchanged. The
fact that the ubiquitous flea market only matches proximate
buyers and sellers is useful if the item to be sold is immediately
required by the buyer. For example, it can be used to buy or
sell concert or sports tickets directly at the venue itself [15].

Although the ubiquitous flea market example is small, it is
a representative application because it embodies all character-
istics of a typical mobile ad hoc networking application. The
applications have to discover one another’s supplied/demanded
items without any predefined infrastructure. Furthermore, com-
munication is easily disrupted because of the unpredictable
movement of the users.

B. AmbientTalk Objects

AmbientTalk is a dynamically typed, object-based lan-
guage. Computation is expressed in terms of objects sending
messages to one another. Objects are not instantiated from
classes. Rather, they are either created ex-nihilo or by cloning
and adapting existing objects. A central abstraction in the

ubiquitous flea market example is the item to be traded be-
tween peers. The following code excerpt shows the prototype
definition of such item objects.

def Item := object: {
def category; // a type classifying the item
def description; // a string describing the item
def contactDetails; // string describing contact details
def init(cat, desc, contact) {
category := cat;
description := desc;
contactDetails := contact;

};
def getContactInfo(buyerInfo) {
contactDetails; // return the contact details

};
def placeSupply() { ... };
def placeDemand() { ... };

};

The above code defines a new anonymous object and
binds it to a variable named Item. This object serves as
a prototypical item object, defining a number of fields to
store the item’s state and a number of methods to define
useful behaviour, which is described in more detail later. This
prototypical object can be instantiated to create new items:

def ticket := Item.new(Ticket,description,phoneNo);

Every object understands the message new, which creates a
clone (a shallow copy) of the receiver object and initializes the
clone by invoking its init method with the arguments that
were passed to new. Hence, the init method plays the role of
“constructor” for AmbientTalk objects. AmbientTalk’s object
instantiation protocol closely corresponds to class instantiation
in class-based languages, except that the new object is a clone
of an existing object, rather than an empty object allocated
from a class.

AmbientTalk provides support for block closures reminis-
cent of those in Self and Smalltalk. A block closure is an
anonymous function object that encapsulates a piece of code
and the bindings of lexically free variables and self. Block
closures are constructed by means of the syntax { |args|
body }, where the arguments can be omitted if the block
takes no arguments. The following code excerpt shows a
typical use of blocks to iterate over all of the elements of an
array storing all items provided by the ubiquitous flea market
application.

suppliedItems.each: { |item|
system.println(item)

}

Block closures are frequently used in AmbientTalk to rep-
resent delayed computations, e.g. for implementing control
structures but also for implementing nested event handlers,
as will be described later. Note that AmbientTalk supports
both traditional canonical syntax (e.g. o.m(a,b,c)) as well
as keyworded syntax (e.g. o.at: key put: value) for
method definitions and message sends.

V. CONCURRENT PROGRAMMING IN AMBIENTTALK

In AmbientTalk, concurrency is spawned by actors: one
AmbientTalk virtual machine may host multiple actors which

execute concurrently. AmbientTalk’s concurrency model is
based on the communicating event loops model of the E
programming language [10], which is itself an adaptation of
the well-known actor model [16]. The E language combines
actors and objects into a unified concurrency model. Unlike
previous actor languages such as Act1 [17], ABCL [18] and
Actalk [19], actors are not represented simply as “active
objects”, but rather as vats (containers) of regular objects,
shielding them from harmful concurrent modifications.

Before describing how actors have been integrated in the
AmbientTalk language, we first highlight the fundamental
concurrency properties of event loop concurrency, on which
AmbientTalk is based.

A. Event Loop Concurrency

The E language’s communicating event loops and – as will
be described later – AmbientTalk’s actors employ an event-
driven concurrency model, as opposed to traditional multi-
threaded concurrency. In an event-driven model, an event loop
is a thread of execution that perpetually processes events from
its event queue by invoking a corresponding event handler.
In addition, an event loop model can enforce three essential
concurrency control properties:
• Serial Execution: An event loop processes incoming

events from its event queue one by one, i.e. in a strictly
serial order.
As a consequence of serial execution, the handling of
a single event is atomic with respect to other events.
Hence, race conditions on an event handler’s state caused
by concurrent processing of events cannot occur.

• Non-blocking Communication: An event loop never
suspends its execution to wait for another event loop to
finish a computation. Rather, all communication between
event loops occurs strictly by means of asynchronous
event notifications.
As a consequence of non-blocking communication, event
loops can never deadlock one another. However, in order
to guarantee progress, an event handler should not execute
e.g. infinite while loops. Rather, long-running actions
should be performed piecemeal by scheduling events
recursively, such that an event loop always gets the
chance to respond to other incoming events. The only
situation where an event loop can be suspended is when
its event queue is empty.

• Exclusive State Access: Event handlers and their associ-
ated state belong to a single event loop. In other words, an
event loop has exclusive access to its mutable state.
Because event handlers are not shared between event
loops, they never have to lock mutable state. Mutating
another event loop’s state has to be performed indirectly,
by asking the event loop to mutate its own state via an
event notification.

Event loop concurrency avoids deadlocks and certain race
conditions by design. The non-determinism of the system is
confined to the order in which events are processed. In stan-
dard pre-emptive thread-based systems, the non-determinism

is more substantial because threads may interleave upon each
single instruction. In the following section, we describe how
the abstract event loop model is incorporated into the Ambi-
entTalk language.

B. AmbientTalk actors

In AmbientTalk, actors are not represented as active objects,
but rather as event loops: the event queue is represented by
an actor’s message queue, events are represented as messages,
event notifications as asynchronous message sends, and event
handlers are represented as (the methods of) regular objects.
The actor’s event loop thread perpetually takes a message from
the message queue and invokes the corresponding method of
the object denoted as the receiver of the message. Messages
are processed serially to avoid race conditions on the state of
regular objects.

In AmbientTalk, each object is said to be owned by exactly
one actor. Only an object’s owning actor may directly execute
one of its methods. Objects owned by the same actor may
communicate using standard, sequential message passing or
using asynchronous message passing. AmbientTalk borrows
from the E language the syntactic distinction between sequen-
tial message sends (expressed as o.m()) and asynchronous
message sends (expressed as o<-m()). It is possible for
objects owned by an actor to refer to objects owned by other
actors. Such references that span different actors are named far
references (the terminology stems from E [10]) and only allow
asynchronous access to the referenced object. Any messages
sent via a far reference to an object are enqueued in the
message queue of the owner of the object and processed by
the owner itself.

Figure 1 illustrates AmbientTalk actors as communicating
event loops. The dotted lines represent the event loop threads
of the actors which perpetually take messages from their
message queue and synchronously execute the corresponding
methods on the actor’s owned objects. An event loop thread
never “escapes” its actor boundary. When communication with
an object in another actor is required, a message is sent
asynchronously via a far reference to the object. For example,
when A sends a message to B, the message is enqueued in the
message queue of B’s actor which eventually processes it.

A
B

Message
queue

Actor

Object Far reference

Event
Loop

Actor Message from A to B

Fig. 1. AmbientTalk actors as communicating event loops

C. Asynchronous Message Passing

In AmbientTalk, asynchronous messages can be sent be-
tween objects owned by the same or by different actors. In the

case where both sender and receiver are owned by the same ac-
tor, the message is simply added to the owner’s message queue
and parameters are passed by reference, exactly as is the case
with synchronous message sending. For inter-actor message
sends, where an object sends an asynchronous message via
a far reference to an object owned by another actor, objects
are parameter-passed by far reference: the parameter of the
invoked method will be bound to a far reference to the object.
Objects that have declared themselves to be serializable form
an exception. Serializable objects are instead passed by (deep)
copy. This allows the recipient actor to operate on the copy
synchronously, without additional inter-actor communication
and without violating the exclusive state access property.

To illustrate asynchronous message passing more con-
cretely, consider the ubiquitous flea market again. Each cellular
phone runs an AmbientTalk application consisting of a single
actor representing the ubiquitous flea market. When two such
actors discover one another in the ad hoc network, they
exchange their supplied and demanded items. This is described
in more detail in section VI. When a matching item is found,
the buyer explicitly has to ask for the seller’s contact details,
passing along its own contact details. Given that adItem
denotes a far reference to the advertised item of another actor,
the contact details of the user of the supplied item can be
requested as follows:

def contactFut := adItem<-getContactInfo(myContact);

An asynchronous message send immediately returns a fu-
ture, which is a placeholder for the actual return value.
Once the return value is computed, it “replaces” the future
object; the future is then said to be resolved with the value.
In AmbientTalk, futures are objects which can in turn be
sent asynchronous messages. Those messages are accumulated
within the future as long as it is unresolved. When the future is
resolved, accumulated messages are forwarded to the resolved
value. In the E language, it is possible to register a block of
code with a future, which is executed asynchronously when
the future becomes resolved. AmbientTalk also allows the
expression of such “in-line event handlers”, which are very
useful when access to the actual return value of a message
send is required. For example, the contact details of the user
that supplied the found item can only be printed to the screen
when the contactFut future is resolved to a string value:

when: contactFut becomes: { |contactInfo|
// execution is postponed until future is resolved
system.println("Found item, contact: " + contactInfo);

} catch: { |exception| ... };
// code following when: is processed immediately

The when:becomes:catch: function takes a future
and two closures as arguments, and registers the closures
as observers on the future. If the future is resolved to a
proper value, the closure passed as the becomes: is applied
with the resolved value as parameter. If the asynchronously
invoked method raises an exception, rather than returning a
value, the corresponding future is resolved with the exception
and the closure passed as the catch: argument is applied

to the exception. This enables applications to catch asyn-
chronously raised exceptions in a way similar to the well-
known try-catch abstraction of sequential languages. The
execution of either of the above closures is always scheduled
in the owning actor’s message queue, such that their execution
is serialised w.r.t. other messages processed by the actor.

VI. DISTRIBUTED PROGRAMMING IN AMBIENTTALK

In AmbientTalk, two objects are said to be local when
they are owned by the same actor. Objects are considered
remote when they are owned by different actors, even if
those actors are hosted by the same virtual machine. Of
course, within one virtual machine there is no notion of partial
failure: either all actors within one VM are alive, or they
have all crashed. Nevertheless, AmbientTalk abstracts from
the physical location of actors and considers actors as the unit
of distribution. Because objects residing on different devices
are necessarily owned by different actors, the only kinds of
object references that can span across different devices are
far references. This ensures by design that all distributed
communication is asynchronous.

A. Far References and Partial Failures

By admitting far references to cross virtual machine bound-
aries, we must specify their semantics in the face of partial
failures. AmbientTalk’s far references are by default resilient
to network disconnections. When a network failure occurs,
a far reference to a disconnected object starts buffering all
messages sent to it. When the network partition is restored at
a later point in time, the far reference flushes all accumulated
messages to the remote object in the same order as they
were originally sent. Hence, messages sent to far references
are never lost, regardless of the internal connection state
of the reference. Making far references resilient to network
failures by default is one of the key design decisions that
make AmbientTalk’s distribution model suitable for mobile
ad hoc networks, because temporary network failures have no
immediate impact on the application’s control flow.

Far references have been intentionally made resilient to
transient partial failures. This behaviour is desirable in mobile
networks because it can be expected that many partial failures
are the result of temporary network partitions. However,
perhaps a remote device has crashed beyond recovery, or it
has moved out of the wireless communication range and does
not return. Such persistent failures also need to be dealt with.

To cope with persistent failures, AmbientTalk uses the
concept of leasing [20]. A lease denotes the right to access
a resource for a limited amount of time. At the discretion of
the owner of the resource a lease can be renewed, prolonging
access to the resource. In AmbientTalk, far references play the
role of the lease and the objects they refer to play the role of
the resource. Hence, a far reference only provides access to
a remote object for a limited amount of time. However, as
long as the far reference is actively being used (i.e. messages
are sent via the reference to the remote object), its lease is
transparently renewed. Upon a network partition, the lease

cannot be renewed and will expire if the disconnection outlasts
the lease period.

When a far reference’s lease eventually expires, it will
resolve the future attached to any messages sent to it with
an exception, signalling to the sender that its message could
not be delivered. Leases are not only important to make the
sending party aware of persistent failures, they also have
important benefits for memory management. Once all leases
for a remote object have expired, the system may garbage
collect the object, provided no more local references refer
to it. Hence, leases are an important enabler of distributed
garbage collection. If a far reference would have no upper
bound on its access time, the remote object it refers to could
never be reclaimed upon a disconnection because of the failure
semantics of far references: when a far reference reconnects
the remote object should not have been reclaimed.

B. Exporting Objects as Services

Objects can acquire far references to objects by means of
parameter-passing or return values from inter-actor message
sends. However, it remains to be explained how objects can
acquire an initial far reference to an object owned by a remote
actor. In order to make some objects available to remote
actors and their objects, an actor can explicitly export objects
that represent certain services. In most distributed systems,
exported objects are identified by means of a simple name or
UUID in a name server or by a URL. However, in a mobile ad
hoc network, name servers are impractical due to the limited
infrastructure and the URL of a service may not be known to
other actors.

In AmbientTalk, service objects are exported by means of a
type tag. Type tags are a lightweight classification mechanism,
used to categorise objects explicitly by means of a nominal
type. One use of type tags in AmbientTalk is to provide an
intensional description of what kinds of services an object
provides to remote objects. In AmbientTalk, a type tag can
be a subtype of one or more other type tags, and one object
may be tagged with multiple type tags. Although type tags are
not used for static type checking, they are best compared with
empty Java interface types, like the typical “marker” interfaces
used to merely tag objects (e.g. java.io.Serializable
and java.lang.Cloneable).

In the ubiquitous flea market scenario, when the user
supplies an item for other users to buy, the supplied item object
is exported. It is assumed that different items are classified
according to type tags. Hence, the item advertisement is
exported by means of the type tag stored in the advertised
item’s category field:

def placeSupply() {
def pub := export: self as: self.category;
// this object can be used to unexport the advertisement
pub;

}

From the moment an object is exported, it is discoverable by
objects owned by other actors by means of its associated type
tag. The export:as: function returns an object which can

be used to take the exported object offline again, by invoking
pub.cancel(). How remote objects can acquire a reference
to the exported object is explained in detail in the following
section.

C. Service Discovery

AmbientTalk employs a publish/subscribe service discovery
protocol. A publication corresponds to exporting an object by
means of a type tag. The type tag serves as a topic known
to both publishers and subscribers [12]. A subscription takes
the form of the registration of an event handler on a type tag,
which is triggered whenever an object exported under that tag
has become available in the ad hoc network.

In the ubiquitous flea market application, the user places
a demand for a certain item by invoking the item’s
placeDemand method. This method subscribes to the item’s
category type tag, such that it can be notified whenever a
matching item has become available:

def placeDemand() {
def sub := whenever: category discovered: { |adItem|
def contactFut := adItem<-getContactInfo(myContact);
// notify user of potentially interesting item

};
// this object can be used to cancel the subscription
sub;

};

The whenever:discovered: function takes as argu-
ments a type tag and a closure that serves as an event handler.
Whenever an actor is encountered in the ad hoc network
that exports a matching object, the closure is scheduled
for execution in the message queue of the owning actor.
An object matches if its exported type tag is a subtype of
the type tag argument of whenever:discovered:. The
asdvertisedItem parameter of the closure is bound to
a far reference to the exported item object of another actor.
The closure can then start sending asynchronous messages
via this far reference to communicate with the remote object.
Similar to the export:as: function, the discovery mecha-
nism returns an object whose cancel() method cancels the
registration of the closure.

VII. EVALUATION

In this section, we take a step back from the technicalities
of AmbientTalk and emphasise why precisely AmbientTalk’s
language constructs are suitable for developing mobile ad hoc
networking applications. Again, we distinguish between the
two most apparent hardware characteristics of mobile ad hoc
networks.

A. Volatile Connections

The strictly asynchronous communication between objects
owned by different actors is very suitable for mobile ad hoc
networks. The built-in message queues of actors and far ref-
erences decouple communication in time and synchronisation,
making the application resilient to transient network failures.
A traditional RPC or RMI communication model is not able
to provide a similar decoupling. To abstract over temporary
disconnections, objects would either remain blocked waiting

for an outstanding RPC to a disconnected object (making
the application unresponsive), or the RPC would fail and
the programmer potentially has to write cumbersome failure
handling code for each remote message send.

The event-driven concurrency model employed by Ambi-
entTalk has the advantage that it maps well onto the inherently
event-driven nature of distributed systems. Devices may join or
leave the network and messages can be received from remote
devices at any point in time. In contrast to multithreaded
approaches, event loops are able to restrict non-determinism to
the order in which events are processed. One disadvantage that
is often attributed to event loop concurrency is that it causes
an inversion of control, i.e. the programmer must explicitly
partition the application into separate event handlers (e.g.
callbacks) [21]. However, the use of block closures as nested
event handlers (e.g. to await future resolution or for service
discovery) mitigate much of this complexity: because the event
handlers are nested, the control flow remains clear and because
they are full closures, they can maintain their execution context
by means of their lexical scope.

B. Zero Infrastructure

In mobile ad hoc networks, services have to be discovered
in the proximate environment as devices are roaming. A shared
infrastructure is not always available. This network topology
implies that objects should not be required to rely on a third
party to discover one another. It also implies that remote
objects cannot simply be named on the basis of a URL: the
device hosting the remote object might not be known or may
simply not be available in the local ad hoc network. To deal
with these issues, each AmbientTalk actor is a topic-based
publish/subscribe engine. The topics are the type tags used
to classify objects in a meaningful way, independent of any
particular device address, catering for anonymous interactions
among objects. Because each actor can both publish services
and subscribe to be notified of services that become available
in the ad hoc network, no intermediary server is required.

VIII. PREVIOUS WORK

As mentioned in the introduction, the AmbientTalk language
described in this paper is actually an updated version of the
language with the same name presented in previous work [11].
In this section, we detail how the design of the updated
language – which we shall refer to as AmbientTalk/2 – differs
from its predecessor, AmbientTalk/1. AmbientTalk/2’s new
design decisions are scrutinized below:
• Double-Layered Object Model. AmbientTalk/1’s object

model distinguishes between active and passive objects.
In AmbientTalk/1, actors are modelled as ABCL/1-like
active objects. However, AmbientTalk/2’s concurrency
model replaces the notion of actors as active objects with
the notion of actors as vats, based on the vat model of the
E language [10]. In this model, actors become containers
of passive objects. Despite these differences, in both ver-
sions each passive object is contained within exactly one
actor. However, AmbientTalk/2 allows both sequential

and asynchronous message sends between passive objects
whereas AmbientTalk/1 only supports sequential message
passing between passive objects.
Both versions also consider actors as the unit of distri-
bution. However, in AmbientTalk/1, passive objects are
not remotely accessible. Only the behaviour object of
an actor can be referenced from other actors. In Am-
bientTalk/2, passive objects can be remotely referenced
by other actors by means of far references. Hence, the
revised object model of AmbientTalk/2 allows more fine-
grained remote interactions between passive objects.

• Inter-Actor Message Passing Semantics. The
parameter-passing semantics of inter-actor message sends
is also slightly different in the two versions. Parameter-
passing is a critical operation in AmbientTalk because
it potentially allows different actors to access the same
object concurrently. The parameter-passing semantics
must ensure that the exclusive state access property,
introduced in section V, is upheld. AmbientTalk/1
upholds this principle by always parameter-passing
passive objects by deep-copy, such that both sending
and receiving actor obtain an independent object.
In AmbientTalk/2, objects can also be passed by
far reference. Because far references only allow
asynchronous access to an object via its actor’s message
queue, the exclusive state access property can be upheld.
The advantage of passing objects by far reference is that
remote communication is more lightweight because the
object-graph does not need to be completely deep-copied.

• Distributed memory management. AmbientTalk/1 did
not address memory management of remote objects.
Remote objects were always expected to remain valid
during a disconnection and to reconnect once the network
connection is reestablished. Hence, this prevented the
reclamation of remote objects in the face of persistent
failures. In contrast, AmbientTalk/2 integrates leasing into
far references so that remote objects can eventually be
reclaimed if the network failure persists.

IX. RELATED WORK

In this section, we highlight a number of programming
languages, models and middleware which have influenced the
design of AmbientTalk in significant ways.

Actors AmbientTalk’s integration of concurrent and dis-
tributed computing with object-oriented computing is founded
on the actor model of computation [16]. In the model actors
refer to one another via mail addresses. When an actor sends
a message to a recipient actor, the message is placed in a
mail queue and is guaranteed to be eventually delivered by
the actor system. AmbientTalk does not assume the eventual
delivery guarantees of messages, as in the actor model. As
discussed in section VI-A, far references are allowed to
expire, to properly deal with partial failures. Asynchronous
communication by means of mail addresses decouples actors
in time and synchronisation. This property makes the actor
model in itself almost suitable for mobile networks.

The main feature lacking in the actor model to fit mobile
networks is a means to perform service discovery, i.e. to
acquire the mail address of a remote actor via anonymous
communication. Mail addresses do not decouple sender and
receiver in space. Extensions of the actor model have already
tackled this issue. For example, in the ActorSpace model [22],
messages can be sent to a pattern rather than to a mail address,
and they will be delivered by the actor system to an actor
with a matching pattern. The ActorSpace model, however, was
conceived for traditional networks, as it relies on infrastructure
to manage the matching of the patterns.

Our view of actors as communicating event loops is directly
based on the communicating event loops model of the E
programming language [10], [23]. AmbientTalk also inherits
from E the distinction between different types of references
(i.e. local references versus far references) and message pass-
ing semantics. E is designed for writing secure peer-to-peer
distributed programs for open networks, but not specifically
for mobile ad hoc networks. That is why AmbientTalk di-
verts from E’s distribution model with respect to the failure
semantics of far references. A network disconnection in E
immediately breaks the far reference: any message sent after
the disconnection is not stored, and the message’s future is
resolved with an exception. Hence, E’s far references do
not decouple participants in time and are not designed to
express communication over volatile connections. E does not
provide any built-in service discovery mechanism to engage in
anonymous, space-decoupled communication. Rather, objects
can acquire a far reference to a remote object by means of an
explicit URI.

Futures Futures (also known as promises) are a frequently
recurring abstraction in concurrent languages [5]. They serve
as an essential synchronisation tool when asynchronous mes-
sage passing semantics are introduced. The use of futures as
return values from asynchronous message sends can be traced
back to actor-based languages such as ABCL [18]. In Argus,
futures were further extended to support pipelined message
sends [24]. Most future abstractions support synchronisation
by suspending a thread that accesses an unresolved future.
This is sometimes called wait-by-necessity [25]. It is the
E language which pioneered the when construct to express
synchronisation on the resolution of a future (promise) in a
non-blocking, event-driven manner [10].

Leasing The use of leasing to manage the lifetime of Am-
bientTalk’s far references is derived from the use of leasing in
Jini [26]. Jini is a platform for service-oriented computing built
on top of Java. In Jini, resources owned by a service should
be accessed by clients by means of leases. This ensures that
services can gracefully deal with unexpected disconnections.
For example, services may advertise themselves by registering
with a lookup service, but must explicitly renew their regis-
tration by means of a lease. Otherwise, the lookup service
removes the advertisement, ensuring that it does not advertise
stale information of services that have become unavailable
[26].

Mobile Computing Middleware Over the past few years,

many middleware platforms to support mobile computing have
been proposed [3]. As language designers, our goal has been
to select the most appropriate techniques employed by various
middleware solutions and then to embed those techniques in
language features. For example, the Rover toolkit decouples
communication in time by queueing RPCs [27], a feature we
have embedded into the concept of a far reference.

Communication by means of shared tuple spaces, as origi-
nally proposed in Linda [28], has proven to be a particularly
good communication model for mobile networks. This is
witnessed by middleware such as LIME [29] and TOTA
[30], which are based on distributed variants of the original,
shared memory tuple space model. In the tuple space model,
processes communicate by inserting and removing tuples from
a shared tuple space, which acts like a globally shared memory.
This communication is decoupled in time because processes
can insert and retract tuples independently. It is decoupled in
space because the publisher of a tuple does not necessarily
specify, or even know, which process will consume the tuple.
In the original tuple space model, synchronisation decoupling
is violated because there exist synchronous (blocking) opera-
tions to extract tuples from the tuple space. However, mobile
computing middleware such as LIME extends the basic model
with reactions which are callbacks that trigger asynchronously
when a matching tuple becomes available in the tuple space. In
this regard, they closely correspond to AmbientTalk closures
that observe futures.

The publish/subscribe communication paradigm [12] has
also proven to be a fruitful basis for mobile computing
middleware because it supports decoupling in time, space and
synchronisation. The main difference between traditional, cen-
tralised publish/subscribe architectures and those for mobile
networks is the incorporation of geographical constraints on
the event disseminations and subscriptions. For example, in
the location-based Publish/Subscribe (LPS) [31] architecture, a
publisher defines a publication range and a subscriber defines
a subscription range. Only when the publication range of the
publisher and the subscription range of the subscriber overlap
is an event disseminated to the subscriber. The Scalable Timed
Events and Mobility (STEAM) middleware [2] even introduces
geographical locations as first-class entities named proximities.

AmbientTalk’s service discovery mechanism is based on the
publish/subscribe paradigm. However, the matching between
exported objects and subscribed event handlers is currently
based entirely on connectivity as defined by the underlying
network layer. For example, the matching range is entirely
dependent on the fact whether e.g. Bluetooth or WiFi is used.
This implies that constraining the match based on geographical
parameters has to be encoded on top of AmbientTalk’s discov-
ery mechanism. In future research, we intend to integrate such
geographical constraints at the language level.

X. IMPLEMENTATION STATUS AND FUTURE WORK

An interpreter for the AmbientTalk language has been
implemented in Java1. The implementation can run on the
Java 2 micro edition (J2ME) platform, under the connected
device configuration (CDC). This means that AmbientTalk
code can be executed on PDAs and high-end cellular phones.
Our current experimental setup consists of a number of QTek
9090 smartphones which communicate by means of a wireless
ad hoc WiFi network.

At the implementation level, AmbientTalk interpreters
communicate with one another by means of sockets. Am-
bientTalk’s topic-based publish/subscribe service discovery
mechanism is peer-to-peer and does not require a centralised
repository. AmbientTalk interpreters discover one another by
means of the network’s support for multicast messaging. After
a successful discovery, the two interpreters exchange discovery
information (e.g. registered subscriptions and exported objects)
in order to find a match.

One feature of AmbientTalk which has not been discussed
in this paper is that it is a reflective programming language.
It provides a powerful reflection API which can be used to
extend the language from within itself. Part of our research
lies in using this reflective API to develop novel language
constructs [11].

XI. CONCLUSION

We have introduced AmbientTalk, a distributed object-
oriented programming language specifically designed for com-
posing service objects in mobile ad hoc networks. Ambi-
entTalk’s language features have been selected to mitigate
the effects of the hardware characteristics inherent to mobile
ad hoc networks. The language’s asynchronous concurrency
model allows objects to abstract over temporary network
failures without affecting the control flow (i.e. the application
remains responsive). The language’s built-in publish/subscribe
engine allows objects to discover one another in a peer-to-peer
manner, without depending on any centralised infrastructure.

Although none of AmbientTalk’s language features are
novel in their own right, the contribution of AmbientTalk lies
in its integration of the many interesting language features
drawn from a variety of other languages and middleware into
a consistent object-oriented language framework, and this in
the specific domain of mobile ad hoc networks.

REFERENCES

[1] M. Weiser, “The computer for the twenty-first century,” Scientific
American, pp. 94–100, september 1991.

[2] R. Meier, V. Cahill, A. Nedos, and S. Clarke, “Proximity-based service
discovery in mobile ad hoc networks,” in Distributed Applications and
Interoperable Systems. Springer, 2005, pp. 115–129.

[3] C. Mascolo, L. Capra, and W. Emmerich, “Mobile Computing Middle-
ware,” in Advanced lectures on networking. Springer-Verlag New York,
Inc., 2002, pp. 20–58.

[4] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum, “Programming languages
for distributed computing systems,” ACM Comput. Surv., vol. 21, no. 3,
pp. 261–322, 1989.

1This implementation can be downloaded at http://prog.vub.ac.be/amop/at/
download.

[5] J.-P. Briot, R. Guerraoui, and K.-P. Lohr, “Concurrency and distribution
in object-oriented programming,” ACM Computing Surveys, vol. 30,
no. 3, pp. 291–329, 1998. [Online]. Available: citeseer.ist.psu.edu/
article/briot98concurrency.html

[6] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in OOPSLA ’05: Proceed-
ings of the 20th annual ACM SIGPLAN conference on Object oriented
programming systems languages and applications. New York, NY,
USA: ACM Press, 2005, pp. 519–538.

[7] B. Liskov, “Distributed programming in Argus,” Communications Of
The ACM, vol. 31, no. 3, pp. 300–312, 1988.

[8] E. Jul, H. Levy, N. Hutchinson, and A. Black, “Fine-grained mobility
in the Emerald system,” ACM Transactions on Computer Systems,
vol. 6, no. 1, pp. 109–133, February 1988. [Online]. Available:
citeseer.ist.psu.edu/jul88finegrained.html

[9] L. Cardelli, “A Language with Distributed Scope,” in Proceedings of the
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. ACM Press, 1995, pp. 286–297.

[10] M. Miller, E. D. Tribble, and J. Shapiro, “Concurrency among strangers:
Programming in E as plan coordination,” in Symposium on Trustworthy
Global Computing, ser. LNCS, R. D. Nicola and D. Sangiorgi, Eds.,
vol. 3705. Springer, April 2005, pp. 195–229.

[11] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De
Meuter, “Ambient-oriented Programming in Ambienttalk,” in Proceed-
ings of the 20th European Conference on Object-oriented Programming
(ECOOP), ser. Lecture Notes in Computer Science, D. Thomas, Ed.,
vol. 4067. Springer, 2006, pp. 230–254.

[12] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, 2003.

[13] H. Lieberman, “Using prototypical objects to implement shared
behavior in object-oriented systems,” in Conference proceedings on
Object-oriented Programming Systems, Languages and Applications.
ACM Press, 1986, pp. 214–223. [Online]. Available: http://doi.acm.org/
10.1145/28697.28718

[14] B. Garbinato and P. Rupp, “From ad hoc networks to ad hoc ap-
plications,” in Proceedings of the 7th International Conference on
Telecommunications, 2003, pp. 145–149.

[15] P. Eugster, B. Garbinato, and A. Holzer, “Pervaho: A development & test
platform for mobile ad hoc applications,” in Third annual International
Conference on Mobile and Ubiquitous Systems: Networking & Services,
July 2006, pp. 1–5.

[16] G. Agha, Actors: a Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[17] H. Lieberman, “Concurrent object-oriented programming in ACT
1,” in Object-Oriented Concurrent Programming, A. Yonezawa and
M. Tokoro, Eds. MIT Press, 1987, pp. 9–36.

[18] A. Yonezawa, J.-P. Briot, and E. Shibayama, “Object-oriented
concurrent programming in ABCL/1,” in Conference proceedings on
Object-oriented programming systems, languages and applications.
ACM Press, 1986, pp. 258–268. [Online]. Available: http://doi.acm.org/
10.1145/28697.28722

[19] J.-P. Briot, “From objects to actors: study of a limited symbiosis in
smalltalk-80,” in Proceedings of the 1988 ACM SIGPLAN workshop on
Object-based concurrent programming. New York, NY, USA: ACM
Press, 1988, pp. 69–72.

[20] C. Gray and D. Cheriton, “Leases: an efficient fault-tolerant mechanism
for distributed file cache consistency,” in SOSP ’89: Proceedings of the
twelfth ACM symposium on Operating systems principles. New York,
NY, USA: ACM Press, 1989, pp. 202–210.

[21] P. Haller and M. Odersky, “Event-based programming without inversion
of control,” in Proc. Joint Modular Languages Conference, ser. Springer
LNCS, 2006.

[22] C. J. Callsen and G. Agha, “Open heterogeneous computing in
ActorSpace,” Journal of Parallel and Distributed Computing, vol. 21,
no. 3, pp. 289–300, 1994. [Online]. Available: citeseer.ist.psu.edu/
callsen94open.html

[23] M. Miller, “Robust composition: Towards a unified approach to access
control and concurrency control,” Ph.D. dissertation, John Hopkins
University, Baltimore, Maryland, USA, May 2006.

[24] B. Liskov and L. Shrira, “Promises: linguistic support for efficient
asynchronous procedure calls in distributed systems,” in Proceedings of

the ACM SIGPLAN 1988 conference on Programming Language design
and Implementation. ACM Press, 1988, pp. 260–267.

[25] D. Caromel, “Towards a method of object-oriented concurrent
programming,” Communications of the ACM, vol. 36, no. 9, pp.
90–102, 1993. [Online]. Available: citeseer.ist.psu.edu/300829.html

[26] J. Waldo, “Constructing ad hoc networks,” in IEEE International Sym-
posium on Network Computing and Applications (NCA’01), 2001, p. 9.

[27] A. D. Joseph, A. F. deLespinasse, J. A. Tauber, D. K. Gifford, and
M. F. Kaashoek, “Rover: a toolkit for mobile information access,”
in Proceedings of the 15th ACM Symposium on Operating Systems
Principles (SOSP ’95), Colorado, December 1995, pp. 156–171.

[28] D. Gelernter, “Generative communication in Linda,” ACM Transactions
on Programming Languages and Systems, vol. 7, no. 1, pp. 80–112, Jan
1985.

[29] A. Murphy, G. Picco, and G.-C. Roman, “LIME: A middleware
for physical and logical mobility,” in Proceedings of the The
21st International Conference on Distributed Computing Systems.
IEEE Computer Society, 2001, pp. 524–536. [Online]. Available:
citeseer.ist.psu.edu/murphy01lime.html

[30] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications with the TOTA middleware,” in PERCOM ’04:
Proceedings of the Second IEEE International Conference on Pervasive
Computing and Communications. Washington, DC, USA: IEEE
Computer Society, 2004, p. 263.

[31] P. Eugster, B. Garbinato, and A. Holzer, “Location-based pub-
lish/subscribe,” Fourth IEEE International Symposium on Network Com-
puting and Applications, pp. 279–282, 2005.

