
User-centric dynamic evolution

Peter Ebraert∗ Theo D’Hondt
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2

B-1050 Brussel, Belgium
{pebraert, tjdhondt}@vub.ac.be

Yves Vandewoude∗, Yolande Berbers
Department of Computer Science

KULeuven
Celestijnenlaan 200A

B-3001 Heverlee, Belgium
{yvesv, yolande}@cs.kuleuven.ac.be

Abstract

The domain in which we situate this research is that of
the availability of critical applications while they are being
updated. In this domain, the attempt is to make sure that
critical applications remain active while they are updated.
For doing that, only those system parts which are affected
by the update, will be made temporarily unavailable. The
problem is that current approaches are not user-centric, and
consequently, that they cannot provide feedback concerning
which features are deactivated while performing an update.

Our approach targets a four step impact analysis that
allows correct feedback to be given while a software sys-
tem is dynamically updated. First, the different features are
identified. Second, the system entities that implement those
features are identified. Third, an atomic change sequence
is established for the actual update. Finally, we compare
the atomic change sequence and the implementation of the
features in order to establish a list of features that are af-
fected by the update. This allows us to provide user-centric
feedback in terms of features.

Keywords: dynamic software evolution, change impact
analysis, features

1 Problem statement

An intrinsic property of a successful software application
is its need to evolve. In order to keep an existing application
up to date, we continuously need to adapt it. Usually, evolv-
ing such an application requires it to be shut down, however,
because updating it at runtime is generally not possible. In
some cases, this is beyond the pale. The unavailability of
critical systems, such as web services, telecommunication

∗Authors funded by a doctoral scholarship of the “Institute for the Pro-
motion of Innovation through Science and Technology in Flanders (IWT
Vlaanderen)”

switches, banking systems, etc. could have unacceptable fi-
nancial consequences for the companies and their position
in the market.

A possible solution to this problem are redundant sys-
tems [8]. Their main idea is to provide a critical system with
a duplicate, that is able to take over all functions of the orig-
inal system whenever this latter is not available. Although
this solution works in practice, it still has some disadvan-
tages. First of all, redundant systems require extra man-
agement concerning which software version is installed on
which duplicate. Second, maintaining the redundant sys-
tems and switching between them can be hard and is often
underestimated. What would happen for instance when the
switching mechanism fails? Would we have to make a re-
dundant switching mechanism and another switching mech-
anism for switching between the switching systems? Last,
duplicate software and hardware devices should be present,
which may involve severe financial issues.

Another approach to this problem is dynamic adaptation
of the system. This involves adapting the system while it is
active, but requires that the parts of the system – which are
affected by the update – to be deactivated while the update
is performed [6]. Existing systems (such as [9, 2]), oper-
ate on an abstraction level of programming constructs (e.g.
components, objects or methods). Working on this level of
abstraction has the benefit of easily identifying the affected
system parts, as updates will be executed on the same level
of abstractness. However, it has the inconvenience of not
being user-centric, bringing along the difficulty of provid-
ing useful feedback to the user – e.g. which functionalities
of the system will not be usable during the update.

We propose to lift the level of abstraction towards system
features. We adopt the definition of Eisenbarth et al. for fea-
tures [3]. They define a feature as ”an observable unit of be-
havior of a system which can be triggered by the user”. We
reason about features, but maintain a link between the fea-
tures and their underlying program constructs. This allows
us to benefit from the two layers of abstraction. On the one

1

hand, on the programming constructs level, we can easily
identify the affected system parts. On the other hand, on the
feature level, we can identify the affected functionalities of
the system. This opens up possibilities of providing useful
feedback to both the system user and developer. At runtime,
the user can be warned about temporary offline system fea-
tures. At compile time, the developer can be warned about
the features that will be affected by the update, allowing
him to react in case some features were not suposed to be
affected by the update.

2 General approach

In this research report, we look at evolving applications
at the level of system features. More precisely, we want to
be able to comment which features are affected by a certain
update. For doing that, we first need to identify the different
features the application provides. This can be done by au-
tomatic feature extraction techniques [5] or by manual code
annotations.

In the second step we capture the system entities that
are implementing those features. This is currently done by
using static design knowledge of the system and by pro-
ducing acall graph: a graph of the execution trace consist-
ing of nodes (code statements) and edges (method lookups).
Those call-graphs represent the link between the two levels
of abstraction (the program concepts level and the system
feature level).

In the third step, the application update is rewritten as a
change sequence: a sequence of atomic changes. A change
sequence captures all source code modifications that are
amenable to analysis. In [2] we explained how monitor-
ing techniques can be used to establish the atomic change
sequence.

In the fourth step, a change impact analysis [10] is per-
formed. It takes two major inputs: the call graphs from
the different application features and the change sequence
that was established in the previous step. The basic idea
of the analysis is to compare the atomic changes with the
call graphs in order to establish theaffected features list: a
list of features that are affected by the update. Note that –
thanks to the first and second steps of the process – we also
know theaffected entities list: the system entities that are
implementing the affected features.

From the moment that all the affected features – and the
program concepts that represent those features – are cap-
tured, we can start the actual update process. In order to
avoid corruption, we want to make sure that the affected
system entities are in a quiscent state before they are up-
dated [6]. Entities that are in a quiscent state do not al-
low incoming messages, and thus make sure that the entities
state remains consistent. Thanks to the impact analysis, we
know exactly which entities we should deactivate in order

Figure 1. Class diagram of the ATM applica-
tion

to avoid corruption. After deactivating the affected entities,
we execute the change sequence and reactivate the affected
entities, making sure the update is carried out in a safe way.
Next to that, we are able to give feedback to both the user
and the developer on which features will be affected by the
update. The developer can be warned at compile time on
which features a certain change will impact. The user can
be warned at runtime on which features are temporarily un-
available. Note that this approach acts to the basic idea of
dynamic updating; carrying out updates in a safe way, with-
out shutting down the entire system.

In order to exemplify our approach we use the example
of a class-based implementation of an ATM machine. Fig-
ure 1 shows the class-diagram of the system. We see that
there is a central class called ATM, which is the link be-
tween all the classes of the system. The system contains
five features: logging in, making a money transfer, making
a cash withdrawal, making a cash deposit and consulting
the balance. While the final four features are all transac-
tions, the first feature consists of a non-functional feature:
”the user has to be logged in before he can start one of the
transactions”. Throughout this paper, we will continuously
refer to this example to clarify every step of the approach.

3 Change impact analysis

In this section, we describe the four step process of de-
tecting the impact a certain change has on the system fea-
tures. The outcome is a set of features (and correspond-
ing system entities) that will be affected by a certain up-
date. Before we actually start the change impact analysis,

2

we must say that we go out from the premise that an ap-
plication consists of features, and that those features canbe
identified in the system. The remainder of this section con-
sists of a step-by-step description of this approach.

3.1 Identifying feature

The goal of this phase is to capture all the different fea-
tures of the system. Currently, we use design information
(from UML use case diagrams) for identifying the different
system features. However, recent research on feature ex-
traction techniques [5, 1, 4] has shown that automating this
step is feasible.

In practice, we plan to use Starbrowser [13] to model the
different features of the system. Starbrowser is a generic
classification system for Smalltalk that allows the user to
add, modify, delete, view and browse classifications of
source code entities. We model each feature as a classi-
fiable entity and make sure that, by clicking a feature, its
call-graph is shown to the user. The way this call-graph is
established, is explained in the following subsection.

ID Feature Explanation
F1 Logging in The user identification process
F2 Money transfer Transfer money from this account to an other one
F3 Cash withdrawal Withdraw cash money from this account
F4 Cash deposit Deposit money on the account
F5 Balace consulting Consult the balance of the account

Table 1. System Features

Table 1 shows the five features that we identified in the
ATM case. In the rest of the paper, we are considering those
four features.

3.2 Linking features with system entities

As explained in section, 1, we want to keep a link be-
tween the program construct level and the system feature
level. In order to do that, we need to find the relation-
ship between features and system entities. This is done by
analysing the features and capturing their execution traces.
In [7, 1, 4, 5], some techniques of dynamic analysis are pre-
sented, that capture the actual execution trace of the fea-
tures. Because it is very hard to predict the actual execution
trace that is used by the features, a conservative superset of
the execution trace is captured.

We model each execution trace as a call-graph; a graph in
which nodes represent code statements and edges represent
method calls. Nodes are labeled with a< C, M > tuple,
whereC is the class id andM the method which is called.
Edges corresponding to dynamic dispatch are also labeled
with a < C, M > tuple, whereC is the run-time type of
the receiver object, andM is the method. Note that we are

currently not taking into account changes to the instance
variables.

In the case of the ATM example, we did not do the
complex feature analysis for obtaining the call-graphs. In
stead, we use design information (from collaboration and
sequence diagrams) for constructing the call-graphs. We
are aware that this results in a probably incomplete call-
graph. This is not a problem, as the goal of the example is
to explain the user-centric approach and not the details of
the call-graph mining.

In practice, we could use monitoring techniques [14] for
obtaining the execution trace of the features. The execution
traces can directly be modeled as call-graphs, which are in
there turn stored in the Starbrowser [13]. Figure 2 shows the
call-graphs of all the features of the ATM example. We can
see that all transaction features have a commun part in their
call-graph. However we see that in that commun part, there
is a slight difference concerning the runtime type which is
passed when callingcomplete() on Transaction. This is
due to the fact that there is a dynamic dispatch in that place.

3.3 Establishing the atomic change sequence

In order to be able to start a change analysis, we first
need to decompose the update that brings the system from
versionS to versionS′, and capture it into aδS (= a change
sequence [2]). This change sequence captures all modifi-
cations to the source code in a list of atomic changes. We
extended the model that was presented in [2] with a few
extra atomic changes which capture variable modifications
and method lookup [10].

Scope Atomic change Explanation
Class AC Add a Class

DC Delete a Class
Variable AV Add a Variable

DV Delete a Variable
Method AM Add a Method

DM Delete a Method
CM Change the body of a Method
ML Change the Method Lookup

Table 2. Atomic Changes

Table 2 summarizes the set of atomic changes. The first
and most simple atomic changes incorporate added classes
(AC), deleted empty classes (DC), added variables (AV),
deleted variables (DV), added methods (AM), deleted meth-
ods (DM) and changed method bodies (CM). The last kind
of change consists of changes in the method lookup (ML).
Note that a change to a method body is captured by only
one CM, even if it consists of many changes.

In practice, the developer has to use a tool which is ap-
propriate for doing updates to the system. This tool allows
all the atomic changes that were shown in table 2 and mon-

3

Figure 2. Call graphs of the system features

itors the changes the developer is applying. Those changes
are captured and stored in the atomic change sequence.

Imagine that the gouvernement issues new bank notes
of 1000 Euros. Our ATM machine will from now on have
to accept cash deposits of this new bank note. Next to
that, it must also be able to dispence the new bank notes.
It is clear that this requirement brings along the need for
both a hardware and a software update. Table 3 shows the
atomic change sequenceA = {A1, A2, A3, A4, A5, A6} of
the software update that we need to apply for obtaining the
desired behavior.

ID Type Details
A1 CM <CustomerConsole, getWithdrawalInformation()>
A2 CM <CustomerConsole, getDepositInformation()>

A3 CM <CashDispenser, DispenseCash()>
A4 CM <Withdrawal, complete()>
A5 CM <EnvelopeAcceptor, acceptEnvelope()>
A6 CM <Deposit, complete()>

Table 3. Atomic Change Sequence of the up-
date

3.4 Finding affected features

In this final step of the impact analysis, we want to es-
tablish the set of affected features (and their corresponding
system entities). Next to that, we also want to specify
which specific atomic changes are affecting the features of
the system. This could be used as an extra feedback to the
developer, telling him which atomic changes affect which
system features. For doing that, we first need to establish
the transitive closure of dependent atomic changes. An
atomic changeAi is said to be dependent of an other atomic
changeAj :

Aj ← Ai (Ai is dependent ofAj)

if applyingAj without applyingAi, is conflicting (= results
in a syntactical error). Taking this into account, we establish
a partial order of all the atomic changes of an atomic change
sequenceA.

A featureFk is determined to be affected byAi:

Ai ⇐ Fk (Fk is affected byAi)

if its call graph contains either (i) a node that corresponds
to an atomic change of type CM (changed method) or DM

4

(deleted method) change, or (ii) an edge that corresponds to
an atomic change of type ML (lookup) change.

A featureFk is said to be affected by an atomic change
sequenceA:

A⇐ Fk (Fk is affected byA)

if there is at least one atomic changeAi which is affecting
Fk:

A⇐ Fk ⇔ ∃Ai ∈ A ∧Ai ⇐ Fk

In order to determine the set of atomic changesAF

that are affecting a featureF1 – AF (Fk) – we say that an
atomic changeAi is affecting a featureFk if Fk is affected
by Ai, or if there exists another atomic changeAj which is
affectingFk and from whichAi is dependent.

AF (A, Fk) ≡ {Ai ∈ A | ∧Ai ⇐ Fk} ∪ {Ai | ∃Aj ∈
A ∧Ai ← Aj ∧Aj ⇐ Fk}

We can say that a featureFk is not affected by a software
updateA, if AF (A, Fk) = ∅ From the moment we have
AF (A, Fk) for all the features of the system, we can (i)
give feedback to the developer of which parts of the atomic
change sequence will be affecting which features, and (ii)
we can start the dynamic updating process.

Tables 1, 2 and 3 respectively show the different system
features, the call-graps, and the atomic change sequence of
the ATM example. Analysing those tables and applying the
technique explained above, results in:

AF (A, F1) = ∅
AF (A, F2) = ∅
AF (A, F3) = {A1, A3, A4}
AF (A, F4) = {A2, A5, A6}
AF (A, F5) = ∅

This summarizes the findings of the analysis; the impact the
atomic changes have on the different ATM features. From
this moment on, we know for certain that both the features
F3 andF4 will be affected by the update. This knowledge
can be used for two kinds of feedback: (i) telling the pro-
grammer at compile-time that the update will affect those
features, (ii) telling the user at runtime that those features
are currently offline due to an update. Next to that, the
knowledge can also be used for knowing which entities need
to be deactivated before starting this update. How this is
done, is explained in the following section.

4 Dynamic updating

From the moment we know which features (and their
system entities) will be affected by the update, we are able
to start the actual updating process. In this process, we first
need to deactivate [2] those entities, in order to make sure
they remain in a quiscent state [6] while the update is ac-
tually carried out. For doing this, we make use of a dy-
namic update framework that was previously presented in
[2]. This framework uses a wrapper approach to stop in-
coming threads from running through the deactivated en-
tities. Those threads are put into a waiting queue and are
handled after reactivation. We also intercept the different
entry points of the affected features (the first entity of these-
quence or collaboration diagram) and make them display a
widget that tells the user that this feature is currently offline
because it is being updated, and that he should try again
later.

After this, we perform the actual updates on the system.
This is done by using the interceptive reflectional capabil-
ities that are offered by a runtime API (presented in [2]).
Once the update is completely carried out, we can reactivate
the stopped entities and reset the entry points of the affected
features. Note that the developer can also use the affected
feature list as a means of feedback on the impact of his up-
date. It is perfectly possible that it turns out some features,
that were not meant to be affected by an update, would be
affected anyway. If that would be the case, the developer
can react, before actually carrying out the update.

5 Future work

As we have already mentioned in the paper, we only use
design information for obtaining the link between features
and system entities. Since there are systems that do not have
this design information available or for which the design in-
formation is incorrect, a better technique is required. for
this we are planning to incorporate feature extraction tech-
niques. They could assist us for (i) identifying the different
features and (ii) to discover their execution traces.

We intentionally skipped discussing the atomic changes
that concern instance variables. However we already inves-
tigated how these atomic changes impact on the systems. In
[11, 12] we discuss about how the state is mapped from one
version to another.

Currently, we are only experimenting with the toy exam-
ple we explained throughout this paper. However, we under-
stand that it is a must to performing some real-worldcase
studiesfor really testing this approach. Executing some
benchmark testson these cases would allow us to answer
the question on whether real systems can be spilt up in dif-
ferent features, which can be deactivated separately. We

5

could easily imagine a system which features are so tangled
so that all of them will always be affected by some update.

Currently, we are working on the implementation of the
approach. While some parts are already finished, others,
such as the feature classification in Starbrowser or not.
However, we must say that we already see some possibil-
ities for optimisationsconcerning speed and user friendli-
ness. However, it is not clear yet, till what extent they can
be formalized.

• Only deactivating features during critical parts of the
update

• Reordering the atomic changes of the update, in order
to provide shorter deactivation periods

• Determining which part of the update can maybe be
postponed in order to leave some features active.

As a lot of programs are currently being written in the as-
pect oriented programming paradigm for disentangling the
different features, we think that our approach should be ex-
tended to support this. That is why we foresee the addition
of aspectual atomic changes; atomic changes that grasp the
notion of aspect oriented programming. This way, we could
allow the same approach for evolving aspect oriented pro-
grams.

6 Conclusion

In this paper, we propose a user-centric approach to dy-
namic evolution of applications. This approach involves
two layers of abstraction. The concrete layer – the pro-
gram constructs layer – consists of system entities and can
be used for reasoning about source code. The abstract layer
– the feature layer – consists of the different system features
and is used for reasoning about system features.

Thanks to the fact that we maintain a link between the
two layers, we are able to do a change impact analysis on
the program constructs layer, and reason about it on the fea-
ture layer. This allows us to return feedback about the sys-
tem features. It is this kind of feedback that separates this
approach from already existing approaches to dynamic soft-
ware evolution, as this feedback tells the user wether some
feature can currently by used or not. Next to that, it can be
used by the developer to see wether a certain update affects
some unexpected system features.

References

[1] G. Antoniol and Y. Gueheneuc. Feature identification: A
novel approach and a case study. InProceedings of ICSM
2005 (21th International Conference on Software Mainte-
nance), 2005.

[2] P. Ebraert, T. Mens, and T. D’Hondt. Enabling dynamic soft-
ware evolution through automatic refactorings. Inproceed-
ings of the Workshop on Software Evolution Transformations
(SET2004), pages 3–7, 2004.

[3] Eisenbarth, R. Koschke, and D. Simon. Locating featuresin
source code. InIEEE Computer, volume 29(3), pages 210–
224, March 2003.

[4] A. Eisenberg and K. D. Volder. Dynamic feature traces: Find-
ing features in unfamiliar code. InProceedings of ICSM 2005
(21th International Conference on Software Maintenance),
2005.

[5] O. Greevy, S. Ducasse, and T. Gı̂rba. Analyzing feature traces
to incorporate the semantics of change in software evolution
analysis. InProceedings of ICSM 2005 (21th International
Conference on Software Maintenance), pages 347–35, 2005.

[6] J. Kramer and J. Magee. The evolving philosophers problem:
Dynamic change management.IEEE Transactions on Soft-
ware Engineering, 16(11):1293–1306, November 1990.

[7] G. C. Murphy, A. Lai, R. J. Walker, and M. P. Robillard. Sepa-
rating features in source code: An exploratory study. InProc.
23rd Int’l Conf. Software Engineering, pages 275–284. IEEE
Computer Society, 2001.

[8] P. O´ Connor.Practical Reliability Engineering. Wiley, 4th
edition edition, 2002.

[9] M. Oriol. An Approach to the Dynamic Evolution of Software
Systems. PhD thesis, Université de Genève, 2004.

[10] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chi-
anti: A tool for change impact analysis of java programs. In
Proceedings of the International Conference on Object Ori-
ented Programming OOPSLA’04, 2004.

[11] Y. Vandewoude and Y. Berbers. Fresco: Flexible and reli-
able evolution system for components. InElectronic Notes in
Theoretical Computer Science, 2004.

[12] Y. Vandewoude and Y. Berbers. Deepcompare: Static analy-
sis for runtime software evolution. Technical Report CW405,
KULeuven, Belgium, Februari 2005.

[13] R. Wuyts. Starbrowser.
[14] R. Wuyts. Smallbrother - the big brother for smalltalk.Tech-

nical report, Université Libre de Bruxelles, 2000.

6

