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Abstract

Typically, multiple developers are involved in the various
stages of the software development and maintenance pro-
cess. To ensure an optimal transfer of knowledge between
these different peers, a reliable human-readable model
of the dynamics of a software artefact is needed. Once
these models become machine-verifiable, they can be used
throughout an application’s lifetime to check whether the
documented behavioral properties continue to hold as the
application evolves. Unfortunately, most existing modeling
media are inadequate to express human-readable behav-
ioral models which are at the same time machine-verifiable.
We therefore propose a declarative platform wherein behav-
ioral program models can be expressed in terms of user-
defined high-level concepts and be automatically verified
against an application’s actual behavior. We demonstrate
our approach by using it to both document and verify an
interpreter for a garbage-collected programming language.

1. Introduction

From a software system’s initial conception to its even-
tual maintenance, it is important for all involved to have a
reliable mental model of the interactions between its com-
ponents and the processes that govern the behavior that thus
emerges. Behavioral program models are not only invalu-
able in order to locate and evaluate the impact of a neces-
sary maintenance change, but also play an important role
in the communication of knowledge between a developer’s
peers. Once written down, program models serve as knowl-
edge transfer vehicles between successive developers, thus
reducing the overall program understanding effort.

There are two important desirable properties for any
model documenting a program’s behavior. On the one hand,
program models should be written down in a descriptive

human-readable format in order to serve their communica-
tive purposes. Ideally, to encourage daily use, expressing
a model in such a human-readable format shouldn’t be too
tedious either, while the resulting models should convey as
much relevant information as possible.

On the other hand, the second desirable property of a
program model has to do with keeping the information it
conveys as reliable as possible. As an application evolves,
the corresponding behavioral model will have to be adapted
accordingly. A model might have to be extended in order to
accomodate for changes, but ideas expressed in the model
might have to be revisited as well. Manually detecting dis-
crepancies between a program’s observed behavior and the
behavior that was documented by the model is unfortunately
time-consuming and error-prone. In order for this task to
be automated, models should be expressed in a machine-
verifiable format. Ideally, to encourage daily use, the auto-
mated verification shouldn’t take too much time on larger
programs either. The second desirable property is therefore
lightweight machine-verifiability.

At first sight, human-readability and lightweight
machine-verifiability seem to be conflicting properties of
behavioral program models. In this paper, we will how-
ever show that these two desirable properties can be recon-
ciled by introducing high-level concepts in the behavioral
descriptions documented by a program model. Such con-
cepts are of a higher semantic level than the individual pro-
gramming constructs offered by a particular implementa-
tion language.

The introduction of high-level concepts in behavioral
program models achieves the human-readability property
by making it easier for developers to communicate and
reason about a program’s behavior at large, possibly even
enabling concept reuse across models for applications in
the same domain. It is therefore interesting to consider
machine-verifiable behavioral program models that are built
from such higher-level or even domain-level concepts. At
the same time, we will explore how the verification of an
application’s actual behavior against models described in



terms of high-level concepts can be made computation-
ally less expensive than the verification against models de-
scribed in terms of low-level programming constructs.

We have developed a platform, called BEHAVE, which
supports this approach for programs written in C. We will
start our paper by outlining our approach to documenting a
program’s behavior in high-level, machine-verifiable mod-
els. We will continue our discourse in section 3, throughout
which we will use a naive stack implementation as the run-
ning example to introduce the BEHAVE platform supporting
our approach. We will carefully outline the steps necessary
to document and verify the stack’s behavior in a high-level
program model. In section 4, an experiment will be pre-
sented on a medium-sized but fairly complex C program:
an interpreter for the Pico programming language, whose
run-time behavior we have documented and verified using
our platform. Related work will be reviewed in section 5
and we conclude with a discussion of our approach in sec-
tion 6.

2. Machine-Verifiable High-level Program
Documentation

In this section, we will outline our approach to doc-
umenting a program’s dynamic behavior in high-level
human-readable models which can be verified throughout
the application’s entire lifetime. Two important phases can
be discerned in all machine-verifiable documentation ap-
proaches: one wherein developers document knowledge
about the behavior of a program in a model and one wherein
developers verify the consistency of the documented and ac-
tual program behavior. In case of inconsistencies, a third
phase comprises the interpretation of the obtained verifica-
tion results which might initiate another iteration through
the documentation and verification phase. In our approach,
the documentation consists of two parts: behavioral asser-
tions documenting desired and non-desired program behav-
ior and a description of the high-level concepts over which
this knowledge is expressed.

2.1. Verifying Program Documentation

To better understand how our platform works, we will
first explain how in the second phase the consistency of the
documented and the application’s actual behavior is veri-
fied. As we mentioned before, we wanted the verification
phase to be lightweight. Heavyweight program verifiers
[5, 6] check whether a program always exhibits the desired
behavior regardless of any specific execution scenario. Al-
though this feature seems desirable, the high computational
cost associated with such an approach interferes with our
daily usage requirement. We therefore opted for a dynamic
analysis strategy wherein the program under investigation

is executed along a well-defined scenario which prescribes
user input and program arguments. Run-time events aris-
ing during the execution of the program are recorded in an
execution trace.

Automatic verification thus amounts to checking
whether the obtained execution trace exhibits the wanted
and not the unwanted behavior documented in the program
model. Our verification results are however always rela-
tive to the user input prescribed by the execution scenario.
A well-chosen execution scenario moreover offers a con-
venient way to focus the verification on specific parts of a
larger program. Our approach is herein similar to unit test-
ing [3] advocated by the Extreme Programming community.

2.2. Specifying Program Documentation

Now that we have explained the nature of our verifica-
tion phase, it is time to focus on the most distinctive fea-
ture of our platform: its ability to document a program’s
behavior in high-level behavioral program models. Again,
as we mentioned before, we wanted to encourage daily use
and make sure documenting a program’s behavior doesn’t
become too tedious. In contrast to many heavyweight pro-
gram verification approaches, the focus in our approach to
machine-verifiable program documentation is on the com-
municative aspect of the models documenting a program’s
behavior. We therefore do not require developers to exhaus-
tively model every possible program state that may arise
during an application’s execution. On the contrary, our
models only describe relevant desired and unwanted pro-
gram behavior.

Developers have to specify desired and unwanted behav-
ior as a set of assertions over the run-time events that are
recorded during the application’s execution. Most verifica-
tion approaches relying on dynamic analysis demand these
assertions to be expressed over a rigid set of low-level run-
time events that are directly related to programming lan-
guage constructs. Examples of such low-level events are
for instance assignments to variables or calls to functions.
An assertion might state that after every call to the func-
tion bar, the value of the variable foo has been increased.
Expressing entire program models in terms of such asser-
tions over low-level run-time events can however become
awkward and the resulting models lose much of their abil-
ity to convey any semantic information at all. Moreover,
there is little room for reuse of models across applications
in the same domain. Given our knowledge transfer setting,
we would therefore rather be able to document a program’s
behavior in terms of concepts that are of a higher semantic
level instead. For a stack datastructure, concepts that imme-
diately come to mind are the pop and push operations and
the elements on the stack. A higher-level assertion about
the behavior of a stack datastructure might for instance state



that the size of the stack grows after every push operation.
Such an assertion is immediately decoupled from a particu-
lar stack implementation and might be reused across many
applications employing a stack datastructure.

At the very least, we thus require that the language used
to express assertions in, allows us to compose higher-level
events from low-level run-time events and allows us to de-
couple these events from concrete source code. This would
for instance already allow us to specify that, for a particu-
lar program, the operation pop referenced by a high-level
stack program model, is implemented by a call to the con-
crete function pop. However, the values associated with
each low-level run-time event are predetermined too. Of a
low-level assignment event, usually only the assigned value
and modified variable are available. This limits the range of
values that can be associated with composite higher-level
events as well. In case we would like to know the concrete
elements on the stack after each stack operation, we would
be forced to compute this information from the low-level
assignment events that preceded the operation. Such post-
mortem computations could make the verification of behav-
ioral program models expensive, which would conflict with
our lightweight machine-verifiability desirable property.

We therefore decided to go one step further and chose to
have the run-time events recorded during the execution of
the application be high-level themselves. This allows be-
havioral assertions to be expressed directly over high-level
run-time events. The identification of high-level events is
completely left up to the developer. They can choose to
model a program’s behavior using high-level events that are
shared between multiple applications. For a stack datastruc-
ture, these could for instance be the typical stack manipulat-
ing operations. A developer only has to specify when such
a high-level event takes place and also how to obtain any
additional run-time information that is associated with such
an event. For the stack datastructure, the information asso-
ciated with each stack operation could for instance indicate
the elements on the stack after the operation. A developer
using our platform is thus free to determine the high-level
events that arise during an application’s execution and the
information about a program’s run-time state that is associ-
ated with each event. With respect to the human-readability
requirement, special care has been given to the design of
the descriptive language in which program models and their
meta models have to be specified. We will introduce this
specification language in the following section using a run-
ning example.

Our decision to record high-level instead of low-level
run-time events during the execution of a program, di-
rectly complies with our lightweight machine-verifiability
requirement as well. As developers are now able to specify
when and how events occur at run-time, we will no longer
have to record every single low-level run-time event. The

resulting high-level execution traces in general comprise
fewer run-time events which allows our approach to be ap-
plied on larger programs. The introduction of high-level
events in both the execution traces and the program mod-
els against which they are verified, therefore allows for the
practical investigation of larger programs using succinct and
highly descriptive models suitable for knowledge transfer.

3. Using BEHAVE to Document and Verify Pro-
gram Behavior

Using the BEHAVE platform to document a program’s
behavior, developers can freely determine the high-level
events over which they want to express behavioral asser-
tions in the program’s model. Although such large degrees
of freedom inherently require more developer involvement,
the benefits of high-level program models with respect to
the aforementioned desirable properties definitely merit an
investigation.

In order to optimally exploit the platform during an ap-
plication’s life-cycle, a developer can therefore adhere to
the following proven recipe. For the documentation phase
of our approach, developers have to identify the high-level
events that are to be used in the program model (1), doc-
ument the current understanding of a program’s internal
workings in a model specifying desired and unwanted be-
havior (2) and specify the application-specific instances of
high-level events (3). For the verification phase of our ap-
proach, developers can have the consistency of the pro-
gram’s documented behavior and its actual behavior veri-
fied by our platform (4). In the subsequent sections, we will
detail each of the recipe’s steps using a simple stack imple-
mentation as the running example.

3.1. Identifying High-Level Run-Time
Events

The first step in our recipe to document a program’s be-
havior in a machine verifiable format, is to identify the high-
level events over which behavioral assertions will be ex-
pressed in the program model. Inadvertently, when think-
ing about stack datastructures, the operations pop, push and
initialize immediately spring to mind. Independent from a
concrete implementation, the size of the stack and the ele-
ment on top are other important stack-related concepts. As
the concrete values of these concepts will vary over time as
the stack is being manipulated, we will consider these as ad-
ditional information about a program’s state associated with
each of the high-level events representing stack operations.

Considering the concrete stack implementation as shown
in Figure 1b, we could as well have described our program
model in terms of calls to the function push or array manip-
ulations originating from an expansion of the macro pop.



1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 !(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 !(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.
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1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)
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2 until(stackInitialized, ¬stackUsed),
3 !(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 !(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(b) source code 

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }
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10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).
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13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).
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(a) observed behavior

(c) documented behavior

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 !(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 !(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.
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1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

1 stackPushOperation(Construct,Path) :-

2 functionCallHasName(Construct, ’push’).

3 stackPopOperation(Construct,Path) :-

4 macroCallHasName(Construct, ’pop’).

5 stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 !(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 !(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

! (always), ! (sometimes), • (previous) and ◦ (next). The

specific for this 
application

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 !(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 !(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(e) application-specific instances

Figure 1: Source code and corresponding behavioral documentation of a C stack implementation.

We have however already argued in Section 2.2 that pro-
gram models consisting of assertions over such low-level
run-time events do not adhere to our human-readability de-
sirable property nor do they allow the reuse of high-level
events across documentation for applications in the same
domain.

3.2. Documenting Program Behavior

The next step in our recipe comprises documenting a
program’s behavior in a machine-verifiable, but human-
readable model. Our most basic understanding of the be-
havior of a typical stack is that it grows in size whenever
new elements are pushed on it and shrinks whenever an ex-
isting element is removed through the pop operation. The
second perception that springs to mind is that failures might
follow when the stack hasn’t been correctly initialized. We
could also specify assertions about the top of the stack with
regard to the push and pop operation, but we rather opt for
a small model as our objective here is to introduce the plat-
form.

In order to have our insights checked automatically, we
have to specify them in a machine-verifiable language. To
facilitate this task as much as possible, the specification lan-
guage should be highly expressive. An expressive, declar-
ative language additionally ensures that the resulting spec-
ifications are descriptive and convey as much information
as possible. Machine-executable logic languages, whereof
Prolog [9] is the well-known archetypical representant, are
good contenders.

In such programming languages, a program consists of
logic clauses representing a developer’s knowledge about a
particular problem. In our program verification platform,
the logic program consists of a logic representation of the

source code and an execution trace of the C program under
investigation. Our behavioral assertions over the run-time
events from the execution trace, are expressed as logic for-
mulas. To determine whether such a formula is a logical
consequence of the logic program, logic programming lan-
guages rely on a proof procedure. While behavioral pro-
gram models could be expressed in regular Prolog, our BE-
HAVE platform offers an extended Prolog variant which is
especially suited to model the temporal relations between
run-time events.

Formulae in temporal logics comprise the classical logic
formulae possibly qualified by temporal operators such as
2 (always), � (sometimes), • (previous) and ◦ (next). The
truth value of a formula depends on an implicit temporal
context: a formula can be true at a certain moment in time,
while it might be false at the next moment. While differ-
ent time models are supported in temporal logics, a finite
linear time model suffices for our approach. In this model,
informally, the temporal formula 2φ is true if φ is true at all
moments in time. Similarly, we have that �φ is true when φ
is true at some moment in time.

Temporal logic programming languages [11] are based
on a subset of a temporal logic such that programs written
in this subset are machine-executable. MTL [4] is a tem-
poral logic programming language based on metric tem-
poral logic. Metric temporal logics incorporate an addi-
tional quantitative aspect into the temporal operators. The
�t (sometimes within t time points) operator is for instance
available. We propose the use of a variant of MTL1 to doc-
ument a program’s behavior in behavioral assertions over

1Regular MTL rules may not contain applications of 2-operators in
their bodies, or �-operators in their heads. These limitations however do
not apply in our context where the boundaries of time coincide with the
start and end of the execution of a program.



high-level events.

While temporal logic formulae have been successfully
applied in the program verification domain, they are some-
times hard to understand [7]. Users unacquainted with tem-
poral logic are therefore free to document their programs
using assertions expressed in plain Prolog. Temporal op-
erators, however, allow the delimitation of temporal con-
texts in a very descriptive manner without having to explic-
itly manipulate integers representing points in time. Pro-
gram models expressed in Prolog might thus be less con-
cise, but can still be expressed at a conceptual instead of
an implementation level thanks to the platform’s high-level
run-time events. Moreover, our BEHAVE platform employs
a temporal logic programming language as the specifica-
tion language instead of a plain temporal logic. As users
can combine temporal operators into reusable higher-order
logic rules, they are able to express often recurring tem-
poral patterns without having to remember their idiomatic
expression in plain temporal logic. Examples are various
occurrence and ordering patterns which were identified as
appearing most often in specifications for verification sys-
tems [7].

Given MTL as a specification language, we can easily
express our understanding of the behavior of a stack in the
machine-verifiable, human-readable model depicted in Fig-
ure 1c. The second line of the extract states that until the
stack is initialized, it may not be used. The third line states
that it must always be the case that whenever a push opera-
tion left the stack in a state with size S, any previous stack
operation should have left the stack in a state with size S−1.

Lines 5–9 define the logic predicates used within these
assertions. Lines 8 and 9 define that a stackOperation

comprises either the initialization or manipulation of the
stack. The push and pop operations are considered stack
manipulators, which is expressed by the stackUsed predi-
cate in lines 6 and 7.

The final 3 lines of the extract link the predicates used
in the behavioral model to the high-level events observed
during the execution of the program. We can see that the
high-level push and pop events in the execution trace record
more information about the state of the stack than is actu-
ally needed by this model specification. The first recorded
value is ignored as we are only interested in the second
value which records the size of the stack. By altering the
definition of the push, pop and init predicates, our behav-
ioral model specification can be reused even when different
run-time values are associated with the high-level events in
the execution trace. In the next step of our recipe, develop-
ers have to specify how to observe these high-level events
during the execution of the program.

3.3. Specifying Application-Specific In-
stances of High-Level Events

At this point in our 4-step recipe, we have identified the
high-level run-time events typically associated with a stack
datastructure. We have also specified a model of its behav-
ior using assertions over these events expressed as tempo-
ral logic formulae. The high-level run-time events push,
pop and initialize will be the constituents of the execution
traces against which we will verify the program’s behav-
ioral model shown in Figure 1c. An example of such an
execution trace is shown in Figure 1a.

Since the recorded execution traces consist of user-
defined high-level run-time events, developers have to spec-
ify which events can be intercepted during an application’s
execution and also how each event is recorded. For our
running example, this specification is shown in Figure 1d.
It consists of a set of intercept(When, What, RecordAs)

declarations. On the first line of the specification, we de-
clare that all occurrences of a high-level pop run-time event
have to be intercepted. We also declare that these events
must be recorded in the execution trace as facts of the
form event(time, pop(stackTop, stackSize)). Instead
of merely logging the occurrence of this high-level event,
we also record the top of the stack and its size after the event
occurred. These will be the run-time values associated with
the pop event. Occurrences of the push and initialize events
are logged analogously.

The behavioral assertions and which high-level events to
intercept is documentation that can be shared by different
applications. For each specific program, we only need to
specify how to intercept the high-level events. Applied to
our running example, this for instance amounts to identify-
ing the constructs in the application’s source code that give
rise to the high-level pop event. From the code depicted
in Figure 1b, it is clear that this operation is implemented
by code resulting from an expansion of the pop C func-
tion macro on line 10. We can express this knowledge in
the stackPopOperation rule whose concrete implementa-
tion was left open in the aforementioned intercept decla-
ration. As shown on line 3 of Figure 1e, this rule states that
the pop event is caused by calls to the macro named pop.

To support developers in the identification of con-
structs that give rise to a high-level event, BEHAVE
makes an entire application’s parse tree available2. The
stackPopOperation(Construct, Path) rule is presented
each parse tree node through the Construct variable, while
the Path variable represents the path from the tree’s root
that leads to that node. Although the identification rules for

2The original macro calls can be accessed in this parse tree since they
are not expanded by our parser. However, using macros, one can write
programs that break the C parsing rules. In that case, developers currently
have to use the C pre-processor and lose all macro information as we do
not address this issue in our prototype implementation.



our running example only need to access attributes from the
parse tree nodes, Prolog’s full declarative reasoning power
will be needed for the experiment in Section 4.

At this time, we still have to declare how the run-time
information associated with each high-level event can be
retrieved from the specific stack implementation whose be-
havior has to be verified. On lines 1–2 of Figure 1d, using
the keywords stackTop and stackSize we declared that the
size of the stack and the element on top should be recorded
after each pop operation. These run-time values will have to
be obtained by the execution of application-specific source
code. For the stack implementation of the running example,
the C code associated with each keyword is shown in Figure
1f. For the use case in Section 4, somewhat more elaborate
code will have to be provided in order to obtain the correct
run-time values for each high-level event.

3.4. Lightweight Consistency Verification

In the last step of our recipe, developers can verify
the consistency of a program’s actual behavior with its
documented behavior by launching logic queries against a
recorded execution trace. BEHAVE instruments the source
code of the application under investigation in order to record
all occurrences of the high-level run-time events speci-
fied in the behavior program model. To intercept occur-
rences of the high-level pop event, the platform relies on the
stackPopOperation logic rule to identify those source code
constructs which give rise to the pop event. The platform
also relies on the definition of the stackTop and stackSize

keywords to obtain the run-time values associated with this
event.

To verify the behavioral model specified in Figure 1d,
the logic query ?- behavioralModel has to be launched. In
case of a verification failure, our temporal logic interpreter
prints the last event that was used in an attempt to prove
the query. This information can be used to either adapt the
application to the model or the model to the application.
The generated execution traces consist of high-level events
which renders manual inspection in case of verification fail-
ures somewhat more feasible. As discussed in Section 2, the
generated execution traces contain in general fewer events
as well since not every low-level event needs to be recorded.

4. Experiment: Documenting and Verifying
the Behavior of the Pico Interpreter

In this section, we will present the results of an experi-
ment performed using the BEHAVE platform. In this exper-
iment, we verified the actual behavior of an interpreter for
a programming language against the available documenta-
tion. This interpreter presented a unique opportunity to test

our approach: the original developer documented its behav-
ior thoroughly in a non machine-verifiable format, while
many changes have been made to the interpreter over time.
As this interpreter is nowadays used to introduce computer
science students to the foundations of interpretation, it is
important to have reliable documentation conveying its dy-
namics in a concise but descriptive manner. In this exper-
iment, we therefore formalised the existing documentation
and verified whether it was still loyal to the actual behav-
ior of the interpreter. The experiment demonstrated that the
introduction of high-level events in the interpreter’s behav-
ioral program model resulted in machine-verifiable docu-
mentation that was as human-readable as the original. At
the same time, the introduction of carefully selected high-
level events in the execution traces resulted in relatively
compact traces allowing for a more lightweight verification.

4.1. The Pico Interpreter

Pico [10] is an interpreted programming language de-
veloped at the Vrije Universiteit Brussel. Originally con-
ceived to teach programming concepts to students outside
the realm of computer science, its C implementation –which
totals about 16K lines of condense C code– is nowadays
also heavily used as a teaching vehicle in the computer sci-
ence curriculum.

The Pico interpreter relies on the concept of a continua-
tion to represent the subtasks a computation –such as the
evaluation of an expression– comprises. Contrary to the
conventional semantics, a Pico continuation does not de-
note the entire future of the computation at hand, but rather
a piece of this computation. The Pico interpreter stores
these pieces on a stack. The entire stack of continuations,
to which we will refer as the continuation stack, therefore
represents the complete future of the computation. A con-
tinuation may invoke other continuations by placing them
on the continuation stack. Arguments can be passed by
storing them on a separate stack referred to as the expres-
sion stack. The heart of the Pico interpreter is a loop which
continuously executes the continuation located at the top of
the continuation stack. Continuations are implemented as
pointers to C functions which take no arguments nor return
a value.

The internals of the Pico interpreter are documented
in a very consistent manner. As a well-defined sequence
of continuation and expression stack manipulations deter-
mines the operational semantics of each Pico expression,
the interpreter’s documentation conveys how these stacks
evolve during the evaluation of a program. For each contin-
uation, the documentation describes what the continuation
stack and expression stack are expected to look like before
and after the execution of the continuation. Consider for
instance the documentation of the ASG continuation, which
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the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 !(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-
Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).

4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 !(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-
Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).

4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

specific for this application

positively identify a continuation later on, but for the mo-

ment it suffices to recall that they are implemented as func-

tions. The functionEntry clause therefore checks whether

the construct is the first C statement in a function body.

We could try to base our definition of the

inContinuation predicate on the C signature common to

all Pico continuations which states that continuations are

pointers to functions taking no arguments as well as not

returning anything:

typedef _NIL_TYPE_ (*_CNT_TYPE_)(_NIL_TYPE);

Such a definition would however result in many false pos-

itives. Recalling that continuations invoke other continua-

tions and pass around arguments by respectively manipulat-

ing the continuation and expression stack, we have therefore

opted to identify continuations based on a more semantical

definition:

The above rule states that a Construct is a continuation

if first of all it is a function and at least one expression in the

body of that function manipulates either the continuation

or the expression stack. Such stack manipulations can be

detected in Pico as code resulting from the expansion of

pop, push, zap and peek macro calls.

We have however neglected to mention three important

predicates the intercept declarations of the dynamic meta

model rely on: the cntName, cntPtr and cntStack key-

words. As we mentioned before, keywords are used to de-

clare how the information associated with each behavioral

concept of the general meta model can be retrieved from

an application’s run-time state. The cntStack keyword is

responsible for capturing the run-time configuration of the

continuation stack. This process involves interesting code

to walk over the continuation stack, but since this code is

tightly tied to Pico’s internals, it is out of this paper’s scope.

The keywords cntName and cntPtr, on the other hand, dif-

fer somewhat from the keywords we have seen in the run-

ning example. Instead of simply declaring the code it ex-

pands to as a logic fact, these keywords are actually logic

rules which are allowed to query the application’s parse tree

to obtain information that is to be incorporated in the ex-

panded source code. The cntName keyword, for instance,

obtains the name of a continuation from a program’s parse

tree as a function’s name is very difficult to obtain at run-

time given ANSI C’s limited reflective capabilities:

1 keyword(cntName,C,P,Expansion) :-

2 continuationName(C,P,Name),

3 concat([’log("’,Name,’");’],Expansion).

4.4. Lightweight Consistency Verification

To verify whether the Pico interpreter indeed behaves

as indicated by its documentation, we used the interpreter

to evaluate a program containing most of the allowed Pico

expression types. This way, we obtained high-level execu-

tion traces containing information about the dynamics of the

continuation stack as specified by the dynamic meta model

outlined above:

1 ..
2 event(60,cntEntered(’ASG’,13..1,[’ASG’,’print’, ’exit’])).
3 event(61,cntExited(’ASG’,13..1,[’print’, ’exit’])).
4 ..

We verified whether this execution trace is conform to

our model specification by launching the logic query ?-

behavioralModel. By doing so, we found several inter-

esting conflicts between Pico’s documented behavior and

the behavior we observed. One of them was located in the

documentation of the REA continuation which is executed

when an expression is read. The documentation indicated

that this continuation just pops the top of the continuation

stack during its execution, while in reality the EXT and EXP

continuations were pushed on top of the stack. In addi-

tion, several minor naming inconsistencies were detected.

The eval exp was for instance abbreviated in the docu-

mentation as EXP, but another continuation already had this

name. Such inconsistencies are very likely to confuse pro-

grammers during knowledge transfer. Upon interpretation

of our verification results, we were able to adapt the pro-

gram model to the observed behavior and made sure the

documentation and source code are back in sync.

We would like to conclude this section with a side note.

Although the behavioral model of the Pico interpreter as

presented in this section only expresses desirable behav-

ior, we have also used our verification platform to detect

instances of undesirable behavior. The Pico interpreter in-

cludes an implementation of a garbage collection algorithm

which might be invoked during the execution of a contin-

uation. Continuations should therefore be programmed in

a specific way in order to avoid ending up with dangling

pointers to the Pico object memory. In our program model,

we were able to specify the dynamic conditions leading to

a crash as undesirable properties and by doing so we were

able to locate two crash-inducing oversights which weren’t

immediately clear from the source code.

5. Related Work

Many existing software engineering tools already sup-

port the development process using information about a pro-

gram’s behavior.

5.1. Other Dynamic Analyses

In this section, we will compare some of the existing ap-

plications of dynamic analysis that are closest to our work

according to the following non-exhaustive set of compar-

ison criteria: intended application domain, analysis time,

the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 !(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-
Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).
4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

positively identify a continuation later on, but for the mo-

ment it suffices to recall that they are implemented as func-

tions. The functionEntry clause therefore checks whether

the construct is the first C statement in a function body.

We could try to base our definition of the

inContinuation predicate on the C signature common to

all Pico continuations which states that continuations are

pointers to functions taking no arguments as well as not

returning anything:

typedef _NIL_TYPE_ (*_CNT_TYPE_)(_NIL_TYPE);

Such a definition would however result in many false pos-

itives. Recalling that continuations invoke other continua-

tions and pass around arguments by respectively manipulat-

ing the continuation and expression stack, we have therefore

opted to identify continuations based on a more semantical

definition:

The above rule states that a Construct is a continuation

if first of all it is a function and at least one expression in the

body of that function manipulates either the continuation

or the expression stack. Such stack manipulations can be

detected in Pico as code resulting from the expansion of

pop, push, zap and peek macro calls.

We have however neglected to mention three important

predicates the intercept declarations of the dynamic meta

model rely on: the cntName, cntPtr and cntStack key-

words. As we mentioned before, keywords are used to de-

clare how the information associated with each behavioral

concept of the general meta model can be retrieved from

an application’s run-time state. The cntStack keyword is

responsible for capturing the run-time configuration of the

continuation stack. This process involves interesting code

to walk over the continuation stack, but since this code is

tightly tied to Pico’s internals, it is out of this paper’s scope.

The keywords cntName and cntPtr, on the other hand, dif-

fer somewhat from the keywords we have seen in the run-

ning example. Instead of simply declaring the code it ex-

pands to as a logic fact, these keywords are actually logic

rules which are allowed to query the application’s parse tree

to obtain information that is to be incorporated in the ex-

panded source code. The cntName keyword, for instance,

obtains the name of a continuation from a program’s parse

tree as a function’s name is very difficult to obtain at run-

time given ANSI C’s limited reflective capabilities:

1 keyword(cntName,C,P,Expansion) :-

2 continuationName(C,P,Name),

3 concat([’log("’,Name,’");’],Expansion).

4.4. Lightweight Consistency Verification

To verify whether the Pico interpreter indeed behaves

as indicated by its documentation, we used the interpreter

to evaluate a program containing most of the allowed Pico

expression types. This way, we obtained high-level execu-

tion traces containing information about the dynamics of the

continuation stack as specified by the dynamic meta model

outlined above:

1 ..

2 event(60,cntEntered(’ASG’,13..1,[’ASG’,’print’, ’exit’])).

3 event(61,cntExited(’ASG’,13..1,[’print’, ’exit’])).

4 ..

We verified whether this execution trace is conform to

our model specification by launching the logic query ?-

behavioralModel. By doing so, we found several inter-

esting conflicts between Pico’s documented behavior and

the behavior we observed. One of them was located in the

documentation of the REA continuation which is executed

when an expression is read. The documentation indicated

that this continuation just pops the top of the continuation

stack during its execution, while in reality the EXT and EXP

continuations were pushed on top of the stack. In addi-

tion, several minor naming inconsistencies were detected.

The eval exp was for instance abbreviated in the docu-

mentation as EXP, but another continuation already had this

name. Such inconsistencies are very likely to confuse pro-

grammers during knowledge transfer. Upon interpretation

of our verification results, we were able to adapt the pro-

gram model to the observed behavior and made sure the

documentation and source code are back in sync.

We would like to conclude this section with a side note.

Although the behavioral model of the Pico interpreter as

presented in this section only expresses desirable behav-

ior, we have also used our verification platform to detect

instances of undesirable behavior. The Pico interpreter in-

cludes an implementation of a garbage collection algorithm

which might be invoked during the execution of a contin-

uation. Continuations should therefore be programmed in

a specific way in order to avoid ending up with dangling

pointers to the Pico object memory. In our program model,

we were able to specify the dynamic conditions leading to

a crash as undesirable properties and by doing so we were

able to locate two crash-inducing oversights which weren’t

immediately clear from the source code.

5. Related Work

Many existing software engineering tools already sup-

port the development process using information about a pro-

gram’s behavior.

5.1. Other Dynamic Analyses

In this section, we will compare some of the existing ap-

plications of dynamic analysis that are closest to our work

according to the following non-exhaustive set of compar-

ison criteria: intended application domain, analysis time,
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the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 !(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-
Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).

4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 !(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-
Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).

4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

specific for this application

positively identify a continuation later on, but for the mo-

ment it suffices to recall that they are implemented as func-

tions. The functionEntry clause therefore checks whether

the construct is the first C statement in a function body.

We could try to base our definition of the

inContinuation predicate on the C signature common to

all Pico continuations which states that continuations are

pointers to functions taking no arguments as well as not

returning anything:

typedef _NIL_TYPE_ (*_CNT_TYPE_)(_NIL_TYPE);

Such a definition would however result in many false pos-

itives. Recalling that continuations invoke other continua-

tions and pass around arguments by respectively manipulat-

ing the continuation and expression stack, we have therefore

opted to identify continuations based on a more semantical

definition:

The above rule states that a Construct is a continuation

if first of all it is a function and at least one expression in the

body of that function manipulates either the continuation

or the expression stack. Such stack manipulations can be

detected in Pico as code resulting from the expansion of

pop, push, zap and peek macro calls.

We have however neglected to mention three important

predicates the intercept declarations of the dynamic meta

model rely on: the cntName, cntPtr and cntStack key-

words. As we mentioned before, keywords are used to de-

clare how the information associated with each behavioral

concept of the general meta model can be retrieved from

an application’s run-time state. The cntStack keyword is

responsible for capturing the run-time configuration of the

continuation stack. This process involves interesting code

to walk over the continuation stack, but since this code is

tightly tied to Pico’s internals, it is out of this paper’s scope.

The keywords cntName and cntPtr, on the other hand, dif-

fer somewhat from the keywords we have seen in the run-

ning example. Instead of simply declaring the code it ex-

pands to as a logic fact, these keywords are actually logic

rules which are allowed to query the application’s parse tree

to obtain information that is to be incorporated in the ex-

panded source code. The cntName keyword, for instance,

obtains the name of a continuation from a program’s parse

tree as a function’s name is very difficult to obtain at run-

time given ANSI C’s limited reflective capabilities:

1 keyword(cntName,C,P,Expansion) :-

2 continuationName(C,P,Name),

3 concat([’log("’,Name,’");’],Expansion).

4.4. Lightweight Consistency Verification

To verify whether the Pico interpreter indeed behaves

as indicated by its documentation, we used the interpreter

to evaluate a program containing most of the allowed Pico

expression types. This way, we obtained high-level execu-

tion traces containing information about the dynamics of the

continuation stack as specified by the dynamic meta model

outlined above:

1 ..
2 event(60,cntEntered(’ASG’,13..1,[’ASG’,’print’, ’exit’])).
3 event(61,cntExited(’ASG’,13..1,[’print’, ’exit’])).
4 ..

We verified whether this execution trace is conform to

our model specification by launching the logic query ?-

behavioralModel. By doing so, we found several inter-

esting conflicts between Pico’s documented behavior and

the behavior we observed. One of them was located in the

documentation of the REA continuation which is executed

when an expression is read. The documentation indicated

that this continuation just pops the top of the continuation

stack during its execution, while in reality the EXT and EXP

continuations were pushed on top of the stack. In addi-

tion, several minor naming inconsistencies were detected.

The eval exp was for instance abbreviated in the docu-

mentation as EXP, but another continuation already had this

name. Such inconsistencies are very likely to confuse pro-

grammers during knowledge transfer. Upon interpretation

of our verification results, we were able to adapt the pro-

gram model to the observed behavior and made sure the

documentation and source code are back in sync.

We would like to conclude this section with a side note.

Although the behavioral model of the Pico interpreter as

presented in this section only expresses desirable behav-

ior, we have also used our verification platform to detect

instances of undesirable behavior. The Pico interpreter in-

cludes an implementation of a garbage collection algorithm

which might be invoked during the execution of a contin-

uation. Continuations should therefore be programmed in

a specific way in order to avoid ending up with dangling

pointers to the Pico object memory. In our program model,

we were able to specify the dynamic conditions leading to

a crash as undesirable properties and by doing so we were

able to locate two crash-inducing oversights which weren’t

immediately clear from the source code.

5. Related Work

Many existing software engineering tools already sup-

port the development process using information about a pro-

gram’s behavior.

5.1. Other Dynamic Analyses

In this section, we will compare some of the existing ap-

plications of dynamic analysis that are closest to our work

according to the following non-exhaustive set of compar-

ison criteria: intended application domain, analysis time,

Figure 1d, using the keywords stackTop and stackSize we

declared that the size of the stack and the element on top

should be recorded after each pop operation. These run-

time values will have to be obtained by the execution of

application-specific source code. For the stack implemen-

tation of the running example, the C code associated with

each keyword is shown in Figure 1f. For the use case in

Section 4, somewhat more elaborate code will have to be

provided in order to obtain the correct run-time values for

each high-level event.

3.4. Lightweight Consistency Verification

Developers can verify the consistency of a program’s ac-

tual behavior with its documented behavior by launching

logic queries against a recorded execution trace. DynaMode

instruments the source code of the application under inves-

tigation in order to record all occurrences of the high-level

run-time events specified in the meta model of the behavior

program model. To intercept occurrences of the high-level

pop event, the platform relies on the stackPopOperation

logic rule to identify those source code constructs which

give rise to the pop event. The platform also relies on the

definition of the stackTop and stackSize keywords to ob-

tain the run-time values associated with this event.

To verify the behavioral model specified in Figure 1d,

the logic query ?- behavioralModel has to be launched. In

case of a verification failure, our temporal logic interpreter

prints the last event that was used in an attempt to prove

the query. This information can be used to either adapt the

application to the model or the model to the application.

The generated execution traces consist of high-level events

which renders manual inspection in case of verification fail-

ures somewhat more feasible on the one hand, while the

verification itself is often computationally less expensive as

assertions generally need to be checked over fewer events

on the other hand.

4. Case Study: Documenting and Verifying the

Behavior of the Pico Interpreter

Pico [13] is an elegant interpreted programming lan-

guage developed at the Vrije Universiteit Brussel. Origi-

nally conceived to teach programming concepts to students

outside the realm of computer science, its C implementa-

tion is nowadays also heavily used in the computer science

curriculum as a teaching vehicle to introduce interpretation

techniques.

The Pico interpreter relies on the concept of a continua-

tion to represent the subtasks a computation –such as the

evaluation of an expression– comprises. Contrary to the

conventional semantics, a Pico continuation does not de-

note the entire future of the computation at hand, but rather

a piece of this computation. The Pico interpreter stores

these pieces on a stack. The entire stack of continuations,

to which we will refer as the continuation stack, therefore

represents the complete future of the computation. A con-

tinuation may invoke other continuations by placing them

on the continuation stack. Arguments can be passed by

storing them on a separate stack referred to as the expres-

sion stack. The heart of the Pico interpreter is a loop which

continuously executes the continuation located at the top of

the continuation stack. Continuations are implemented as

pointers to C functions which take no arguments nor return

a value.

In order to develop Pico language extensions, computer

science students first have to grasp the dynamics of the Pico

execution model. A well-defined sequence of continuation

and expression stack manipulations determines the opera-

tional semantics of each Pico expression. Students should

therefore have a good idea of how the contents of these

stacks evolves during the evaluation of a program.

4.1. Identify High-Level Run-Time Events

The internals of the Pico interpreter, which comprise

about 16K lines of condense C code, are documented in

a very consistent manner as is required by its educational

purposes. For each continuation, the documentation de-

scribes what the continuation stack and expression stack are

expected to look like before and after the execution of the

continuation. Consider for instance the documentation of

the ASS continuation, which implements the execution of an

assignment expression. Its behavior was documented by the

original developer in terms of expression and continuation

stack transformations:

1 /*----------------------------------------------*/

2 /* ASG */

3 /* expr-stack: [... ... ... ... DCT VAL] -> */

4 /* [... ... ... ... ... VAL] */

5 /* cont-stack: [... ... ... ... ... ASG] -> */

6 /* [... ... ... ... ... ...] */

7 /*----------------------------------------------*/

8 static _NIL_TYPE_ ASG(_NIL_TYPE_)

9 { ... }

The expected elements of the continuation and expres-

sion stack are written down between square brackets and

separated by spaces. The top of the stacks are located on

the right side. The dots represent possible elements on the

stack that are of no importance to the assignment continu-

ation as they are left untouched during its execution. The

expected configuration of the stack before the execution of

the continuation is located to the left of each arrow, while

its configuration after the execution is located to the right.

This human-readable schema sufficiently documents the

semantics of the assignment expression as implemented by

the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 !(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-
Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).
4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

positively identify a continuation later on, but for the mo-

ment it suffices to recall that they are implemented as func-

tions. The functionEntry clause therefore checks whether

the construct is the first C statement in a function body.

We could try to base our definition of the

inContinuation predicate on the C signature common to

all Pico continuations which states that continuations are

pointers to functions taking no arguments as well as not

returning anything:

typedef _NIL_TYPE_ (*_CNT_TYPE_)(_NIL_TYPE);

Such a definition would however result in many false pos-

itives. Recalling that continuations invoke other continua-

tions and pass around arguments by respectively manipulat-

ing the continuation and expression stack, we have therefore

opted to identify continuations based on a more semantical

definition:

The above rule states that a Construct is a continuation

if first of all it is a function and at least one expression in the

body of that function manipulates either the continuation

or the expression stack. Such stack manipulations can be

detected in Pico as code resulting from the expansion of

pop, push, zap and peek macro calls.

We have however neglected to mention three important

predicates the intercept declarations of the dynamic meta

model rely on: the cntName, cntPtr and cntStack key-

words. As we mentioned before, keywords are used to de-

clare how the information associated with each behavioral

concept of the general meta model can be retrieved from

an application’s run-time state. The cntStack keyword is

responsible for capturing the run-time configuration of the

continuation stack. This process involves interesting code

to walk over the continuation stack, but since this code is

tightly tied to Pico’s internals, it is out of this paper’s scope.

The keywords cntName and cntPtr, on the other hand, dif-

fer somewhat from the keywords we have seen in the run-

ning example. Instead of simply declaring the code it ex-

pands to as a logic fact, these keywords are actually logic

rules which are allowed to query the application’s parse tree

to obtain information that is to be incorporated in the ex-

panded source code. The cntName keyword, for instance,

obtains the name of a continuation from a program’s parse

tree as a function’s name is very difficult to obtain at run-

time given ANSI C’s limited reflective capabilities:

1 keyword(cntName,C,P,Expansion) :-

2 continuationName(C,P,Name),

3 concat([’log("’,Name,’");’],Expansion).

4.4. Lightweight Consistency Verification

To verify whether the Pico interpreter indeed behaves

as indicated by its documentation, we used the interpreter

to evaluate a program containing most of the allowed Pico

expression types. This way, we obtained high-level execu-

tion traces containing information about the dynamics of the

continuation stack as specified by the dynamic meta model

outlined above:

1 ..

2 event(60,cntEntered(’ASG’,13..1,[’ASG’,’print’, ’exit’])).

3 event(61,cntExited(’ASG’,13..1,[’print’, ’exit’])).

4 ..

We verified whether this execution trace is conform to

our model specification by launching the logic query ?-

behavioralModel. By doing so, we found several inter-

esting conflicts between Pico’s documented behavior and

the behavior we observed. One of them was located in the

documentation of the REA continuation which is executed

when an expression is read. The documentation indicated

that this continuation just pops the top of the continuation

stack during its execution, while in reality the EXT and EXP

continuations were pushed on top of the stack. In addi-

tion, several minor naming inconsistencies were detected.

The eval exp was for instance abbreviated in the docu-

mentation as EXP, but another continuation already had this

name. Such inconsistencies are very likely to confuse pro-

grammers during knowledge transfer. Upon interpretation

of our verification results, we were able to adapt the pro-

gram model to the observed behavior and made sure the

documentation and source code are back in sync.

We would like to conclude this section with a side note.

Although the behavioral model of the Pico interpreter as

presented in this section only expresses desirable behav-

ior, we have also used our verification platform to detect

instances of undesirable behavior. The Pico interpreter in-

cludes an implementation of a garbage collection algorithm

which might be invoked during the execution of a contin-

uation. Continuations should therefore be programmed in

a specific way in order to avoid ending up with dangling

pointers to the Pico object memory. In our program model,

we were able to specify the dynamic conditions leading to

a crash as undesirable properties and by doing so we were

able to locate two crash-inducing oversights which weren’t

immediately clear from the source code.

5. Related Work

Many existing software engineering tools already sup-

port the development process using information about a pro-

gram’s behavior.

5.1. Other Dynamic Analyses

In this section, we will compare some of the existing ap-

plications of dynamic analysis that are closest to our work

according to the following non-exhaustive set of compar-

ison criteria: intended application domain, analysis time,
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and after the execution of the continuation. Consider for

instance the documentation of the ASG continuation, which

implements the execution of an assignment expression. Its

behavior is documented in terms of expression and contin-

uation stack transformations shown in Figure 2b. The ex-

pected elements of the continuation and expression stack

are written down between square brackets and separated by

spaces. The top of the stacks are located on the right side.

The dots represent possible elements on the stack that are

of no importance to the assignment continuation as they are

left untouched during its execution. The expected configu-

ration of the stack before the execution of the continuation

is located to the left of each arrow, while its configuration

after the execution is located to the right.

This human-readable schema sufficiently documents the

semantics of the assignment expression as implemented by

the ASG continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASG) from the continuation stack and executes

it. The ASG continuation in turn expects a variable envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASG continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

4.2. Documenting Program Behavior

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level events in terms of which we will document the

behavior. Following the original documentation, we chose

to model the execution of a continuation as a high-level

event whose associated run-time values are the configura-

tion of the continuation stack before and after the execution.

In this paper, we will only describe and verify the evolution

of the continuation stack, but our approach can be easily

applied to the expression stack as well.

1 /*----------------------------------------------*/
2 /* ASS */
3 /* expr-stack: [... ... ... ... DCT VAL] -> */
4 /* [... ... ... ... ... VAL] */
5 /* cont-stack: [... ... ... ... ... ASS] -> */
6 /* [... ... ... ... ... ...] */
7 /*----------------------------------------------*/
8 static _NIL_TYPE_ ASG(_NIL_TYPE_)
9 { ... }

We are now ready to specify our behavioral model as

assertions over the high-level events we just identified.

We will start by transforming the original documentation

into a format readable by our platform. As the model

specification abstract in Figure 2c shows, we use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASG’|R] matches any list

starting with the element ’ASG’ while the rest of the list

is bound to the variable R. We use this feature to represent

the ellipses from the source code comments. The first line

of the model therefore specifies that at the start of the ASG

continuation’s execution, there should be an ASG assignment

continuation on top of the stack. After its execution, the

continuation has to be popped from the stack.
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implements the execution of an assignment expression. Its
behavior is documented in terms of expression and contin-
uation stack transformations shown in Figure 2b. The ex-
pected elements of the continuation and expression stack
are written down between square brackets and separated by
spaces. The top of the stacks are located on the right side.
The dots represent possible elements on the stack that are
of no importance to the assignment continuation as they are
left untouched during its execution. The expected configu-
ration of the stack before the execution of the continuation
is located to the left of each arrow, while its configuration
after the execution is located to the right.

This human-readable schema sufficiently documents the
semantics of the assignment expression as implemented by
the ASG continuation. At a certain point during the evalua-
tion of a program, the Pico driver loop pops the assignment
continuation (ASG) from the continuation stack and executes
it. The ASG continuation in turn expects a variable envi-
ronment (represented by the dictionary DCT) and the value
that is to be assigned VAL) to be on the expression stack.
They are both needed to store a variable-value binding in
the current environment. At the end of its execution, the
ASG continuation pushes the assigned valued VAL on the ex-
pression stack, as Pico assignment expressions evaluate to
their right-hand side.

4.2. Documenting Program Behavior

Over the course of some years, several modifications to
the Pico source code have been made. We therefore wanted
to verify whether the actual dynamics of the continuation
stack still matched the documented behavior. Following the
recipe outlined in Section 2, we first have to identify the
high-level events in terms of which we will document the

behavior. Following the original documentation, we chose
to model the execution of a continuation as a high-level
event whose associated run-time values are the configura-
tion of the continuation stack before and after the execution.
In this paper, we will only describe and verify the evolution
of the continuation stack, but our approach can be easily
applied to the expression stack as well.

We are now ready to specify our behavioral model as
assertions over the high-level events we just identified.
We will start by transforming the original documentation
into a format readable by our platform. As the model
specification abstract in Figure 2c shows, we use logic
facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-
uation stack before and after the continuation’s execution is
represented by a list whose first element is the top of the
stack. In Prolog, the partial list [’ASG’|R] matches any list
starting with the element ’ASG’ while the rest of the list
is bound to the variable R. We use this feature to represent
the ellipses from the source code comments. The first line
of the model therefore specifies that at the start of the ASG

continuation’s execution, there should be an ASG assignment
continuation on top of the stack. After its execution, the
continuation has to be popped from the stack.

The assertions in our behavioral model need to state that
whenever a continuation is executed, the configuration of
the continuation stack before and after its execution should
match the ones documented in the model. We accomplish
this on lines 4–6 of Figure 2c by expressing a temporal re-
lation between the cntExecuted and cntDocumented pred-
icates. The Before and After variables used within these
predicates match in order to enforce that the observed com-
plete stack configurations agree with their partial specifica-
tions. As we represented these stacks as concrete Prolog



lists and partial Prolog lists respectively, we are relying on
Prolog’s built-in unification algorithm to perform the actual
matching.

As in our running example, the final 3 lines of the extract
link the predicates used in the behavioral model to the high-
level events that will be observed during the execution of
the Pico interpreter. This time, instead of just omitting un-
wanted information from the recorded events, we are using
the temporal operator •t to express that a continuation has
been completely executed once it is exited and was entered
t time points ago in the past.

4.3. Application-Specific Instances of High-
Level Events

The third step in our recipe consisted of a precise speci-
fication of the high-level events used in the program model.
The model from the previous section completely relies on
just two high-level run-time events: the start and conclu-
sion of a continuation’s execution. More importantly, we
are interested in the configuration of the continuation stack
at those moments in time. We will therefore associate
these values with the cntEntered and cntExited run-time
events. The high-level event specification shown in Figure
2d declares these run-time events to be recorded as facts
of the form cntEntered(cntName,cntPtr,cntStack)and
cntExited(cntName,cntPtr,cntStack).

The definitions of the continuationEntry and
continuationExit predicates, which are among the
logic predicates the high-level event specification relies on,
are depicted in Figure 2e. They are responsible for locating
those constructs in the Pico interpreter’s source code that
represent the entry and exit points of a continuation. The
continuationEntry rule states that a construct is the
entry point of a continuation if the construct is part of a
continuation and if it is the entry point of a function as well.
As before, the Path variable represents the path from the
program’s parse tree root to the parse tree node bound to
the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-
struct is part of a continuation. We will discuss how to
positively identify a continuation later on, but for the
moment it suffices to recall that they are implemented as
functions. The functionEntry clause therefore checks
whether the construct is the first C statement in a function
body.

We could try to base our definition of the
inContinuation predicate on the C signature shown
on line 9 of Figure 2b. This signature is common to all Pico
continuations and states that continuations are pointers
to functions taking no arguments as well as not returning
anything. Such a definition would however result in many
false positives. Recalling that continuations invoke other

continuations and pass around arguments by respectively
manipulating the continuation and expression stack, we
have therefore opted to identify continuations based on a
more semantical definition shown in lines 7–10 of Figure
2e. The continuation(Construct) rule states that a C
code construct is a continuation if first of all it is a function
and at least one expression in the body of that function
manipulates either the continuation or the expression stack.
Such expressions are identified in the Pico source code by
the picoStack(Expression) clause.

We have however neglected to mention three important
keywords our specification of the meta model relies on: the
cntName, cntPtr and cntStack keywords. As we men-
tioned before, keywords are used to declare how the in-
formation associated with each high-level run-time event
specified in the general meta model can be retrieved from
an application’s run-time state. The cntStack keyword is
responsible for capturing the run-time configuration of the
continuation stack. This process involves code to walk over
the continuation stack, but since this code is tightly tied to
Pico’s internals, it is out of this paper’s scope. The key-
words cntName and cntPtr, on the other hand, differ some-
what from the keywords we have seen in the running exam-
ple. Instead of simply declaring the code it expands to as a
logic fact, these keywords are actually logic rules which are
allowed to query the application’s parse tree to obtain in-
formation that is to be incorporated in the expanded source
code. The cntName keyword, shown in Figure 2f, obtains
the name of a continuation from a program’s parse tree since
it is very hard to obtain a function’s name at run-time given
ANSI C’s limited reflective capabilities.

4.4. Lightweight Consistency Verification

To verify whether the Pico interpreter indeed behaves
as indicated by its documentation, we used the interpreter
to evaluate a program containing most of the allowed Pico
expression types. This way, we obtained high-level execu-
tion traces containing information about the dynamics of the
continuation stack. An example of such an execution trace
is shown in Figure 2a. We verified whether these traces
conform to our model specification by launching the logic
query ?- behavioralModel. By doing so, we found several
interesting conflicts between Pico’s documented behavior
and the behavior we observed. One of them was located
in the documentation of the REA continuation which is exe-
cuted when an expression is read. The documentation indi-
cated that this continuation just pops the top of the continu-
ation stack during its execution, while in reality the EXT and
EXP continuations were pushed on top of the stack. In ad-
dition, several minor naming inconsistencies were detected.
The eval exp continuation was for instance abbreviated
in the documentation as EXP, but another continuation al-



ready had this name. Such inconsistencies are very likely
to confuse programmers studying the documentation. Upon
interpretation of our verification results, we were able to
adapt the machine-verifiable behavioral documentation to
the actual program behavior. Since this documentation is
at least as descriptive and human-readable as the original
documentation in the source code comments, we adopted
the machine-verifiable documentation as the official docu-
mentation of the interpreter. This will allow us to keep the
documentation and source code in sync as we can easily
verify their consistency after future modifications to the in-
terpreter.

5. Related Work

The BEHAVE platform’s distinguishing property is that it
allows behavioral program documentation to be expressed
as temporal assertions over events at the conceptual level
instead of a program’s implementation level. Expressing
behavioral assertions through a temporal logic language is,
however, not new and quite common in heavyweight veri-
fication techniques exhaustively exploring a program’s pos-
sible states.

TRIO [8], for instance, is an established executable first-
order temporal logic specification language for real-time
systems. Similar to the metric temporal logic we employ,
it provides a metric to indicate distance in time between
events and length of time intervals. Outside of the heavy-
weight program verification domain, it has also been ap-
plied to check whether an execution history of a real-time
system satisfies its specification. Our BEHAVE platform
employs a metric temporal logic programming language as
the specification language which allows temporal operators
to be combined into reusable higher-order logic rules. As
these rules can express often recurring temporal patterns,
users don’t necessarily have to remember their idiomatic
expression in temporal logic.

The BEHAVE platform performs lightweight verification
through a dynamic analysis, while enabling developers to
determine the kind of run-time events that are intercepted
during a program’s execution. In the following section, we
will therefore compare some of the existing applications of
dynamic analysis that are closest to our work.

5.1. Related Dynamic Analyses

C-Patrol [14] is an assertion insertion system for C. As-
sertions are expressed as C expressions in source comments
which are textually converted into executable code by a pre-
processor. The resulting code is inserted at locations identi-
fied by extensional directives in the comments. Assertions
can therefore not be verified without altering the code of
the application under investigation, nor can they be reused

among different applications. There is no explicit notion of
a run-time event and thus also no language to express asser-
tions as computations over these events.

CCI [13] is a general program monitor notification tool
for C programs. At run-time, an execution monitor is no-
tified of events through calls to a user-implemented macro
which takes an integer indicating the type of event that oc-
curred and an event-specific associated value. The event
meta model is thus procedural. Through a basic pattern
matching language, composite events can be composed out
of statically selected low-level events. The value associated
with the higher-level events is however predetermined by
its constituents. As CCI is a program monitor notification
tool, it provides no language specifically tailored to reason-
ing about intercepted events.

Auguston et al. [2] present the interesting procedural as-
sertion specification language FORMAN. It provides quan-
tifiers, boolean and aggregate operations over events and
target program values. Atomic low-level events occur at a
time point, while composite events occupy an interval in
time. An event grammar formally specifies the low-level
constituents of composite events and their mutual order-
ing on the time line. This allows for automatic low-level
event selection according to a given assertion over compos-
ite events. The information recorded about each composite
event is however dependent on its atomic constituents. In a
program documentation setting, we prefer the more declar-
ative nature of the models resulting from our temporal logic
programming specification language. Our experiments have
also indicated the benefits of being able to freely determine
the run-time values associated with high-level events. Due
to the lack of a formal event grammar, our approach how-
ever requires more developer involvement.

5.2. Aspect-Oriented Programming

Aspect-Oriented programming languages feature a
pointcut language as an extension to a base programming
language which allows aspects to localize the implementa-
tion parts of a crosscutting concern. In our approach, we
could have used a pointcut language for the specification of
the high-level run-time events. However, mainstream point-
cut languages aren’t declarative, which would have con-
flicted with our human-readability requirement. Moreover,
for our experiments, we needed to identify all continuations
in the Pico interpreter’s code. We didn’t base the identifica-
tion on a function’s signature, but on a more semantic rule
relying on the expressions in its body. Most AOP languages
don’t offer the ability to reason about a function’s body. As-
picere’s pointcut language [1], one of the most expressive
for C, can not access macro’s in their pre-expanded state
which we needed for our experiments. Finally, we would
still have needed an expressive medium to describe a pro-



gram’s behavior in and have the resulting documentation
verified. To encourage daily use, it is preferable to have all
elements of this documentation in the uniform expressive
logic programming paradigm.

Stolz et al. [12] however present an interesting
lightweight Java program verification approach based on
AOP technology. Behavioral assertions are temporal logic
formulae over AspectJ pointcuts and are checked on-line
during a program’s execution. These assertions are however
less suited to document a program’s behavior with. First of
all, the logic formulae cannot assert anything about future
events. Secondly, the formulae can only reason about the
limited amount of events accessible by AspectJ pointcuts.
As the verification is performed on-line, asserting tempo-
ral relations between nested events is problematic. Finally,
there is little support for the incremental specification of as-
sertions, requiring programmers to remember the idiomatic
temporal logic expressions for commonly occurring tempo-
ral relations.

6. Conclusion and Future Work

In this paper, we presented the BEHAVE platform
wherein behavioral documentation can be expressed as as-
sertions over high-level events freely chosen by the devel-
opers. The platform verifies the consistency of the doc-
umented behavior and the program’s actual behavior in a
lightweight manner through dynamic analysis. More con-
ventional dynamic analysis applications demand assertions
to be expressed over a rigid set of low-level run-time events
that are directly related to programming language con-
structs. In contrast, a developer using the BEHAVE platform
has complete control over the kind of high-level events that
arise during an application’s execution and the information
about a program’s run-time state that is associated with each
event. Developers are therefore able to express documenta-
tion in terms of events at the conceptual level instead of the
implementation level.

The BEHAVE platform strives to reconcile the human-
readability and lightweight machine-verifiability desirable
properties of behavioral documentation approaches by in-
troducing conceptual events from the application’s domain
into the documentation. The resulting documentation is
lifted from the concrete implementation level to a higher
conceptual level. The introduction of high-level events en-
sures, in combination with an expressive specification lan-
guage, that the resulting models are descriptive, concise and
hence ideally suited to knowledge transfer. The introduc-
tion of high-level events in execution traces moreover al-
lows for the goal-oriented verification of larger applications
as the resulting traces comprise, in general, fewer events
than those consisting of low-level run-time events.

In this paper, we have evaluated the feasibility of our ap-

proach in an experiment on the Pico interpreter by translat-
ing the behavioral documentation found in its source code
comments into the machine-verifiable format understood by
our platform. We are currently preparing experiments to
evaluate the human-readability aspect of the resulting docu-
mentation empirically in a very specific knowledge transfer
setting: the transfer of knowledge between a knowledgeable
teacher and a student new to an algorithm or datastructure.

References
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