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Abstract

Concepts and processes that are typical for human problem solving, such as approaching a prob-
lem from different viewpoints or different levels of abstraction, and iterative and incremental trial
and error thought processes underlie the state-of-the-art in software engineering methods. Model-
Driven Development (MDD) considers multiple models at different levels of abstraction and trans-
forms them in a semi-automated way, while Agile Development advocates a lightweight, change-
oriented development cycle. Agile MDD aims at combining MDD and its voluminous transfor-
mations between complex models, with Agile Development that considers a highly iterative and
incremental development process.

The use of multiple, manipulable views on a system requires that these views are kept con-
sistent. Keeping different evolving artifacts in software engineering consistent is a key factor in
Round-Trip Engineering (RTE) as it combines forward and reverse engineering activities. Current
RTE tools however implement insufficient agility to support Agile MDD practices. Therefore, we
propose a new approach to RTE, that can be supported by the next generation of RTE tools that
meet the specific needs of Agile MDD. Advanced Round-Trip Engineering (ARTE) extends traditional
RTE by considering a high-level view, by applying an Agile Development cycle, and by integrating
run-time objects in the RTE process.

In this dissertation, we elaborate on an instance of ARTE, myARTE. First, myARTE includes an
analysis view, to which role modelling is added, that is kept consistent with an implementation
view. Second, myARTE approaches RTE from an agile, lightweight perspective by continuously re-
alising high-level, incremental transformations between the analysis and the implementation view
that represent a common model, in combination with a rapid prototyping phase. Finally, myARTE
considers the run-time object generations that are created during rapid prototyping. These object
generations are rescued between different iterations of the RTE process and are constrained by
multiplicities and dependency relationships in the analysis view.

Using the high-level prototype-based programming language Self for the implementation view
in myARTE not only allows us to implement the myARTE approach in a concise way, but more-
over enables to map the three criteria of myARTE to twelve finer-grained language mechanisms
in object-oriented programming languages, that are required for implementing myARTE tools.
From a detailed analysis of the presence of building blocks for these language mechanism in object-
oriented programming languages, we observe that dynamically-typed prototype-based program-
ming languages with a powerful meta-programming mechanism that combine the high flexibility
of “everything is an object” with the efficiency of an explicit mechanism for sharing behaviour,
provide basic language constructs for building the required language mechanisms.

myARTE employs an EER model in its analysis view, that applies existing EER notations in
combination with a role modelling concept that allows to express mutually exclusive roles. A
warped hierarchies implementation pattern presents a general solution to implement roles that are
modelled in the analysis view. We have implemented a graphical drawing editor that represents
this extended model, and that is integrated in the Self programming environment.

SelfSync is a proof-of-concept tool that implements our myARTE instance. The SelfSync tool is
validated in terms of scalability with the extensive and mature TELEBIB domain model that defines
the standard for the Belgian insurance business. Finally, the myARTE approach is extended with
Advanced Method Synchronisation (AMS) that allows methods and their bodies to be visualised
in the data modelling view and to be synchronised in the implementation and population views.
The presence of language constructs that are required to implement AMS is investigated in various
object-oriented programming languages. The SelfSync tool is extended with AMS: the EER view
includes operations that correspond to method slots in the implementation view. We show that
AMS can one day lead to an approach for creating Executable Models and to support for Visual
AOP.
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Abstract

Concepten en processen die typisch zijn voor het menselijk probleem-oplossen zoals een prob-
leem benaderen vanuit verschillende abstractieniveaus, en iteratieve en incrementele “trial-and-
error” denkprocessen liggen mee aan de basis van de huidige software engineering methoden.
Model-Driven Development (MDD) beschouwt verschillende modellen op verschillende abstrac-
tieniveaus, die semi-automatisch getransformeerd worden in uitvoerbare code, terwijl Agile Soft-
ware Development een meer light-weight change-georiënteerd ontwikkelingsproces ondersteunt.
Agile MDD is een eerste poging om de volumineuze model transformaties tussen complexe mod-
els in MDD te combineren met het uiterst iteratief en incrementeel ontwikkelingsproces van Agile
Development.

Het gebruik van verschillende aanpasbare views op een systeem vereist dat deze views con-
sistent zijn. Verschillende evoluerende software artifacten consistent houden speelt een cruciale
rol in Round-Trip Engineering (RTE) aangezien dit proces Forward Engineering en Reverse Engi-
neering combineert. De huidige RTE tools bevatten te weinig agiliteit om Agile MDD methoden
te ondersteunen. In deze thesis introduceren we een nieuwe methode voor Agile MDD die kan
ondersteund worden door een nieuwe generatie van RTE tools. Advanced Round-Trip Engineering
(ARTE) is een evolutie van de huidige RTE aanpak, die een hoog-niveau view beschouwt, een agile
ontwikkelingsproces ondersteunt en run-time objecten in het RTE proces betrekt.

In deze thesis werken we een bepaalde instantie van ARTE uit die we myARTE noemen. Ten
eerste beschouwt myARTE een analyseview dat het modelleren van rollen ondersteunt, en dat
gesynchroniseerd wordt met een implementatieview. Ten tweede benadert myARTE RTE van een
agile lightweight perspectief door hoog-niveau incrementele transformaties te realiseren tussen
het analyseview en het implementatieview, in combinatie met een interactief rapid prototyping
proces. Ten derde groepeert myARTE gelijkaardige run-time objecten in generaties die mee gesyn-
chroniseerd worden bij veranderingen in het implementatieview en die beperkt worden door de
multipliciteiten en afhankelijkheidsrelaties in het analyseview.

De hoog-niveau prototypegebaseerde taal Self gebruiken voor het implementatieview laat niet
enkel toe om de myARTE aanpak beknopt en comfortabel te implementeren, maar zorgt er ook
voor dat de drie myARTE criteria geprojecteerd kunnen worden op twaalf taalonafhankelijke taalme-
chanismsen die typisch zijn voor een myARTE implementatie.

Een gedetailleerde analyse over hoe deze taalmechanismen gebouwd kunnen worden in object-
georiën- teerde programmeertalen leert ons dat dynamisch getypeerde, prototypegebaseerde talen
met een krachtig reflectiemechanisme, die de flexibiliteit van “alles is een object” combineren met
een expliciet mechanisme voor gemeenschappelijk gedrag, kant-en-klare taalconstructies onders-
teunen die gebruikt kunnen worden als bouwstenen voor de myARTE taalmechanismen.

myARTE gebruikt een Extended Entity-Relationship model in het analyseview dat bestaande
EER notaties uitbreidt met een modeleerconcept voor rollen dat disjunctie kan uitdrukken. Een
nieuwe implementatietechniek voor Warped Inheritance Hierarchies kan gebruikt worden als een
algemene oplossing voor de rollen in het analyseview. Dit uitgebreid EER model is geı̈mplementeerd
in een grafische tekeneditor in de Self omgeving.

SelfSync is een proof-of-concept tool die de myARTE aanpak ondersteunt. SelfSync is gevali-
deerd met het uitgebreide TELEBIB domeinmodel dat de standaard definieert voor de Belgische
verzekeringsindustrie.

De myARTE aanpak en SelfSync zijn uitgebreid met Advanced Method Synchronisatie (AMS).
Deze uitbreiding laat toe dat methoden en hun bodies zichtbaar worden via operaties in het anal-
yseview, en gesynchroniseerd worden in het implementatieview en het run-time view. AMS kan
aanleiding geven tot Executable Models en Visueel Aspect-Oriented Programming (AOP).
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Chapter1
Introduction

1.1 Problem Context and Statement

Human thinking and problem solving can be represented in terms of representational structures in

the mind and computational procedures that operate on those structures [108]. Most work in cog-

nitive science assumes that the mind includes mental representations analogous to computer data

structures, such as concepts, rules and analogies, in combination with computational procedures

similar to computational algorithms.

Currently software engineering tools lack cognitive support [121]. From a cognitive perspec-

tive, software development tools should aid developers by participating in their thinking and

work [121], as opposed to the traditional goal of software engineering tools where the focus is

on “enabling” instead of helping to develop a new system.

We believe that a new approach for building sophisticated software tools, that realizes support

for specific cognitive processes by considering multiple views on a system under development,

together with a highly iterative and incremental development cycle, can play an important role

in solving the current lacking tool support for the state-of-the-art in software development ap-

proaches.

1.1.1 Multiple Views on Software Systems

Minsky states that the process of building the problem space during human problem analysis can

be represented with frames [78]. The perception dynamics, i.e. the dynamics of frame development

during the process of understanding a situation, is based on framesets:

”The different frames of a system describe the scene from different viewpoints, and the trans-

3



CHAPTER 1. INTRODUCTION

formations between one frame and another represent the effects of moving from place to place.

Different frames correspond to different views, and the names of pointers between frames corre-

spond to the motions or actions that change the viewpoint.”

The problem-solving space can be subject to transformations as the primary purpose in problem

solving should be to increase the understanding of the problem space and to find representations

within which the problems are easier to solve. The focus is more on getting information for this

reformulation, not on finding solutions [78]. When people try to understand a description of a sit-

uation, the representations they build during the process of understanding are arranged in layers.

Each representation is laid on the previous one and modifies it [96]. When the description of a

situation is considered, the details of the situation’s representation are abstracted. Only the core of

the representations remain. Additional detail or new knowledge can be “developed” later, in ways

that differ according to different situations.

In contrast to the popular acceptance of the frame structure in object-oriented programming

languages, Minsky’s analysis of perception dynamics was generally ignored or simply misunder-

stood [96]. Traditional software engineering methods such as the Waterfall model are used to man-

ually refine an abstract analysis model into a more technically detailed design model and finally

into a working implementation.

It is however possible to establish multiple views on a software system by specifying it from

different viewpoints [85]. A viewpoint on a system represents a perspective that focuses on specific

concerns. This allows us to suppress details to provide a simplified model having only those ele-

ments related to the concerns of the viewpoint. A view (or viewpoint model) of a system is a represen-

tation of the system from the perspective of a viewpoint. The different views can represent different

levels of abstraction where each level of abstraction will be a different viewpoint of this system, as

well as the same level of abstraction, for example when the viewpoints of different end-users on

the system are considered. As a consequence the model of a complete system can be divided into

different sub-models which will specify different parts of the system under development.

Recent tendencies in software engineering take such multiple views into account: Model-Driven

Development (MDD) [120], [61] involves the use of domain-specific languages for creating models

that express application structure or behaviour for the problem domain at different levels of ab-

straction. The models are subsequently transformed into executable code by a sequence of model

transformations [64]. A part of MDD is concerned with the representation of the models that are
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created during software development. Approaches that follow the MDA standard, for example,

consider three views with three different levels of abstraction: a computation-independent level, a

platform-independent level, and a platform-specific level. Each view can contain multiple models

that are constructed with the help of different languages.

The use of multiple views in software development activities requires that each model is kept

consistent with the others it is related to. The ability to maintain the consistency of multiple, chang-

ing software artifacts in software development environments and tools is a key factor in what is

referred to as Round-trip Engineering (RTE). RTE involves forward and reverse engineering steps

such that software artifacts, such as, code and graphical models, become synchronized at certain

points in time [95]. Where forward engineering deals with generating one or more software arti-

facts from an input artifact, where the generated artifact is closer to the final deployable system,

reverse engineering involves generating one or more software artifacts that abstract certain details

of the input artifacts, thereby trying to recover any information lost in the forward step [95]. Both

forward and reverse engineering steps involve transforming one or more artifacts into one or more

other artifacts. This is often realised by a ”single, isolated transformation, where any information in

the target artifact is not considered, and typically a new artifact is created, possibly replacing the previous

version, if one exists” [95].

Some characterize RTE as an application of mathematical domain transformation. In that case

RTE systems are defined as systems where the result of forward engineering a design that is reverse

engineered from a product, is identical to the original product [55]:

Let D be the design of the product P, let r be a reverse-engineering procedure such that r(P) = D

and let g be a product generation procedure such that g(D) = P.

Iff g(r(P)) ≡ P (and thus r(g(D)) ≡ D) then g,r is a round-trip engineering system.

The state-of-the-art in RTE research includes Automatic Roundtrip Engineering (ARE) [6] where

the inverse of the aforementioned domain transformations are derived automatically. A special

case of ARE is Automatic Model View Controller Engineering (MVARE) [68] where the well-known

Model-View-Controller (MVC) [47] design pattern is applied to software construction. The “model”

is the system under development while the views are the different viewpoints on the system. The

controller is responsible for maintaining relations between views and model, and for ensuring that

every change in every view is propagated to the other views and to the model.
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Some sophisticated RTE tools apply model-to-model transformation since they are considered

beneficial for considering different views on a system and for synchronising them [29]. MDD ap-

proaches, such as ATOM [126] and GreAT [1] realise model-to-model transformations that translate

beteen source and target models that can be instances of different or the same meta-model [29].

Some of these approaches generate intermediate models in order to bridge large abstraction gaps

between different kinds of models.

Tool support is provided by both open-source and commercial tools, such as OptimalJ [143] and

XDE [144]. Other RTE tools, such as Together [150] apply a higher-level MVC-based approach for

keeping views consistent. More precisely, changes to a visual diagram or to the source code are first

translated and realised in a common underlying model and then translated in the different views.

1.1.2 An Iterative and Incremental Development Cycle

The mental process created by modellers and developers during design activities can be charac-

terised by a number of steps [43]:

1. A a mental model of a proposed solution to the problem is constructed.

2. The mental model is mentally executed: a simulation on the model is run to see if it solves

the problem.

3. If this is not the case (usually because the model was too simple), the inadequate model is

“played” back against those parts of the problem to identify where it failed. Next the mental

model is enhanced in the appropriate areas.

4. The first three steps are repeated until there exists a mental model that appears to solve the

problem.

The resulting mental process is a very rapid, iterative process of fast trial and error actions. The

mind forms a solution to the problem, knowing that it will be inadequate because the mind is not

yet able to fully grasp all the facets of the problem. That problem solution, the mind knows, must

be in the form of a model, because it is going to be necessary to try sample input against the model,

run a quick simulation (inside the mind) on the model using the sample input, and get sample

outputs (still inside the mind) from that simulation [43].

As a result of the highly iterative and incremental mental process of modellers and developers,

rapid modelling and simulation are crucial in software development. Another key factor is the
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ability to propose solutions and allow them to fail. Software development is seen as opportunis-

tic, concrete, and necessarily iterative. Modellers and developers typically work toward partial

solutions for subsets of requirements, using prototypes to evoke further requirements and to refor-

mulate the goals and constraints of the problem [21]. By providing techniques to quickly construct,

evaluate, and change partial solutions, prototyping becomes a fulcrum for system development.

Agile Software Development [27] stresses a highly iterative and incremental development cy-

cle and rapid prototyping in order to anticipate “change” during the different phases of software

engineering. There are several reasons why requirements change frequently during software de-

velopment, such as new required functionality, misunderstandings by developers or end-users, or

a lack of understanding of the problem domain. Several software development methods try to

anticipate rapidly changing requirements by employing a more lightweight approach to software

engineering. This is achieved by prioritizing issues such as flexibililty, end-user interaction, pro-

ductivity, and individuality. The commonalities of these methods’ solutions are gathered in Agile

Software Development [27], denoting the ability to “change quickly and easily”. This approach

to software engineering focuses on various short iterations of development to anticipate changing

software requirements. Although Agile Software Development is new and has its roots in industry,

its importance rises in academic research. Currently the validity of agile methods as the new “best

practice” is being researched. There already exist a number of frequently applied agile methods

such as Rapid Prototyping, Extreme Programming (XP) and Adaptive Software Development.

Agile MDD combines an agile iterative and incremental development cycle with the multiple

views on a system that are typical for MDD. The kind of models to use is not specified and code

is written progressively in step with the models [4, 5]. Agile MDD promotes an evolutionary ap-

proach, in which implementation occurs iteratively and incrementally. Development starts with a

small part of modelling, followed by a significant amount of coding, followed by a large number

of short iterations of model changes and code changes. The Agile Models that are initially created

are just “barely good enough”, i.e. sufficient for the task at hand. Agile Models merely capture

independent aspects of the system being developed. Design efforts are divided between modelling

and coding, with the majority of the design being performed as part of the implementation efforts.

Executable Models are artifacts that can be employed in each phase of the Agile MDD life cycle. Since

they can be modified, run and tested in short incremental, iterative cycles, Executable Models can

function as a working prototype of the system being developed, that evaluates the validity for the

represented abstract diagram.
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There already exist a number of practices for Agile MDD. Agile MDA [74] seconds the idea that

code and Executable Models are operationally the same. This approach depends on Executable UML

[75] that defines execution semantics for a subset of UML with the help of the Object Constraint

Language (OCL) [142]. From an Agile Modelling perspective, there exist three practices to Agile

MDD [5]. The most frequently used is Agile Manual Modelling (AMM), where inclusive models are

created using simple tools and the implementation is created “manually”. A second approach is

Agile Computer-Aided Software Engineering (ACASE) that uses CASE tools to automatically derive

a working implementation from a manually refined model. Thirdly, there is an approach to the

aforementioned Agile Model-Driven Architecture (AMDA) [74], that employs modelling tools to

transform different kinds of models, and to automatically generate a working implementation.

These last two approaches are significantly less frequently used than the first one.

We believe that the low success of Agile MDD practices that involve an automatic transfor-

mation, as opposed to the popularity of Agile Manual Modelling, is a consequence of the fact

that current tool support is not suited for Agile MDD. We believe that Agile MDD practices

require a new generation of RTE tools that are adapted to the specific needs of Agile MDD.

The shortcomings and requirements for this new kind of RTE tools, are introduced in the fol-

lowing section.

1.1.3 Shortcomings of RTE Tool Support for Agile MDD

We state that the current RTE tools underperform for Agile MDD in the following three ways:

• High-level Models are Not Synchronised: The views that are considered in the state-of-

the-art in RTE tools and that are kept consistent with the aforementioned model-to-model

transformation often exhibit – even in a very preliminary stage – a certain amount of technical

detail. This makes it hard for end-users to totally comprehend the models that are created in

these views and decreases end-user interaction during the Agile development process. This

also implies that modelling constructs such as Roles [114] that are typically encountered early

in the software development cycle, such as during the requirement analysis phase, are not

available as first class modelling concepts in MDD.

• No Agile Life Cycle Support: During Agile MDD it is quite common to model storm1 for sev-

eral minutes, during which (a part of the) new requirements are integrated. Model storming

1The activity of some people together creating models with simple tools such as a whiteboard.
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is then followed by coding, based on practices such as testing or refactoring, for several hours

or days. The state-of-the-art in RTE tools are intended for generative MDD that creates so-

phisticated models that can automatically be transformed with sophisticated model-to-model

transformations into different models in order to reflect the realities of various deployment

platforms [111]. As Agile MDD focuses on the thought process that rises prior to the actual

implementation [111] these tools are often too complex for the task at hand, such as short

model storming or a small amount of coding that are typical for one iteration in the agile

development cycle.

Moreover, an agile development cycle requires an advanced synchronisation strategy that an-

ticipates changes to a high-level model for which there already exist pieces of a correspond-

ing implementation, that should survive subsequent model transformations. Most RTE tools

do not provide such synchronisation support, as traditionally code is only derived after ex-

tensive modelling. Additionally, few of these RTE tools support rapid prototyping and test

simulation.

• The Run-time View is Neglected: For testing purposes during the implementation phase,

Agile MDD advocates rapid prototyping any model that was developed so far, even at a

very preliminary stage. Current RTE tools however, do not link directly to a semi-automatic

rapid prototyping or testing process and especially lack this kind of support for preliminary,

incomplete high-level models. Moreover, quickly changing requirements sometimes results

in the necessity for a system to be adapted at run-time. Current RTE tools do not provide

support to influence run-time objects, steered from a high-level model.

1.2 Goal: Advanced Round-Trip Engineering (ARTE)

The goal of this dissertation is to provide a new approach to RTE to be supported by the next

generation of RTE tools that are suitable to be employed in Agile MDD. We define Advanced Round-

Trip Engineering, or ARTE, as a substantial evolution of existing RTE. ARTE considers multiple

views on one model and is characterised by the following three criteria:

• ARTE includes a High-Level View: ARTE has to support multiple views. In order to increase

the similarity with human problem solving and stimulate end-user interaction we require

one of the views to be as close as possible to how humans experience a problem domain in a

preliminary stage: high-level and sufficiently abstract to be comprehensible for end-users.

9
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• ARTE is Agile: ARTE has to support a highly iterative and incremental development cycle.

This can be achieved by supporting two optimisations of the traditional transformations used

in RTE. First, ARTE has to support incremental transformations [95]: only the changed elements

are transformed, rather than all artifacts. Additionally, ARTE has to support change-preserving

transformations, as required in [95]: ”information in the target artifact has to be preserved and not

lost on the return trip”. We refer to transformations that support both optimisations as optimal

transformations.

• ARTE is Dynamic: ARTE has to consider a run-time view on the system under development,

that is integrated in the Agile synchronisation. In order to keep the run-time view consistent

with the other views in ARTE, it has to be possible that changes in the high-level view affect

the elements of the run-time view.

In this dissertation we elaborate on a specific instance of ARTE, also referred to as “myARTE” that

supports the above three criteria as explained in section 1.2.1.

As opposed to the traditional notion of RTE where multiple models are synchronised, we ap-

proach RTE in an agile way by synchronising multiple views on one model. Since we consider

the transformations for realising consistency between the different views from a higher level, we

selected a high-level programming language, more precisely Self, that implements a maximum

level of abstraction and expressiveness, for constructing the mechanisms that implement the three

myARTE criteria. Using the language Self in myARTE allows us to implement the complex re-

quirements for myARTE in an intuitive and appealing way due to the simplicity and the high

expressiveness of the language.

Using Self also brings us novel insights into the myARTE requirements. More precisely we

are able to map the three criteria of myARTE to more fine-grained language mechanisms in the

implementation language of an ARTE approach (see section 1.2.2). We provide a detailed analysis

of these required characteristics in different programming languages. This analysis represents an

indication of the feasibility of implementing ARTE in these programming languages and can be

seen as the basis for guidelines for implementing myARTE in different languages.

As a proof-of-concept of myARTE, we build an ARTE tool in Self, called SelfSync, that is vali-

dated with a mature, extended domain model (see section 1.2.3).

Finally, our instance of ARTE is extended with Advanced Method Synchronisation (see sec-

tion 1.2.4). This has two repercussions. First, SelfSync models can be considered as Executable
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Models in embryo. Second, extending SelfSync with method synchronisation can allow for a first

step in the direction of Visual Aspect-Oriented Programming.

1.2.1 myARTE: An Instance of ARTE

In our approach to ARTE we use multiple views on a system under development that represent

one and the same underlying model that is viewed with different levels of abstraction. The highest-

level view myARTE considers is the analysis view that uses the Extended Entity-Relationship (EER)

model [24]. The second view we consider is an implementation view that is realised in the high-

level language Self. Each of the views can be manipulated directly. The fact that we use multiple

views on one and the same underlying model allows us to meet the requirement for consistency be-

tween the different views in a high-level manner, compared to using voluminous model-to-model

transformations between different kinds of models. Instead of these complex model transforma-

tions we apply light-weight, incremental transformations between different views. In this way the

analysis view and the implementation view are kept consistent, without information loss. More-

over, in our ARTE approach we include a rapid prototyping process that can be applied at any

time to test the system that was developed so far, even at a very preliminary stage. As a result of

the rapid prototyping phase we are able to consider a third, run-time view on systems that is also

realised in Self. In our approach to ARTE we realize specific constraint enforcement on run-time

objects based on multiplicities and dependencies in the analysis view.

In the following three subsections we describe how myARTE supports these three criteria of

ARTE defined above.

Criterium 1: myARTE Includes an Analysis View

In object-oriented software engineering, object-oriented analysis is integrated as a phase in the soft-

ware development cycle [67]. Numerous object-oriented analysis methods have been developed

such as Shlaer-Mellor [97], Jacobson [58], Coad-Yourdon [26], and Rumbaugh [91].

In theory, analysis is claimed to provide statements that describes the problem domain with-

out saying anything about a solution [39]. Such statements should not construct anything artifi-

cial about the problem domain and should be independent of any technical platform. Some state

that object-oriented analysis is concerned with developing software engineering requirements and

specifications that are expressed as a system’s object model (which is composed of a population

of interacting objects) [37], as opposed to the traditional data or functional views of systems. Oth-
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ers claim that object-oriented analysis is not new and in several cases, such as Rumbaugh’s ap-

proach [91], coincides with conceptual, static data modelling of systems that has been around since

the seventies [52], [53].

This diversity in perspectives is related to the fact that the artifacts of the analysis, that can be

referred to as analysis models, come in at least two flavours [52]. First they can be seen as artifacts of

the requirements analysis process for modelling a part of the world in a platonic sense, i.e. a domain

model [40] that describes the significant concepts and their relationships in a business. Such models

are pure representations of the knowledge about a business, independent to technology platforms.

These domain models can exhibit static as well as dynamic information.

A second use of analysis models is to represent a high-level specification of a data base or a

physical system. These models are intended to be refined into a more detailed design model. In

that case the representation reflects the technology involved and object modeling techniques have

additional characteristics to describe physical design issues.

When developing static domain models, it is expected that there is no difference in content

between an object model of a business and an Entity-Relationship (ER) model [24] of the same

business [52]. The diversity in the targets of the analysis models is often considered more crucial

than the notation and the terminology of the data modelling language [52] [39].

In this dissertation we use the term analysis for that part of the object-oriented analysis that co-

incides with static, conceptual data modelling. As a consequence the analysis models we consider in

this dissertation are static domain models that represent the data and the relationships that are sig-

nificant in the problem domain. An analysis view on a system under development presents analysis

models of this system. As a consequence, in the remainder of this dissertation we can use the terms

“analysis view” and “data modelling view” synonymously.

Modelling Language Our instance of ARTE employs the Extended Entity-Relationship (EER)

model [24] to represent elements in the analysis view. EER is sufficiently comprehensible to fa-

cilitate the agile principle of close collaboration with end-users. Nevertheless, EER holds the ex-

pressive power to be extended with non-trivial modelling concepts, such as Roles.

Although we propose to use EER, and not the de facto modelling language UML, this is not

considered as a crucial requirement for our ARTE approach. In fact, for static data modelling,

the UML is considered as functionally equivalent to the ER model [51]. However, the UML is

sometimes seen as more appropriate for designers, while the EER model is considered as more
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suitable when end-users are involved, such as during (requirements) analysis [51].

Role Modelling While performing analysis, a difficulty encountered frequently, is modelling

roles [80]. The data modelling view of our instance of ARTE explicitly includes a Role Modelling

concept [114]. It is possible to model that one entity can perform one or more roles. Moreover, the

data modelling language in our ARTE instance enables us to express that some roles are mutually

exclusive.

In myARTE, this Role Modelling concept is synchronised into a suitable implementation. One

of the perspectives on roles involves a paradox between conceptual roles that can be considered

as dynamic subtypes and implemented roles that can be seen as implementation supertypes of the

objects that perform them [100], [114]. This paradox can result in a complex mapping between

conceptual roles in a data model and a corresponding class-based implementation elements [38].

Due to this problematic mapping, including roles in ARTE is an all but trivial experiment.

Criterium 2: myARTE is Agile

In myARTE the synchronisation between the data modelling view and the implementation view

happens in a light-weight and incremental way. We aim at providing ARTE tool support for an Ag-

ile Development cycle that consists of two phases, as illustrated in figure 1.1. In the first phase, an
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Figure 1.1: A New Agile MDD Practice for ARTE.

EER data modelling view and an object-oriented implementation view are continuously synchro-

nised. Model storming in the analysis view automatically results in a corresponding object-oriented
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implementation view.

A certain set of changes to this resulting implementation, are immediately and automatically

reflected in the data modelling view. Other changes that do not have a conceptual equivalent in the

data modelling view, are not synchronised. Change cycles that consist out of changes in the data

modelling view and in the implementation view, and automatic synchronisations, can be combined

in an arbitrary way, until the system developed so far is run. For this purpose, the second phase, In-

teractive Prototyping, is an instantiating process that rapidly prototypes the current analysis view.

In this way a third, run-time view on the application under development is created.

The first phase can be fully automated, while the second one is semi-automated, since certain

information such as actual references between run-time objects, are determined interactively. The

required tool support for this two-phased Agile Development cycle is reported on in [118].

The difficulty in building ARTE tools that support the above development process is twofold.

First, since the change cycles can be combined in an arbitrary way, and the synchronisations have

to preserve anything that was added manually in the code, we cannot simply transform an entire

model into new code or vice versa. Instead, we need Optimal Transformations that are incremental,

i.e. to the level of attributes and methods, and that preserve the already existing “contents” of these

attributes and methods in the implementation. Second, in order to enable Interactive Prototyping,

certain relationships and constraints defined in the data model, need to be taken into account in the

implementation at the time that new run-time objects are actually created.

Criterium 3: myARTE is Dynamic

The run-time view is also part of the myARTE synchronisation process. A Run-time Generation is

a group of similar run-time objects that are created from the same implementation object. In class-

based object-oriented programming languages for example, such a generation includes instances

created from the same class, while in prototype-based languages, a generation gathers run-time

objects that are created from the same prototype.

In the first place, the behaviour of a Run-time Generation can automatically be changed, in

the case of certain changes to the analysis view or the implementation. Second, these run-time

objects are continuously and automatically constrained by certain relationships that are defined in

the analysis view.

myARTE supports run-time evolution in an automated way. In [50], three kinds of unantici-

pated run-time software evolution are classified for which a solution in Java is provided in [49].
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Code change describes how the program code is changed, state change describes how the state of

the running system must be transferred and timing restrictions describes when it is appropriate to

introduce the change.

First, myARTE focuses on code changes that are possibly initiated by a change in the analysis

view. Examples include adding an entity, removing or renaming an attribute and changing a parent

entity. Some of these actions have repercussions on a Run-time Generation. myARTE automates the

propagation of code change that is performed at run-time, to the implied run-time objects. In order

to do so, we require sharing between a group of similar run-time objects. The shared behaviour

has to survive multiple synchronisation steps in myARTE. Moreover, we have to be able to extend

the shared behaviour at run-time. In many object-oriented programming languages, these are non-

trivial requirements.

Second, myARTE supports Constraint Enforcement on Run-time Generations. More specifi-

cally, myARTE synchronises the multiplicities of relationships and other constraints that are present

in the data modelling view in the implementation, and enforces these constraints in the involved

run-time objects. Consider for example two entities a and b, that are in a one-to-one relationship in

the data modelling view. It is automatically enforced that each corresponding run-time object can

have at most one reference to the other one. Such constraint enforcement requires, also in this case,

that certain relationships and constraints defined in the data model, are visible in the implementa-

tion at the time that run-time objects are manipulated. Moreover, we need to be able to dynamically

inspect the internal state of these run-time objects.

1.2.2 Choosing an Implementation Language for myARTE

We deliberately selected a non-conventional programming language such as Self, in order to ex-

plore its advantages for implementing the sophisticated, unanticipated requirements of myARTE,

compared to more popular languages such as Java and C++ that are often used for implementing

the state-of-the-art in RTE tools. Applying a high-level language such as Self in the implementation

and run-time view of myARTE has a first, direct, quantitative advantage. The high expressiveness

of the language allows us to implement the myARTE requirements in a significantly more compact

way compared to less expressive languages such as Java and C++. Additionally, using Self brings

a less obvious, qualitative advantage: it brings the novel insight of seeing the basic language con-

structs in Self as “building blocks” of twelve language mechanisms that realise the aforementioned

three myARTE requirements. We analyse how these language mechanisms can be constructed in
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C++, Java, Smalltalk, Ruby and Self. The presence of the required language characteristics can

be considered as proportional to the extent in which programming languages support dynamic

typing, meta-programming and prototypes. More precisely, dynamically-typed prototype-based

programming languages with a powerful meta-programming mechanism are the most suitable for

implementing myARTE, if they combine the high flexibility of “everything is an object” with the

efficiency of an explicit mechanism for sharing behaviour. The conclusion of this analysis confirms

the intuitivity and comfort when using the language Self for implementing a myARTE tool.

1.2.3 The SelfSync myARTE Tool

SelfSync is a proof-of-concept tool that supports myARTE between a data modelling view in EER

and an implementation view in Self. SelfSync is built on top of Self and integrates a graphical

drawing editor for EER diagrams. It supports the Agile Development cycle that combines Active

Modelling with Interactive Prototyping. To let SelfSync support Role Modelling, we create an im-

plementation pattern for Warped Hierarchies, in which the inheritance hierarchy for state and the

inheritance hierarchy for behaviour exhibit the opposite order. In the implementation, the state of

a role is dynamically added to the state of the object that starts performing the role. Our approach

to Role Modelling in Self is reported on in [114] and [116].

Moreover, SelfSync implements Optimal Transformations, Run-time Generations and Constraint

Enforcement. The SelfSync tool was demonstrated at the OOPSLA 2005 conference [113]. How

SelfSync is built and applies the Agile Development cycle is explained in [115] and [117].

The SelfSync tool is validated with the TELEBIB domain model. TELEBIB is the standard for

the Belgian insurance business. In its current state, the model covers the major business needs in

the areas of policy administration, claims handling and accounting, and thus can be considered

as a mature and realistic example of a domain model. This EER diagram that contains 343 enti-

ties, 1048 attributes, and 233 relationships and generalisations, was modelled in SelfSync, resulting

automatically in a corresponding implementation.

In the TELEBIB model 23 roles are identified, that can be restructured due to the expressive

Role Modelling construct in SelfSync. We discuss when and where different kinds of application

functionality can be added in the synchronised implementation view. Interference problems be-

tween generated implementation elements, are mainly caused by multiple inheritance. Moreover,

TELEBIB in SelfSync is considered as a highly generic domain model that is applicable in both

small insurance applications that require only a reduced part of the TELEBIB domain model, and
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in large applications that employ the entire domain. Finally, TELEBIB in SelfSync benefits from the

Constraint Enforcement at run-time for multiplicities, dependencies and role combinations.

1.2.4 Advanced Method Synchronisation

Due to the incremental character of the transformations in SelfSync and Self’s uniformity between

state and behaviour, myARTE is extensible with Advanced Method Synchronisation (AMS) in a straight-

forward way. AMS automatically synchronises between operations in the data modelling view and

methods in the implementation view. In order to do so, we add operations to the EER model in the

analysis view. We can edit the body of these operation in the analysis view. The provided Self code

is automatically saved as the method body of the corresponding method in the implementation.

Alternatively, consulting an operation after a change to the corresponding method, will result in

the new body.

AMS has two important repercussions. First, it increases the feasibility to extend SelfSync with

behaviour in the data model, that can be “run”. More precisely, operations in the EER model can

be evaluated in the context of the EER model itself using an Entity Checker. This approach allows

us to consider SelfSync EER models as Executable Models in embryo.

Second, AMS makes it possible to “inject” pieces of code before or after existing operations in

the data modelling view. We foresee that these before/after constructs can be consolidated in

SelfSync, in such a way that this extension can be considered as a first step to a simplified version of

Visual Aspect-Oriented Programming. Multiple operations in different entities in the EER diagram

function as static join points that are selected graphically in a diagram instead of being described

by a pointcut.

1.3 Dissertation Outline

As our approach to ARTE considers a data modelling view and an implementation view, chap-

ter 2 focusses, among others, on the suitability of data modelling languages for the data modelling

view, while chapter 3 is concerned with an analysis of object-oriented implementation languages

to implement myARTE. In these chapters, we motivate why myARTE employs EER in the data

modelling view, and the prototype-based language Self in the implementation view.

Next, chapter 4 introduces an ARTE approach for the selected EER modelling and the Self pro-

gramming language. We deliberately decided to present a concrete approach based on EER and

Self, as opposed to a more generic but abstract description. Nevertheless, the analysis of the data
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modelling languages in chapter 2, and the analysis of language characteristics of programming lan-

guages in chapter 3, make it possible to specialise the myARTE approach for other modelling and

programming languages.

The SelfSync tool that implements our instance of ARTE, is introduced in chapter 5. The exten-

sion with operations to the data modelling view in SelfSync is discussed in chapter 6. A validation

for the myARTE approach and the SelfSync tool can be found chapter 7.

Related work for our research is included in chapter 8 while a conclusion can be found in chap-

ter 9.

A more detailed summary of this dissertation’s chapters can be found below:

• Chapter 2: Advanced Round-Trip Engineering. This chapter provides a general insight in

Round-Trip Engineering (RTE). We elaborate on the motivation for an abstract data modelling

view, a code-time implementation view and a run-time view. For the abstract data modelling

view, the Unified Modelling Language and the Extended Entity-Relationship Model are in-

troduced and compared. Six evolution scenarios that represent evolution of one of the three

views and the subsequent synchronisation in the other views are introduced and exemplified.

Next, the functionalities of myARTE tools are elaborated.

• Chapter 3: Language Requirements for myARTE Tools. In this chapter we present language

requirements (i.e. the constructs and the characteristics) that are crucial when implementing

our instance of ARTE. Next, we identify the three programming language characteristics -

dynamic typing, reflection and prototypes - as indicators for the presence of the above lan-

guage requirements. We continue with an in-depth discussion on how myARTE could be

implemented in C++, Java, Smalltalk, Ruby and Self.

• Chapter 4: A New Practice For Agile Model-Driven Development. In this chapter we in-

troduce a practice for ARTE, that is compatible with Agile MDD. We define an extension of

the Extended Entity-Relationship (EER) notation for the data modelling view. The prototype-

based programming language Self is used as a platform for the implementation and run-time

views. A set of default mappings or correspondences are defined between the EER view and

the Self views. We provide a number of myARTE scenarios for illustrating this new practice.

• Chapter 5: SelfSync: An ARTE Tool. As a proof-of-concept, we provide an ARTE implemen-

tation in Self, by developing an ARTE tool called SelfSync. SelfSync is written entirely in Self.
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It includes a graphical drawing editor for EER diagrams, that is integrated in the Self environ-

ment, and that was developed with the help of the Morphic framework. SelfSync implements

an active bidirectional link between entities in the EER view and objects in the code-time im-

plementation view, based on a Model-View-Controller architecture. We illustrate the use of

SelfSync with concrete usage scenarios.

• Chapter 6: Advanced Method Synchronisation: Towards Executable Models and Visual

AOP. In this chapter we describe how myARTE is extended with Advanced Method Synhro-

nisation (AMS): operations in the data modelling view are syncronised with methods in the

implementation view.

We illustrate how AMS allows to “evaluate” operations in the context of the data model, and

explain how myARTE models one day might fit in the domain of Executable Models.

Next, we describe how AMS makes it possible to implement before/after constructs in the

data modelling view. We elaborate on how these Code Injections can be considered as a step

in the direction of Visual AOP.

• Chapter 7: Validation. In this chapter we provide a validation of our ARTE approach and

the associated SelfSync tool with the help of a case study. TELEBIB defines the standard

for Belgian Insurances and includes a mature and extended domain model. We model this

domain model entirely in SelfSync and highlight the advantages of our approach.

• Chapter 8: Related Work. In this chapter we provide an overview of related research in the

domain of data modelling and ARTE, and we discuss an example of an Executable Model.

• Chapter 9: Conclusion. The conclusion of this dissertation contains a list of our contributions

and the future research directions.
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Chapter2
Advanced Round-Trip Engineering

In this chapter we introduce Agile Model-Driven Development (MDD) that combines multiple

views on a system under development with a highly iterative and incremental change-oriented de-

velopment cycle (see section 2.1). Round-Trip Engineering (RTE) plays an important role in Agile

MDD where the multiple, rapidly changing views on a system are to be kept consistent, as intro-

duced in section 2.2. The Evolution Scenarios in section 2.3 result from the systematic construction

of possible usage scenarios for RTE tools and illustrate which changes are relevant and how they

are synchronised in the different views. We believe that traditional Round-Trip Engineering tools

are incapable of supporting Agile MDD. Therefore, we introduce Advanced RTE (ARTE) in sec-

tion 2.4 as a substantial evolution to RTE, that fits Agile MDD and can be supported by the next

generation of RTE tools. We elaborate on myARTE, that is one instance of ARTE in section 2.5.

Since myARTE considers a static data modelling view we study two possible data modelling lan-

guages. Section 2.6 describes the Unified Modelling language (UML) while the Extended Entity-

Relationship (EER) model is introduced in section 2.7. Why myARTE benefits from the EER model

is described in section 2.8. Finally a conclusion is provided in section 2.9.

2.1 Agile Model-Driven Development

There are several reasons why requirements change frequently during software development such

as a demand for new functionality, misunderstandings by developers or end-users, or a lack of

understanding of the problem domain. In the late 1990’s several software development methods

tried to anticipate this so-called requirements churn by employing a more lightweight approach to

software engineering. This was achieved by prioritizing issues such as flexibililty, end-user inter-
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action, productivity, and individuality. In 2001 the commonalities of these methods’ solutions were

gathered in Agile Software Development [27] denoting the ability to “change quickly and easily”.

This approach to software engineering focuses on various short iterations of development in or-

der to respond quickly and easily to changing software requirements. The common development

values of Agile Software Development are stated in a manifesto [123] in terms of priorities:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Although Agile Software Development is new and has its roots in industry it rises in academic

research. Currently the validity of agile methods as the new “best practice” is being researched.

There already exist a number of frequently applied agile methods.

2.1.1 Agile Software Development Practices

During Rapid Prototyping usable prototypes are produced early in the development cycle to permit

end-user feedback and analysis in each iteration [11]. Rapid Prototyping is also one of the core

elements of rapid application development (RAD) [7]. This software development method extends the

iterative development and Rapid Prototyping of the spiral model with the use of Computer-Aided

Software Engineering (CASE) tools. RAD significantly increases the speed of development due to

the use of CASE tools and increases the degree to which software meets the requirements.

Extreme Programming (XP) is the best-known agile method in both industry and the academic

world [8]. Originally formulated by Kent Beck and influenced by Smalltalk, XP contains practices

such as the use of releases, i.e. intervals of approximately six months. A release consists of itera-

tions of two weeks each during which developers implement user stories. User stories resemble

use-cases or usage scenarios and replace requirement documents. They are written compactly in

collaboration with the end-user in natural language. XP encourages to keep the design as simple as

possible. All code to be included in a release is pair programmed: i.e. created by two people working

together at a single computer. Test-Driven Development (TDD) has to increase reliability. TDD is an

evolutionary approach to development which combines test-first development where a test is writ-

ten before write just enough production code is implemented to fulfill the test, with refactoring.

For more details on XP we refer to [8].
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Adaptive Software Development is an agile method [57] that grew out of Rapid Application Devel-

opment. In ASD, the static plan-design-build life cycle is replaced by a dynamic speculate-collaborate-

learn life cycle where continuous change is the norm. This change-oriented life cycle is dedicated

to continuous learning, re-evaluation, peering into an uncertain future, and intense collaboration

among developers, management, and end-uses. For more details we refer to [57]. Such an ASD life

cycle has six basic characteristics:

• mission-focused: the emphasise is on results not tasks

• feature-based: based on the end-user functionality to be implemented in one iteration

• iterative

• time-boxed 1

• risk-driven

• change-tolerant

For a more complete survey of agile methods we refer to [2].

2.1.2 Agile Model-Driven Development

Agile Model-Driven Development (MDD) uses agile practices for Model-Driven Development (MDD).

MDD assumes that all crucial knowledge about a system can be present in an abstract model from

which the real software is derived automatically with sophisticated model transformations. Such a

model is defined by Mellor et al. [76] as

A coherent set of formal elements describing something (for example, a system, bank, phone, or

train) built for some purpose that is amenable to a particular form of analysis, such as

• Communication of ideas between people and machines

• Completeness checking

• Race condition analysis

• Test case generation

• Viability in terms of indicators such as cost and estimation

• Standards
1In time-boxed development projects are divided into smaller parts with their own fixed deadlines and deliverables.
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• Transformation into an implementation

A vast research area in MDD deals with model transformations. For a taxonomy of the cur-

rent model transformation approaches and tools we refer to [29]. Model transformations can be

model-to-code transformations where for example a model is transformed into text that is compiled

afterwards. Such an approach can be found in the object-oriented framework Jamda [134] that ap-

plies a visitor mechanism for generating code. Various tools such as ArcStyler [124], OptimalJ [143]

and XDE [144] support model-to-code transformations. MDD approaches, such as ATOM [126] and

GreAT [1] realise model-to-model transformations that translate beteen source and target models that

can be instances of different or the same meta-model [29]. Some of these approaches generate in-

termediate models in order to bridge large abstraction gaps between different kinds of models.

Tool support is provided by both open-source and commercial tools, such as OptimalJ [143] and

XDE [144].

Other MDD research deals with the representation of the different models. Many approaches

follow the Model-Driven architecture (MDA) [64, 141] standard defined by the Object Management

Group (OMG). The basic idea of the MDA is that a system’s functionality is defined as a platform-

independent model (PIM) in an appropriate specification (modelling) language and is then trans-

lated to one or more platform-specific models (PSMs) for the actual implementation. Although

MDE or MDD do not require the MDA or the UML, often the MDA standards are applied and the

Unified Modelling Language (UML) [41] has become the de facto specification language for PIMs.

The MDA model architecture includes multiple standards such as the Unified Modelling Language

(UML) [41] (see also section 2.6) and the XML Metadata interchange (XMI) [152]. For each standard

the MDA includes guidelines for expressing the specifications of a system into PIMs or PSMs. The

UML is discussed into more detail in section 2.6. For more details on the other standards we re-

fer to [141]. Most existing practices for MDD have a generative nature and employ sophisticated,

voluminous model transformations to to semi-automatically transform PIMs into PSMs.

Agile MDD does not specify the kind of model to use and code is written progressively in step

with the models [4, 5]. Agile MDD promotes an evolutionary approach, in which implementation

occurs iteratively and incrementally. Development starts with a small part of modelling followed

by a significant amount of coding, iterating back when necessary. The Agile Models that are initially

created are just “barely good enough”, i.e. sufficient for the task at hand. There are no analysis or

design models as different Agile Models merely capture independent aspects of the system being
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developed. Design efforts are divided between modelling and coding, with the majority of the

design being performed as part of the implementation efforts.

An iterative Agile MDD life cycle [4] consists of six phases as illustrated in figure 2.1: the initial

modelling activity includes two main sub-activities, initial requirements modelling and initial archi-

tecture modelling. These activities are performed in the first iteration. The other activities model

storming, reviews, and implementation occur during any iteration, including the first. Often sophis-

ticated modelling tool such as Borland’s Together [150] are employed for “visual programming”

during the implementation phase.

Figure 2.1: Life cycle phases in Agile MDD [5].

2.1.3 Agile Model-Driven Development Practices

There exists already a number of practices for Agile MDD. The notion of Executable Models allows

the OMG to state that their MDA standard is not restricted to Generative MDD but is also suitable

for Agile MDD. Their Agile MDA [74] seconds the idea that code and Executable Models are op-

erationally the same. In Agile MDA each executable model is a PIM. As in the MDA UML is the

de facto modelling language for PIMs, Executable Models in this case totally depend on Executable
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UML [75]. The latter is a profile of UML that defines execution semantics for a selective subset of

UML with the help of the Object Constraint Language (OCL) [142]. The subset is computationally

complete and modelling rules are enforced to allow execution. The executable UML models, such

as class diagrams and state diagrams are merged and translated by a model compiler [74] into code

that is considered as the PSM.

There is no need to manipulate the PSM or to visualize it as a model: the code is a weaving

together of the elements of the PIM and of the required platforms, and it is executable. There exist

a number of academic applications of Executable UML, such as Extreme Models (XM) [14]. One

of the few industrial examples can be found in the Nucleus UML suite [140] that includes a code

generator for embedded systems, that supports Executable and Translatable UML (xtUML).

In [5] three practices to Agile MDD are introduced from an Agile Modelling perspective. We

summarize them by describing the fundamental steps of one iteration. The most frequently used

is Agile Manual Modelling (AMM) where inclusive models (i.e. that cover the entire functionality)

are created using simple tools (paper, white-board, drawing editors) and simple techniques (use

cases, CRC cards, etc.). “The code is the design” philosophy is followed: agile modelers convert

the model manually to the code. Agile developers then alter the code and deploy the working

software. This approach is followed by the Extreme Programming (XP) community. Figure 2.2

illustrates this approach that currently is applied during the majority of software development

cases [5].

Figure 2.2: Agile Manual Modelling [5].

A second approach is Agile Computer-Aided Software Engineering (ACASE) (see figure 2.3) where
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inclusive models are used to analyze and explore requirements with end-users. Agile modelers

convert the inclusive model manually into a detailed design model and capture technically-specific

information and tests using sophisticated modelling tools. These tools transform the PSM into code

(and vice versa).

These modelling tools are expected to support the automatic synchronisation between the mod-

els and the code during Round-Trip Engineering (see section 2.2). Agile developers should be able

to model or write code, and have the corresponding code/models updated automatically. This

approach can be taken by any type of agile team, including XP teams.

It is estimated that less than a quarter of development teams applies this practice [5].

Figure 2.3: Agile Computer-Aided Software Engineering (ACASE) [5].

Thirdly, figure 2.4 illustrates what is referred to as a “realistic” approach to the aforementioned

Agile Model-driven Architecture (AMDA) [74]. This approach differs from ACASE in the fact

that agile modelers convert the inclusive model manually into a detailed PIM and capture domain

information and acceptance tests using sophisticated modelling tools. These tools then transform

the PIM into one or more PSMs (and vice versa). In [5] it is estimated that this advanced practice

for MDD is applicable for 5% of all development teams, most of them being embedded or real-time

system developers.
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Figure 2.4: Agile Model-Driven Architecture (AMDA) [5].

The sophisticated modelling tools that are responsible for the automated transformations are

often Round-Trip Engineering tools (see section 2.2).

2.1.4 Summary of The Discussed Approaches

In table 2.1, the discussed approaches of this section are summarised.

2.2 Traditional Round-Trip Engineering

Using multiple changing views on a system under development, as MDD advocates, requires at

least that interrelated views are kept consistent [95]. The ability to maintain the consistency of mul-

tiple, changing software artifacts in software development environments and tools is a key factor

in what is referred to as Round-trip Engineering (RTE). RTE involves forward and reverse engineer-

ing steps such that software artifacts, such as, code and graphical models, become synchronized at
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Agile Software Development
Rapid Application Development (RAD)
Extreme Programming (XP)
Test-Driven Development (TDD)
Adaptive Software Development (ASD)
Agile Model-Driven Development
Agile MDA
Executable (and Translatable) UML
Agile Manual Modelling (AMM)
Agile CASE (ACASE)
Agil MDA (AMDA)

Table 2.1: Summary of the discussed approaches in section 2.1.

certain points in time [95]. Where forward engineering deals with generating one or more software

artifacts from an input artifact, where the generated artifact is closer to the final deployable system,

reverse engineering involves generating one or more software artifacts that abstract certain details

of the input artifacts, thereby trying to recover any information lost in the forward step [95]. Both

forward and reverse engineering steps involve transforming one or more artifacts into one or more

other artifacts. This is often realised by a ”single, isolated transformation, where any information in

the target artifact is not considered, and typically a new artifact is created, possibly replacing the previous

version, if one exists” [95].

Sometimes RTE is defined as an application of mathematical domain transformation. In that

case RTE systems are defined as systems where the result of forward engineering a design that is

reverse engineered from a product, is identical to the original product [55]:

Let D be the design of the product P, let r be a reverse-engineering procedure such that r(P) = D

and let g be a product generation procedure such that g(D) = P.

Iff g(r(P)) ≡ P (and thus r(g(D)) ≡ D) then g,r is a round-trip engineering system.

The state-of-the-art in RTE research includes Automatic Roundtrip Engineering (ARE) [6] where

the inverse of the aforementioned domain transformations are derived automatically. A special

case of ARE is Automatic Model View Controller Engineering (MVARE) [68] where the well-known

Model-View-Controller (MVC) [47] design pattern is applied to software construction. The “model”

is the system under development while the views are the different viewpoints on the system. The

controller is responsible for maintaining relations between views and model, and for ensuring that

every change in every view is propagated to the other views and to the model.

In this dissertation we focus on a specific case of RTE where:
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• The system under development is represented by multiple views that view one underlying

model.

• One of the views is a graphical high-level view containing static, structural data diagrams such

as UML [41] class diagrams and Entity-Relationship [24] diagrams. We also refer to this view

as the data modelling view. This view consists of all the information pertaining to nodes (entities,

classes, attributes and operations) as well as links (inheritance, associations with multiplicities

and aggregations).

• One of the views is an implementation view: a code-time implementation view containing textual

and/or graphical views on the implementation objects, which show everything related to

object-oriented programs. Developers can alter these implementation objects.

Agile MDD advocates the use of a third, run-time view in three ways.

• Rapidly changing requirements demand automated Unit Testing. The Extreme Programming

Unit Testing approach has been automatized in the xUnit framework [9] that resulted in mul-

tiple standards suchs jUnit for Java, sUnit for Smalltalk and rUnit for Ruby. Borlands ALM

Solution includes the jUnit standard for automated Unit Testing.

• Moreover quickly changing requirements sometimes result in the necessity for a system to

be adapted at run-time. Current RTE tools do not provide support to influence them steered

from a high-level model.

• Dynamic Aspect-Oriented Programming (AOP) [35] stresses the importance of dynamicity

and is characterised by:

– Per Instance Interception: The ability to do more fine grained bindings at the instance

level. So that two instances of the same class can have two separate interceptor/advice

chains.

– Hot Deployment: The ability to add and remove advice bindings at run-time to any pre-

pared class.

Dynamic AOP is supported by the state-of-the-art, such as Spring [147] and JBoss [136]. The

latter resolves pointcut and advice bindings at run-time, but never has been integrated in

existing RTE environments.
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Therefore we introduce a third run-time view to RTE. The population view is a run-time implementa-

tion view containing textual and/or graphical views on run-time objects (instances), which contain

actual data for running the application. We also refer to these objects as population objects, as they

are used to “populate” an application. Population objects are derived from implementation objects.

Few RTE tools, such as the highly advanced Together [150] (see section 8.2.1), include the third

population view, but none of them integrates the population objects in the RTE process. Once the

classes are instantiated into run-time objects, the synchronization with the data modelling view is

no longer supported.

2.3 Evolution Scenarios

In this section we illustrate six examples of Round-Trip Engineering for Agile MDD, with the help

of Evolution scenarios. These scenarios result from the systematic construction of possible usage

scenarios for RTE tools, considering the three views and the two types of elements in each of these

views. Nodes are the basic elements in the different views while the links are the connections

between them.

We define six scenarios that RTE tools are to support during Agile MDD. Each of them cor-

responds to a particular direction of RTE and to particular elements that are changed and subse-

quently synchronized as summarized in Table 2.2: Forward engineering is an activity embodied by

Nodes Links
Forward Engineering
Data modelling view Scenario 1 Scenario 2
Backward Engineering
Code-time implementation view Scenario 3 Scenario 4
Run-time Engineering
Run-time population view Scenario 5 Scenario 6

Table 2.2: The six evolution scenarios.

scenario 1 and 2. In this case the changes applied to the data modelling view are synchronised in

the implementation view, and if appropriate in the run-time population view.

Backward engineering involves scenario 3 and 4. The changes applied to the implementation

view are synchronised in the data modelling view, and if appropriate in the run-time population

view.

Scenario 5 and 6 are typical for run-time engineering. We state that, by default, the changes

to run-time objects are not propagated onto the other views. E.g. if in one instance of a class a
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reference is added to another instance, this should not become visible in the implementation view

or the data modelling view.

Such change propagation can however be appropriate when, for example, a large number of

population objects deviates in the same way from the implementation object they were created

from. In that case the differences can be synchronised in the implementation view and thus the

data modelling view.

The scenarios can be summarised as follows:

Scenario 1: Changes to nodes in the data modelling view, which are synchronized in both the code-time

implementation and the run-time population view. Typical evolution steps are creating and re-

moving nodes, and adding a placeholder for state or behaviour to these nodes. For example

adding an attribute to a class in a UML class diagram.

Scenario 2: Changes to links in the data modelling view, which are synchronized in both the code-time

implementation and the run-time population view. Typical evolution steps in this scenario are

adding and removing an association, or establishing specialisation between two nodes. For

example adding a one-to-many association between two entities in an Extended Entity-Relationship

diagram (see section 2.7). Another example is to change the multiplicity of an association be-

tween two classes in a UML class diagram.

Scenario 3: Changes to nodes in the implementation view, which are synchronized in the data modelling

view and the population view. Typical evolution steps are creating new programming objects

and adding attributes or methods to them. Examples include writing code for a new class in

Java and adding an instance variable to it, which is synchronised in the data modelling view

by graphically adding a new attribute to the corresponding class.

Scenario 4: Changes to links in the implementation view, which are synchronized in the data modelling

view and the population view. Typical evolution steps are to add or remove a pointer reference,

and to establish a new inheritance relationship between nodes. Examples include subclassing

an existing C++ class, or changing the initial value of an instance variable in a Java class

definition to contain another object.

Scenario 5: Changes to nodes in the population view. By default these changes are not propagated onto

other views. Such change propagation can be appropriate when a large number of population

objects deviates in the same way from the implementation object they were created from.
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In that case the differences can be synchronised in the implementation view and thus the

data modelling view. Typical evolution steps are creating or deleting new run-time objects

and, if possible, extend them with new state or behaviour. Examples include instantiating a

Smalltalk class.

Scenario 6: Changes to links in the population view. We stated that, by default, these changes are

not propagated onto other views, as explained in the previous scenario. Typical evolution

steps are to add or remove pointer reference in a run-time object or to establish a new inheri-

tance relationship for a run-time object. Examples include changing the value of an instance

variable in a Java instance.

2.4 Advanced Round-Trip Engineering

We argue that the low applicability of Agile MDD practices that involve an automatic transforma-

tion, as opposed to the popularity of Agile Manual Modelling, is a consequence of the fact that

current traditional RTE tool support is not suited for the needs of Agile MDD.

2.4.1 Shortcomings of Traditional RTE Tools

We argue that the following shortcomings make traditional RTE tools unfit for Agile MDD:

• High-level Models are Not Synchronised: The views that are considered in the state-of-

the-art in RTE tools and that are kept consistent with the aforementioned model-to-model

transformation often exhibit – even in a very preliminary stage – a certain amount of technical

detail. This makes it hard for end-users to totally comprehend the models that are created in

these views and decreases end-user interaction during the Agile development process. This

also implies that modelling constructs such as Roles [114] that are typically encountered early

in the software development cycle, such as during the requirement analysis phase, are not

available as first class modelling concepts in MDD.

• No Agile Life Cycle Support: During Agile MDD it is quite common to model storm2 for sev-

eral minutes, during which (a part of the) new requirements are integrated. Model storming

is then followed by coding, based on practices such as testing or refactoring, for several hours

or days. The state-of-the-art in RTE tools are intended for generative MDD that creates so-

phisticated models that can automatically be transformed with sophisticated model-to-model
2The activity of some people together creating models with simple tools such as a whiteboard.
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transformations into different models in order to reflect the realities of various deployment

platforms [111]. As Agile MDD focuses on the thought process that rises prior to the actual

implementation [111] these tools are often too complex for the task at hand, such as short

model storming or a small amount of coding that are typical for one iteration in the agile

development cycle.

Moreover, an agile development cycle requires an advanced synchronisation strategy that an-

ticipates changes to a high-level model for which there already exist pieces of a correspond-

ing implementation, that should survive subsequent model transformations. Most RTE tools

do not provide such synchronisation support, as traditionally code is only derived after ex-

tensive modelling. Additionally, few of these RTE tools support rapid prototyping and test

simulation.

• The Run-time View is Neglected: For testing purposes during the implementation phase,

Agile MDD advocates rapid prototyping any model that was developed so far, even at a

very preliminary stage. Current RTE tools however, do not link directly to a semi-automatic

rapid prototyping or testing process and especially lack this kind of support for preliminary,

incomplete high-level models. Moreover, quickly changing requirements sometimes results

in the necessity for a system to be adapted at run-time. Current RTE tools do not provide

support to influence run-time objects, steered from a high-level model.

2.4.2 Requirements for Advanced Round-Trip Engineering

We propose a new RTE practice called Advanced Round-Trip Engineering (ARTE) to support Agile

MDD. To solve the aforementioned shortcomings we define the following three criteria for ARTE:

• ARTE includes a High-Level View: ARTE has to support multiple views. In order to increase

the similarity with human problem solving and stimulate end-user interaction we require

one of the views to be as close as possible to how humans experience a problem domain in a

preliminary stage: high-level and sufficiently abstract to be comprehensible for end-users.

• ARTE is Agile: ARTE has to support a highly iterative and incremental development cycle.

This can be achieved by supporting two optimisations of the traditional transformations used

in RTE. First, ARTE has to support incremental transformations [95]: only the changed elements

are transformed, rather than all artifacts. Additionally, ARTE has to support change-preserving

transformations, as required in [95]: ”information in the target artifact has to be preserved and not
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lost on the return trip”. We refer to transformations that support both optimisations as optimal

transformations.

• ARTE is Dynamic: ARTE has to consider a run-time view on the system under development,

that is integrated in the Agile synchronisation. In order to keep the run-time view consistent

with the other views in ARTE, it has to be possible that changes in the high-level view affect

the elements of the run-time view.

In this dissertation we elaborate on a specific instance of ARTE, also referred to as “myARTE” that

supports the above three criteria as follows:

1. myARTE has to consider an analysis view: In myARTE this is a static data modelling view in

the Extended Entity-Relationship format [24] that is kept consistent with an implementation

view. myARTE integrates a Role Modelling concept in the analysis view, that automatically is

synchronised into an implementation and that is made operational in the run-time view.

2. myARTE has to employ Optimal Transformations for keeping the different views consistent.

3. myARTE has to let Run-time Object Generations actively participate in the RTE process. MyARTE

illustrates this support by constraining run-time objects with multiplicities and dependencies

in the analysis view.

2.5 Required Characteristics of ARTE Tools

In this section we elaborate on each of the three functionalities that are to be implemented by

myARTE.

2.5.1 Role Modelling

myARTE considers an analysis view. As a consequence modelling constructs that are frequently

encountered in analysis models, become available in the RTE process. In myARTE we want to

illustrate this by including a first-class role modelling concept in the analysis view. There are at

least three viewpoints to approach roles [100]:

• Roles are named places. The simplest notion of a role refers to labels of the relationships in

modelling languages. The Enitiy-Relationship [24] and its extension add role names to the

entities that participate in a relationship. Also in UML it becomes more and more accepted

35



CHAPTER 2. ADVANCED ROUND-TRIP ENGINEERING

to replace relationship names by role names [100]. In the Object Role Model (ORM) [146]

objects and roles are the sole primitives from which object (types) and association (types) are

derived. ORM’s extension Nijssen’s Information Method (NIAM) [122] stress the linguistic

role of roles. NIAM’s fact types involve roles for associating properties with objects and

expressing the relationships between objects.

• Roles are types. Roles can be seen as types that are related to the natural types that can play

them. Intuitively the role types can be considered subtypes of the natural types. This ap-

proach requires dynamic and multiple classification as a natural type can play different role

types simultaneously. However, the viewpoint on roles as subtypes is sometimes considered

a misconception based on the combination of the dynamic nature of the role concept with the

static properties of type hierarchies [100]. More specifically roles as types suffer from,

”the paradoxical situation that, from the extensional point of view, roles are supertypes

statically, while dynamically they are subtypes” [100]

One of the frequently used solutions is to separate the role hierarchies from the type hierar-

chies.

• Roles as adjunct instances. Roles are sometimes considered independent types whose instances

include role-specific state and behaviour, but not identity. Roles are connected via relation-

ships to the objects that play them. These objects can pick up roles dynamically and form an

inseparable aggregate with these roles.

In this dissertation we agree the most on the last viewpoint on roles, i.e. roles are instances that

are adjoined to the objects that play the roles. More precisely, as illustrated in figure 2.5, we consider

natural entities and the role entities they can play. In the analysis view of myARTE, roles are to be

integrated as a new, first class modelling concept for role relationships that connect natural entities

with the role entities they can play. Each role entity in the myARTE analysis view corresponds

to an implementation object in the implementation view. In the run-time view myARTE supports

corresponding natural run-time objects and the corresponding run-time roles. These run-time roles

are adjoined to the natural run-time objects that start play these roles dynamically.

We further elaborate on our interpretation of roles in myARTE with the help of the fifteen crite-

ria that were defined in [100] for evaluating a vast domain of existing role approaches.
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Figure 2.5: Role relationship between a natural entity and a role entity. The bold link denotes the
natural entity.

1. A role comes with its own properties and behaviour. Yes, each role entity in the myARTE analysis

view corresponds to an independent implementation object in the implementation view. In

the run-time view new run-time roles are created from these implementation objects.

2. Roles depend on relationships. Yes, in the EER model a role entity is related to the natural entity

that can play the role. In the run-time view of myARTE the corresponding run-time role

objects are adjoined to the natural run-time objects that perform them.

3. An object may play different roles simultaneously. Yes, this is represented by multiple role re-

lations that originate from the same natural entity in the analysis view, as illustrated in fig-

ure 2.6. Each of the corresponding run-time roles is added to the natural run-time object when

it starts playing the role.

4. An object may play the same role several times, simultaneously. Yes, a new run-time role is added

to a natural run-time object, each time it starts playing the role.

5. An object may acquire and abandon roles dynamically. Yes, a new run-time role is dynamically

added to a natural run-time object, each time it starts playing the role. A run-time role is

dynamically removed from a natural run-time object, each time it stops playing the role.

6. The sequence in which roles may be acquired and relinquished can be subject to restrictions. Yes, in
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person
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Figure 2.6: Multiple role relationships between a natural entity and two role entities. The bold links
denote the natural entity.

the myARTE analysis view it can be expressed that two or more roles are mutually exclusive

by modelling two or more role types in the same role relationship. In figure 2.7 it is expressed

that engineer and salesman are mutually exclusive roles of the person natural entity. We

also refer to mutually exclusive roles as disjoint roles. In the myARTE run-time view it then is

person

salesman

role

data modelling view

role entitynatural entity

engineer

role entity

Figure 2.7: Multiple mutually exclusive role entities in a relationships between a natural entity and
two role entities. The bold links denote the natural entity.

enforced that a natural-run-time object cannot start playing any run-time role that is mutually

exclusive with a run-time role that the natural run-time object is already playing.

7. Objects of unrelated types can play the same role. Yes, since for each new role that a natural run-

time object starts playing we create a new run-time role that is added to it, it is not required

that these run-time objects are related. Figure 2.8 illustrates an example of such a setup:

the natural entities person and company are unrelated but can play the the same role entity

insured.

8. Roles can play roles. Yes, an entity in the myARTE analysis view can be role entity and natural

entity at the same time. In figure 2.9 the employee entity is a role entity for the person natural

entity as well as a natural entity for the manager role entity. At run-time this means that the
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Figure 2.8: Unrelated natural entities can play the same role.

person employeerole

data modelling view

role entitynatural entity

manager

role

role entity

natural 
entity

Figure 2.9: An entity can be a natural entity and a role entity at the same time.

most specialised run-time role is added to the second most specialised run-time role and so

on, until all run-time roles are added to the root natural run-time object.

9. A role can be transferred from one object to another. Yes, in the myARTE run-time view it is

possible to remove a run-time role with its specific state and behaviour from one natural

run-time object, and add it to another natural run-time object.

10. The state of an object can be role-specific. Yes, in myARTE it is possible to address a natural

run-time object from the perspective of one of its run-time roles.

11. Features of an object can be role-specific: attributes and behaviour of an object may be overloaded

on a by-role basis. Yes, different role entities that can be played by the same natural entity

are allowed to contain homonymous attributes and operations. It is possible to address the

behaviour of a natural run-time object from the perspective of one of its run-time roles.

12. Roles restrict access. Yes, in myARTE it is possible to restrict access to the behaviour of a specific

run-time role.

13. Different roles may share structure and behaviour. Yes, first since run-time roles are created from

one implementation object they share the structure and the behaviour of this object. Second,
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since roles can play roles (see feature 8 ), also run-time roles that correspond to different role

types can share structure and behaviour, such as for example the salesman and the engineer

roles in figure 2.9.

14. An object and its roles share identity : “a role is a mask that an object can wear”. Yes, when a run-

time role is added to a natural run-time object, both objects share the identity of the natural

run-time object.

15. An object and its roles have different identities, related to the counting problem. No, based on the

previous feature.

2.5.2 Optimal Transformations

To synchronise between different views, RTE tools employ specific (model) transformations. In

ARTE tools the transformations are to be optimal, i.e. incremental and change preserving. Incre-

mental transformations happen continuously after each change action and per changed node of a

view onto the level of of the smallest element a node is built of. Change preservation is realised

onto the level of the contents of these smallest elements. For example, an attribute’s value that

is set manually in the implementation view, is to be preserved during multiple synchronisations

between the other views and the implementation view.

In myARTE we provide optimal transformations between an analysis view, an implementation

view and a run-time view. The transformations are based on a set of mappings between elements

of one view to elements of another view. The transformations between the analysis view and the

implementation view are bi-directional. This means that for each mapping between an element of the

analysis view and an element of the implementation view, there exists an inverse mapping between

the element of the analysis view and the element of the implementation view. In the example of

figure 2.10 the “is-a” relationship between car and vehicle in the data modelling view maps to the

inheritance relation between car and vehicle in the implementation view and vice versa.

The mappings between the implementation view and the run-time view are uni-directional.

More precisely, we provide mappings from the implementation view to the run-time view but

not from the run-time view to the implementation view. The motivation is that the elements of

the run-time view are derived from the elements of the implementation view. If an element of the

implementation view changes, it makes sense to propagate this change to al elements of the run-

time view that were derived from the changed element in the implementation view. However, if
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Figure 2.10: Transformations between the different views: a bi-directional mapping between the
data modelling view and the implementation view, a uni-directional mapping between the imple-
mentation view and the run-time view, and a uni-directional mapping between the data modelling
view and the run-time view.

one element of the run-time view changes, it is not valid to propagate this change to the element of

the implementation view from which the changed element in the run-time view was derived, since

then the element of the implementation view is no longer representative for the other elements in

the the run-time view that were derived from it. For example, consider the implementation and

the run-time views in figure 2.10. If car3 changes, and this change is propagated to car in the

implementation view, then car is no longer representative for car45.

Similarly we realise a uni-directional transformation between the analysis view and the run-

time view. As explained in the next section we map certain actions in the analysis view to con-

straints in the run-time view. For the same reasons we mentioned for the unid-directional mapping

between the implementation view and the run-time view, changes in the run-time view do not af-

fect the analysis view. Consider the data modelling and the run-time views in figure 2.10. If car3

changes, and this change is propagated to car in the data modelling view, then car in the data mod-

elling view is no longer representative for car45. Moreover when car in the data modelling view

is changed this means that car in the implementation view is also changed, making it no longer

representative for car45.
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2.5.3 Run-time RTE Programming

ARTE tools not only have to consider run-time objects in the run-time view but also need to actively

synchronize and even constrain them based on the other views in the RTE process.

Run-time Object Generations

A Run-time Object Generation is a group of run-time objects that were created from the same imple-

mentation object. We introduce such generations in order to consider run-time objects in general

and not only instances derived from classes. myARTE is required to support behavioural evolution

of entire existing generations steered from the analysis view. myARTE illustrates this requirement

with constraint enforcement on run-time objects based on multiplicities and object dependency.

Constraint Enforcement

In general enforcing constraints in a running system is an all but trivial requirement that has been

researched extensively. In Eiffel [77] constraints are originally called assertions, i.e. boolean state-

ments that never should be false. Assertions are categorised into post- and pre-conditions to be

specified on a class method that have to be true before or after the method is called, and into class

invariants that have to be satisfied for all instances of that class, and were first introduced via Eif-

fel’s design-by-contract metaphor [77]. This principle was recently added in languages and tools

such as iContract [65] and Handshake [32]. iContract is a Java pre-processor that supports Java

expressions with assertions and is compatible with a subset of the OCL. Whereas iContract fo-

cuses more on the practical use of the design-by-contract principle, the Handshake tool [32] allows

library-based run-time instrumentation of assertions in Java.

Also in the database community constraint enforcement received a significant amount of at-

tention. [22] reports on early research on enforcing constraints expressed in a data model for a

relational database. In this approach constraints are expressions in an SQL-like language that spec-

ify an inconsistent state for elements in a database table. Also in object-oriented databases the

constraint enforcement is studied. In the object-oriented database O2 [73] for example, constraints

are first-class elements that are independent of any application. However, in the database domain

the different ways to change the state of a database are restricted to insert, delete and update oper-

ations, as opposed to object-oriented software applications where the number of actions to change

the run-time system is significantly larger.

Tool support for constraint languages such as the OCL is continuously under development.
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In [119] a framework for transforming constraints from the modelling level to the implementation

is defined and integrated in the Argo/UML CASE tool. Each constraint is represented as an un-

ambiguous ten-tuple that is mapped to a separate constraint class. Four concepts are provided for

characterising a constraint:

• The scope of the constraint that describes when the constraint has to be checked.

• The translated form of the constraint that corresponds to how the constraint has to be checked.

• The rescue of a constraint that indicates what to do when a constraint is violated.

• The mechanism that can be used for triggering the constraint.

The KeY-tool [3] is an extension of the Together [150] application that has extensive OCL support

and that aims at detecting insufficiencies of the specification by comparing the UML design and

the implementation. USE [153] is a tool for specifying information systems in a subset of UML that

can be extended with additional integrity constraints in OCL. For more related approaches we refer

to [119].

Multiplicity Constraint Enforcement

myARTE makes the multiplicity constraints imposed by relationships between two nodes in the

graphical data modelling view, operational in the run-time view. Our ARTE instance enforces that

run-time objects satisfy at all times the multiplicity constraints imposed by relationships between

two nodes in the graphical data modelling view. The enforcement is based on references between

run-time objects. We consider such a reference as a small object containing information which refers

to data elsewhere, as opposed to containing the data itself.

In our myARTE instance we enforce upper bounds: the exact multiplicities in relationships rep-

resent the maximum number of references. More precisely, a multiplicity n on the right side of a

relationship between a node x and a node y in the data modelling view (see figure 2.11) denotes

that:

direction 1: the actual number of direct and indirect3 references in each run-time object of kind x

to other run-time objects of kind y is bound by the interval [0, n]

direction 2: the total number of direct or indirect references in run-time objects of kind y to each

run-time object of kind x is bound by the interval [0, n].
3Indirect references are references that are for example included in a collection object that is part of the constrained

run-time object.
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Figure 2.11: A multiplicity constraint in the three views.

We say that run-time objects of kind x are constrained by run-time objects of kind y with multiplic-

ity n.

According to the approach in [119], the multiplicity constraints for upper bounds we focus on

can be specified as follows:

• Scope: There exist three main cases when an upper bound multiplicity constraint has to be

checked:

– First, when a multiplicity is added or changed in the data modelling view, the entire ex-

isting constrained Run-time Object Generation has to be checked to satisfy the constraint

in both direction 1 and direction 2.

– Second, each time the state of a constrained run-time object is changed in such a way that

a reference in this run-time object to another run-time object it is constrained by is added,

it has to be checked wether this setup still satifies the existing multiplicity constraint in

direction 1.

– Third, each time the state of a constraining run-time object is changed such that a refer-

ence in this run-time object to another run-time object it is constraining is added, it has to

be checked wether this setup still satifies the existing multiplicity constraint in direction

2. Adding a new reference in a run-time object to another run-time object can be realised

by an assignment, meta-programming or via the user interface.

• Translated form: Our instance myARTE synchronises the multiplicities that are defined in

the data model into annotations that represent an upper bound for the number of references
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between the appropriate run-time objects. These annotated multiplicities are shared by the

appropriate constrained Run-time Object Generations via a class variable or a variable in a

traits object, cfr. figure 2.11. The checking mechanism that tests whether a constrained run-

time object satisfies an upper bound multiplicity constraint is defined in a centralised object,

such as a class or a traits object, that is shared by all run-time objects that are part of the

ARTE process. This checking mechanism uses the annotated multiplicity that is shared by

a constrained Run-time Object Generation for checking whether a specific run-time object

satisfies the defined upper bound constraint.

• Rescue: Based on the scope of the constraint, the violation can be detected 1) after a change of

a multiplicity in the data model or 2) after a state change in a run-time object that deals with

adding a new reference to a constrained or a constraining run-time object.

In the first case we generate a warning for the fact that some members of the existing popu-

lation of run-time objects are inconsistent with the recently changed data model.

In the second case the violation is detected after a specific state change in one run-time object

that extends it with a new reference to a constraining or a constrained run-time object. Next

to a warning it is possible to perform a compensating action by removing the added reference

dynamically.

• Triggering mechanism: Since the checking mechanism for multiplicity constraints is stored

in a shared object that is accessible to all run-time objects that are part of the ARTE process, it

can be called with a method call in the run-time objects. This method is called:

(1) for each run-time object in the appropriate constrained Run-time Object Generation,

each time a multiplicity is added or changed in the data model

(2) for one constrained run-time object after a state change in this run-time object is detected

that deals with a new reference to a constraining run-time object

(3) for one constrained run-time object after a state change in a constraining run-time object

is detected that deals with a new reference to the constrained run-time object

It has to be possible to switch the constraint checking temporarily off. For example a method

that changes the state of a constrained run-time object can contain first an assignment that

violates the multiplicity constraint, followed by some actions that remove a reference to a
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constraining run-time object. In that case we want to deactivate the enforcement before the

method is called and switch it on afterwards.

Example Consider for example a Husband node and a Wife node that are in a one-to-

one relationship in the data modelling view. In this case both nodes are constraining and

constrained by the other one. We then first ensure that all run-time Husband objects refer

to at most one run-time Wife object. Secondly, we also ensure that maximum one run-time

Wife object refers to each run-time Husband object. Vice versa, all run-time Wife objects

refer to at most one run-time Husband object and at most one run-time Husband object refers

to each run-time Wife object.

Alternatively, consider a one-to-many relationship between a Mother and a Child node in

the data modelling view. The “one side” of this relationship then constrains the other side,

the Child node, in two ways: first a run-time Child object can refer to at most one run-time

Mother object. Secondly at most one run-time Mother object can refer to the Child object

at the same time. Since the “many side” lacks an explicit multiplicity there are no constraints

on the number of run-time Child objects the run-time Mother objects refers to or on the

number of run-time Child objects that refer to the run-time Mother objects.

Note that run-time objects that satisfy the multiplicity constraints before a multiplicity change

may no longer be valid afterwards. The dynamic character of myARTE lies in the fact that

whenever a multiplicity is edited in the data modelling view all previously created corre-

sponding run-time objects should be checked to satisfy the constraint. Suppose the unspec-

ified “many” multiplicity at the side of the Mother node in the data modelling view is set

to 3. Then immediately all run-time Mother population objects that were previously not

constrained by the “many side” are now allowed to reference at most 3 run-time Child ob-

jects and vice versa, at most 3 run-time Child objects are allowed to refer to each run-time

Mother object.

Similarly, a many-to-many relationship constrains the nodes on both sides, if explicit multi-

plicities are provided.
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Object Dependency

myARTE makes the object dependency constraints between two nodes in the graphical data

modelling view, operational in the run-time view. In our instance myARTE, dependencies

between a strong node x and a weak, dependent node y in a graphical data modelling view

affect run-time objects4 of kind x and y in two ways:
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Figure 2.12: An object dependency constraint in the three views.

direction 1: Our myARTE instance enforces that a dependent run-time object always refers

to a strong run-time object it can depend on.

direction 2: Our myARTE instance enforces that when a strong run-time object is deleted, all

weak run-time objects that refer to it and are dependent to it are also deleted. Note that

for the enforcement to be actually performed, the run-time objects that are candidates

for deletion are not allowed to be referenced by any other run-time objects.

In other words a dependent run-time object can never exist as a stand-alone object. Remark that

currently we do not synchronize newly added dependencies in the data model, in the run-time

view: a new dependency will only affect future run-time objects. Neither do we synchronize re-

moving dependencies in the data model, in the run-time view.

The object dependency constraints can be specified as follows:

• Scope: This kind of constraint has to be checked in three occasions. The first two cases deal

with object dependency in direction 1 while the third handles the enforcement in direction 2:
4We say that the weak, dependent, run-time objects of kind y are dependent to the strong, run-time objects of kind x.
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– First, immediately after a new dependent run-time object is created and initialised it has

to be checked that it contains at least one reference to a strong run-time object it can

depend on.

– Second whenever in a dependent run-time object a reference to a strong run-time object

it depends on is removed, it has to be checked whether the dependent run-time object

still contains at least one reference to a strong run-time object it depends on.

– Third, when a strong run-time object with references to weak run-time objects dependent

to it, is deleted, it has to be checked that these weak run-time objects are deleted also.

• Translated form: myARTE synchronises the object dependencies that are defined in the data

model into annotations that represent 1) the kind of dependent objects in the strong objects

and 2) the kind of strong objects in the dependent objects. These annotated information is

shared by the appropriate strong and dependent Run-time Object Generations via a class

variable or a variable in a traits object, cfr. figure 2.12.

The checking mechanism that tests whether object dependency is enforced in the run-time ob-

jects is defined in a centralised object, such as a class or a traits object, that is shared by all run-

time objects that are part of the ARTE process. This checking mechanism uses the annotated

dependency information that is shared by a strong and weak Run-time Object Generations.

• Rescue: Based on the scope the object dependency can be violated in three cases. In the first

and the second case the violation of the object dependency can be avoided by “locking”5

this object until the user adds a reference to a strong run-time object or by the (automatic)

compensating action of adding again the removed reference.

In the third case of a violation the weak run-time objects have to be deleted or the deletion of

the strong run-time object can be reversed.

• Triggering mechanism: Since the checking mechanism for object dependency is stored in a

shared object that is accessible to all run-time objects that are part of the ARTE process, it can

be called with a method call in the run-time objects. This method is called:

(1) for each dependent run-time object after its initialisation

(2) for one dependent run-time object after a state change in this run-time object is detected

that deals with removing a reference to a strong run-time object it depends on
5Each message send to the object results in a warning that the object dependency is violated.
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(3) for each dependent run-time object after the deletion of a strong run-time object is de-

tected that contains a reference to the dependent run-time object

It has to be possible to switch the object dependency checking temporarily off. For example

during the creation of a new dependent run-time object, the enforcement has to deactivated

until the run-time object is completely initialised with the necessary references. Similarly

during the deletion of a strong run-time object this enforcement has to be switched off until

the delete operation is completed.

Example Consider for example a Department node and a dependent Instructor node that

are in a certain relationship in the data modelling view. We then first ensure that all newly created

run-time Instructor objects refer to a run-time Department object. If none of the latter are

available its creation is enforced. Secondly when a run-time Department object is deleted all run-

time Instructor objects have to be deleted also.

2.5.4 Relevance of myARTE Tools Characteristics in Evolution Scenarios

We can categorize the characteristics of myARTE introduced in section 2.4 by their presence in the

evolution scenarios described above as summarised in table 2.3.

S 1 S 2 S 3 S 4 S 5 S 6
Optimal Transformations

√ √ √ √
(
√

) (
√

)
Run-time Object Generations

√ √ √ √

Multiplicity Constraint Enforcement
√ √

Object Dependency
√ √

Role Modelling
√ √ √

Table 2.3: Relation between the ARTE characteristics and the six evolution scenarios.

Since Optimal Transformations (cfr. section 2.5.2) describe transformations between the data

modelling view and the implementation view they are relevant in scenario 1, 2, 3 and 4 where

changes take place at one of these two views. When it is desired to propagate changes from the

population view to the other views Optimal Transformations also make sense in scenario 5 and 6.

However we have stated by default that the latter kind of change propagation is not required hence

the parentheses notation in table 2.3.

Run-time Object Generations (cfr. section 2.5.3) are relevant in scenario 2 since adding a new

method to a node or adding a new specialisation in the data modelling view can affect existing
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run-time objects in the population view. Similarly in scenario 4 adding a method or inheritance in

a node in the implementation view might affect existing run-time objects in the population view.

Next Multiplicity Constraint Enforcement (cfr. section 2.5.3) occurs in scenario 2 and 6. In sce-

nario 2 changing the multiplicity in a relationship of the data modelling view will force existing

run-time objects in the population view to adhere to this multiplicity. In scenario 6 changing the re-

lationships between population objects in the population view will trigger Multiplicity Constraint

Enforcement checking.

Similarly Object Dependency (cfr. section 2.5.3) occurs in scenario 2 and 6. In scenario 2 adding

a dependency relationship of the data modelling view will result in changes at the implementation

view to ensure that when a new population object is created in the population view it is assured

that this object can depend on another population object. Furthermore when such a dependable

population object is deleted its dependent population objects should be deleted along. The afore-

mentioned creation and deletion actions are typical changes for scenario 6.

Finally Role Modelling (cfr. section 2.5.1) occurs in scenario 2 by establishing a new role rela-

tionship between two nodes in the data modelling view. Also in scenario 5 and 6 Role Modelling

has percusions as changing the role(s) of a new population object can trigger constrain enforcement

of certain allowed role combinations.

2.5.5 Data Modelling Languages

In chapter 3 we elaborate on the impact that the programming language that is used in the imple-

mentation view and the population view, has on myARTE. In the next section we discuss languages

that can be used in the analysis view of myARTE tools.

In general modelling implies representing the logical entities in a system and the logical depen-

dencies between them, in a modelling language during the analysis and/or the design phase.

One of the first successful data modelling languages was based on the Entity-Relationship (ER)

model [24]. This data model is typically used in database design and in the requirements and analysis

phases of (information) system development.

Object-oriented design methods provide a specific notation to develop data models. Most of

these notations or object modelling languages were integrated in the Unified Modelling Language

(UML) [41].

We elaborate on the UML (section 2.6) and the ER model (section 2.7). Next we compare both

languages in section 2.8.
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2.6 The Unified Modelling Language

The Unified Modelling Language (UML) is an object modelling language that was developed in

the early nineties by Rumbaugh, Jacobson and Booch. The UML was the result of the direct combi-

nation of the Object-Modelling Technique (OMT) [92] and the Booch method [15]. It was again the

OMG that defined the UML 1.1 as a standard modelling language in 1997. The UML itself is not

an analysis or a design method as it lacks a process to perform these tasks. The Rational Unified

Process (RUP) [67] is a process that complement the UML to define a software engineering (design)

method.

Currently the UML is the standard for object-oriented software development and for MDA.

Notation In its notation, the UML is dominated by the OMT [92] style (e.g. boxes for classes and

objects). The Booch capability to specify lower-level design detail was included together with the

concept and notation of use cases [58]. Elements from various other software development methods

(e.g., Class-Relation [30], CRC Cards [10], and OORam [90]) were included in order to support all

these methods with a single modelling language.

2.6.1 Views, Diagrams, and Model Elements

Views are abstractions that describe different aspects of a system being modeled. Views consist of

diagrams and realize the link from the modelling language to a development method or process.

The UML provides a number of diagrams to describe both the static and the dynamic structure

of a system. These diagrams are divided into three categories:

1. Structure Diagrams: the Class Diagram, Object Diagram, Component Diagram, Composite Struc-

ture Diagram, Package Diagram, and Deployment Diagram.

2. Behaviour Diagrams: the Use Case Diagram, Activity Diagram, and State Machine Diagram.

3. Interaction Diagrams: the Sequence Diagram, Communication Diagram, Timing Diagram, and

Interaction Overview Diagram.

Structure diagrams are also referred to as static diagrams while behaviour and interaction diagrams

are referred to as dynamic diagrams.

The concepts used in the above diagrams are model elements that represent general constructs of

the object-oriented paradigm such as classes, objects, messages, relationships and dependencies.

We will briefly discuss class and object diagrams.
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Class Diagrams Class diagrams describe the structure of a system by showing the classes and

the relationships among them. Every class is depicted as a box with the class’ name. A class

can display its attributes in a compartment under the name, possibly with type, initial value, and

other properties. The class can also show its methods (operations) in another compartment with

at least its name and optionally parameters and return type. Attibutes and operations may have

their visibility marked. Classes can be linked to each other with generalization, association and

aggregation relationships.

Object Diagrams Object diagrams show how specific instances of a class are linked to each other

at runtime. They consist of the same elements as a class diagram. Object diagrams are used to test

the accuracy of class diagrams.

2.6.2 Meta-models and the OCL

The UML’s graphical notation, its syntax and its semantics are typically defined in a specification

using meta-modelling. A meta-model defines what are valid models in a modelling language. In

the current UML 2.0 specification the abstract syntax consists of UML class diagrams. The concrete

syntax is informally specified in the UML notation. Wellformedness rules constraining the abstract

syntax, specify when an instance of a particular language construct is meaningful. These rules are

described in the Object Constraint Language (OCL) [142] and in natural language. The informally

defined semantics of UML define a model’s meaning and is also described in natural language and

the OCL.

2.7 The Entity-Relationship (ER) Model

In 1976 Chen introduced the Entity-Relationship (ER) model [24] based on the mathematical foun-

dations of set theory, mathematical relations, modern algebra, logic, and lattice theory. In that time,

the three major data models were the relational, the network, and the entity-set model. Adhering

mostly to the entity-set model the ER model was introduced as an abstraction layer on top of the

network and the relational database model. In 1979 a new modelling technique, with ER diagrams

to graphically represent the elements of the ER model was proposed in [25].

Around 1987, ANSI adopted the ER model as the data model for Information Resource Direc-

tory Systems (IRDS) standards. The ER model has been a driving force for computer-aided software

engineering (CASE) tools. The UML also has its roots in the ER model.

52



2.7. THE ENTITY-RELATIONSHIP (ER) MODEL

Today the ER modelling approach is traditionally used as system development method and as

a design method for databases

Extensions The original entity-relationship model represents exclusively static behaviour. Many

extensions have been proposed to extend the original model [107]. In the context of object-oriented

conceptual modelling, adding the generalization concept [83] was the most significant extension.

This model is often referred to as the Extended Entity-Relationship model (EER) [34]. EER mod-

elling concepts that are not present in the original model include: dependency, specialization, gen-

eralization, classification, and aggregation. In the remainder of this dissertation it is this extended

EER model that will be considered.

Notation Currently there is no standard graphical notation for EER diagrams. Most of the differ-

ences between notations concern how relationships are specified and the way attributes are shown.

In almost all variations, entities are depicted as rectangles with either pointed or rounded corners.

The entity name appears inside. Relationships can be displayed as diamonds or can be simply line

segments between two entities. For relationships, a name, a degree, a cardinality, and an optionality

(minimal cardinality) might be represented.

Chens notation [24] consists of rectangles representing entities and diamonds representing re-

lationships, with lines linking the rectangles and diamonds. An other well-known notation called

“crow’s feet” consists also of rectangles representing entities, while lines between entities represent

relationships. In this case a crow’s foot at the end of a line represents a one-to-many relationship.

Other notations appear in database textbooks [33, 66] or existing ER modelling environments, e.g.

Oracle Designer/2000 and Visible Analyst.

2.7.1 Diagrams and Model Elements

In this section we illustrate the modelling constructs of which EER diagrams are composed. The

EER notation we use combines existing approaches: Chen’s boxes [24], the relations of the crow’s

feet notation and the cardinalities of [33]. EER diagrams consist of:

• Entities by Chen defined as ”a thing which can be distinctly identified” [24]. As illustrated in

Figure 2.13 there exists a distinction between

– Strong entities that are the default entities and that demand a primary attribute (see the

next bullet) for identification.
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– Weak entities that depend on a strong entity. This dependency implies that a weak entity

can never exist without a strong entity it depends on. Intuitively when the strong entity

is deleted the weak entities depending on it are to be deleted as well. The dependency

relation is explicitly drawn between the two entities as illustrated in Figure 2.13. Note

that the originator entity is always denoted with a blue dot while the destination entity

is marked by a red one, similar to all links of our EER notation.

Figure 2.13: A dependency between a strong and a weak entity.

Different colours are used to denote the differences between strong and weak entities.

• Attributes (see Figure 2.14) are categorised into

– Primary attributes, included exclusively in strong entities for identification similar to a

primary key in the relational model.

– Simple attributes.

– Derived attributes, calculated from other attributes.

Different colours are used to denote the differences between simple, primary and derived

attributes.

Figure 2.14: Attributes in a strong entity.

• Relationships (see Figure 2.15): depending on the multiplicities (also called cardinalities or

arities) there is a distinction between

– One-to-one relationships represent the originator entity being associated with at most one

destination entity and vice versa.
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– One-to-many relationships represent that the originator entity is associated with an arbi-

trary number of the destination entity or, if an explicit multiplicity n is provided, with

at most n destination entities. The destination entity is associated with at most one occur-

rence of the originator entity.

– Many-to-many relationships represent that the originator entity is associated with an ar-

bitrary number of the destination entity or, if an explicit multiplicity n is provided, with

at most n destination entities and vice versa.

Figure 2.15: Relationships between entities.

Note that in the notation in figure 2.15 the order of the original EER multiplicities is reversed,

as it is done in the Object Modelling Technique [92]. The labels of the relationships (above

the cardinalities) can be filled in and function as a kind of role similar to those of Object Role

Modelling (ORM) [146] or NIAM [122].

• Specialisations (see Figure 2.16) that represent an “is-a” relationship between entities. Note

that multiple specialisation branches (links) are allowed and that the bold link always de-

notes the more general entity. Specialised entities in the same branch are treated as mutually

exclusive (also referred to as dynamic classifications in the UML).

• Categorisations (see Figure 2.17) among which an object will select one to inherit from at

creation time. Note that multiple categorisation branches are allowed and that the bold link

always denotes the more specialised entity. Categorisation entities in the same branch are

mutually exclusive.
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Figure 2.16: Specialisation between entities.

Figure 2.17: Categorisation between entities.

• Aggregations (see Figure 2.18) denote a whole-part relationship between an aggregate entity

and the aggregated entities it is composed of.

Figure 2.18: Aggregation between entities.

2.8 myARTE Tools Benefit From the EER Model

There is an almost religious discussion between the EER and the UML communities as to which

approach is better. Typical claims are that EER modelling is more formally founded but that the

UML is more open [93], [41].

UML class diagrams can easily be mapped to EER diagrams. David Hay [53, 54] states that for

data modelling the UML is functionally equivalent to the ER model [51]:

”As a system of notation for representing the structure of data, the UML static diagram is func-

tionally the exact equivalent to any other data modelling, entity-relationship (ER) modelling, or

object modelling technique. Its “classes” are really “entities”, and its “associations” are “rela-

tionships”. It has specialized symbols for some things that are represented by the main symbols
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in other notations, and it lacks some symbols used in ER diagram. [...] Yes, UML does add

the ability to describe the behaviour of each object class/entity, but the data structure part of the

technique is fundamentally no different from any other data modelling technique in what it can

represent. ”

The same author claims that UML is more appropriate for designers [51] while the (E)ER model is

more suitable when end-users are involved. As a consequence, the latter can be seen as more fit for

the agile principle of end-user collaboration.

Therefore, we selected the EER model to represent elements of the data modelling view in

myARTE.

2.9 Conclusion

Agile MDD combines the complex models of MDD with an Agile Development cycle. There al-

ready exist various popular Agile practices, such as Extreme Programming, Rapid Prototyping

and Adaptive System Development that can be applied in practices for Agile MDD, such as Agile

Manual Modelling, Agile CASE and Agile MDA.

Using multiple views requires that the views that are inter-related are kept consistent. This

consistency is a key factor in RTE that combines forward and reverse engineering. We focus on the

kind of RTE that considers as graphical modelling view and a code-time implementation view that

both view one and the same underlying model. Since Agile MDD advocates integrating changing

requirements on run-time systems, RTE that is suitable for Agile MDD considers a third run-time

population view.

We believe that the low success of Agile MDD practices that involve automated transformations

is caused by the insufficient support of traditional RTE tools. Therefore we propose a new approach

for Agile MDD called Advanced RTE (ARTE) that can be supported by the next generation of

RTE tools. First, ARTE has to consider a high-level view in order to increase end-user interaction.

Second, ARTE has to support optimal transformations, i.e. incremental and change-preserving

transformations between the mulitple views. Finally, ARTE has to consider a run-time view that

can be affected by the other views.

In this dissertation we focus on one instance of ARTE, called myARTE that supports the three

ARTE criteria as follows. First, myARTE includes an analysis view for static analysis model in the

Extended Entity-Relationship (EER) format. This analysis view is kept consistent with an imple-

57



CHAPTER 2. ADVANCED ROUND-TRIP ENGINEERING

mentation view. We illustrate this by integrating role modelling as a first class modelling concept

in the analysis view. We approach roles as instances that have to be adjoined to the objects that

play them. Second myARTE supports optimal transformations between an analysis view, an im-

plementation view and a run-time view. The transformation between the analysis view and the

implementation view is bi-directional. The transformations between the implementation view and

the run-time view, and between the analysis view and the run-time view are uni-directional. Fi-

nally, myARTE integrates a run-time view in the RTE process. More precisely the run-time view

is affected by changes in the implementation view and the analysis view. MyARTE illustrates this

by grouping run-time objects in object generations and enforces constraints on these generations

based on multiplicities and dependencies in the analysis view.
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Chapter3
Language Requirements for Advanced

Round-Trip Engineering
Implementations

In this chapter we discuss the language requirements (i.e. the characteristics) that are required by

Advanced Round-Trip Engineering (ARTE), and evaluate the suitability of five programming lan-

guages as implementation candidates. In section 3.1 we identify the set of language characteristics.

Next, in section 3.2 we describe the three programming language features - dynamic typing, re-

flection and prototypes - as indicators for the presence of the above language characteristics. We

continue with an in-depth discussion on how ARTE could be implemented in C++, Java, Smalltalk,

Ruby and Self as representative languages. This chapter’s conclusions are summarized in sec-

tion 3.6.

3.1 Programming Language Requirements

In this section we describe the programming language characteristics that are required for imple-

menting tools that support ARTE.

3.1.1 Required Language Characteristics for Optimal Transformations

ARTE implements Optimal Transformations (see section 2.5.2) between a data modelling view and an im-

plementation view, that are minimal and change preserving. Minimal transformations happen continuously

after each change action and per changed elements onto the level of the smallest part an element consists of.

To allow such transformations we introduce the following language characteristics:
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Language Mechanism 3.1 A Bidirectional Connection implements a correspondence between the nodes

in the data modelling view and the nodes in the implementation view up to the level of their smallest elements.

This connection allows for synchronising, via a bidirectional link, between the graphical nodes

of the data modelling language that is used in the data modelling view, and the corresponding

nodes of the programming language used in the implementation. Conceptually spoken, it is opti-

mal when the implementation nodes and the data modelling nodes are identical but viewed differ-

ently in different views. The smaller the “distance” between the two views, the more straightfor-

ward it becomes to realize a synchronisation.

Via the bidirectional connection, the node’s elements (including their names and contents) are

synchronised and preserved in both directions. To access the nodes and their elements, meta-

programming facilities to grab these different kinds of nodes are required.

To actually initiate a synchronisation, when an element of the data modelling view or the im-

plementation view is changed, we require the following mechanism:

Language Mechanism 3.2 A Synchronisation Trigger Mechanism initiates, each time the state of the

data modelling or the implementation view changes, a synchronisation mechanism, that is specifc for this

change, onto the other view.

Upon a change action the above mechanism will trigger the actual synchronisation of the change

in the other view, even for the smallest element of a node.

In the case that an element in one view does not have an equivalent in the other view, the

information pertaining to this element has to be stored in another way, for example as an annotation.

With this term we refer to some extra information that is stored invisibly in an object and can be

consulted at any point in time.

Language Mechanism 3.3 A Shared Synchronisation Annotation is a variable shared by a group of

similar objects, that holds an annotation that is the result of a synchronisation from the EER view to the

implementation view. Its value is readily available for a checking mechanism.

In the next section, we discuss language characteristics that are required to implement Run-time

RTE Programming in ARTE tools.

3.1.2 Required Language Characteristics for Run-time RTE Programming

In this section we propose a number of language characteristics that can be used to implement

Run-time Object Generations, Multiplicity Constraint Enforcement and Object Dependency.
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Required Language Characteristics for Run-time Generations

ARTE supports behavioural evolution of entire existing generations of run-time objects, steered from the data

modelling view (see section 2.5.3). Certain changes in the data modelling view affect all existing run-time

objects that correspond to the node containing the change in the data modelling view.

To support grouping run-time objects in generations, we introduce the following programming

language characteristics:

Language Mechanism 3.4 Reified Shared Parts are the shared parts of a run-time object, that are reified

as a container whose identity survives after running the system.

These parts that are shared by all the run-time objects in one generation, are reused when the

system is run again after evolutionary steps. Examples of shared parts are a class in Java or a traits

object in Self. Such shared parts can be used for storing Shared Synchronisation Annotations.

In order to let changes in the data modelling view or the implementation view affect an entire

generation of run-time objects, their shared parts are to be modifiable:

Language Mechanism 3.5 Modifiable Shared Parts are reified shared parts that provide operations to

modify them destructively.

In this way, changes to the shared parts, made by programmers, can be made visible to all run-

time objects that already exist in the generation, and will be visible in all future ones. E.g. in some

languages it is possible to add a method to an existing class, which is immediately made visible in

the instances that were created from this class.

Required Language Characteristics for Multiplicity Constraint Enforcement

ARTE tools should enforce that run-time objects satisfy at all times the multiplicity constraints imposed by

relationships between two nodes in the graphical data modelling view (see section 2.5.3).

Multplicity Constraint Enforcement first requires a mechanism to detect that new references

have been added in a run-time object. Therefore, the following mechanism is required:

Language Mechanism 3.6 An Observation Mechanism for State Changes monitors each change to

the state of a run-time object.

When a new reference is detected, a checking mechanism has to be triggered, that checks

whether the run-time object respects the multiplicity constraint. In order to do so, first we iter-

ate over all the elements of a run-time object with the following mechanism:
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Language Mechanism 3.7 An Iteration Mechanism for References iterates over the basic elements of

a node in the implementation view or the population view.

This mechanism allows for example to iterate over all the attributes of an instance of the class

Customer.

To actually consult a specific reference in a run-time object, the following mechanism can be

applied:

Language Mechanism 3.8 A Reference Control Mechanism checks which run-time objects refer to which

other run-time objects at the meta-level.

Such a mechanism allows for inspecting for example the value of the attribute myBanker in an

instance of the class Customer. The result could be an instance of the class Employee.

Each reference in a run-time object is matched against multiplicity constraint information. This

kind of information is stored as a Shared Synchronisation Annotation. For example, adding a

1-to-many relationship between a mother entity and a child entity in the EER view, could be

synchronised by annotating the child implementation object with ’mother’ in a variable that

gathers the implementation objects that constrain child with multiplicity 1.

Based upon the above language characteristics it is possible to detect that the number of ref-

erences to run-time objects of a constrained kind is larger than the allowed multiplicity that is

contained in the shared annotation.

Required Language Characteristics for Object Dependency

ARTE enforces that a dependent run-time object always refers to a run-time object it can depend on. More-

over, ARTE enforces that when a run-time object is deleted, all dependent run-time objects are deleted as well

(see section 2.5.3).

First, in order to ensure that there exists at least one reference between weak run-time objects

and strong run-time objects they can depend on, we enforce the creation of such a reference at the

creation time of new weak run-time objects. Therefore, we need a mechanism that detects that a

new run-time object is created:

Language Mechanism 3.9 An Object Creation Observation Mechanism observes the creation of any

run-time object.
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Such a mechanism can be constructed for example by overriding a new method that is used to

instantiate classes, with a super call to the original new method in combination with behaviour

that reports that a new instance was created.

If a new weak run-time object is dependent, the above mechanism triggers a checking mecha-

nism that will check all the references of the new run-time object for a run-time object it can depend

on. In order to do so, the Iteration Mechanism for References that is introduced in definition 3.7

is required to iterate over all the run-time object’s elements. The references themselves have to be

checked with the Reference Control Mechanism (see definition 3.8), as explained before.

The dependency information that describes on which kind of object a weak run-time object can

depend, is stored in Shared Synchronisation Annotations (see definition 3.3), as a Run-time Object

Generation of weak run-time objects share the same dependency. In this way, it is possible to detect

that there is at least one reference to a run-time object of the kind that the new run-time object can

depend on.

For the second part of the Object Dependency enforcement, that deals with deletion, we require

a deletion operation for run-time objects, that can propagate itself to other run-time objects:

Language Mechanism 3.10 A Deletion Propagation Mechanism executes a number of cascading delete

operations.

If such a mechanism would for example delete a Department instance, then automatically all the

dependent Instructor instances that are associated to this Department, are deleted as well.

When this deletion mechanism is called in a run-time object, all the references of this object

are checked, with the Reference Control Mechanism (see definition 3.8) and the Iteration Mecha-

nism for References (definition 3.7), as explained previously. Each of the referenced run-time ob-

jects is then matched against the aforementioned dependency information that is stored in Shared

Synchronisation Annotations (see definition 3.3). Each of the referenced run-time objects that is

dependent on the run-time object that is being deleted, is then deleted.

3.1.3 Language Characteristics for Role Modelling

myARTE tools that integrate a Role Modelling concept in the analysis view, have to automatically synchro-

nise this concept with a suitable implementation. Roles are considered both instances that are to be adjoined

to the objects that play them.

A possible implementation relies on a separation between state and behaviour, since it allows
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to reverse one of the specialisations by defining the reverse of state inheritance. This can help

to implement relations that are either more or less specific at the level of state, and less or more

specific at the level of behaviour. Hence the fact that state and behaviour are explicitly separated

and mutually interchangeable is crucial for implementing role modelling:

Language Mechanism 3.11 State and Behaviour Separation implies gathering object-specific knowl-

edge (i.e. attributes) and the associated reusable knowledge (i.e. methods and class variables) in different

objects.

The reusable knowledge can be contained in the Shared Parts (see definition 3.4).

Upon starting to perform a role, the object-specific knowledge of a run-time object can be ex-

tended with the object-specific knowledge of that role. In order to do so, we require the following

language characteristic:

Language Mechanism 3.12 State and Behaviour Addition and Removal Primitives add or remove

state and behaviour in run-time and implementation objects.

These primitives enable for example to add or remove an instance variable to an instance. Another

example deals with adding a method to just one instance, i.e. a singleton method.

To enforce that certain roles are mutually exclusive, we can use a mechanism that detects that

a run-time object starts performing a new role. Such a mechanism is similar to the Observation

Mechanism for State Changes that is introduced in definition 3.6. This mechanism can then trig-

ger a checking mechanism that matches the roles of the run-time object to the mutually exclusive

roles information. Such information can be stored globally, while the roles that a run-time object

performs can be annotated in the object-specific part of that run-time object.

3.1.4 Conclusion

We give an overview of the language characteristics that are required to implement ARTE:

• A Bidirectional Connection (see definition 3.1)

• A Synchronisation Trigger Mechanism (see definition 3.2)

• A Shared Synchronisation Annotation (see definition 3.3)

• Reified Shared Parts (see definition 3.4)
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• Modifiable Shared Parts (see definition 3.5)

• An Observation Mechanism for State Changes (see definition 3.6)

• An Iteration Mechanism for References (see definition 3.7)

• A Reference Control Mechanism (see definition 3.8)

• An Object Creation Observation Mechanism (see definition 3.9)

• Deletion Propagation (see definition 3.10)

• State and Behaviour Separation (see definition 3.11)

• State and Behaviour Addition and Removal Primitives (see definition 3.12)

3.2 Characteristics of Candidate Programming Languages

We argue that the presence of the language requirements defined in section 3.1, in a programming

language, is proportional to the extent to which the language has the following three characteristics:

• Dynamic typing (versus static typing), as explained in section 3.2.1.

• Meta-programming facilities that are described in section 3.2.2.

• Prototypes (versus classes), as introduced in section 3.2.3

The languages that recur in the following discussions are C++, Java, Smalltalk [47], Ruby [109]

and Self [145]. The reason for selecting these languages, is that they all prominently exhibit the pres-

ence or absence of the above three characteristics. C++ and Java are two mainstream object-oriented

programming languages that are used in industry. They are both class-based and statically typed.

Smalltalk is the oldest object-oriented class-based programming language that implements “pure”

object-orientation and is dynamically typed. A rather new dynamically typed object-oriented lan-

guage is Ruby that combines a pure class-based style with the flexibility of cloning. Finally, Self is

the textbook example of an object-oriented prototype-based programming language and is dynam-

ically typed.

In table 3.1 we illustrate how they fill in the above language characteristics. The reflective abili-

ties are evaluated with a score from 0 to 2 based on criteria explained in section 3.2.2.
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Typing Reflection Grouping
C++ static 0 classes
Java static 1 classes
Smalltalk dynamic 2 classes
Ruby dynamic 2 (singleton) classes
Self dynamic 2 prototypes

Table 3.1: Programming characteristics of C++ , Java, Smalltalk, Ruby and Self.

3.2.1 Dynamic Typing

Nowadays, the most popular and widely-spread used programming languages are statically typed.

In statically typed programming languages the type of variables needs to be declared explicitly

before the variables are employed. Examples include Java, C++, C, ML, and Haskell. At compile-

time, during static type checking, the variable declarations are verified and the constraints of types

are enforced on them.

Recently however, a continuously growing tendency towards dynamically typed programming

languages has emerged again. The object-oriented programming language Ruby [109], accom-

panied by the Ruby-On-Rails [110] scaffolding framework is rapidly becoming developers’ new

favourite. In dynamically typed languages such as Ruby, the variables merely need to be em-

ployed (without any declaration). Other examples of dynamically typed languages are Smalltalk,

Self, Kevo, Objective-C, Scheme, Lisp, Perl, PHP, Visual Basic, and Python. Dynamic typing is often

associated with so-called “scripting languages” and other rapid application development (RAD)

(see section 2.1.1) environments, and tends to occur more often in interpreted languages. Dynamic

type checking is performed at run-time.

In static languages such as C++ and Java, classes are considered to be the nodes in the im-

plementation view. The smallest element of a class is an attribute (instance variable or member).

Run-time objects are instances of the classes. However, these instances are not “lively” linked to

their classes. Changing the implementation view always demands a compilation step.

In some dynamic class-based languages such as Smalltalk and Ruby, instances are lively linked

to their classes. Classes are considered to be nodes in the implementation view, while run-time

objects are instances of the classes. Changing the implementation view always is immediately

reflected in the run-time objects. As a consequence, in class-based dynamic languages, Reified

Shared Parts (see definition 3.4) are the classes themselves.

A stand-alone Synchronisation Trigger Mechanism (see definition 3.2) is also only efficient in
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dynamic languages, since in a static language the synchronisation itself demands a compilation

step.

The presence of the following programming language characteristics is not considered as a con-

sequence of dynamic typing but they are however present in most of dynamically typed languages:

• Building a a Bidirectional Connection (see definition 3.1) can be facilitated by a Model-View-

Controller UI that is used for example in Smalltalk and Self environments. This enables to

have different views on one underlying object, that can easily be synchronised.

• Deletion Propagation (see definition 3.10) is facilitated by the presence of an automatic garbage

collector similar to the ones in Smalltalk, Ruby and Self.

3.2.2 Meta-Programming and Reflection

Meta-programming is the activity of a program observing and possibly modifying the structure

and behaviour of another program. A meta-program is reflective if it observes or modifies its

own structure and behaviour [71]. Reflection in programming languages deals with Introspection

and self-modification [18]. Hence the evaluation between 0 and 2 in table 3.1. Also the language

characteristics that were categorized at the meta-level of a programming language (see section 3.1.4)

can be categorised by these two kinds of reflection.

Introspection is the ability of a program to examine and reason on the structure and behaviour

of itself. The following language characteristics are used for introspection: An Iteration Mecha-

nism for References (see definition 3.7), an Observation Mechanism for State Changes (see defini-

tion 3.6), an Object Creation Observation Mechanism (see definition 3.9), and a Reference Control

Mechanism (see definition 3.8). Java, Smalltalk, Ruby, and Self provide means for introspection.

Self-modification is the ability of a program to change its own structure and behaviour. Ex-

amples of self-modifying language characteristics are Modifiable Shared Parts (see definition 3.5),

and State and Behaviour Addition and Removal Primitives (see definition 3.12). Smalltalk, Ruby,

and Self provide means for these kinds of self-modification.

3.2.3 Prototypes

Object-oriented programming languages can be divided depending on the basic programming con-

cept that is used to group objects. Today the most frequently used programming languages are

class-based. Classes are used to group objects of a similar kind and new run-time objects are cre-

ated by instantiating the class. Another group consists of prototype-based languages (PBLs) that
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create new run-time objects by cloning a prototype that represents the default behaviour for a cer-

tain concept [69].

Introduction

Prototype theory was founded as a response to some of the shortcomings of the ancient class-

based world view. In the late seventies the Artificial Intelligence (AI) community developed the

predecessors of PBLs for knowledge representation. Henry Lieberman introduced the prototype-

based paradigm into the object-oriented community in his influential OOPSLA paper [69].

In general, PBLs are considered as object-oriented languages without classes. Instead of in-

stantiating classes, prototypes are cloned in a PBL. Prototypes are concrete stand-alone objects that

include state and behaviour and that can be directly manipulated. The most important character-

istics that are encountered in PBLs are

• Creation ex-nihilo. Objects can be created ex-nihilo (out of the blue) by writing a number of

slots possibly with an initial filler. No template object such as a class is involved.

• Cloning. Alternatively new objects are created by cloning prototypes, i.e. shallow copies

whose attributes are initialised with references to the same value as in the prototype’s at-

tributes.

• Extension. A third way to create a new object in a PBL is based on extending an existing

object with new attributes or behaviour. This action is also refered to as concatenation.

• Delegation Instead of the class-based inheritance and “manual” message forwarding1 of

class-based languages, delegation or object-based inheritance is used to share behaviour. The

variant of delegation may vary depending on the PBL. Nevertheless, they all share the idea

that when a message sent to an object, is not understood, it should be automatically delegated

to the parent(s) of the receiver. The delegation link can sometimes be dynamically changed.

• Late binding Delegation goes hand in glove with late binding of the self variable at the

object level. This means that a method found for a delegated message, is always executed in

the context of the original receiver. This dynamic meaning of the self variable corresponds

to the dynamic meaning of this or self in a class-based language. The difference however

1Often erroneously refered to as “delegation”. Similarly the Gang of Four’s (GoF) Delegation design pattern [42] employs
class-based message forwarding.
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is that in this case self is only bound per object, instead of at the class level where the value

of self is known at instantiation time.

• Parent sharing Delegation allows for parent sharing: when two objects define another one as

their parent, this parent object is really shared between them. This implies that the value of

the self pseudovariable solely depend on the children objects. Furthermore, parent sharing

causes changes in the parent object that were initiated by a child object to become immediately

visible in the other children.

Many PBLs have been designed until the late nineties. Examples are Self [112], Agora [102],

Kevo [105] and NewtonScript [98]. A taxonomy can be found in [31].

Language Characteristics in PBLs

Since the majority of PBLs is dynamically typed2 some PBLs such as Self also implement the lan-

guage characteristics that are categorised at the typing level and are present in most dynamic lan-

guages as described in section 3.2.1. Moreover, due to the lack of classes everything really is an

object, providing an even higher flexibility for run-time programming, compared to dynamic class-

based languages.

The presence of Shared Parts in PBLs are not trivial. In a prototype-based programming lan-

guage, new objects are created by cloning (copying) a prototype that represents the prototypical

state and behaviour for objects of this kind. In a “pure” prototype-based programming style, each

new clone is a copy of the prototype, including duplicated references to behaviour that can be

shared by all objects of this kind. However, for efficiency purposes most PBLs implement a sharing

mechanism to group objects of the same kind. In these shared objects, the reusable behaviour such

as methods can be stored. The clones then inherit this behaviour from the shared parts.

In Kevo, for example, this is achieved with clone families that transparently3 group objects of the

same kind. In Self traits objects are made explicit to a developer and store the shared behaviour in

an object and let the cloned objects inherit from it. Using traits objects can be considered as a class-

based programming style in a prototype-based language. The crucial difference with classes lies

in the late binding of the self variable, that allows traits objects to parametrize the child objects.

As a consequence, methods that are defined in the traits objects, access the variables of the child

objects.

2There exists at least one PBL that is statically typed, called Omega [12].
3Clone families cannot be manipulated or managed by the developer.
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Reified Shared Parts (see definition 3.4) and Modifiable Shared Parts (see definition 3.5) are

present in Self in the form of the aforementioned traits objects, in contrast to the implicit clone

families in Kevo that cannot be manipulated by the developer.

An Object Creation Observation Mechanism (see definition 3.9) can be implemented in a PBL

if it is possible to override the existing methods to create new objects.

In any prototype-based language, Shared Synchronisation Annotations (see definition 3.3) can

be stored in a prototype. More efficiently these annotations can be stored in an object that is shared

by all objects that need to access the annotated information. For example, as the value of a special

variable in Kevo, that is shared by an entire clone family. Alternatively, the information can be

implemented as an element of a traits object in Self.

Note however that C++ and Java support these annotations with static variables, while in

Smalltalk and Ruby class variables can be used to store these annotations.

The possibility in languages such as Self and Kevo to add attributes and methods to one object

is without doubt beneficial for ARTE. Note however, that Ruby as a class-based exception, partially

offers a similar functionality with its singleton classes and singleton methods. In Ruby it is also

possible to add or remove instance variables dynamically from run-time objects.

The solution based on State and Behaviour Separation (see definition 3.11) again builds on the

separation between prototypes and objects that contain shared behaviour such as traits objects in

Self. Moreover in Self the inheritance relationships between prototypes including state and traits

objects including behaviour are different. For behavioural inheritance between traits objects delega-

tion is implemented via parent pointers. State inheritance between prototypes is implemented with

extension (or concatenation). Method lookup follows delegation links but not extension links re-

sulting in a partial solution for the ambiguities caused by dynamic multiple inheritance diamonds.

In the remainder of this chapter we examine to which extent the programming languages cate-

gorised in table 3.1, effectively implement the required language characteristics that are demanded

by ARTE. The statically typed language C++ is explored in the sections 3.3.1, 3.4.1 and 3.5.1 while

Java’s language characteristics are evaluated in the sections 3.3.2, 3.4.2 and 3.5.2. Being dynamic

languages we discuss Smalltalk in the sections 3.3.3, 3.4.3 and 3.5.3 and Ruby in the sections 3.3.4, 3.4.4

and 3.5.4. The language characteristics of the prototype-based programming Self are introduced in

the sections 3.3.5, 3.4.5 and 3.5.5.
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3.3 Language Requirements Related to Dynamic Typing

3.3.1 C++

Maintaining a A Bidirectional Connection (see definition 3.1) between the modelling view and the

implementational view is in principle not impossible, yet extremely hard to implement due to the

fact that C++ is a statically typed programming language and that changes made to the nodes in

the data modelling view might result in C++ programs that are temporarily incomplete or ill typed.

Tackling this with optimistic partial type checkers is a very hard problem to solve. An important

reason for this is that C++ code is text based and can in principle be mutilated by programmers

in whatever way they want, as the mutilations are only detected at compile-time. In a Round-Trip

Engineering environment that is to uphold links between code and more structured views such as

a graphical data modelling view, this is a major obstacle.

C++ classes have no identity that survives two editing phases. As a result even small changes

that have nothing to do with the actual implementation of a class can cause class versioning prob-

lems. For instance, adding or deleting the kind of dependencies and multiplicities outlined in

sections 2.5.3 and 2.5.3 requires one to add or delete hidden instance variables needed for run-time

checking. This changes the structure of objects and v-tables produced by the compiler and renders

existing object populations obsolete. This implies that C++ classes cannot be considered as Reified

Shared Parts (see definition 3.4) or Modifiable Shared Parts (see definition 3.5).

A Synchronisation Trigger Mechanism (see definition 3.1) is superfluous as changes always

demand a compilation step to become visible in run-time objects.

3.3.2 Java

Concerning the realization of a Bidirectional Connection (see definition 3.1) between the nodes in

the data modelling view and run-time objects that survive multiple runs of the same application,

Java does not outperform C++. Java class files are composed of JVM bytecodes that are executed

by the JVM. The implementation objects (forming the actual identity of classes and interfaces) are

characteristiced by the virtual machine after loading the byte code.

Java bytecode instrumentation is the process of directly inserting, removing or manipulating

the JVM bytecodes that compose Java class files. This transformation process must be strict and

should adhere to the constraints imposed by the JVM Specification on the Java class file format. In

this way any modification (insertion/deletion) of JVM bytecodes should be reflected on all other
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JVM bytecodes within a Java class file. This generic process of instrumenting Java class files allows

for dynamic analysis of Java class files.

There is no such thing as a class object whose identity remains the same between two runs of the

program. This rules out Reified Shared Parts (see definition 3.4) or Modifiable Shared Parts (see

definition 3.5). In other words, adding a method or a field to a class (or changing an existing one)

requires one to recompile the class and this results in class versioning problems between population

objects of an old class, and the new class.

Another important drawback is that most modelling languages allow one to “draw” code that

is technically not sound w.r.t. static typing.

3.3.3 Smalltalk

A Bidirectional Connection is facilitated by the fact that classes and their instances are “alive” in

the Smalltalk image. Instances are at all times linked to the object that represents their class, which

means that when the class is modified, the instances can be retrieved and immediately updated.

Moreover the “openness” of the Model-View-Controller-based user interface allows the construc-

tion of new graphical elements.

A Synchronisation Trigger Mechanism (see definition 3.2) could be realized by overwriting

some behaviour that observes or propagates changes between the Model and the View parts of the

user interface.

It is possible to dynamically store Shared Synchronisation Annotations (see definition 3.3) in

class variables, which are then shared by all instances of that class.

Reified Shared Parts (see definition 3.4) are classes in Smalltalk while Modifiable Shared Parts

(see definition 3.5) are supported since classes can be modified dynamically, which results in ex-

isting and new instances reflecting those modifications. Instances are at all times linked to the

object that represents their class, which means that when the class is modified, the instances can be

retrieved and immediately updated.

3.3.4 Ruby

Ruby is a class-based, dynamically typed, interpreted scripting4 language whose syntax resembles

those of Eiffel and Ada. It is a pure object-oriented language where everything is an object and all

manipulation of objects is initiated by sending messages.

4Denoting the activity of connecting diverse pre-existing components to accomplish a new task
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As in Smalltalk a Bidirectional Connection (see definition 3.1) is supported by the live link be-

tween classes and their instances. Also similar to Smalltalk Reified Shared Parts (see definition 3.4)

are classes while Modifiable Shared Parts (see definition 3.5) are supported since the classes can

be modified dynamically and changes are reflected immediately in the instances.

Shared Synchronisation Annotations (see definition 3.3) can be stored in class variables that

start with two @ symbols.

3.3.5 Self

Self is a dynamically typed prototype-based language that resembles Smalltalk in both syntax and

semantics.

A Bidirectional Connection (see definition 3.1) is facilitated by the fact that everything really is

an object. In this way the difference between prototypes and its clones is blurred.

Objects in Self consist of slots and are created ex-nihilo by putting slot names (together with

a possible initial filler value for that slot) between vertical bars, separated by dots. The following

code, for example, creates an ex-nihilo point object:

point = (|parent* = traits clonable. x = 3. y = 4.

addPoint :point = ((clone x: x + point x) y: y + point y)|)

A slot marked with an asterisk is a parent slot and makes the child inherit all the slots of the parent

slot. In this way, point inherits (its behaviour) from the traits object clonable5. Further the

point object has two data slots containing an x and a y coordinate. The remaining method slot

contains a method for adding two points, by cloning point and initialize it with the added x and

y coordinates.

Furthermore Self offers facilities to declare the visibility of a slot: it can be marked as undeclared

(by default), public or private. However, these annotations have a merely lexical purpose for

the developer since it still is possible to access private slots from outside the object in question. This

implies that Self supports no real encapsulation of attributes.

Self comes with an extended visual programming environment. The Self user interface is built

with the Morphic framework [72] and applies a Model-View-Controller architecture [47]: a real Self

object (the model) can be viewed with a graphical representation called an outliner (the view) and

be manipulated via the appropriate menus on this outliner (the controller).

5Most concrete not-unique objects in the SELF world are descendants of the top-level traits object traits clonable.
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A Synchronisation Trigger Mechanism (see definition 3.2) is achieved by overwriting the be-

haviour that detects changes or is responsible for Synchronisation between the Model en the View

part of the Self user interface.

The Bidirectional Connection (see definition 3.1) also depends on this user interface as it facil-

itates the synchronisation between an implementation view and an abstract data view.

Shared Synchronisation Annotations (see definition 3.3) can be stored in variables of traits

objects.

Since Self has garbage collection Deletion Propagation (see definition 3.10) is achieved by re-

moving all references to the object. When the clones in the data modelling view are explicitly

deleted, this causes recursively the explicit deletion of all dependent clones.

3.4 Language Requirements Related to Reflection

3.4.1 C++

It is possible to declare a pointer to any member function but this is the only “reflective” property

of the language. This implies that the language characteristics that were dependent of the reflective

abilities of a language are hardly or not available in C++.

For example there exists no Iteration Mechanism for References (see definition 3.7) since there

are no provisions for iterating over the field members of an object. Also an Observation Mecha-

nism (see definition 3.6) is absent as it is not possible to monitor state changes performed on an

object. Neither it is possible to monitor object creations the way it is defined in the Object Cre-

ation Observation Mechanism6 (see definition 3.9). Similarly State and Behaviour Addition and

Removal Primitives (see definition 3.12) are not present in C++.

Without extensive transformations of the source code, dependency checking and multiplicity

checking characteristics cannot be achieved at all. This eliminates language characteristics such

as A Reference Control Mechanism (see definition 3.8) and Deletion Propagation (see defini-

tion 3.10).

3.4.2 Java

Java has a number of introspection primitives that outperform the ones of C++ considerably.

Interception of object creation in an Object Creation Observation Mechanism (see definition 3.9)

and assignments in an Observation Mechanism (see definition 3.6) are not supported and as such
6Unless a rigourous discipline is applied involving operator and constructor overloading.
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the dynamic model checking possibilities in Java are the same as the ones for C++.

The problems of C++ concerning the incorporation of multiplicity and dependency checking

facilities, described in A Reference Control Mechanism (see definition 3.8) and Deletion Propaga-

tion (see definition 3.10), remain in Java.

Without extensive code transformations, these characteristics are hard to implement. One pos-

sibility is to use Java’s class loader machinery which allows one to change the behaviour of a Java

program by changing its byte codes before they are executed by the virtual machine. Again, study-

ing the impact of these ideas on Round-Trip Engineering is beyond the scope of this dissertation.

3.4.3 Smalltalk

Smalltalk provides advanced meta-programming capabilities, which are defined as methods on the

root class Object. As a result, these methods can be called on any Smalltalk object. Examples of

such methods are perform: and its variants for sending a message to a receiver, instVarAt:

for accessing an instance variable of an object and instVarAt:put: for assigning a value to an

instance variable.

However, whereas these methods can be used, they cannot be adapted by means of overriding,

since calls to such methods are converted to calls to primitives when code is compiled to byte

codes. As such, it is not possible to add observation of state changes induced by assignments in the

standard Smalltalk language or development environment. This means that there is no full support

for an Observation Mechanism (see definition 3.6).

Moreover, Smalltalk supports An Iteration Mechanism for References (see definition 3.7) by

means of the aforementioned meta-programming capabilities, in particular allnstVarNames and

instVarAt:.

A Reference Control Mechanism (see definition 3.8) can retrieve all the objects that refer to a

certain object via the allOwners method.

This feature in combination with the previous one allows for iteration over all the referring

objects of a certain object, to iterate over all their instance variable values and setting the ones

referring to the first object to nil.

An Object Creation Observation Mechanism (see definition 3.9) is not supported in standard

Smalltalk.

Deletion Propagation (see definition 3.10) can be ensured by deleting all references to objects

that need to be deleted.
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Finally State and Behaviour Addition and Removal Primitives (see definition 3.12) are avail-

able in the methods addInstVarName: and removeInstVarName: defined in Class, respec-

tively.

3.4.4 Ruby

Ruby enables reflection. The use of the term “metaclass” is a controversial issue in Ruby. The

class Class is the class of all classes, but it is not agreed on as a metaclass. However, every object

(including classes) can have a hidden meta-object, which is only revealed via the “<<” singleton

class notation, for example class << Point. This meta-object is – correctly or not – often refered

to as the metaclass. As in Smalltalk the class Object is the root of the class hierarchy.

Ruby supports a powerful observation mechanism. Ruby enables the detection of specific Ruby

events based on hooks, i.e. a technique that enables to “trap” these events. The simplest hook

technique in Ruby is to intercept calls to methods in system classes. More advanced hooks support

an Object Creation Observation Mechanism (see definition 3.9).

This allows for example to wrap the new instance, add or remove methods, and add them to

containers to implement persistence. Ruby enables warning of the events via a callback method.

There are callback methods for adding an instance method or a singleton method, subclassing a

class and mixing in a module.

Ruby blurs the distinction between design and implementation by its support for design-level

strategies. The Visitor pattern is a way of traversing a collection without having to know the inter-

nal organization of that collection. The Delegation pattern implements a way of composing classes

more flexibly and dynamically than can be done using standard class-based inheritance. The Sin-

gleton pattern is a way of ensuring that only one instantiation of a particular class exists at a time.

Finally, the Observer pattern implements a protocol allowing one object to notify a set of interested

objects when certain changes have occurred. Normally, all four of these strategies require explicit

code each time they’re implemented. With Ruby, they can be abstracted into a library and reused

transparently.

There exists exclusively single inheritance in Ruby. To extend objects with multiple other objects

Ruby provides mixin modules. Mixin inheritance is based on the idea that instead of inheriting from

an existing super class a mixin class is created to hold the specialised behaviour. Mixin classes are

abstract classes. When a Ruby class includes (“mixes in”) such a module, that module’s methods

become available as methods of the class as if it was a superclass.
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Therefore an Observation Mechanism for State Changes (see definition 3.6) is supported via

the Observer pattern, a simple mechanism for one object to inform a set of interested third-party

objects when its state changes. In the Ruby implementation, the notifying class mixes in the

Observable module, which provides the methods for managing the associated observer objects.

Run-time objects can be added or removed as an observer on other objects at run-time. It is possible,

after a state change, to invoke an update method in each currently associated observer.

Ruby also supports an Iteration Mechanism for References (see definition 3.7). Each run-

time object can be represented as an array with to a. It is then possible to iterate over this array

Ruby’s Reference Control Mechanism (see definition 3.8) uses the previous characteristic on the

ObjectSpace module that allows to iterate over all run-time objects. It then consults the type of

these elements via class or instanceOf?.

Furthermore State and Behaviour Addition and Removal Primitives (see definition 3.12) are

available in instance variable set(@<name>,<contents>). In order to delete instance vari-

ables from an object remove instance variable(<name>) is used.

3.4.5 Self

Self has a powerfull mechanism for reflection based on mirrors [18]. These objects ensure that the

base-level functionality and the meta-level functionality are implemented separately as opposed

to languages such as Smalltalk where classes function both as base-level objects e.g. to create new

instances and as meta-level objects. Such an approach complicates removing the reflection from

applications so it is no longer accessible to programmers. Mirrors have several advantages [18]:

• The ability to write meta-programming applications that are independent of a specific meta-

programming implementation such as reflection.

• The ability to obtain meta-data from systems executing on platforms that do not themselves

include a full reflective implementation.

• The ability to dynamically add/remove reflection support to/from a running computation.

• The ability to deploy non-reflective applications written in reflective languages on platforms

without a reflective implementation for example to save communication time.

The fact that some functionality such as printing does not clearly fall into the base or the meta-level

is a disadvantage of using mirrors.

77



CHAPTER 3. LANGUAGE REQUIREMENTS FOR ADVANCED ROUND-TRIP ENGINEERING
IMPLEMENTATIONS

Each Self object returns its mirror by sending it the asMirror message or the Mirror prim-

itive. Alternatively the object can be called as argument of the reflect: method. The resulting

mirror then is manipulated to change the original object (reachable as reflectee) at the meta-

level. The behaviour of Self mirrors is contained in the traits mirrors abstractMirror

object. This extended traits object includes mainly categories for introspection, for example to

examine the annotations of an object or to iterate over its parents, and for self-modification (includ-

ing dynamically generated code execution), for example to change objects by adding, removing or

changing the contents of slots. For more details on mirrors we refer to [18].

An Observation Mechanism for State Changes (see definition 3.6) in self deals with three types

of state changes. Self objects can be manipulated 1) via their outliner using the appropriate menu

(controller), directly (editing slots and pointer dragging-and-dropping) or by evaluating messages

in their context and 2) directly by assignments or meta-programming. We observe the state changes

resulting from such manipulations in several ways. Change observation for outliners comes with

Self’s user interface based on the MVC architecture. In order to immediately update the outliners

(views) when necessarry, the Self system constantly checks the real, represented objects (model) for

changes. Change observation in the case of meta-programming can be realized in the behaviour of

meta-objects (mirrors): e.g. in the method at:PutContents and addSlots:.

For assignments the situation is more complicated. In Self for each assignable data slot in an

object a corresponding assignment slot is added transparently. This assignment slot contains the

assignment primitive for which the compiler generates the appropriate code. This implies that it is

– to the best of our knowledge – not possible to intercept assignments by changing the assignment

slot directly via meta-programming. SelfSync circumvents this via assignment shadowing. Between

the object containing the assignment and all its referring objects an object is dynamically mixed

in that contains a shadowing method that overrides the assignment. In the shadowing method a

resend (super) is called with the original assignment, after the actions to be associated with the

observation of the assignment have been undertaken.

Grabbing all referencing objects is implemented with referencesOf: defined on browse7

which can serve as a Reference Control Mechanism (see definition 3.8). Mixing in an object is real-

ized by destructively replacing all real references8 (reachable via at: defined on mirrors.) of the ob-

ject containing the assignment by the object that shadows the assignment with at:PutContents:.

7An object allowing to browse the entire system based on different criteria.
8A number of referencers are fake slots (checked with the predicate isFake).
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In Self an Iteration Mechanism for References (see definition 3.7) when the receiver of the

message do:[block] is a mirror object, [block] iterates over the slots of the original object the mirror

reflects. When slot references between clones are established, we can verify whether there are no

more references to objects of a specific type (i.e. the prototype from which it was cloned) than the

allowed multiplicity.

The prototype an object was cloned from can be found by sending the message creatorSlot-

Hint. Although one of the fundamental ideas of PBLs is shallow copying, this operation is used

e.g. for naming object outliners (a vector, a list, ...). As such, Self allows for a kind of dynamic type

checking on clones.

Self allows us to implement an Object Creation Observation Mechanism (see definition 3.9)

by overwriting the cloning methods of an object to ensure that in case of a dependent clone there is

at least one reference to a clone it can depend on.

Based on the slot iteration described above Role Combination Enforcement can be realised. If

the prototype of an object in a certain slot (of an object playing roles) is contained in one of the illegal

combination sets of the role combination information, all other slots’ content will be compared to

the other role prototypes in the set.

State and Behaviour Addition and Removal Primitives (see definition 3.12) are in Self the

meta-constructions at:PutContents: and removeSlot: that are used to respectively add and

remove data or parent slots.

3.5 Language Requirements Related to Prototypes

3.5.1 C++

Finally State and Behaviour Separation (see definition 3.11) is not included in C++ as the de-

scription of state and behaviour is gathered in classes. Shared Synchronisation Annotations (see

definition 3.3) can be stored in static variables.

3.5.2 Java

Code and data cannot be separated in the structure of the code as implemented in a State and

Behaviour Separation (see definition 3.11).

A small help however is that Java allows one to separate the description of behaviour in in-

terfaces from the actual realization of that behaviour in classes. Nevertheless, behaviour and data

still reside together in classes such that the mass of pointers and manual delegation code explained
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above are also necessary in Java. Hence, interfaces only make the static typing aspects of role mod-

elling slightly easier. The implementation however remains as hard as in C++ as described in [38].

3.5.3 Smalltalk

Although there is no support for State and Behaviour Separation (see definition 3.11) role mod-

elling can be simulated in Smalltalk in a cumbersome and ad-hoc way.

However, in a static data modelling view all possible roles and allowed combinations thereof

are modelled, but individual run-time objects can each play different actual roles. Therefore, it is

not sufficient to extend a class with the instance variables belonging to a role, since this results in all

instances of the class playing that role. Instead, one can remedy this by creating a new class based

on the old class of an object and the roles that object has to play, and making the object an instance

of this class by means of the method become:.

However, this method is defined on objects, hence one has to create an instance of the merged

class, copy the values of the instance variables of the first object to the new one, and then change

the class. Moreover, such a class has to be generated for each combination of roles that objects of a

class can have.

This highly complex procedure becomes even worse if particular roles are removed from an

object: one has to be able to select the correct generated class that results from removing these

roles, and let this object become an instance of this class in a similar way as described above.

3.5.4 Ruby

Ruby is class-based but supports singleton characteristics that simulate a prototype-based pro-

gramming style. To extend the functionality of a class for just one object Ruby applies the concept

of a singleton class (notation: “class << obj”), i.e. an anonymous class that is created by subclassing

the class to be extended.

It is also possible to assign to one method different visibilities in different subclasses. If a sub-

class changes the visibility of a method in a parent, Ruby effectively inserts a hidden proxy method

in the subclass that invokes the original method using super. It then accordingly sets the visibility

of the proxy.

Instances can be changed dynamically via instance methods associated with one specific object.

These singleton methods reside in the object’s hidden meta-clas. The use of such singleton methods

implies that instances of the same class can behave differently. Next these changed objects can
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be copied using the dup or the clone method resulting in a new generation of objects without

the need for a new class. While clone is used to duplicate an object, including its internal state

(including references), dup uses the class of the object to create the new instance.

A State and Behaviour Separation (see definition 3.11) in Ruby could be based on singleton

methods. The methods of a role class can be added as singleton methods in a run-time object that

starts performing a role. Similarly they can be removed when the run-time objects stops playing

the role. In this way State and Behaviour Addition and Removal Primitives (see definition 3.12)

are provided.

Alternatively delegation is considered extending an object with the capabilities of another at

run-time. This allows writing decoupled code, as there are no compile-time dependencies between

the users of the overall class and the delegates.

The Ruby Delegator class implements a simple but powerful delegation scheme, where re-

quests are automatically forwarded from a master class to delegates or their ancestors, and where

the delegate can be changed at run-time with a single method call. Using its subclass SimpleDele-

gator results in an object that both has its own behaviour and delegates to different objects during

its lifetime. This is an example of the State pattern, as Fowler states in [38] one of the most elegant

ways to implement roles in a class-based language.

3.5.5 Self

Traits can be considered Reified Shared Parts (see definition 3.4), as they group behaviour (i.e.

methods) for all objects cloned from a certain prototype in Self. Traits are persistently stored in a

namespace and thus survive different system runs. Traits are Modifiable Shared Parts (see defini-

tion 3.5) since dynamically changing a method slot in a traits object affects all objects that share this

parent. This is achieved with at:PutContents: to destructively change (method) slots and with

parseObjectBody to parse a string into a method body. Deleting a method slot is done similarly

with removeSlot:selector.

Intermezzo on Multiple Inheritance in Self Self allows multiple inheritance. When implement-

ing a conceptual data type in Self, the state (specific for each “instance” of this type) is contained

in a prototype while the behaviour (shared by all objects of this data type) is typically gathered in

a traits object. All prototypes inherit their behaviour from their own, shared traits object, which in

its turn often inherits from traits clonable:
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point = (|parent* = traits point. x . y.|)

traits point =(|parent* = traits clonable.

addPoint :point = ((clone x: x + point x)

y: y + point y)|)

To obtain a new point, we clone the point prototype and set the x and y coordinates.

(point copy x: 1) y: 2.

(point copy x: 3) y: 4.

Both points now share the traits point object since they both contain a copy of the parent*

pointer of the prototypical point, i.e. the most common form of parent sharing.

In order to implement for example a coloured point, the state and the behaviour are to be in-

herited from a normal point. Therefore, a prototypical coloured point is created that inherits

its behaviour from a corresponding traits coloured point object. Naturally, the traits

coloured point inherits behaviour from the traits point, since the behaviour of a coloured

point will be a specialisation of a normal point’s behaviour.

On the other hand, the coloured point prototype can inherit the coordinates of the normal

point, and extend them with an extra slot to contain the colour, see figure 3.1. However using

Figure 3.1: coloured point inherits state and behaviour from point

parent pointer inhertance between prototypes is not feasible. Remark that the multiple inheri-

tance structure in figure 3.1 is a diamond. In this context, the common parent traits point is

shared by all descendants. Imagine a method m in traits point that is overridden in traits

coloured point. When we now send the message m to a coloured point we get a name col-

lision: the method lookup algorithm finds a method slot9 m in traits coloured point (over-

riding method) but also in traits point (original method) via the state inheritance link with

point. In this case, it should be decided which method should be invoked in which context.

9Both methods and variables are contained in slots, therefore this discussion holds for all attributes
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The early version of Self solved this ambiguity with language mechanisms such as prioritized

parents or the tie-breaker sender path rule, which proved to be rather unsatisfying. In the current

version of Self ambiguous methods are to be resolved manually by adding a directed resend in

coloured Point. Calling m = (traits colouredPoint.m) would invoke the overridden

method while m = (traits point.m) would return the original method. But then we violate

the principle of traits-based inheritance, since we add shared behaviour in a prototype in stead of

into the corresponding traits object.

A more acceptable solution is to perform a copy-down of the point prototype: this concatena-

tion mechanism for state inheritance copies (some of) the slots of the receiver into a new object, en-

suring that changes (adding/removing slots) to the receiver are propagated to all copied-down chil-

dren. Next, we override the parent* pointer with the traits colouredPoint object. In this

way, colouredPoint inherits all the slots of point except for its parent: this implies that there are

no name collision when traits coloured point override methods of traits point In fact,

copy-down allows a kind of class-based programming: copy-down can be considered as creating

a subclass. The code for a coloured point thus looks like:

traits colouredPoint =(|parent* = traits point.

print = (...)

colouredPoint = (point createSubclass)

_AddSlots: (|parent* = traits colouredPoint.

colour<-’none’|)

A State and Behaviour Separation (see definition 3.11) is realized by the distinction described

above between prototypes and traits. The data slots corresponding to the roles an object plays

can be dynamically copied or removed into and from the object itself. In order to get the desired

behaviour, the traits containing the additional behaviour of the role is mixed in between the object

and the traits it is currently referring to. When the role is removed, the traits is set back to the

original traits and the slots that were added to the object are removed from it. This requires dynamic

behaviour modification (in order to switch to the behaviour of the role) and dynamic data additions

and removals from objects that do not change the identity of the object.

83



CHAPTER 3. LANGUAGE REQUIREMENTS FOR ADVANCED ROUND-TRIP ENGINEERING
IMPLEMENTATIONS

3.6 Conclusion

Table 3.2 summarizes the presence of the discussed language characteristics in C++, Java, Smalltalk,

Ruby and Self.

C++ Java Smalltalk Ruby Self
Bidirectional Connection φ φ

√ √ √

Shared Synchronisation Annotation φ φ
√ √ √

Synchronisation Trigger Mechanisms φ φ
√ √ √

Deletion Propagation φ φ
√ √ √

Observation Mechanism for State Changes φ φ φ
√ √

An Iteration Mechanism for References φ
√ √ √ √

A Reference Control Mechanism φ φ
√ √ √

An Object Creation Observation Mechanism φ φ φ
√ √

Reified Shared Parts φ φ
√ √ √

Modifiable Shared Parts φ φ partially
√ √

State and Behaviour Addition and Removal Primitives φ φ partially
√ √

Separation of State and Behaviour φ φ
√

φ
√

Table 3.2: Advanced RTE language characteristics in C++, Java, Smalltalk, Ruby and Self.

We illustrated using the languages C++, Java, Smalltalk, Ruby and Self that the three language

characteristics dynamic typing, reflection and prototypes can be considerd as indicators for the

presence of the language characteristics demanded by ARTE.

Statically typed class-based languages such as C++ and Java in general lack a live connection

between classes and instances and also reflective power. Due to the dynamic character of Smalltalk

and its meta-programming capabilities it is in theory possible to simulate the role modelling fea-

tures of ARTE, but it introduces an enormous management overhead. In essence, this management

concerns generation of new classes and making existing objects instances of these classes and back,

which are basically complex and error-prone manoeuvres for avoiding classes in Smalltalk.

Ruby takes this one step further with singleton methods and singleton classes that can function

as prototypes. However Ruby still lacks straightforward characteristics to implement role mod-

elling with the Warped Inheritance Hierarchies we introduce in chapter 4.

Finally, it is Self that combines the high flexibility of “everything is an object” with the efficiency

of traits objects and implements in this way all language characteristics that are required by ARTE.
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Chapter4
A New Practice for Advanced

Round-Trip Engineering

In this chapter we introduce a new practice for Advanced Round-Trip Engineering (ARTE) that can

be applied in Agile Model-Driven Development (MDD). In order to do so, we instantiate a con-

crete ARTE approach called myARTE that considers three views on a system under development.

myARTE uses different representation for the different views: the analysis view is represented in

the Extended Entity-Relation format while both implementation and run-time view are represented

in Self1 (see section 4.1).

The transformations in myARTE are based on a set of default mappings between the elements

of the EER view, the Self implementation view and the run-time population view. In section 4.3 we

provide mappings between the modelling elements of the EER view and the Self implementation

objects represented in the implementation view. We elaborate on the specific mapping from roles

in the EER view to a setup of implementation objects in the implementation view, that is based on

reversed inheritance hierarchies (see section 4.4).

The population view and the implementation view include both Self objects and thus share the

same internal and graphical representation. The mappings from the implementation view to the

run-time view are explained in section 4.5. Finally, as one of the contributions of our approach we

let the EER view influence run-time population objects. The mappings between the EER view and

the population view are summarised in section 4.6.

From a methodologic view point, myARTE consists of two phases: Active Modelling and Inter-

1In Appendix B we provide a glossary for the concepts in both views, that are specific for Self and for prototype-based
languages. We informally describe the elements of the different views and provide a formal definition of implementation
objects and run-time objects in section 4.2.
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active Prototyping, that together form an Agile Development cycle (see section 4.7). Based on the

default mappings between the views, we systematically construct usage scenarios for myARTE, in

order to illustrate the synchronisation process (see section 4.8). The conclusions for this chapter can

be found in section 4.9.

4.1 Representation of the Different Views

In this section we describe the different notations and implementation languages that are selected

for representing the different views in myARTE and how these representations can be combined.

4.1.1 An EER Notation for the Analysis View

For the static data models in the myARTE analysis view we employ the Extended Entity-Relationship

model that was described in section 2.7 together with the notation introduced in section 2.7.1. We

implemented our EER modelling language in a graphical drawing editor with the help of the Mor-

phic framework [72]. The supported modelling constructs in EER diagrams thus are

• Entities

– Strong entities

– Weak entities

• Attributes

– Primary attributes

– Simple attributes

– Derived attributes

• Relationships

– One-to-one relationships

– One-to-many relationships

– Many-to-many relationships

• Specialisations

• Categorisations
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• Aggregations

Furthermore, we extend this EER model with a new modelling construct. Role Modelling2 rep-

resents that an entity can (temporarily) perform the role of other entities at run-time, as illustrated

in figure 4.1. We explained our viewpoint on roles as instances to be adjoined to the objects that

play them, and the semantics of the role modelling concept in myARTE, in section 2.5.1. The impli-

cations of this role modelling concept in the implementation and the population view are explained

in section 4.4.

Figure 4.1: Roles of entities.

Figure 4.2: A menu to manipulate entities.

On each entity in the drawing editor a menu can be called to manipulate the entity, as illustrated

in figure 4.2. The entity can also be manipulated directly by clicking and editing its name or the

names of its attributes.

2Not to be mistaken with the roles entities play in relationships.
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An Example

In Figure 4.3 an EER diagram of a modest banking system is shown. We elaborate the customer

Figure 4.3: An EER diagram for a modest banking system.

entity. A Customer has a primary attribute customerID and simple attributes name, street

and city. Customer is in a many-to-many relation with Loan (role borrows) and with Account

(role accounts), and in a many-to-one relation with Employee (role banker). Payment is a weak

entity that is dependent of Loan. An Account can be specialized into a either SavingsAccount

or a CheckingsAccount.

The basic elements of the data modelling view are represented with the EER notation described

above. In the next section we introduce the concrete implementation and population views of

myARTE.

4.1.2 The Implementation and Population Views in Self

To represent the code-time implementation view and the run-time population view, we selected

the prototype-based language Self. The different views are shown in figure 4.4. In chapter 3 we

elaborated how the basic language constructs of Self can be combined for implementing language

mechanisms that are required for supporting myARTE. In the remainder of this chapter we often

use a specific terminology that refers to these basic concepts in Self or to concepts of prototype-

based languages in general. For the convenience of the reader, a glossary of the most frequently
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(1) Self Implementation View(2) Analysis View in  EER
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Figure 4.4: The EER view (2), a Self implementation view (1) and a Self run-time population view
(3) in myARTE. The bold black arrows denote the direction of the mappings between the different
views.

used terms can be found in Appendix B.

The elements of the implementation view and of the population view are both viewed via the

user interface of the visual Self programming environment. This user interface is built with the

Morphic framework [72] and applies a Model-View-Controller architecture [47]. This means that

a real Self object can be viewed with a graphical representation called an outliner. An example

outliner is illustrated in figure 4.5.

Self outliners are grey boxes consisting of multiple slots that can be copied and plugged in an

outliner, or anywhere in the Self world. The slots include a slot name on the left side and the name

of its contents on the right. The outer right symbol denotes the kind of slot: a semi-colon (:) and

an equalty sign (=) denote, respectively, an assignable data slot and a constant data slot. Slots labeled
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Figure 4.5: A Self outliner is a view on an underlying Self object.

with a rectangular symbol (!) are method slots.

Clicking on a data slot symbol in an outliner results in a new outliner on the contained object

being opened and connected to the original outliner. Clicking a method slot symbol opens the

body of the method to be edited. Slots are ordered alphabetically in an outliner and parent slots are

sorted before plain slots. Slots can be gathered into categories that can be opened or closed to show

or hide the contained slots. Finally a slot can be assigned to a specific module.

4.1.3 High-Level Architecture of a myARTE Tool for EER and Self

The high-level architecture for a myARTE tool that combines an EER view and a Self implementa-

tion and population view, consists of:

• A graphical drawing editor for EER diagrams, that supports the EER notation described in

section 4.1.1.

• The Self environment it is built on top of.

Since the EER drawing editor is also developed with the help of the Morphic framework3, the

corresponding graphical entities can be considered a second view on Self objects. A Self object

is viewed once by the original Self outliner we described in the previous section, and once by a

graphical entity. This is illustrated in figure 4.6.

4.2 The Elements of the Different Views

Before we can describe mappings between the different views we need to define the elements or the

nodes of the different views. First we informally describe the elements in the different views. Next,

in order to be able to formally define implementation objects and run-time objects we define the
3This new combined EER notation was in fact merely a consequence of our choice of development platform Self, and

more precisely of its user interface.
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Figure 4.6: Self Outliners: (a) Real Self objects are viewed with a graphical outliner. (b) The EER
outliners described in section 4.1.2 function as a second view on the same objects.

domain of Self objects, the message sending semantics in Self, and the extension relation in Self.

Finally we formally define implementation objects and run-time objects.

4.2.1 Informal Description of the Elements

The first elements we consider are the elements in the data modelling view or analysis view. An

Entity represents an object in the data modelling view with the EER notation introduced in sec-

tion 4.1.1. Alternatively, in the remainder of this dissertation an entity can be called “entity view”

or “entity outliner”.

Second, we consider the elements in the implementation view. An Implementation Object in the

implementation view is a prototype-traits pair that corresponds to a certain entity in the EER view. A

prototype inherits from a traits object that gathers the behaviour to be shared by all objects that are

created from this prototype. An implementation object is said to inherit from another when their

prototypes are in a state inheritance relation and their traits objects are in a behaviour inheritance rela-

tion. One corresponding entity is then said to be a specialisation of the other one. State inheritance

is realised via an extension mechanism, also referred to as concatenation. In Self this mechanism is

also called copy-down. Behaviour inheritance in Self is implemented via delegation in the form of

parent slots or parent pointers.

Third, we consider the elements of the run-time view. A Run-time Object is a clone of the proto-

type part of an implementation object. We say a run-time object is derived from an implementation
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object. Run-time objects are also referred to as population objects. Two run-time objects are said to

be of the same type if they are both derived from the same implementation object.

An example of an implementation object and a derived run-time object can be found in fig-

ure 4.7. The implementation object has a prototype that includes two slots x and y. The parent slot

x references the traits object that contains two method slots add() and print. The run-time object

has a prototype extends the prototype of the implementation object: it contains three slots: x, y and

z. The run-time object also inherits from the traits object and has an additional parent object with

method slots draw() and colour().

prototype traits object

implementation object

prototype

run-time object

x

y

z

x

y

add()

print()

extension delegation

colour()

draw()

delegation

Figure 4.7: Example of an implementation object and a derived run-time object. An implementa-
tion object has exact one parent: its traits object. Both the run-time object and the implementation
object share the same traits object via delegation. The run-time object inherits the state of the im-
plementation object’s prototype and extends it with a slot x. The run-time object in this example
has a second parent.

Formally defining the entities in the analysis view is out of the scope of this dissertation. We

focus on the definitions of the Self implementation objects and run-time objects. In order to be able

to formally define implementation objects and run-time objects in Self and the inheritance relations

between them, we first define the domain of Self objects that are considered in myARTE. Next, we

define the semantics of Self’s delegation message sending mechanism that is used in the context of

behaviour inheritance. Finally, we define the semantics of the extension relation that is used for state

inheritance in Self.
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4.2.2 The Domain of Self Objects

The Self objects in myARTE consist of a prototype, a traits object and possibly more parent objects. As

mentioned before, the prototype part of an object is intended to include the state that is specific for

the object, while the traits gather behaviour that is shared via delegation inheritance by this object

and all objects that are similar to the object. In order to express the nuance between prototypes and

traits we consider a Self object as a combination of a slot list and a parent list4. The parent list allows

to express the notion of multiple inheritance while the list of slots represents the prototype. In the

example that is illustrated in figure 4.7, the run-time object’s slot list contains the x, y and z slots

and its parent list contains two elements: the traits object with the method slots add() and print,

and the other parent object with the method slots draw() and colour().

A slot is considered as a pair of an identifier and an associated value, e.g. (a, 3) or (double, (| :

x| x∗2)). The domain of slot lists Slotlist contains all unique, possible combinations of pairs where

the first element is an element of the domain of all identifiers Identifier and the second element is

an element of the domain of all values Attribute. An attribute can be either a value attribute or a

method attribute.

Slotlist = (Identifier ×Attribute)∗ (4.1)

Some of these slots that are contained in Self object are parent slots that reference parent objects. These

parent objects are in their turn slot lists. For formal convenience, we consider Self objects as a pair

of a slot list in which we remove the parent slots, and a set of the parent objects that are referenced

by the removed parent slots.

Therefore we define Self objects as a pair of a slot list and a list of parent objects. The domain of

Self objects Object includes all the pairs where the first element is a slot list and the second one an

element of the power set of Self objects:

Object = Slotlist× P(Object) (4.2)

In order to provide a deeper insight in the (multiple) inheritance mechanism of Self we elaborate

on message sending and the semantics of method lookup.

4.2.3 Message Sending Semantics in Self

When sending a message m to a Self object O, the message is first looked up in O. More precisely

a slot (m,x) is searched for in the slot list of O. If it is found there, the corresponding method x

4In Self, parents are also represented with slots whose name starts with an asterisk. Therefore, formally it makes sense
to make a difference between “slot” and “parent”.
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is executed. If it is not found in the prototype part, the message is delegated to the parents of the

receiver. More precisely, method lookup is recursively propagated to all the parents of the object O

until the message is found or the root of the inheritance hierarchy is reached. In this last case the

message m is not understood by O. The semantics of the method lookup function in Self can be

specified as follows:

implements : (Identifier ×Object) → {false, true} (4.3)

implements(m, (sl, P )) =






true if m ∈ sl
true if ∃pi ∈ P : implements(m, pi)
false else

(4.4)

Since Self supports multiple inheritance, it can occur that multiple parents of an object both include

a method slot for the same message but with different behaviour. If two or more parents include

different slots named m, the result of sending this ambiguous message is undefined.

Let O = (sl, (O1, O2, ..., On)), sl ∈ Slotlist, Oi ∈ Object. The semantics of message sending can

be formalised as follows:

send : (Objects× Identifiers×Objects∗) (4.5)

send(O, m,Arg∗) =






a(Arg∗) if (m,a) ∈ sl
undefined if ∃i (= j : implements(m,Oi) and implements(m,Oj),
send(Oi,m, Arg∗) if ∃!i : implements(m,Oi)
false else

(4.6)

Notice that these definitions get slightly more complex when the late binding of the self variable

is taken into account. This is however not necessary in the context of our work. For more details

on this matter we refer to [103].

4.2.4 Extension of Self Objects

A run-time object is a clone, i.e. a shallow copy of an implementation object. In section 4.2.5 we

provide a more restricted definition of both run-time and implementation objects but for now we

consider the slots of the run-time object to be a copy of the slots of the implementation object, that

can be extended with new slots. The extension relation between a run-time object and an implemen-

tation object can be considered as a kind of inheritance [106]. We refer to this kind of inheritance

as state inheritance. Inheritance in general can be formulated in terms of record concatenation [28]. In

that context a record corresponds to our concept of slot list.
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We use the binary record concatenation operator +c [28], [106], [17] for combining two slot lists

into a new slot list. The function c is a conflict resolution function that specifies how two conflicting

slots have to be combined. Two slots are conflicting if they contain the same identifier.

Definition 4.1 Conflicting Slots

Given s1 = (i1, a1), s2 = (i2, a2) ∈ Slotlist. Then s1 and s2 are conflicting slots

s1!s2 ⇔ i1 = i2 (4.7)

Examples of conflict resolution functions are left-preferential slot combination +L and right-

preferential slot combination +R. These operators respectively store the conflicting slots of the first

slot list argument or of the second slot list argument in the resulting combined slot list. In Self, the

meta-operation AddSlots: is a right-preferential operator for combining two lists of slots while

AddSlotsIfAbsent: is a left-preferential operator for combining two lists of slots. For more

details on conflict resolution functions we refer to [28].

The extension relation in Self between a run-time object and an implementation object can be

formalized as follows:

+c : (Slotlist× Slotlist) → Slotlist (4.8)

c : ((Identifier ×Attribute)× (Identifier ×Attribute)) → (Identifier ×Attribute) (4.9)

Given a slot list sl = {(ij , aj)|j ∈ {1, n}} then

sl +c φ = sl1 (4.10)

sl +c (i, a) =






(i1, a1), (i2, a2), ..., (ij−1, aj−1), c((ij , aj), (i, a)), (ij+1, aj+1), ..., (in, an))
if ∃(ij , aj) ∈ sl : (ij , aj) ! (i, a)

(i1, a1), (i2, a2), ..., (in, an), (i, a)
else

(4.11)

sl +c ((i, a), sl′) = (sl +c (i, a)) +c sl′. (4.12)

We are now able to define implementation objects and run-time objects.
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4.2.5 Definition of Implementation Object and Run-time Object

In myARTE an implementation object corresponds to a prototype-traits pair. Such an implementa-

tion object does not have multiple parents but inherits all behaviour via its own traits object. Based

on the previous definitions, we can define an implementation object as follows:

Definition 4.2 Implementation Object

An implementation object O is a pair of a slot list and a parent list that contains one element:

O = (sl, P ) with sl ∈ Slotlist, P ∈ P(Object) : |P | = 1 (4.13)

The sole element of P = {p} is referred to as the traits of the implementation object.

A run-time object is a clone of the prototype part of an implementation object. A run-time object

cán extend its prototype part with additional slots. At all times a run-time object has to inherit

from the traits part of the implementation object it is derived from. However, the run-time object

cán inherit from more parents. Based on the previous definitions, a run-time object can be defined

as follows:

Definition 4.3 Run-time Object

A run-time object R derived from an implementation object O = (sl, {p}) is defined as

O " R = (clone(sl) +c sl′, {p} ∪ P ) (4.14)

with sl′ ∈ Slotlist, P ∈ P(Object) and c a conflict resolution function.

4.3 Mappings Between the EER View and the Implementation
View

Partially due to the visual programming environment of Self there exists in general a reasonably

straightforward mapping between the concepts of the data modelling view and those of the code-

time implementation view in myARTE. Although this is not a one-to-one mapping, we define a

set of default mappings (sometimes optimisations are mentioned) between the modelling elements

of the EER view and the Self implementation objects that are represented in the implementation

view. The default mappings are illustrated in figure 4.4 by the bidirectional, bold arrows and are

presented in table 4.1.
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In this section we concisely describe the mappings between the EER view and the implemen-

tation view. In the next section we elaborate the mapping between roles in the EER view and a

corresponding setup in the implementation view. We summarize the mappings as follows:

EER View Self Code-Time Implementation View
Entity Prototype and traits object

Attribute (all) Assignable data slot in prototype
Specialisation Extension between prototypes

+ Delegation between parent objects
Relationship Bidirectional slot reference between prototypes
Dependency Creation dependency reference

+ Deletion propagation at run-time
Categorisation Extension between prototypes

+ Delegation between parent objects
Aggregation New slot reference in aggregate

to new object containing aggregates
Roles Warped Inheritance Hierarchies

Table 4.1: Mappings between the EER data modelling view and the Self implementation view.
When changes such as creation, deletion, and changes of contents occur at the level of the modelling
elements of the left column, these are synchronised in the corresponding implementation elements
of the right column and vice versa.

• An entity in the EER view is in fact a view on an underlying new Self object, as illustrated

in figure 4.6. In the implementation view this entity corresponds to an implementation ob-

ject (prototype-traits pair) represented by two Self outliners. When it is a weak entity, the

implementation object corresponding to the strong entity it depends on, ensures that when

population objects created from the strong entity are deleted, its dependent population ob-

jects are deleted along, as elaborated in section 2.5.3.

• An attribute in an entity in the EER view maps to an assignable data slot in the prototype part

of the corresponding implementation object in the implementation view and vice versa. The

contents of attributes are to be determined at run-time in the population objects.

• A specialisation link drawn between two entities in the EER view maps to inheritance be-

tween the two corresponding implementation objects and vice versa. As mentioned before,

inheritance between two implementation objects involves state inheritance between their pro-

totypes and a behaviour inheritance between their traits objects. This inheritance setup is

illustrated in figure 4.8.

• Relationships in the EER view between two entities do not directly affect the corresponding
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Figure 4.8: Inheritance between two Self implementation objects: extension between prototypes
and delegation between traits objects.

implementation objects. Adding a relationship between two entities in the EER view thus

results in adding private information in the corresponding implementation objects. More

precisely we map such relationships to a separate slot in both participating implementation

objects such that the slot in the one implementation object contains a reference the other im-

plementation object. The myARTE cloning process (that is responsible for creating new pop-

ulation objects, elaborated in section 4.7.2.) uses these slots to ensure that the necessary ref-

erences between derived run-time objects are installed. Therefore the population objects de-

rived from these implementation objects contain also a slot that directly or indirectly (through

a collection for example) contains zero, one or more occurrences (dependent on the multiplici-

ties) of run-time objects of the other type and vice versa. This is a rather naive implementation

for associations that can easily be optimized through analysis patterns [84].

In the other direction adding a slot in an implementation object, that contains a reference to

another implementation object is mapped to drawing a relationship between the two corre-

sponding entities in the EER view.

• Similarly to relationships, a dependency relation between two entities in the EER view does

not directly affect the corresponding implementation objects but is mapped to private infor-

mation in the involved implementation objects. Also similarly, the myARTE cloning process

for creating new run-time objects will use this information to enforce object dependency in

the run-time objects that are derived from the corresponding dependent implementation ob-
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jects. This means that when a new dependent population object is created it has to contain

at least one reference to a population object it can depend on. In the other direction when a

population object is deleted all dependent population objects are deleted as well.

In the other direction of the mapping, adding, changing or removing the private dependency

information from an implementation object is mapped to adding, changing or removing the

dependency relation in the EER view.

• Categorisations between entities in the EER view maps to private information in the involved

implementation objects. Again the myARTE cloning process for creating new run-time ob-

jects will use this information to determine the parents of the run-time objects that are derived

from the involved implementation objects at creation time.

In the other direction, adding, changing or removing the private categorisation information

from an implementation object is mapped to adding, changing or removing the categorisation

relation in the EER view.

• Aggregation in the EER view between an aggregate entity (the whole) and its aggregated en-

tities (the parts) is mapped to private aggregate information in the aggregate implementation

object. The myARTE cloning process for creating new run-time objects will use this informa-

tion to create aggregate run-time objects that include a slot that contains a collection of the

aggregated run-time objects.

In the other direction, adding, changing or removing the private aggregation information

from an implementation object is mapped to adding, changing or removing the aggregation

relation in the EER view.

• Finally, a role relation between a natural entity and a role entity in the EER view maps to a

combination of three things. First, to a slot in the corresponding natural implementation object,

that contains information on what roles the run-time objects derived from this natural im-

plementation object can play. Second, to a slot in the corresponding natural implementation

object, that contains information on which of the roles that the run-time objects derived from

this natural implementation object can play are mutually exclusive. Third, to inheritance

between the natural implementation object’s traits and a traits object that contains general

behaviour for playing roles.

The private information in the two slots is used by the myARTE cloning process for creating
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new natural run-time objects that play roles that are not mutually exclusive. During their life

time these run-time objects can start play roles or abandon roles. This behaviour is defined

in the inherited traits object that contains general behaviour for playing roles and also uses

the private information in the implementation object to enforce the constraints imposed by

mutually exclusive roles.

In the other direction, adding or removing information on a new role to the slot in an im-

plementation object, that contains information on which roles can be played by this object, is

mapped to adding or removing a new role relation to this role in the EER view. When the

traits object that contains general behaviour for playing roles is removed from a natural im-

plementation object’s inheritance hierarchy, all the role relations of the corresponding natural

entity in the EER view are removed.

In the following section we elaborate on this non-trivial mapping.

Details of a possible implementation of the above mappings can be found in chapter 5.

4.4 Mapping EER Roles to an Implementation

In this section we elaborate on how myARTE supports role modelling. We start with defining the

concept of warped inheitance hierarchies followed by definitions for the implementation objects

and run-time objects that correspond to the natural entities and role entities in the EER view. Next

we formally define the concept a one run-time object playing a role, based on warped inheitance

hierarchies. We end this section with a discussion of the context and the repercussions of this

implementation technique.

4.4.1 Definition of Warped Inheritance Hierarchies

In order to implement role modelling in myARTE we apply an implementation technique based on

warped inheritance hierarchies. Two warped inheritance hierarchies contain two run-time objects and

exhibit the opposite order. One of the warped inheritance hierarchies contains the two prototypes

of two run-time objects and the other inheritance hierarchy contains the two traits objects of the

same run-time objects. Inheritance between prototypes or state inheritance is realised via extension.

Inheritance between traits objects or behaviour inheritance is realised by adding a parent slot in the

child traits, that references the traits of the ancestor.
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In figure 4.9 (right) we present a simple case of warped inheritance hierarchies. In figure 4.9

(left) the state inheritance hierarchy between the prototypes, and the behaviour inheritance hier-

archy between the traits follow the same order. In figure 4.9 (right) the state inheritance hierarchy

between the prototypes, and the behaviour inheritance hierarchy follow the opposite order.
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Figure 4.9: (Left) Normal inheritance hierarchies. (Right) Warped inheritance hierarchies.

Based on the definitions we provided in section 4.2.5 we define warped inheritance hierarchies

as follows:

Definition 4.4 Warped Inheritance Hierarchies

Consider two run-time objects U1 and U2 such that

1) I1 = (sl1, p1) " U1 = (sl, {p1} ∪ P1) with sl = clone(sl1) +c x1

2) I2 = (sl2, p′2) " U2 = (sl′, {p2} ∪ P2) with sl′ = clone(sl2) +c x2, andp2 = (s, Pp2)

There exists warped inheritance hierarchies between U1 and U2

U1 ↓↑ U2 ⇔ ∃z : sl = clone(sl′) +c z and p1 ∈ Pp2 (4.15)

In this definition, the order of the behaviour inheritance goes from U2 to U1. This is formulated

by requiring that the traits object of the implementation object from which U1 is derived p1 is in-

cluded in the parent list of the traits object of the implementation object from which U2 is derived,

i.e. Pp2 . In the example in figure 4.9 (right) the traits object with add() and print represents {p1}

and in this case, {p1} = Pp2 .
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The order of the state inheritance goes from U1 to U2. In other words, the slot list of U1 is an

extension of the slot list of U2. This is formulated by requiring that ∃z : sl = clone(sl′) +c z. In the

example in figure 4.9 (right) the prototype with x, y and z is an extension of the prototype with x

and y. In this case the required z of the definition is the slot z.

4.4.2 Definition of Natural Objects and Role Objects

In our viewpoint on roles, that is elaborated in section 2.5.1, roles can be seen as instances that are

to be adjoined to the objects that play them. In the same section we explain the notion of natural

entities and role enties, and the corresponding natural run-time objects and run-time roles.

Consider a natural entity En and one of its role entities Er in the analysis view. As explained in

section 2.5.1 and in the mappings between the EER view and the implementation view, in myARTE

both entities correspond to a separate implementation object in the implementation view. These

corresponding implementation objects N and R are in a role relation.

Definition 4.5 Role Relation

Let map be a myARTE mapping between the analysis view and the implementation view. Two implementa-

tion objects N and R are in a role relation

Role(N,R) ⇔ ∃ natural entity En and its role entity Er : map(En) = N,map(Er) = R (4.16)

A natural implementation object is an implementation object that participates in a role relationship

and that corresponds to a natural entity.

Definition 4.6 Natural Implementation Object

Given an implementation object N = (sl, {p}) and an implementation object R such that Role(N,R), then

N is called a natural implementation object for R.

A role implementation object is an implementation object that participates in a role relationship and

that corresponds to a role entity. The behaviour of a role implementation object is considered to be

more specialised than the behaviour of the natural implementation object. For example, consider

a role relation between a person entity and a manager entity. The role implementation object that

corresponds to the manager entity is likely to contain methods that override the methods in the

natural implementation object that corresponds to the person entity. As a consequence we require
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that a role implementation object contains the traits of its natural implementation object in the

parent list of its own traits. In the previous example this implies that the traits of manager inherits

directly or indirectly from the traits of person.

Definition 4.7 Role Implementation Object

Given an implementation object N = (sl, {p}) and an implementation object R such that Role(N,R), then

R is a role implementation object for N that is of the form

R = (slR, {pR}) with pR = (x, PpR), p ∈ PpR (4.17)

Adding roles as instances to the objects is realised at run-time. We derive natural run-time objects

from natural implementation objects.

Definition 4.8 Natural Run-time Object

A run-time object U is a natural run-time object for R

R →NAT U ⇔ ∃N : Role(N,R), N " U (4.18)

For example, a run-time person object that is derived from a natural implementation object person

for the role implementation object manager, is a natural run-time object for the role implementation

object manager.

4.4.3 Implementing Roles with Warped Inheritance Hierachies

When a natural run-time object starts playing a role we realise warped inheritance hierarchies between the

natural run-time object and a run-time role.

More precisely, a new run-time object is derived from the role implementation object, which is

immediately concatenated to the slot list of the natural run-time object: the state, i.e. the slots of the

role implementation object is copied into the slot list of the natural run-time object. The run-time

role object does not exists independently from the natural run-time object.

In figure 4.10 the setup of a natural run-time object person that plays the run-time role manager

is illustrated. The slots of the run-time role’ s prototype, i.e. salary, office and managerP are

concatenated in the run-time person’s prototype that originally contained a slot name.

The corresponding natural implementation object person and the role implementation object

managar are illustrated in figure 4.11. In figure 4.12 a natural run-time object person is depicted,
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natural run-time object “person” 
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managerP

personP

salary

office

managerP

prototype

implementation 
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Figure 4.10: A natural run-time object person in the role of manager.

Role implementation object manager

Natural implementation object person

Figure 4.11: A natural implementation object person and a role implementation object manager.
The traits of manager inherit from the traits of person. Between the prototypes of person and
manager there is currently no inheritance relationship.

that currently plays no roles. Figure 4.13 illustrates a natural run-time object person in the role of

manager.
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Natural run-time object person

before playing role

Figure 4.12: A natural run-time object person. Currently this object plays no roles and inherits
directly from its own traits object.

Natural run-time object person

in the role of manager

Figure 4.13: A natural run-time object person in the role of manager. The slots of a run-time role
manager are concatenated to the slot list of the natural run-time object person. This object inherits
of the traits of manager that inherits in its turn from the traits of person.

If the natural run-time object performs no roles yet, it contains a parent slot that references its

own traits object. For example a run-time person object contains a parent slot to the traits object

of person. Upon starting to play the role, one of the added slots in the natural run-time object is a

parent slot that references the traits object of the role implementation object. As explained above

a role implementation object contains the traits object of its natural implementation object in the

parent list of its own traits object. Therefore we remove the natural run-time object’s traits object
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from the natural run-time object. In this way we avoid that for example a run-time person that

plays the role of manager, inherits from its own traits object twice: once directly and once via the

parent list of the traits object of manager. Otherwise, based on the method lookup semantics we

provided above, sending a message to the run-time person that corresponds to a method in the

traits object of person that is overridden in the traits object of manager causes an undefined result.

If the natural run-time object plays at least one role, the slot list of the natural run-time object is

simply extended with a copy of the slot list of the role implementation object.

Definition 4.9 In the Role of

Given a run-time object U and an implementation object R such that

1) (sl, {p}) " U = (clone(sl) +c sl′, {p} ∪ P )

2) R = (slR, {pR}) with pR = (x, PpR) and p ∈ PpR

3) R →NAT U

We define ”U in the role of R” as the run-time object defined by

U # R = (clone(sl) +c sl′ +c clone(slR), P ∪ {pR}) (4.19)

On the one hand, since a run-time object in a certain role is an extension of a run-time role

and extension is a kind of inheritance [106], a run-time object in a role inherits from that role. For

example, the slotlist of a natural run-time object person in the role of manager is extended with a

copy of the slot list of the manager implementation object. This copy of the slot list of the manager

implementation object satisfies the definition of a run-time object that is derived from the manager

implementation object, i.e. a run-time manager object. Therefore the run-time person object in the

role of manager inherits from a run-time manager object.

On the other hand, we already mentioned that the behaviour of a role implementation object is

more specialised than the behaviour of the natural implementation object. This is reflected in the

fact that a role implementation object contains the traits of its natural implementation object in the

parent list of its own traits.

This means that in a natural run-time object in a certain role, the order of inheritance between

the slot lists of the natural run-time object and the run-time role is opposite to the order of inheri-

tance between the traits of the run-time role and the traits of the natural run-time object. In this way

we realise warped inheritance hierarchies between a natural run-time object and each run-time role

it plays.
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Since in our perspective on roles, natural run-time objects can abandon a role dynamically, we

implement this by removing the state inheritance between the natural run-time object and the run-

time role that is abandoned.

(U # R) ↓↑ R (4.20)

What actually happens when a natural run-time object stops playing a role is that the slots of the

role implementation object that were copied into the slot list of the natural run-time object upon

starting to play the role, are removed again. When a natural run-time object stops performing its

sole role and the appropiate slots are removed from its slot list, a parent slot that references the

original traits of this natural run-time object is added again.

Definition 4.10 Out of the Role of

Given a natural run-time object O such that O = U # R. We define ”O out of the role of R” as U, denoted

O $ R = U (4.21)

4.4.4 Discussion

In this section we discuss the context and the repercussions of using the above implementation

technique for roles.

Repercussions of +c and send on role modelling semantics

The state inheritance that we use between natural run-time object and its run-time role currently

applies a slot list combination operator +c. This conflict resolution function c and the message

sending function send() are crucial for certain parts of the semantics of our role modelling concept

on which we elaborated in section 2.5.1:

4. An object may play the same role several times, simultaneously. The slots of a run-time role are

added to the natural run-time object with +c that is also used for deriving run-time objects

from implementation objects. If c is for example left-preferential then the slots of the natural

run-time object are prioritized compared to the slots of the run-time role, that are in their turn

prioritized compared to the slots of future run-time roles of the natural run-time object. This

implies that a natural run-time object that plays the same role several times will only include

one slotlist, more precisely the slotlist of the first role, for all the corresponding run-time roles.
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More precisely the natural run-time object exhibits the same state for each of these role. An

analoguous situation occurs, if c is right-preferential. In that case, the slot list of the last role

that is played is included in the natural run-time object.

This means that for satisfying the requirement that an object can play the same role several

times, simultaneously, it might be necessary to define a new conflict resolution function d

for an operator +d that can be used for the warped inheritance hierarchies that are realised

when a natural run-time objects starts playing a role. Examples for d could be based on

a sophisticated aliasing mechanism for homonymous slots or on a mechanism that allows

homonymous slots to be stored in different Self categories.

11. Features of an object can be role-specific: attributes and behaviour of an object may be overloaded

on a by-role basis. Overloaded features correspond to homonymous slots in the natural run-

time object that plays several (different) roles simultaneously and thus, as explained in the

first bullet, depend on the conflict resolution function d for the operator +d that is used for

the warped inheritance hierarchies that are realised when a natural run-time objects starts

playing a role.

Overloaded behaviour in different roles involves homonymous method slots in the traits ob-

jects of the run-time roles. The natural run-time object that plays the roles inherits from all

these traits objects. Based on the current semantics of our message sending function send() we

provided above, sending an overloaded, ambiguous message to the natural run-time object

has an undefined result. This means that if the overloaded behaviour part of the requirement

has to be satisfied, we need to extend the semantics of the send() function. This is an all but

trivial task since there exists no general way for composing two overloaded methods. De-

fault examples of combination operations for two overloaded methods are left-preferential

and right-preferential combination and composition of the two methods. However, in the

context of roles, the required combination can be quite complex and role-specific. For exam-

ple, if we need to compute the minimum salary of a natural run-time object with multiple

roles, we have to compute the salary of all the run-time roles, by calling all the salary() meth-

ods of the different roles sequentially and identify the minimun result.
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Related Approaches

One of the most related approaches for supporting the viewpoint of roles as instances to adjoined

to the objects that play them, is the Object Specialisation technique [94] where each object is rep-

resented as a prototype-based inheritance hierarchy of instances. Each instance represents a role

of the root object and inherits all the properties of its ancestors. If a message is sent to an instance

and not found, the message is delegated to the parent instance of the instance. One of the main

differences with our approach is that the run-time role, i.e. the instances in the hierarchy are inde-

pendent objects with an identity. This implies that a natural run-time object and the its roles have

separate identities. In our appraoch the run-time roles have no separate identity.

Using warped inheritance hierarchies between a natural run-time object and its run-time role

involves 1) a state inheritance hierarchy where the natural run-time object in a role is a child of

the run-time role and 2) a behaviour inheritance hierarchy where the run-time role is a child of

the natural run-time object. In this way our approach acknowledges the paradoxical viewpoint

that roles can be seen as both subtypes and supertypes of the natural objects that perform them,

that was introduced in section 2.5.1. There exist various approaches that handle the paradoxical

situation that roles are both super- and subtypes. We summarize the four techniques that are most

relevant to our approach.

The category concept [34] concept is defined as the subset of the union of a number of roles

(types). As in myARTE the Entity-Relationship diagram was extended: relationships are not de-

fined on entity types, but on categories.

In [13] roles are considered temporal specializations: statically, a manager is a specialization of

a person. However, when a particular person object becomes a manager, its type is changed from

person to the subtype employee thereby inheriting all aspects of its new role. In this way reversed

specializations that are similar to warped inheritance hierarchies, are realized temporarily.

[99] also separate between static and dynamic type hierarchies: state sharing, behaviour shar-

ing, as in Self, and subset hierarchies are combined into a new specialization modelling concept.

In [59] delegation is used to implement dynamic roles that “import” state and behaviour from

their parent objects.

The role modelling concepts in the approaches described above provide suitable alternatives for

warped inheritance hierarchies. However, to the best of our knowledge, none of them is integrated

in an object-oriented modelling environment that supports automatic synchronization between the
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modelled roles and a corresponding implementation.

For an in-depth discussion and more related approaches we refer to [101].

4.5 Mappings From the Implementation View to the Run-time
View

The run-time view consists of run-time population objects that are created by “instantiating” the

code-time implementation objects (cfr. figure 4.4 part (3)). A run-time object is a clone of the

prototype part of the implementation object and shares the same parent objects through parent

sharing via parent pointers. The mappings from implementation objects to run-time objects can be

summarized as follows:

• Since population objects are clones or shallow copies of the prototype, changes in the pro-

totypes in the implementation view are not visible for population objects. In other words

adding a new method slot, a data slot or a parent slot in the prototype never affects the exist-

ing clones.

In the evolution scenarios 5 and 6 of section 2.3 we stated that by default changes to popula-

tion objects are not propagated to the other views.

• Clones include the parent pointers of the prototype they are created from: population objects

share the same parent objects (traits) as the prototypes. Therefore changes to parent objects

in the implementation view do influence population objects. This means that adding a new

method slot, a data slot or a parent slot in the parent objects always affects the existing clones.

The creation of population objects happens in the Interactive Prototyping phase described in

section 4.7.2.

4.6 Mappings from the EER to the Run-time View

One of the contributions of our RTE approach lies in the fact that changes to the EER view af-

fect already existing population objects in certain cases. These mappings always happen via the

implementation view: changes occur in the EER view, the implementation view is automatically

synchronised and this affects the run-time population objects.

The mappings between the EER view and the population view are represented in table 4.2 and

can be summarized as follows:
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EER View Self Run-Time Population View
Entity -

Attribute (all) -
Specialisation Behaviour inheritance between traits objects
Relationship Constrain number of references based on multiplicities

Categorisation -
Aggregation -

Roles -

Table 4.2: Mappings from the EER data modelling view to the Self population view. Changes to the
modelling concepts of the EER view in the left column influence the population view elements in
the right column where appropriate. However, changes to the implementation elements or refer-
ences in the population view in the right column by default do not affect the EER view concepts in
the left column, as explained in section 2.5.2 and in scenario 5 of section 2.3.

• Whether changes such as adding attributes and other changes to the EER view, such as the

state part for specialisation and categorisation, that are synchronised in the prototypes in the

implementation view, are visible to already existing population objects is to be considered.

On the one hand, it intuitively is expected that these changes in an entity view are propagated

to the already existing run-time objects. Such a model change involves the structure of an

entity of the EER diagram, so from that point on all appropriate run-time objects have to

implement this new structure, including the existing ones.

On the other hand, the cloned run-time population objects are shallow copies, as explained

in section 4.5. In order to respect this prototype-based style, the above changes should not be

propagated to existing run-time population objects.

As both solution are acceptable, we deliberately postpone the decision until the actual imple-

mentation of a myARTE tool.

• Changes at the level of specialisations in the EER view result in adding or removing state

inheritance between the corresponding prototypes, and in adding or removing behaviour

inheritance between the corresponding traits objects in the implementation view. The latter

causes the already existing run-time objects to inherit the corresponding traits object in the

implementation view. As mentioned before, the changes in the inheriting child prototype are

not visible to the already existing run-time objects, due to shallow copying.

• Relationships in the EER view constrain the run-time objects via their multiplicities. This

affects the number of allowed references between the corresponding run-time objects, as ex-

plained in section 2.5.3.
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• Roles in the EER view do not affect run-time objects directly. However, it needs mentioning

that adding a new role relation between a natural entity and a role entity in the EER view

results in the fact that the already existing natural run-time objects now can start playing a

new kind of role.

4.7 A New Agile MDD Practice for myARTE

In this section we propose a new approach to Agile Model-Driven Development (AMDD) [5] (see

section 2.1), that can be supported by myARTE tools. In this case the elements of the abstract data

modelling view in EER, i.e. an EER diagram, are considered as a platform-independent model

(PIM), while the contents of the implementation view in Self composes a platform-specific model

(PSM).

Due to an automated transformation between the aforementioned PIM and PSM, our approach

can be seen as a practice of what is referred to as “Agile MDA” [5] (see section 2.1.2), as illustrated

in figure 4.14.

The innovative aspect of our approach is the use of myARTE tools instead of CASE tools. More-

over, run-time objects are synchronised and constrained by the PIM and the PSM. Since we use

EER (instead of the UML) for the PIM, the distance between Phase 0 and Phase 1(a) is minimal.

The iterative AMDD life cycle we consider in this case, consists of three main phases that map

to the original six phases introduced in [5]:

• Phase 0 or Initial Modelling includes creating an initial simple, inclusive static data model

together with the end-user. This activity is performed in the first iteration.

• Phase 1 or Active Modelling includes in Phase 1(a) creating or changing an EER diagram (PIM)

(Model Storming in [5]). In Phase 1(b) the evolution to this EER diagram is automatically syn-

chronised in a corresponding Self implementation (PSM) with a myARTE tool (Implementation

in [5]).

In Phase 1(c) evolution in the Self implementation is automatically synchronised in the cor-

responding EER diagram with a myARTE tool.

• Phase 2 or Interactive Prototyping5 includes deriving a working implementation from the PSM

that was developed so far, with the help of an interactive process initiated by a myARTE tool.

5The activity of instantiating and initializing a program into a ready-to-use, running system as in rapid prototyping.
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Phase 1 (a):  The agile modeler or the 
customer transform the inclusive model in an 
EER diagram (PIM).

Phase 0:  Use straightforward techniques for 
initial model. In the case of customers familiar 
with EER this step can be omitted.

Platform 
Independent 
Model in EER

Platform 
Specific Model 

in Self

Phase 2:  ARTE tool interactively creates working version 
of the modeled software.

EER View

Implementation 
View

Population View

Phase 1 (b):  ARTE tool synchronizes between the EER 
diagram (PIM) and the Self implementation code (PSM).

Phase 1 (c):  ARTE tool synchronizes between the Self 
implementation code (PSM) and the EER diagram (PIM).

Figure 4.14: An Agile MDD methodology supported by myARTE tools.

More precisely, creating new run-time population objects is the main purpose of this phase.

This phase enables our new practice to integrate run-time objects in a highly dynamic RTE

process.

Phase 1 and 2 are typically but not necessarily executed consecutively and occur during any

iteration, including the first.

In the following sections we elaborate the Active Modelling and Interactive Prototyping phases.

4.7.1 Phase 1: Active Modelling

In this phase an agile modeler, an end-user or another participant of the myARTE process initiates

or makes a change to an EER diagram in the EER view (Phase 1(a)), which is immediately and

automatically synchronised in the implementation view (Phase 1(b)) based on the mappings in

table 4.1.

113



CHAPTER 4. A NEW PRACTICE FOR ADVANCED ROUND-TRIP ENGINEERING

Conversely, when the implementation objects in the implementation view are manipulated

(Phase 1(c)) the corresponding entities in the EER view are automatically synchronised and popu-

lation objects are affected where applicable.

Table 4.3 illustrates the presence of the myARTE characteristics introduced in section 2.4, in the

Active Modelling phase.

Active Modelling
Optimal Transformations

√

Run-time Object Generations
√

Multiplicity Constraint Enforcement
√

Object Dependency φ
Role Modelling

√

Table 4.3: Presence of myARTE characteristics in the Active Modelling phase.

Phases 1(a) en 1(b) coincide due to Optimal Transformations, as introduced in section 2.5.2:

the synchronisation between the EER view and the implementation view is realised continuously

and incrementally and happens per entity in the EER data modelling view or per object in the im-

plementation view. Furthermore, the synchronisation demands a minimal transformation: e.g. a

change to an attribute in the EER view is only synchronised at the level of the corresponding data

slot in the corresponding implementation object and vice versa. View-dependent information, such

as relationship constraints in the EER diagram and method bodies in the Self objects, is preserved

during changes and subsequent synchronization.

Certain changes in the EER view or the implementation view during Phases 1(a) en 1(b) possi-

bly affect (and constrain) already existing population objects, based on the correspondences sum-

marised in table 4.2.

Object Dependency however results in some hidden annotations in the appropriate implemen-

tation objects, but does not affect run-time objects during Active Modelling.

The Active Modelling phase can be fully automated as shown in chapter 5.

4.7.2 Phase 2: Interactive Prototyping

Creating population objects is the objective of the second phase. This Interactive Prototyping pro-

cess allows an agile modeler or developer to create and initialize ready-to-use objects from each

implementation object created in the previous phase, thus populating the application.

This phase cannot be supported in a fully automatic way since choices need to be made that de-

pend on the preferences of the user. Consider for example the many-to-many relationship between
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the Customer and the Account entities in figure 4.3: when an actual Customer object is created

and initialized, it is up to the user to decide how many Account objects this Customer is to refer

to, which can be any number or unlimited.

Steered from the implementation objects the user is guided to create new population objects

that adhere to the structure of the EER diagram. This behaviour is implemented by extending the

default cloning behaviour of Self implementation objects that participate in the RTE process and

can be summarised as follows:

• Step 1: Start with creating a new clone of the prototype of the implementation object that

shares the parents.

• Step 2: For each relationship of the corresponding entity in the EER view interactively deter-

mine the number of actual references to population objects created from the implementation

object that corresponds to the entity on the other side of the relationship. Create (interac-

tively) this number of new population objects and add this number of direct or undirect (via

a collection for example) slot references to them in the original new object.

The interval from which this number can be selected lies between zero and the multiplic-

ity that is defined in the EER view. This implies Multiplicity Constraint Enforcement (cfr.

section 2.5.3) resulting in population objects that always satisfy the multiplicity at creation

time. To support Object Dependency (cfr. section 2.5.3) the selected number of references

that originate from a weak object to an object it can depend on should be at least one.

• Step 3: For each specialisation branch originating from the corresponding entity in the EER

view interactively select a specialisation (optionally). Add a slot reference to a new automat-

ically cloned population object of the selected type.

• Step 4: For each categorisation branch originating from the corresponding entity in the EER

view interactively select a categorisation (optionally). Let the new population object inherit

(through prototypes and through parent objects) from this selected categorisation implemen-

tation object.

• Step 5: For each aggregation originating from the corresponding entity in the EER view inter-

actively determine the number of actual aggregated population objects. Create (interactively)

this number of new population objects and add a direct slot reference to a collection contain-

ing them in the original new object.
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• Step 6: For Role Modelling support (cfr. section 2.5.1) an interaction is generated for each

role branch originating from the corresponding entity in the EER view to determine which

role is performed at creation time. Realise warped inheritance hierarchies for the selected

roles.

The details and a possible implementation of this prototyping operation can be found in section 5.4.

At any point in time during the first phase, the second one can be activated to create a prototype

of the system modeled so far. This is considered as a kind of rapid prototyping of EER diagrams.

Table 4.4 summarises the presence of the myARTE characteristics introduced in section 2.4, in

the Interactive Prototyping phase.

Interactive Prototyping
Optimal Transformations φ
Run-time Object Generations φ
Multiplicity Constraint Enforcement

√

Object Dependency
√

Role Modelling
√

Table 4.4: Presence of myARTE characteristics in the Interactive Prototyping phase.

4.8 Round-Trip Engineering Examples

In this section we present Round-Trip Engineering (RTE) scenarios to illustrate the new Agile MDD

practice for myARTE proposed in section 4.7. The RTE scenarios are based on the evolution sce-

narios that were introduced in section 2.3 and illustrate the characteristics of myARTE as defined

in section 2.4.

4.8.1 RTE Scenario 1: Adding Entities to Support Insurances in the EER View

We use the EER diagram illustrated in figure 4.3 that represents a simplified banking system as an

example. This diagram is extended to support simple insurance entities. We illustrate the scenario

that is based on evolution scenario 1 (see section 2.3) with the following steps:

1. Add two new entities insurance and insurer to the banking system model

2. Add a new attribute policyNr to insurance

3. Add a new attribute insuredObject to insurance
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To realise this scenario, the following actions are performed manually in the EER view at code-

time by a user, followed by an automated synchronization in the other views performed by a

myARTE tool:

1. Add a new blank entity view to the EER diagram via the appropriate menu and name it

insurer. Synchronization steps: First, a new blank entity view becomes graphically visual;

since this is a new view on a new implementation object, a new implementation object is

automatically created. This newly created implementation object contains no public data slots

and an empty traits object to contain methods. The implementation object is automatically

saved in the banking schema object. Schema objects are stand-alone namespaces that are

used to persistently store implementation objects. This happens in analogy to the general

action of storing Self prototypes in the globals namespace.

The name of the graphical entity view in the diagram is changed to insurer; this is propa-

gated automatically onto the viewed implementation object.

2. In analogy to step 1, the entity view insurance is added.

3. Next, we add a new attribute to the graphical entity view insurance via the appropriate

menu, and name it policyNr. Synchronization steps: First a blank attribute (dark/light blue)

becomes graphically visual inside the insurance entity view. Automatically, a new data

slot is added to the insurance implementation object. The renaming is propagated to the

implementation object by renaming the original data slot in the implementation object. This

implies that changes to the contents of the data slot in the implementation object are not lost

when the corresponding attribute in the entity view is renamed.

Deleting attributes automatically results in the deletion of the corresponding data slot in the im-

plementation object. Deleting an entire entity view automatically results in the deletion of the

implementation object from the banking schema object.

4.8.2 RTE Scenario 2: Adding Relationships to Support Insurances in the EER
View

Again we use the banking system (see figure 4.3) as an example EER diagram. This model is ex-

tended to support simple insurances. We illustrate the scenario that is based on evolution scenario

2 (see section 2.3) with the following steps:

1. Specialize the entity employee into insurer in the banking system model
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2. Add a new one-to-n relation between the entities customer and insurance in the banking

system model

To realise this scenario, the following actions are performed manually in the EER view at code-time

by the user followed by automated synchronization steps performed by a myARTE tool:

1. Add a new specialization to the EER diagram from the entity view insurer to the entity

view employee, via the appropriate menu. Synchronization steps: The insurer implemen-

tation object automatically inherits from the employee implementation object. Deleting the

specialization in the EER view automatically results in the removal of the inheritance between

the two implementation objects.

2. Add a new one-to-n relationship between the entity views insurer and customer, via the

appropriate menu. Synchronization steps: Automatically a slot called 1 to n relation insu-

rer customer is added to both viewed implementation objects insurer and customer.

This slot contains a reference to the other partner entity object. Deleting the relationship in the

EER view automatically results in the deletion of the slot. Next, private constraint information

of both implementation objects is adjusted, to ensure that future clones of these implemen-

tation objects satisfy the one-to-n cardinality constraint. During the Interactive Prototyping

phase, interactions will be generated based on these constraint annotations, to fix the actual

number of references between a run-time insurer and a run-time customer, as explained

in section 4.8.5.

After the scenarios 1 and 2 are realised, the evolved part of the banking EER diagram is illustrated

in figure 4.15.

4.8.3 RTE Scenario 3: Adding Objects to Support Insurances in the Implemen-
tation View

We use the banking system implementation that corresponds to the EER diagram in figure 4.3 as

an example. This RTE scenario is based on evolution scenario 3 (see section 2.3).

When a new implementation object is created it is installed in the schema object and its entity

view becomes visual in the EER view. When an entire code-time implementation object is deleted,

the entity view automatically dissapears from the EER diagram. The other cases are illustrated

with the following steps:
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Figure 4.15: Evolved part of the banking information system model after scenario 1 and 2.

1. Add a new attribute insurer to the implementation object insurance in the banking sys-

tem implementation

2. Rename the attribute insurer in the implementation object insurance to myInsurer

To realise the entity evolution scenario, the following actions are performed manually at code-

time by the user followed by automated synchronization steps performed by a myARTE tool:

1. Add a new data slot to the insurance implementation object via the main Self object menu

and name it insurer. Synchronization steps: The insurance entity view in the EER view is

automatically extended with a new attribute insurer. Note that deleting a data slot in an

implementation object automatically results in the deletion of the corresponding attribute in

the entity view.

2. Rename the insurer data slot in the insurance implementation object to myInsurer by

double-clicking it. Synchronization steps: The insurer attribute in the insurance entity

view in the EER view is automatically renamed to myInsurer.
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4.8.4 RTE Scenario 4: Adding Relationships to Support Insurances in the Im-
plementation View

We use the banking system implementation that corresponds to the EER diagram in figure 4.3 as

an example. We illustrate the scenario that is based on evolution scenario 4 (see section 2.3) with

the following steps:

1. Change the contents of the attribute myInsurer in the implementation object insurance to

contain the insurer implementation object.

2. Create a new child of the implementation object insurance

To realise the entity evolution scenario, the following actions are performed manually at code-time

by the user followed by automated synchronization performed by a myARTE tool:

1. Set the contents of the myInsurer data slot in the insurance implementation object to con-

tain the insurer implementation object either via the appropriate Self menu, a user action,

or at run-time. Synchronization steps: A one-to-one relationship link is automatically drawn

between the insurance entity view and the insurer entity view in the EER view, given

no one-to-one link is drawn between them currently, as illustrated in figure 4.16. This syn-

Figure 4.16: Synchronisation of slot reference into a one-to-one relationship in RTE scenario 4.

chronization is performed dynamically: when we manually remove the one-to-one link in

the EER view, it is automatically re-drawn, each time the Self system updates the slots of
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the insurance implementation object and discovers that it (still) contains a reference to the

insurer implementation object

2. Create a new child of the implementation object insurance via the Self main menu. Synchro-

nization steps: A new entity view is automatically added to the EER view. Simultaneously, a

new implementation object is created, inheriting the slots of the insurance implementation

object. Next a new “is-a” link is drawn between the new entity view and the insurance

entity view in the EER view, as illustrated in figure 4.17.

Figure 4.17: Synchronisation of inheritance into a specialisation relationship in RTE scenario 4.

4.8.5 Intermezzo: An Interactive Prototyping Example

We use the EER diagram depicted in figure 4.3 that represents a modest banking system as an

example. We illustrate the Interactive Prototyping phase with the following steps:

1. Create a new population object customer that is associated with one employee, that has a

checkingsAccount and a savingsAccount, and pays a loan in twenty payments.

2. Create a new stand-alone payment population object that is not associated it with any loan.

To realise these steps, the following actions are performed:

1. The creation of a customer population object is initiated by sending the message copy to the

customer implementation object. This results in a clone of the customer implementation

object that is manipulated in a series of interactions that is are illustrated in figure 4.18.:
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1a. The first interaction is generated from the one-to-many relationship between employee

and customer in the EER view. In this case the new customer population object is

allowed to have zero or one references to an employee population object hence the

“yes/no” interaction. The “yes” button is selected resulting in a data slot being added in

the new customer population object that contains a new employee population object.

1a.

1b.

1c.

1d.

1e.

Figure 4.18: Interactions for creating a customer population object during Interactive Prototyping.

1b. Next an interaction is generated based on the many-to-many relationship between cus-

tomer and account in the EER view. In this case an integer has to be provided to fix

the number of actual slot references between the new customer population object and

account population objects. Providing the integer 2 as the input results in a new data
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slot being added in the new customer population object that contains a vector with two

new account population objects. In each of these account population objects a vector

is added based on the many-to-many relationship between customer and account in

the EER view. The first element of this vector is the new customer population object

that is being created.

1c. During the creation of these two new account population objects the Interactive Pro-

totyping phase is re-initiated. In this case for each new account population object an

interaction is generated based on the specialisation from account to savingsAccount

and checkingsAccount in the EER view. We select one account population object to

be a checkingsAccount while the other is a savingsAccount.

This causes the new account population objects to dynamically become children of the

checkingsAccount and the savingsAccount implementation objects, respectively.

This means that for example the checkingsAccount population object will inherit the

state of the checkingsAccount prototype trough extension while it inherits the be-

haviour of the checkingsAccount traits object via a parent slot.

1d. Next the Interactive Prototyping for the new customer population object continues

with an interaction based on the many-to-many relationship between customer and

loan in the EER view. Again an integer has to be provided to fix the number of actual

slot references between the new customer population object and loan population ob-

jects. Providing the integer 1 as the input results in a new data slot being added in the

new customer population object that contains a vector with one new loan population

object. In each of these loan population objects a vector is added based on the many-to-

many relationship between loan and customer in the EER view. The first element of

this vector is the new customer population object being created.

1e. Also during the creation of this new loan population objects the Interactive Prototyping

phase is re-initiated. An interaction is generated based on the one-to-many relationship

between loan and the dependent payment in the EER view. Providing the integer 20

as the input results in a new data slot being added in the new loan population object

that contains a vector with twenty new payment population objects. In each of these

payment population objects a vector is added based on the one-to-many relationship

between loan and payment in the EER view. The first element of this vector is the new
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loan population object that was created.

The resulting customer population object is illustrated in figure 4.19.

The new customer account population object
A collection of 2 account population objects

A collection of 1 loan population object

A laon population object

A collection of 20 payment population objects

Figure 4.19: The resulting customer population object after Interactive Prototyping .

2. The creation of a payment population object is initiated by sending the message copy to the

payment implementation object. After creating a new clone of the payment implementation

object, the result is one interaction to add zero or one references to a loan population object.

We provide zero as the input. Constraint checking steps: in the case of no references the pop-

ulation object creation mechanism checks the new population object for dependencies. On

detecting the dependency of the new payment population object to loan population objects

zero is rejected as number of references since at least one association has to be made between

the new payment population object and a loan population object it can depend on. Again

the interaction for a reference to the loan population object appears. This process will repeat

itself until at least one reference is established. This illustrates how Object Dependency is

124



4.8. ROUND-TRIP ENGINEERING EXAMPLES

supported during the Interactive Prototyping phase.

4.8.6 RTE Scenario 5: Changing Population Objects

We use the EER diagram depicted in figure 4.3 that represents a modest banking system as an

example. We illustrate the scenario that is based on evolution scenario 5 (see section 2.3) with the

following steps:

1. Create a new population object loan and associate it to one dependent payment population

object

2. Delete the new loan population object

To realise this scenario, the following actions are performed manually in the implementation

and population view by a user, possibly followed by an automated constraint checking process

performed by a myARTE tool:

1. A loan population object can be created by sending it the message copy to the loan im-

plementation object. This initiates the Interactive Prototyping phase. The first interaction

is a request for an actual number of references to payment population objects. In this case

only one reference is added. Next the other interactions are filled in resulting in a new loan

population object that references one payment population object as illustrated in figure 4.20

A new loan population object

The payments collection A payments population object

Interaction based on one-to-many relationship 
between loan and payment in the EER view

Figure 4.20: Creating a new loan population object in RTE scenario 5.
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2. In the next step we delete the loan population object by sending it the message deleteMe.

Constraint checking steps: first all references of the loan population object are checked for de-

pendent population objects. The referenced dependent payment population object is deleted.

This is simulated by removing all the public slots from this object. Next all the public slots of

the loan population object are removed as well. This situation is illustrated in figure 4.21.

The deleted loan population object

The former payments collection

The deleted payment population object

Figure 4.21: After deleting the loan population object in RTE scenario 5.

This illustrates how Object Dependency (cfr. section 2.5.3) is supported after the Interactive Pro-

totyping phase.

4.8.7 RTE Scenario 6: Changing Relationships Between Population Objects

We use the EER diagram illustrated in figure 4.3 that represents a modest banking system as an

example, except for the many-to-many relationship between Customer and Account that has been

changed to a many-to-2 relationship as depicted in figure 4.22.

We illustrate this scenario that is based on evolution scenario 5 (see section 2.3) with the follow-

ing steps:

1. Create a new customer population object that is associated with two account population

objects.

2. Add a new reference to a third account population object
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Figure 4.22: A many-to-2 relationship between customer and account in RTE scenario 6.

To realise this scenario, the following actions are performed manually in the implementation

and population view by a user, possibly followed by an automated constraint checking process

performed by a myARTE tool:

1. We derive a run-time customer from the customer implementation object by sending it

the message copy. This initiates the Interactive Prototyping phase. One interaction that

is generated during this phase is a request for an actual number of references to account

population objects. The interaction already indicates that the number thas to be selected from

the interval between 0 and 2. This illustrates how Multiplicity Constraint Enforcement (see

section 2.5.3) is supported during the Interactive Prototyping phase. In this example two

references are added. Next the other interactions are filled in resulting in a new customer

run-time object that references two run-time account objects.

2. We manually add a new reference in the customer population object by adding a new data

slot that references an existing account population object cfr. figure 4.23. Constraint checking

steps: changing the state of a run-time object by adding a slot that references a constrain-

ing run-time object, triggers the first run-time object to be checked for satisfying multiplicity

constraints. In this example, first, all the references of the population object are scanned for

account population objects. When iteratively two more references to a run-time account
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A customer population object

A third account population object

A collection of two account
 population object

An account population object

Figure 4.23: Violation of the many-to-2 constraint between customer and account in RTE sce-
nario 6.

object are detected, a warning is generated.

Note that immediately after a multiplicity change also all appropriate population objects that

already exist are checked and for all of them that violate the multiplicity constraint a warning

is generated.

This illustrates how Multiplicity Constraint Enforcement (cfr. section 2.5.3) is supported after the

Interactive Prototyping phase.

4.8.8 RTE Scenario 7: Role Modelling

This scenario merges the evolution scenarios 1, 5 and 6 (see section 2.3) and the interactive pro-

totyping phase, in order to illustrate how Role Modelling is supported in myARTE. We use the

EER diagram illustrated in figure 4.3 that represents a modest banking system as an example. We

will extend this diagram with the notion that employees cannot be customers. As a consequence

employee and customer are two mutually exclusive roles, as illustrated in figure 4.24.

This scenario consists of the following steps:

1. Create a new entity person in the EER view.
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Figure 4.24: Role relation from person to customer and employee in RTE scenario 7.

2. Add a new role relationship from person to employee and customer.

3. Create a new run-time person population object.

4. Dynamically let this person start performing the role of employee in the population view.

5. Dynamically let this person start performing the role of customer.

6. Dynamically let this person stop performing the role of employee.

From the EER View to the Implementation View To realise steps 1 and 2 of this scenario, the

following actions are performed manually in the EER view by a user, followed by an automated

synchronisation process performed by a myARTE tool:

1. Add a new blank entity view to the EER diagram via the appropriate menu and name it

person. Synchronization steps: First, a new blank entity view becomes graphically visual;

since this is a new view on a new implementation object, a new implementation object is

automatically created. This newly created implementation object contains no public data slots

and an empty traits object to contain methods. The implementation object is automatically

saved in the banking schema object. The name of the graphical entity view in the diagram

is changed to person, this is propagated automatically to the viewed implementation object.
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2. Add a new role relation to the EER diagram from the entity view person to the entity views

employee and customer, via the appropriate menu. Synchronization steps: The person

implementation object automatically inherits from the roleParentSlots object that defines

general behaviour for roles (see figure 4.25). The parent part of the customer and employee

Figure 4.25: The person implementation object inherits general role behaviour in RTE scenario 7.

implementation objects inherit from the parent part of the person implementation object as

illustrated in figure 4.26. In the private slots of person a role set with the names of the

Figure 4.26: The parent part of the employee implementation object inherits from the parent part
of the person implementation object in RTE scenario 7.

employee and the customer role is added to denote that they were part of the same role

branch and thus are mutually exclusive.

Deleting the role in the EER view would automatically result in removing the three inheri-

tance relations in the implementation objects and adjusting the aforementioned private slots.
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From the Implementation View to the Population View To realise step 3 of this scenario, the

following actions are performed manually in the implementation view by a user, followed by a

semi-automated, interactive prototyping process performed by a myARTE tool:

1. A person population object can be created by sending the message copy to the person

implementation object. This initiates the Interactive Prototyping phase. The only interaction

is a request to determine the role that this person performs at creation time (see figure 4.27).

This interaction is based on the private slots of person that contain a role set with the names

of the employee and the customer roles. We decide that this new person population object

performs no roles yet.

A person population object

A person population object

Figure 4.27: The interactive prototyping of a new person population object in RTE scenario 7.

In the Population View To realise steps 4, 5 and 6 of this scenario, the following actions are

performed manually in the population view by a user, followed by an automated checking process

performed by a myARTE tool:

1. The run-time person object starts performing the role of employee when it receives the mes-

sage becomeRole:’banking employee’. The slots in the prototype of the employee im-

plementation object are automatically copied down in the prototype of the run-time person

population object. In the prototype of the run-time person population object a parent slot

is added that contains the parent part of the employee implementation object. This is illus-

trated in figure 4.28.

2. The run-time person object starts performing the role of customer when it receives the mes-

sage becomeRole:’banking customer’. Constraint checking steps: based on the employee
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A person population object with the role of employee

Figure 4.28: A person population object with the role of employee in RTE scenario 7.

Figure 4.29: A person population object with the role of employee is not allowed to perform the
role of customer in RTE scenario 7.

role that is already performed it is automatically checked whether employee and customer

were part of the same role branch in the EER view. This is achieved by consulting the private

slots of the run-time person population object, that contain a role set with the names of the

employee and the customer roles. Since both roles are in the same role set they are mutu-

ally exclusive and therefore automatically an error is generated as illustrated in figure 4.29.

3. The run-time person object stops performing the role of employee when it receives the mes-

sage removeRole:’banking employee’. In this case all the copied slots of the employee

implementation object are automatically removed from the run-time person population ob-
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Figure 4.30: A person population object after removing the role of employee in RTE scenario 7.

ject. The parent slot that contained the parent object of the employee implementation object

is also removed. Since employee was the only role performed by person, again a parent

slot that containts the parent object of person is added automatically. This is illustrated in

figure 4.30.

4.9 Conclusion

We conclude this chapter with the following statements:

• An Extended Entity-Relationship (EER) model that combines existing EER notations with

Role Modelling concepts, is used to represent a graphical data modelling view. This model is

implemented in a graphical drawing editor that is developed with the Morphic framework

and is integrated in the Self programming environment.

• We defined a general solution to implement roles with the warped hierarchies implementa-

tion scheme.

• The Self language is selected for the implementation and the population views. Implementa-

tion objects are prototype-traits pairs while population objects are clones of these implemen-

tation objects.

• A set of default mappings between the three views was defined.

• We propose an Agile MDD practice that can be supported by myARTE tools that synchronise

between an analysis view and an implementation view, and support run-time RTE program-

ming.
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• The two most important phases are Active Modelling and Interactive Prototyping. The char-

acteristics of myARTE are present in both phases.

• During Active Modelling there is a continuous and incremental synchronisation between the

EER view and the implementation view. This phase can be fully automated.

• At any point in time during Active Modelling the second phase Interactive Prototyping can

be activated. During this phase population objects are interactively created based on the

structure of the EER view.

• Population objects are constrained by the multiplicities of the relationships, and the depen-

dencies between weak and strong entities in the EER view.

In the next chapter we introduce a possible implementation for an myARTE tool that auto-

matically synchronises between an EER view and a Self implementation and population view, as

proposed in the new Agile MDD practice.
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Chapter5
SelfSync: An ARTE Implementation

In this chapter we introduce an implementation of an ARTE tool called SelfSync. SelfSync is entirely

written in Self and extends it with an ARTE environment. The SelfSync tool supports all the RTE

scenarios that were described in section 4.8. The SelfSync UI includes a data modelling view that

employs a graphical drawing editor for EER diagrams and is built with the Morphic framework

(see section 5.1).

In SelfSync entities and implementation objects are represented by outliners that are in fact two

views on one and the same underlying Self object. Internally SelfSync objects are represented by

prototypes that combine the state of these two views and with a double traits inheritance hierarchy

that also illustrates the duality of the two views (see section 5.2).

In SelfSync the Active Modelling phase is fully automated and applies Optimal Transformations

between the different views (see section 5.3). In the EER view SelfSync employs a dynamically built

entity menu whose actions result in annotations and synchronisation in the implementation view

(see section 5.3.2). The invoked behaviour resides in the aforementioned double traits hierarchy. In

the implementation view changes are realised via the Self menu, via the Self UI, and literally via the

code. The invoked behaviour is scattered at different levels of the Self language: in the outliners, in

the underlying slot models and in the mirrors at the meta-level (see section 5.3.3).

Run-time Object Generations are created during a semi-automated Interactive Prototyping phase

(see section 5.4). The associated behaviour is implemented in a new cloning method for SelfSync

objects, that generates interactions depending on their annotations.

SelfSync implements Multiplicity Constraint Enforcement (see section 5.5.1) and Object Depen-

dency (see section 5.5.2) with meta-programming constructs that mainly compare implementation

objects’ references with their annotated objects. Furthermore, this ARTE tool allows advanced Role
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Modelling by implementing general role behaviour and a mechanism to enforce role combination

constraints (see section 5.6).

We will not go into every detail of the SelfSync implementation but provide a general insight in

the representations and mechanism of the tool.

5.1 The User Interface

The SelfSync User Interface (UI) is illustrated in figure 5.1. The three horizontal windows represent

Figure 5.1: The User Interface of the SelfSync ARTE tool.

an EER data modelling view, an implementation view and a population view. The EER view con-

sists of a drawing editor for EER diagrams that use the EER notation we defined in section 4.1.1.

The elements of the implementation and population views are represented by the default Self out-

liners.

The vertical menu window consists of 5 parts:
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1. A general menu to start or exit, resize and combine views and to set options like constraint

enforcement and code to model synchronisation.

2. A menu for the EER view including opening, creating, saving models and adding new entities

to them.

3. A similar menu for the implementation view.

4. A menu for the population view.

5. A status window for the current EER model, the current schema that stores the implementa-

tion objects, and the selected options.

5.2 The Internal Representation of SelfSync Objects

In this section we introduce the internal representation of SelfSync objects. The core of SelfSync

consists of the entities of the EER view that are in fact also the implementation objects in the imple-

mentation view. Due to the Model-View-Controller (MVC) architecture of the Self User Interface,

as illustrated in section 4.1.2, figure 4.6 the EER outliner that represents the entity, as well as the

already existing Self outliner that represents the implementation object, are two views on one and

the same underlying Self object. We first describe the main prototypes for entities (see section 5.2.1)

followed by the double traits hierarchy that implements the main behaviour of SelfSync objects (see

section 5.2.2).

5.2.1 Prototypes for Entities and Implementation Objects

As a consequence of entities and implementation objects being both views on the same underly-

ing Self object, these SelfSync objects implement both state for a graphical morph object, and state

for a real Self implementation object. This is illustrated with the prototype for strong entities1 in

figure 5.2.

The different slots are divided into categories. The categories Basic Morph State, Frame Morph

State and Row Morph State already existed in Self and were inherited in this prototype. In SelfSync

the categories Strong Entity Morph State and private were added. In Strong/Weak Entity Morph State

the state of strong or weak EER entities is contained such as the editable label in an entity that

represents its name.
1Weak entities are implemented similarly except for the fact that they cannot have a primary attribute and that they

include an extra attribute for future references to a strong population object they can depend on.
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Figure 5.2: The strong entity prototype with state for a graphical entity (left) and for a SelfSync
implementation object (right).

In the private category the internal state of SelfSync implementation objects is contained. For

example, hasPrimaryAttribute is a predicate to indicate whether the current implementation

object already contains a primary attribute in the EER view.

The constraintBy1 and constraintByN collections include implementation objects that

constrain the current implementation object based upon relationships in the EER view. For exam-

ple, if the entities Mother and Child are in a 1-to-3 relationship in the EER view then first Child’s

constraintBy1 includes ’mother’ and secondly, Mother’s constraintByN includes the pair

(’child’,3).
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5.2.2 A Double Traits Inheritance Hierarchy

As said before SelfSync represents EER outliners and Self outliners that view the same underlying

Self object. This duality of graphical EER outliner and implementation object is also reflected in

the behaviour of these objects, and is implemented in a double traits inheritance hierarchy from

which the prototypes for strong and weak entities inherit their behaviour. This setup is illustrated

in figure 5.3. The right top branch represents the behaviour of the graphical EER outliners that

is based on Self’s built-in traits objects such as traits rowMorph. The remaining left hierarchy

consists of traits entityMorphs, traits ERMorphs and traits entity.

Traits entityMorphs

Traits Entity

Traits ERMorphs

Traits frameMorph

Traits columnMorph

Traits rowMorph

Traits morph

Traits clonable

strongEntity
prototype

weakEntity
prototype
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Behaviour Implementation Objects:
Installing, Multiplicity Constraint Enforcement, 

Object Dependency

Behaviour SelfSync EER elements: 
attributes, relationships, ...

Main Behaviour SelfSync Objects:
Synchronisations between 

EER and Implementation Objects

Figure 5.3: The main inheritance hierarchy in SelfSync.

The traits entityMorphs is the core traits object of SelfSync objects at both the EER and

the implementation view and is responsible for the synchronisation from the EER view to the im-

plementation view. traits ERMorphs defines more general behaviour that is inherited from the

other elements of the EER view: attributes and relationships for example. Finally traits entity

is responsible for installing the implementation objects persistently is a schema namespace, for

Multiplicity Constraint Enforcement and for Object Dependency.

We briefly discuss the different kinds of behaviour:

• Traits entityMorphs (see figure 5.4): this object implements the main synchronisation be-
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haviour from the EER view to the implementation view2 during the Active Modelling phase

and the creation process during Interactive Prototyping phase. In the public part of this object

we find methods such as buildEntityMenu that dynamically builds the menu to manipu-

late EER entities, that was illustrated in section 4.1.1, figure 4.2. Based on the internal state

of the Self object that is viewed with the current EER outliner an appropriate menu is gener-

ated. For example when it concerns a strong entity the menu will contain the option to add a

primary attribute as opposed to the case of a weak entity.

Another example of a method in this traits object is the new:l method that is used to create

and initiate a new implementation object with name l.

The methods constrOne and constrN dynamically access the names of the constraining

objects that are contained in the constraintBy1 or constraintByN collections of the re-

ceiver implementation object.

The modelling and synchronisation actions that are demanded during Active Modelling are

included in the categories entities, relationships and targets. In the category entities mainly

behaviour is stored to add new attributes to entities.

The category relationships methods are included to actually establish relationships, including

specialisations, etc., when such an action is selected from the EER menu. For example when a

new one-to-one relationship is created from an entity, the method addRelation:1Evt:evt

is called, that in its turn will call drawPointerForOneToOneRelation:evt. The latter

will actually draw the new link in the EER view after annotating the appropriate implemen-

tation objects.

In targets methods and collections are contained for (un)selecting targets of relationships. For

example when a new one-to-one relationship is created from an entity it is demanded that

beforehand a partner entity was selected with addPartner:evt as the target of this new

relationship.

Interactive Prototyping behaviour can be found in the category copying.

• Traits ERMorphs: includes some predicates to determine the kind of EER element, such as

isAttributeMorph. The other morphs in the EER view for attributes, relationships, etc.

inherit from this object.

2The synchronisation from the implementation view to the EER view is scattered among different already existing traits
objects as described in section 5.3.3.
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Figure 5.4: The main traits entityMorphs object in SelfSync.

• Traits Entity (see figure 5.5): implements methods to install or delete an implementation

object in a schema namespace, to iterate over the slots of an implementation object, and to

enforce the constraints that are valid for an implementation object.

141



CHAPTER 5. SELFSYNC: AN ARTE IMPLEMENTATION

Figure 5.5: The traits entity object responsible for among other things Multiplicity Constraint
Enforcement in SelfSync.

• Traits frameMorph, Traits columnMorph, Traits rowMorph, Traits morph: implement meth-

ods for specific kinds of morphs. These traits objects already exist in Self and are reused to

implement the graphical representation of entities in the EER view.

• Traits clonable: The traits object that implements behaviour for objects that can be cloned.

Most Self objects inherit from it.

Now that the core structure of SelfSync is introduced we continue with highlighting how Self-

Sync implements Active Modelling, Interactive Prototyping and constraint enforcement for multi-

plicities, dependency and roles.

5.3 The Active Modelling Implementation

In this section we describe how SelfSync implements Active Modelling. The start of this phase

is introduced in section 5.3.1. How SelfSync implements modelling in the EER view is described

in section 5.3.2. How changes are implemented in the implementation view can be found in sec-

tion 5.3.3.

5.3.1 Initial Setup

During Active Modelling in SelfSync, initially a new EER diagram is created in the EER view by us-

ing the appropriate buttons in EER menu of the menu window (see figure 5.1). The future entities of

this diagram will correspond to future implementation objects. The representation of these entities

and implementation objects are in fact EER outliners and Self outliners that view the same underly-

ing Self object. For each new created EER diagram, a new schema is automatically created to store

future implementation objects that correspond to the future entities of the new EER diagram. As

said before such a schema functions as a namespace to persistently install new implementation ob-

jects that correspond to one EER diagram. Creating a new EER diagram mainly involves window

operations. Creating a new schema implies cloning SelfSync’s schema prototype.
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For each new entity that is added to the diagram with the EER menu, the schema in the im-

plementation view is extended with a new slot3 that contains the corresponding implementation

object for each newly created entity.

To create new entities, clones are made from the strongEntity or weakEntity prototype

with the help of a new:l method implemented in Traits entityMorphs. Initially new entities

have the label STRONG. Next we install the new entity as implementation object in the schema with

install for which behaviour is implemented in Traits Entity. This results in a new slot in the

schema with a random name such as strong entity917. The contained implementation object

is then persistently saved to carry the same name. When the name of the entity in the EER view is

changed, this name change is propagated to the aforementioned slot in the schema and thus also

to the contained implementation object.

5.3.2 Modelling in the EER View

Active Modelling in the EER view mainly involves invoking the EER menu on entities. This menu

is dynamically built for this entity with buildEntityMenu. The actions of the resulting menu are

linked to the methods in Traits entityMorphs that are stored in its categories

• entities that include methods for adding new attributes to an entity or deleting an entity. These

methods do not need previously selected targets.

• relationships that contains methods to establishing a new 1-to-1, 1-to-n or m-to-n relationship

or a new dependency, a new specialisation, a new aggregation, a new categorisation or a new

role relationship. These methods need previously selected targets.

• targets with methods and collections for (un)selecting targets in relationships, specialisation,

etc.

For example when the action "One-to-One Relationship" is selected from the menu the method

addRelation:1 Evt:evt of the relationships category is called.

The default order of actions is as follows:

1. Middle-click on an entity in the EER view. This results in the EER menu (see figure 4.2) being

dynamically built for the underlying implementation object with buildEntityMenu. This

menu contains a number of actions based on the left column of the mappings in table 4.1,

3Analoguously to Self where each new prototype is installed in a new slot in the globals namespace.
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that are appropriate for the selected entity. Each action corresponds to a method in Traits

entityMorphs. Next the menu appears in the EER view.

In the case of actions that do not demand a target being selected previously, we immediately

continue with step 3. In the other cases a target is necessary we continue with step 2.

2. The entity is selected as a target via the EER menu. Such a target can be a

– Partner entity for a future 1-to-1, 1-to-n or m-to-n relationship

– Srong partner entity or a future dependency

– One of the specialised targets for a future specialisation

– One of the aggregated targets for a future aggregation

– One of the categorised targets for a future categorisation

– One of the role targets for a future role relationship

The methods to select the targets can be found in the targets category. The collections to con-

tain the targets themselves are also implemented as attributes in the Traits entityMorphs.

It is also possible to remove all previously selected targets. Next continue with step 1.

3. Select an action or relation in the EER menu that is linked to a method in Traits entityMorphs.

4. Calling such a mehod results in a number of automated actions. We illustrate them with the

implementation of the method to create a new specialisation, cfr. figure 5.6.

a. The method starts with making part of the initiated change visible in the EER view (cfr.

figure 5.6 (a)). More precisely a new symbol for a specialisation relationship is added to

the EER view, that is connected to the general entity with a link.

b. Next automated synchronisation steps are initiated in the implementation view (cfr. fig-

ure 5.6 (b)). This implies that each of the selected child implementation objects actually

starts inheriting from the parent implementation object. Specialisation links are also

drawn from each specialised entities to the symbol of the specialisation relationship in

the EER view.

c. To ensure that future population objects are created based on the specialisation rela-

tion that is established here, the implementation object is annotated with information on

which specialised targets are members of the same specialisation branches (cfr. figure 5.6
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| bridge. children |

(checkTargets: specializationTargets) 

 ifTrue:[

  bridge: (specializationFrameMorph copy).

  eerView addMorph: bridge.

  (specializationMorph copyIntoWorld: world

      FromMorph: self Offset: pointerPoint

       ToMorph: bridge Offset: 0 Width: 2).

   specializationTargets do:[|:t|

   drawPointerForSpecialization: bridge To: t Evt: event].

  children: (vector copy).

  specializationTargets do:[|:t| children:(children copyAddLast:t )].

  specializationSets: ( specializationSets copyAddLast: children).

  

  specializationTargets: (vector copy)]

 False:[userQuery reportAndContinue: 'First select specialized targets!']

a.

b.

c.

d.

e.

Figure 5.6: The implementation for creating a new specialisation relationship in SelfSync.

(c)). For example if an entity fruit is specialised into apple and pear in one specialisa-

tion relation then the set (apple, pear) will become member of the specialisationSets

of fruit. Based on the members of specialisationSets the Interactive Prototyping

process will generate interactions to decide in which object a new run-time fruit pop-

ulation object will be specialised at creation time. This kind of annotating is the default

manner how changes in the EER view affect future population objects. If the annotations

happen in parent objects, existing population objects can also be affected.

d. It is enforced that specialised targets are already selected (cfr. figure 5.6 (d)).

e. Finally the targets are “released” (cfr. figure 5.6 (e)).

5.3.3 Changes in the Implementation View

There exist three ways to change SelfSync implementation objects:

• Menu changes via the Self menu: slots are added to an implementation object or a new child

object is created from an implementation object.

• UI changes via the Self outliners: slot names and references in implementation objects are

manually changed via the outliners in the UI.

• Literal changes via assignments or meta-programming: references in implementation objects

are changed by evaluating code for assignments or by manipulating mirror objects.
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Before continuing we need to explain the way we implement the new behaviour that is respon-

sible for synchronizing the implementation view with the EER view. The implementation for the

synchronisation from the EER view to the implementation view, explained in section 5.3.2 gave rise

to a new kind of Self object that participates in the SelfSync ARTE process. The strong and weak

entity prototypes are implemented as specific empty Self objects with an additional EER outliner, a

number of hidden categories, and their own specific SelfSync traits objects that override the more

general behaviour of Self objects such as the methods in traits clonable.

In this case however we extend already existing methods with a test that checks whether the

receiver participates in ARTE, and with the appropriate new behaviour. The reason for this decision

is that the changes in the implementation view are intercepted at three different levels in the Self

language. A more appropriate object-oriented approach that applies inheritance and overrides the

original behaviour with the new behaviour is definitely part of our future work. This would result

in a new kind of outliner to view implementation objects, a new kind of mirror object to reflect

on objects in the ARTE process and a new kind of model object for Self slots that are contained in

implementation objects.

We describe the implementation of the synchronisation in the EER view in the three cases sum-

marised above.

Menu Changes

The first way to manipulate implementation objects in a certain schema namespace employs Self’s

object menu that is illustrated in figure 5.7. We extended this menu at the bottom with two new

actions to add new slots. The motivation for this extension is that the original actions still allow to

add information in implementation objects that is not propagated to the entity view.

When manipulating implementation objects via the Self menu, the default order of actions is as

follows:

1. Middle-click on an implementation object in the implementation view. This results in the Self

menu (see figure 5.7) being dynamically built for this implementation object. Next the menu

appears in the implementation view.

2. Select an action in the Self menu. The actions that initiate a synchronisation process in the EER

view are “subclassing”4 the object, adding a data slot and adding a method slot. The methods

4This refers to the state inheritance between prototypes with the copy down mechanism that simulates subclassing.
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Figure 5.7: The extended Self menu for implementation objects in SelfSync.

corresponding to these actions already exist in Self and are extended with synchronisation

behaviour.

3. The called method is executed and when necessary, synchronisation steps are automatically

realised in the EER view. In order to illustrate this we elaborate on the “subclassing” of an im-

plementation object. Selecting this action eventually results in sending the createSubclass

method to the implementation object. The code for this method is illustrated in figure 5.8. The

rectangles mark the added behaviour.

The original createSubclass method has been extended with a test to check whether the im-

plementation object is part of the ARTE process in SelfSync. If the subclassed object does not

participate in the ARTE process the original behaviour is called in the False: branch of the

createSubclass method. Otherwise five actions are undertaken:

a. First a new entity is created with the name a Subclass Of .... This new entity is then

visualised in the current EER view (see figure 5.8 (a)).

b. Second this new entity or implementation object is added in the current schema where it is

saved persistently (see figure 5.8 (b)).

c. Next the specialisation relationship is drawn in the EER view between the appropriate entities

(see figure 5.8 (c)).

d. Next the inheritance relationship is actually established between the implementation objects
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| bridge. copySelector. newChild. newTraits. parentsToOmit. pname = 'parent' |

newChild: copyRemoveAll isComplete: false.

(reflectee isEntity) ifTrue: [

newChild: (reflect:(strongEntity new: ('a_Subclass_Of_', (reflectee label)))).

(reflectee world) addMorph: (newChild reflectee).

newChild reflectee install.

bridge: (specializationFrameMorph copy).

(reflectee world) addMorph: bridge.

(specializationMorph copyIntoWorld: (reflectee world)

    FromMorph: reflectee Offset: (reflectee pointerPoint)

    ToMorph: bridge Offset: 0 Width: 2).

reflectee drawPointerForSpecialization: bridge To: (newChild reflectee).

reflectee specializationSets: (reflectee specializationSets copyAddLast: (vector 

copyAddLast: (newChild reflectee))). 

newChild]

False:[

newTraits: reflect: () _Clone.

parentsToOmit:  asSet copyFilteredBy: [|:s| s isParent ].

copySelector:

 copyDowns isEmpty 

  ifFalse: [copyDowns first selector]

     True: [|cdc. sels. selCounts|

            cdc: browseWellKnown copyDownChildrenOfReflectee: self Limit: 1.

            sels: cdc asVector copyMappedBy: [|:m| m copyDowns first selector].

            sels at: 0 IfAbsent: 'copy'

  ].

copySelector: userQueryMorph askString: 'Copydown selector?' 

                         DefaultAnswer: copySelector

                                 Event: process this birthEvent.

newChild copyDownFrom: self Sending: copySelector Omitting: parentsToOmit.

do: [|:s|

  s isParent ifTrue: [

    newTraits addSlot: s copyHolderForModule: ''

  ]

].

a.

c.

b.

d.

e.

Figure 5.8: The implementation for creating a new copy down child of a prototype in SelfSync.

(see figure 5.8 (d)). Remark that it is the same drawPointerForSpecialisation:To:

method of figure 5.6 (b) that is used here. This method actually extends the original behaviour

we are currently overwriting with actions in the EER view such as drawing links.

e. Finally the implementation object is annotated with a specialisation set that contains the new

subclassed implementation object (see figure 5.8 (e)).

UI Changes

The second way to manipulate implementation objects in a certain schema is via its outliner. One

can change references, i.e. the object’s slots and their contents via the Self UI. First the name of a

slot can be changed in an outliner. Second a pointer from an implementation object to another can
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be dragged and dropped onto another implementation object. Since these are default Self actions

we overwrote the associated behaviour for objects involved in ARTE, while the original behaviour

was maintained for other Self objects.

When a slot’s name is changed manually as illustrated in figure 5.9 this eventually results in the

Figure 5.9: Manually changing a slot’s name in Self.

message acceptChangingNameTo:Editor:Event being sent to selfSlotModel parent. The

latter is the object that defines the behaviour of the underlying Self slots (the models) that are

viewed with the Self outliners. The code for this method is illustrated in figure 5.10. The rectan-

| children. entity. n. new. newContents. newSlot. oldName. result. rr. stringToParse |

"this method is used to change the slot's name, when you double click on it"

oldName: slot name.

rr: newResultReporterForChangingNameInEditor: ed Event: evt.

newName  

  evalObjectBodyInContext: (reflect: lobby)

                   Prefix: '| '

                  Postfix:  (case if:    [ slot value isReflecteeMethod ]

                                  Then:  ' = (self) |' 

                                  If:    [ slot isAssignable ]

                                  Then:  ' <- 0 | '

                                  Else:  ' = 0 | ')

              ReportingTo: rr.

(case 

if: (slot value isReflecteeMethod)

Then:[children:

(browse childrenOf: (referrent mirror reflectee)). 

children do:[|:c| c reflectee isEntity ifTrue:[

c reflectee morphs do:[|:m| 

(m morphTypeName == 'methodAttributeMorph') ifTrue:[

 (m label = oldName) ifTrue: [m label: newName. m method label: newName]]]]]]

Else:[

entity:referrent mirror reflectee. (entity isEntity) ifTrue:[

entity morphs do:[|:m| (m morphTypeName == 'attributeMorph') 

ifTrue:[ (m label = oldName) ifTrue: [m label: newName. m attribute label: newName]]]]]).

self

a.

b.

Figure 5.10: The implementation for changing a slot’s name in SelfSync.

gles denote the added behaviour. First the default behaviour is invoked to change the name of the

slot. Next a test makes a distinction between method slots (see figure 5.10 (a)) and data slots (see
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figure 5.10 (b)). In both cases it is first tested whether the object that includes the changed slot is an

ARTE implementation object. If so and in the case of a data slot the name change is propagated to

the appropriate attribute in the corresponding entity. What happens in the case of method slots is

explained in chapter 6.

When a pointer is dropped onto another object (see figure 5.11) the contents of that slot is

changed to include this object. Self intercepts these kinds of changes via the UI’s MVC mecha-

Figure 5.11: Manually changing a slot’s contents in Self.

nism. More precisely, by dragging and dropping a pointer the view on this implementation object

is manually changed. This is automatically propagated to the underlying model of this implemen-

tation object, where the actual slot change is realised. Next this change is updated in the view of the

implementation object where the slots now contains the new object. This updating is implemented

the updateDo: method of the generalCategoryModel slotsUpdater parent object. We

added a call to the checkSlotContents method of Traits Entity, that is partially illustrated

in figure 5.12. The entire method can be found in Appendix A in section A.1. This checkSlot-

"check whether there exist already a link between the two entities"

(self morphs) do:[|:m|(m morphTypeName == 'relationFrameMorph')

   ifTrue:[((m relationName = (relLabel1 myLabel))  

            || (m relationName = (relLabel2 myLabel))) 

        ifTrue:[check 

          ifTrue:[

                 "update existing cardinalities"

                  m morphs do:[|:m|(m morphTypeName == 'pointerTailMorph') 

                    ifTrue:[(m headMorph rawOwner setCardinality: num)]].

                  m morphs do:[|:m|(m morphTypeName == 'pointerHeadMorph') 

                     ifTrue:[(m tailMorph rawOwner setCardinality: num)]].

Figure 5.12: An implementation excerpt of the checkSlotContents method in SelfSync.

Contents method ensures that when one implementation object references another implemen-

tation object, this is automatically synhronised in the EER view by drawing a relationship link

between the two corresponding entities. Moreover the actual number of referenced objects should
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be reflected in the multiplicity of that relationship. In the code excerpt in figure 5.12 it is tested

whether there is already a link drawn between the two entities. If so the multiplicity is updated on

the correct side of the relationship link in the EER view.

Literal Changes

Here code is written literally to change an object’s slots. This can involve calling a certain method or

by meta-programming with mirror objects. For example, fruit taste:’sweet’ corresponds

to the meta-variant fruit asMirror at:’taste’ PutContents:(reflect:’sweet’).

Both statements change the contents of the slot taste in the fruit prototype to the string ’sweet’.

For meta-programming statements the interception is easy. We extend the at:PutContents:

ifFail method that is sent to a mirror object with a call to the checkSlotContents method for

the reflected implementation object.

For assignments the situation is more complicated. In Self a corresponding assignment slot is

added transparently for each assignable data slot in an object. This assignment slot contains the

assignment primitive (←) for which the compiler generates the appropriate code. This implies that it

is – to the best of our knowledge – assignments cannot be intercepted by changing the assignment

slot directly via meta-programming.

SelfSync intercepts assignments via assignment shadowing. Between the object containing the

assignment and all its referring objects an object is dynamically mixed in that contains a shadowing

method that overrides the assignment. In the shadowing method a resend (super) is called with

the original assignment, followed by a call to the checkSlotContents method.

The code for a shadow method is illustrated in figure 5.13.

| asPar. c. m.|

m: (reflect: self).

c: (reflect: (| |)).

c at:(sel,':') PutContents:

 (('|:arg| resend.',sel, ': arg. checkSlotContents.') parseObjectBody).

(browse referencesOf: self) do:[

 |:ref| (ref isFake) ifFalse:[(ref mirror) at:

      (ref storedName) PutContents: c]]. 

c at:(sel,'assignmentParent') PutContents: (reflect:self).

(c at:(sel,'assignmentParent')) isParent: true.

^ (c reflectee)

a.

b.

c.

d.

Figure 5.13: The implementation for assignment shadowing in SelfSync.

a. First a new empty object is created (see figure 5.13 (a)) upon which is reflected.
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Figure 5.14: After assignment shadowing in SelfSync.

b. Next a new method is added in this object that merges a super call to the original assignment

with a call to the checkSlotContents method (see figure 5.13 (b)).

c. Next all references to the original object containing the assignment are replaced by a reference

to the new object (see figure 5.13 (c)).

d. Finally a slot is added in the new object containing the old object. This slot is then declared

to be a parent slot (see figure 5.13 (d)).

In figure 5.14 the taste: assignment has been shadowed.

5.4 The Interactive Prototyping Implementation

The Interactive Prototyping of implementation objects is implemented with the help of the copy

method in Traits entityMorphs. This method overrides the more general copy method that

is understood by all clonable objects.

The implementation of copy is depicted in figure 5.15. First a clone is made of the receiver

of the copy method via a super call. Next interactions are generated for the aggregations (with

resolveAggregates:), the categorisations (with resolveCategorisations:), the speciali-

sations (with resolveSpecialisations:), and the roles (with resolveRoles:) this object’s

entity is involved in the EER view. Similarly interactions are generated for the relationships that

originate from the new object with multiplicity 1 (with resolveOneConstraints:) and with
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| new |

new: resend.copy. 

"take a plain copy and next resolve all constraints"

resolveAggregates:new.

resolveCategorizations: new.

resolveSpecializations: new.

resolveRoles: new.

new: (resolveOneConstraints: new).

new: (resolveNConstraints: new).

new isPopulationMember: true.

currentPop addMember: new.

currentPop save.

new

Figure 5.15: The implementation of the copy method in SelfSync.

multiplicity n (with resolveNConstraints:). These auxiliary methods heavily depend on the

annotations that were added during Active Modelling as described in the fourth step of the list of

synchronisation actions in section 5.3.2. Next the new run-time object is declared to be a population

object and is installed in the current population.

In figure 5.16 a part of the code of the resolveCategorisations: method is illustrated.

In this code excerpt an interaction is generated for each annotated categorisation branch. This

interaction shows an option window to let the new object inherit from one of the categorisation

parents, at creation time. At the moment of selection, the selected categorisation parent’s prototype

is “subclassed” in the new run-time object. A parent slot is also dynamically added in the new

object, that contains the parent of the selected categorisation parent. The complete implementation

| assocs. catPar. categorizationNames. categorizationParents. 

children. childrenNames. clonesChildren. newAssoc. numOfAssoc. 

roleNames. rolePar. roleParents. selChild. slotName. slotName2 |

((categorizations size) == 0) ifFalse:[

categorizationParents: categorizations.

categorizationNames: (vector copy).

categorizationParents do:[|:p| categorizationNames: 

(categorizationNames copyAddLast: (p label))].

"checking whether I was not categorized before,

 if so by default keep the parent"

(reflect: self) copyDowns do:[|:cd| (categorizationParents includes:

(cd immutableParentMirror reflectee))

ifTrue:[userQuery report:'This object is already categorized into',

((cd immutableParentMirror reflectee label)

 uncapitalizeAll).^new]].

catPar: userQuery askMultipleChoice: 'This new ',

((self label) uncapitalizeAll),

 ' object can be categorized in one of the following parents: '

                          Choices: categorizationNames

                          Results: categorizationParents.

(reflect: catPar) createSubclassIn: new.

(reflect:new) at: (((catPar label),'Parent') uncapitalizeAll) 

PutContents: (reflect: (catPar parent)).

((reflect:new) at: (((catPar label),'Parent')uncapitalizeAll)) 

isParent: true.].

Figure 5.16: A code excerpt of copy’s auxiliary method to resolve categorisations in SelfSync.

of all auxiliary methods can be found in Appendix A in section A.2.

5.5 Constraint Enforcement Implementation

The part of the SelfSync implementation that deals with constraint enforcement for multiplicities

and dependencies is gathered in Traits entity as illustrated in figure 5.5.
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5.5.1 Multiplicities

To implement Multiplicity Constraint Enforcement SelfSync applies a checkConstraintsmethod

that is partially listed in figure 5.17. This code excerpt deals with relationships that originate from

"For each (1/n)-to-N relation I can point to at most N partner"

constrN do:[|:c|((names1 occurrencesOf: 

 (c at: 0)) asInteger > ((c at:1) asInteger)) ifTrue:

  [userQuery show:

   'Constraint of x-to-',((c at: 1) asString), ' relation between the',

   (self label uncapitalizeAll capitalize),' and ',

       ((c at:0) capitalize),' objects has been violated!

     I am pointing to more than ',((c at: 1) asString),' ',((c at: 0) 

    capitalize),' objects...' ForSecs:1]]].

"For each (1/n)-to-N relation at most N partners can point to me"

constrN do:[|:c|((names2 occurrencesOf:

  (c at: 0)) asInteger > ((c at:1) asInteger)) ifTrue:

  [userQuery show:

   'Constraint of x-to-',((c at: 1) asString), ' relation between the',

   (self label uncapitalizeAll capitalize),' and ',((c at: 0) capitalize),' 

       objects has been violated! More than ',((c at: 1) asString),' ' ,

   ((c at: 0) capitalize),' objects are pointing at me...' ForSecs:1]].

Figure 5.17: A code excerpt of the checkConstraints method to enforce multiplicities in Self-
Sync.

the checked population object that initiated the checking mechanism and that have a multiplicity

n, strictly larger than one, for the partner entities.

During Active Modelling the names of the partner implementation objects that constrain an

implementation object are annotated in the latter object’s private slots, more precisely in the con-

straintByOne and constraintByN slots. For example if in the EER view a mother entity is in a

one-to-3 relationship with a child entity, then the pair (’child’,3) will automatically become a

member of the vector in the constraintByN slot in the mother implementation object. Moreover

’mother’ will automatically become a member of the vector in the constraintByOne slot in the

child implementation object.

In the code excerpt in figure 5.17 the methods constrOne and constrN implemented in

traits entityMorphs, dynamically access the names of these constraining objects, in the cur-

rent population object. In the first part it is checked whether this population object references at

most n other population objects of the constraining kind. This is achieved by gathering in names1

the names of the implementations object from which the currently referenced population objects

were cloned. If the name of a constrained implementation object of constrOne and constrN oc-

curs more than the allowed multiplicity n times in the names1 collection, a warning is generated.
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In the second part the above process is repeated but for the names of the implementation ob-

jects of the population objects that reference the checked population object themselves. The entire

implementation of the checkConstraints method can be found in Appendix A in section A.3.1.

5.5.2 Object Dependency

The enforced creation behaviour of Object Dependency is implemented in SelfSync in the resolve-

OneConstraints: and resolveNConstraints: auxiliary methods used in the copy method

discussed above. The complete code can be found in Appendix A in section A.2. We list the rele-

vant piece of code in figure 5.18. This particular code is called when the actual number of references

   isStrongEntity 

    ifFalse:[

        (entityOwner == s)

          ifTrue:[userQuery report:'This new ',

             (((new label)uncapitalizeAll) capitalize),

  ' object is dependent to this ',

  (s label uncapitalizeAll capitalize),' object: 

  establish at least one association!'.

             ^copy]

          False:[(reflect:new) at: slotName PutContents:(reflect: nil).

   (reflect:new) removeSlot:(s label)]]

   

Figure 5.18: Excerpt of code to enforce Object Dependency at creation time in SelfSync.

in a population object is interactively set to zero during Interactive Prototyping when resolving re-

lationships in the copy method. In this case when the new population object is a dependent weak

object, a warning is generated that at least one actual reference to a strong population object has to

be established. Next the copy method is re-initiated.

The cascading delete behaviour of Object Dependency is implemented in SelfSync with the help

of the deleteMe method in Traits entity, that is listed in figure 5.19. In part (a) of figure 5.19

each slot5 of the population object that received the deleteMe method is checked to contain de-

pendent population objects. In the case of a collection, the checking mechanism iterates upon all its

elements. If a referenced object is a dependent population object, deletion is realized by removing

all real slots of that object.

In part (b) of figure 5.19 finally the appropriate slots of the population object that received the

deleteMe method are deleted. The entire implementation of the deleteMe method can be found

in Appendix A in section A.3.2.

5Public slots that are not gathered in any category.
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dependents do:[|:d| 

  (reflect:self) do:[|:s| 

    ((((s category == 'private')  ||

     ...

    (s category == 'Frame Morph State')

    || (s isParent)) || (s isMethod)) ||(s isAssignment))

      ifFalse:[(((reflect:(s contents reflectee)) creatorSlotHint name) == 'vector')

              ifTrue:[(s contents reflectee) do:[|:e|

                       (((reflect:d) creatorSlotHint name) == 

                       ((reflect:e) creatorSlotHint name)) 

                        ifTrue:[e deleteMe] False:['']]] 

               

              False:[(((reflect:(d )) creatorSlotHint name) == 

                       ((reflect:(s contents reflectee)) creatorSlotHint name)) 

                        ifTrue:[(s contents reflectee) deleteMe]]]]]] 

 False:[(entityOwner isNil) 

   ifFalse:[(entityOwner) dependents:

    ((entityOwner dependents) remove: (self label))]].

(reflect:self) do:[|:s| 

    ((s category == 'private')  ||

     ...

    (s category == 'Frame Morph State'))

 ifFalse:[(reflect: self) removeSlot: (s name)]].

a.

b.

Figure 5.19: The partial implementation of the deleteMe method to enforce Object Dependency
in SelfSync.

5.6 Role Modelling Implementation

For Role Modelling SelfSync supports the RTE scenario for roles, that was described in section 4.8.8.

We will focus on the traits object for general role behaviour called roleParentSlots, cfr. fig-

ure 5.20.

Figure 5.20: The parent object that gathers general role behaviour in SelfSync.

We discuss the methods to dynamically create or remove a role in an object and the method that

checks role combinations.

5.6.1 Creating a New Role in SelfSync

In figure 5.21 the code for the becomeRole: method is listed. In this method the warped inheritance

hierarchy pattern (cfr. section 4.4) is constructed. In the first statement the population object that
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addRoleDescription: (role description).

(reflect: role) createSubclassIn: self.

(reflect: self) at: ((role description),'parent') 

     PutContents: (reflect:(role parent)).

        

((reflect: self) at: ((role description),'parent')) isParent: true.

(reflect: self) removeSlot: 'parent' IfFail:''.

currentJobs do:

  [|:r| roleSets do:

         [|:rs| rs do:[|:rse| ((rse description) = r)

                ifTrue:[rs do:

                      [|:or| ((or description) = r) 

                      ifFalse: [(currentJobs includes:(or description))

                                 ifTrue:[error: r,'XOR',(or description),

           ' constraint violated'. 

                                          currentJobs:(currentJobs remove: r).]]]]]]]

removeRoleDescription: (role description).

(reflect: self) removeSubclassFrom: role.

(reflect: self) removeSlot: ((role description),'parent') IfFail:''.

((currentJobs size) == 0) ifTrue: [(reflect: self) at: 

 'parent' PutContents: 

  (reflect:(((reflect:self) creatorSlotHint) contents reflectee parent)). 

((reflect: self) at: 'parent') isParent: true.].

Figure 5.21: The behaviour for dynamically creating a role in SelfSync.

is the receiver of this method is annotated with a description of the new role. Next the reversed

state inheritance between the prototype of the receiver and the prototype of the role is realised. The

following two statements add the inheritance between the receiver and the traits of the role. The

last statement removes the inheritance link to the receiver’s own traits if still present, i.e. when this

is the first role to be performed.

5.6.2 Removing a Role in SelfSync

In figure 5.22 the code for the removeRole: method is listed. In the first statement the annotations

addRoleDescription: (role description).

(reflect: role) createSubclassIn: self.

(reflect: self) at: ((role description),'parent') 

     PutContents: (reflect:(role parent)).

        

((reflect: self) at: ((role description),'parent')) isParent: true.

(reflect: self) removeSlot: 'parent' IfFail:''.

currentJobs do:

  [|:r| roleSets do:

         [|:rs| rs do:[|:rse| ((rse description) = r)

                ifTrue:[rs do:

                      [|:or| ((or description) = r) 

                      ifFalse: [(currentJobs includes:(or description))

                                 ifTrue:[error: r,'XOR',(or description),

           ' constraint violated'. 

                                          currentJobs:(currentJobs remove: r).]]]]]]]

removeRoleDescription: (role description).

(reflect: self) removeSubclassFrom: role.

(reflect: self) removeSlot: ((role description),'parent') IfFail:''.

((currentJobs size) == 0) ifTrue: [(reflect: self) at: 

 'parent' PutContents: 

  (reflect:(((reflect:self) creatorSlotHint) contents reflectee parent)). 

((reflect: self) at: 'parent') isParent: true.].

Figure 5.22: The behaviour for dynamically removing a role in SelfSync.

for the role to be stopped performing are removed from the receiver. Next the reversed inheritance

between the prototype of the receiver and that of the role are annihilated. In the next statement the

inheritance link from the receiver to the role’s traits is deleted. The following test checks whether

the removed role was the only role performed by the receiver. If so the inheritance link to the

receiver’s own traits, that was removed upon performing its first role is established again.

5.6.3 Constraining Role Combinations in SelfSync

Finally in figure 5.23 the code for the checkRoleConstraints method is listed. This methods

makes use of the roleSets attribute of the receiver. In this attribute that is inherited from the

implementation object the receiver was cloned from, annotations were added during Active Mod-
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addRoleDescription: (role description).

(reflect: role) createSubclassIn: self.

(reflect: self) at: ((role description),'parent') 

     PutContents: (reflect:(role parent)).

        

((reflect: self) at: ((role description),'parent')) isParent: true.

(reflect: self) removeSlot: 'parent' IfFail:''.

currentJobs do:

  [|:r| roleSets do:

         [|:rs| rs do:[|:rse| ((rse description) = r)

                ifTrue:[rs do:

                      [|:or| ((or description) = r) 

                      ifFalse: [(currentJobs includes:(or description))

                                 ifTrue:[error: r,'XOR',(or description),

           ' constraint violated'. 

                                          currentJobs:(currentJobs remove: r).]]]]]]]

removeRoleDescription: (role description).

(reflect: self) removeSubclassFrom: role.

(reflect: self) removeSlot: ((role description),'parent') IfFail:''.

((currentJobs size) == 0) ifTrue: [(reflect: self) at: 

 'parent' PutContents: 

  (reflect:(((reflect:self) creatorSlotHint) contents reflectee parent)). 

((reflect: self) at: 'parent') isParent: true.].

Figure 5.23: The behaviour for dynamically checking role combinations in SelfSync.

elling to represent the permissible role combinations. Consider the manager-salesman-engineer

example in figure 5.24.

Figure 5.24: Role example.

When this setup is modelled in the EER view during Active Modelling, the person implemen-

tation object’s roleSets collection contains two elements. The first one is the set (manager),

while the second one is the set (salesman,engineer).

The checkRoleConstraints method iterates upon the current roles of the receiver, in cur-

rentJobs and checks them against the annotated combinations in the receiver’s roleSets. If

at least two of the current roles are members of the same role set an error is generated. The

checkRoleConstraints method is called in the becomeRole: method when annotating the

receiver with the new role’s description.

5.7 Conclusion

SelfSync is a proof-of-concept implementation in Self, that supports our instance of ARTE. Its UI

includes a graphical drawing editor for EER diagrams. Entities and implementation objects are

represented by an EER outliner and a Self outliner that both view one underlying Self object. Self-
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Sync objects are implemented with prototypes that merge these two views. A double traits in-

heritance hierarchy also illustrates the duality of the two views. In SelfSync the Active Modelling

phase is fully automated and applies Optimal Transformations between the different views. In

the EER view SelfSync uses a dynamically built entity menu whose actions result in annotations

and/or synchronisation in the implementation view. Changes in the implementation view can be

realised via the Self menu, via the Self UI, and literally via the code. The invoked synchronisation

behaviour is scattered at different levels of the Self language: in the outliners, in the underlying

slot models and in the mirrors at the meta-level. Run-time Object Generations are created during

a semi-automated Interactive Prototyping phase. The prototyping behaviour is implemented by

overriding the default cloning operation of Self with a new cloning method for SelfSync objects,

that generates interactions depending on their annotations. Multiplicity Constraint Enforcement

and Object Dependency is implemented with meta-programming constructs that compare imple-

mentation objects’ references with their annotated objects. SelfSync implements Role Modelling

with the help of the warped hierarchies pattern and supports a mechanism for enforcing role com-

bination constraints.
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Chapter6
Extending ARTE with Advanced

Method Synchronisation: Towards
Executable Models and Visual AOP

In this chapter we extend our ARTE approach with Advanced Method Synchronisation (AMS). More

precisely we consider operations in the data modelling view, that have their corresponding meth-

ods in the implementation view. Methods and their bodies are made visual in the data modeling

view and are synchronized with the implementation and population views (see section 6.1).

We envision that AMS comes with two repercussions for ARTE. The first track we can follow

is that AMS allows to evaluate operations in the context of the data model. This increases the

feasibility to extend SelfSync with behaviour in the data model, that can be “run”. In this way, we

envisage that it is possible for EER models in SelfSync to become Executable Models (see section 6.2).

Second, AMS makes it possible to “inject” or remove Self code into operations, from inside

the data modeling view. We foresee that these before/after constructs can be consolidated in

SelfSync, in such a way that this extension can be considered as a first step in the direction of Visual

Aspect-Oriented Programming.

6.1 Advanced Method Synchronisation in ARTE Tools

As a consequence of the Optimal Transformations (see section 2.5.2) and of the fact that data and

methods both are represented with slots, SelfSync allows, next to atributes, to include operations in

the entities of the graphical data modeling view, such as the operations in UML class diagrams.

These operations are linked to the method bodies of the corresponding methods in the implemen-
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tation objects.

We define Advanced Method Synchronisation (AMS) as the synchronisation between the op-

erations in a data modeling view and methods in an implementation view. Method bodies can

be edited in the data modeling view, which is to be automatically synchronized with the actual

method bodies in the implementation view, and vice versa.

In the remainder of this section we define the language characteristics required to implement

AMS (see section 6.1.1) and describe their presence in programming languages (see section 6.1.2).

Next, we illustrate how the data modelling view in SelfSync is extended with operations (see sec-

tion 6.1.3), followed by mappings for these operations in the other views (see section 6.1.4). Finally,

we provide an overview of how AMS is implemented in SelfSync (see section 6.1.5.

6.1.1 Language Constructs for AMS

In this section we discuss the language constructs that are required to implement AMS.

The method synchronisation itself is similar to the synchronisation of attributes. The new lan-

guage characteristics we need, are a representation for methods in the data modeling view, and

mechanisms to convert the representations of methods from the implementation view to the data

modeling view and vice versa.

Language Mechanism 6.1 A View for Methods is a graphical representation in the data modeling view,

that views a method and its body in the implementation view,

Additionally, AMS requires meta-programming means to grab a method, to pretty-print a method

body, etc. Via this link methods are viewed and edited in both directions. Therefore we introduce

the following two language constructs.

Language Mechanism 6.2 A Method Reification Mechanism makes methods of the implementation

view visible in the data modelling view.

The method body in the implementation view can be unparsed into a string, for example, in order

to incorporate them into the data modelling view.

Language Mechanism 6.3 A Method Absorption Mechanism implements the converse operation of the

reification mechanism of definition 6.2.
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This mechanism is required because methods can be edited and saved from inside the data mod-

elling view. After editing the new string representation of the method is parsed again into a method

body, and added to the implementation view.

Similar to the synchronisation of attributes, AMS uses:

• The Bidirectional Connection, as introduced in definition 3.1, that can also implement a cor-

respondence between an operation residing in the data modelling view and the body of the

corresponding method in the implementation view.

• For the method synchronisation itself, again we use the Synchronisation Trigger Mechanism,

introduced in definition 3.2.

6.1.2 Presence of AMS Constructs in Programming Languages

The new language constructs that are demanded to implement AMS in ARTE require:

• Environment level constructs: A View for Methods

• Meta-level constructs: A Method Reification Mechanism and a Method Absorption Mecha-

nism

The presence of a View for Methods heavily depends on the User Interface of a programming

language environment. Smalltalk and Self environments, for example, that employ an MVC UI,

can easily implement this language construct.

As mentioned before in section 3.4.1, the poor reflective abilities of C++ implies that the Method

Reification Mechanism and the Method Absorption Mechanism, are not available in C++.

Although Java has quite rich a reflection API, it does not allow a programmer to absorb new

code into an existing Java program as defined by the Method Absorption Mechanism.

However, the Method Reification Mechanism and the Method Absorption Mechanism are present

in Smalltalk, Ruby and Self:

• Smalltalk supports a Method Reification Mechanism and a Method Absorption Mechanism

with respectively sourceCodeAt: and compile:.

• Ruby has support for a Method Reification Mechanism with run-time access to methods.

A Method Absorption Mechanism is supported via an eval method (and its variations such

as class eval, module eval, and instance eval) that will parse and execute an arbi-

trary string of source code as a method.
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• Self implements a Method Reification Mechanism via its mirrors with the method mirro-

redObject at:selector contents sourceString. A Method Absorption Mechanism in Self

is based on the construct body parseObjectBody that parses a string into a method body.

Adding it to an object in a new method slot is implemented with at:PutContents:.

6.1.3 An EER Model with Operations

In this section we describe how the EER view in SelfSync is extended to support AMS.

First, we extend SelfSync’s drawing editor for EER models with a new modeling construct:

Operations (see figure 6.1) that are similar to those in the UML class diagrams. The EER operations

are represented by red rectangles that carry the name of the operation. Operations have their own

Figure 6.1: An operation in a strong entity.

specific menu that is dynamically built with the following actions, as illustrated in figure 6.2:

Figure 6.2: An operation menu.

• Show code: to open a window containing the code that is associated with this operation.

• Edit code: to open an editor window containing the code that is associated with this opera-

tion. The edited code can then be saved, in order to synchronise with the method’s body.

• Delete method: to delete an operation in the data modeling view. This action is followed by

the deletion of the corresponding method in the implementation view.
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The remaining menu items are related to one of the two extensions based on AMS, i.e. Visual AOP,

that we propose later. The menu items are discussed in section 6.3.2.

6.1.4 Mappings between Operations and Methods

In this section we discuss the mappings between operations in the EER view and the elements of

the other views.

From the EER View to the Implementation View Operations in the EER view map to method

slots in the related parent objects in the implementation view. The contents of operations, i.e. the

method bodies in the EER view correspond to the contents of the method slots in the parent objects

in the implementation view. This is a direct consequence of slots in Self.

From the Implementation View to the Population View When a method body is changed, this

will affect certain run-time objects that compose a Run-time Object Generation, as explained in

section 2.5.3. More precisely, all population objects that were cloned from the implementation

object where the method change took place, will adhere to the new behavior.

From the EER View to the Population View By adding, removing, renaming, and changing an

operation to an entity view, all run-time population objects that are created from the entity view’s

code-time implementation object, are affected. This is a consequence of adding corresponding

method slots in the traits object of the code-time implementation objects, that are shared by the

code-time implementation object as well as by all its run-time population objects.

6.1.5 SelfSync Implementation for AMS

In this section we briefly describe the implementation of AMS in the SelfSync ARTE tool.

Method Synchronisation In the EER View

The graphical representation of operations in the EER view is handled by the methodAttribute-

Morph prototype and its traits object (see figure 6.3). These objects deal with the graphical rep-

resentation of operations and with window and menu management. Moreover they implement

behaviour to synchronise operations and methods and to manage code injections, as explained in

section 6.3.5.
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Figure 6.3: The methodAttribute prototype and its parent.

Adding a new operation in an entity in the EER diagram is realised with the dynamically built

entity menu, more precisely with the addMethod: method. The code for this method is illustrated

in figure 6.4. In this method, a new methodAttribute object with a random name1 such as

method952 (see figure 6.3) is cloned.

This new methodAttribute object contains a default body ’put custom code here’. A

new method slot containing that body is added in the implementation object that corresponds to

the entity where the operation is added. The graphical representation of the new operation is then

added to the entity in question, with the help of a new methodAttribute clone.

When the name of the operation is changed in the EER view, it is saved with the acceptChanges:Evt:

method for editable labels, that synchronises the new name in the corresponding method slot.

1Note that currently the names of operations do not include arguments. This is not a real problem since Self allows for
an argument-less notation for methods.
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Figure 6.4: The addMethod: method in traits entityMorphs for adding an operation in the
EER view.

The body of an operation is always stored in the codeBody data slot of the corresponding

methodAttribute, that is made visual when consulted in the EER view.

When this operation’s body is edited and saved in the EER view, the saveBody: method in

methodAttribute parent performs the actual synchronisation to the method in the implemen-

tation view. If necessary, this saving process composes a new body from the previous body and its

injections.

Method Synchronisation In the Implementation View

When a new method slot is added in an implementation object, the extended Self menu (see fig-

ure 5.7) allows to choose between propagation of this operation to the EER view, or to implement a

method that is not visible in the EER view.

In the first case, Self’s built-in mechanism to add method slots is reused. We however made a

distinction between adding data slots and method slots since these actions require different kinds

of synchronisation in the EER view.

Our solution involves the creation of a new prototype selfMethodSlotModel that is illus-

trated in figure 6.5. Each new method slot in an implementation object requires a clone of the

selfMethodSlotModel prototype.

We provide the selfMethodSlotModel parent that is illustrated in figure 6.5, with a new

acceptEditWholeThing:Editor:Event: method. This method extends the default Self be-

haviour to accept the code for a new method slot, with the actual synchronisation in the EER view.

By default we add new methods in the parent part of implementation objects. A part of the new
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Figure 6.5: The selfMethodSlotModel prototype and its parent object.

code (the last five lines) in the acceptEditWholeThing:Editor:Event: method are respon-

sible for tracking the prototypes that inherit from the changed parent implementation object. It is

in these prototypes’ visual entity view that the synchronisation is realised, by adding a graphical

representation for the operation.

When a method body is changed in an implementation object, this becomes visible in the EER

view at the moment that the body of an operation is consulted with the operation menu. Therefore

we do not need to implement any additional synchronisation behaviour.

The acceptChangingNameTo:Editor:Eventmethod propagates the renaming of a method
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slot in the implementation view to the name of the operation in the EER view.

6.2 Towards Executable SelfSync Models

In this section we first introduce our approach to Executable Models in the context of the ARTE

approach. Next, we show an embryonical example of how operations in a SelfSync EER model can

be evaluated and run, in order to illustrate that it is feasible to construct Executable ARTE Models.

Finally, an overview of a corresponding implementation in SelfSync is provided.

6.2.1 Executable Models

One of the direct consequences of implementing AMS, is that behaviour becomes visible in an

abstract data model. This allows us to envisage that SelfSync EER models are suitable to become

executable. An Executable Model [20, 88, 104] is a model that acts like code and can be “run”, but

is defined at a higher level than the implementation language. An Executable Model is a working

prototype. Running an Executable Model can be considered as testing it and results in accepting

the model as it is or in (semi-automatically) extending and refining it.

Whereas Model-Driven Development (MDD) focuses on abstract models from which actual

software is derived semi-automatically, Agile Development aims at delivering small “slices” of

working code as soon as possible. Agile MDD combines the tools that are used in MDD with the

Agile Development process. On the one hand, Agile MDD can be troubled by the fact that a model

being actually “correct” or satisfying, becomes only clear when the derived code is both compiled

and run. On the other hand, working code fragments still contain concepts, such as vectors, that

are of no use for customers. Executable Models can offer a solution to both problems.

The main reason why AMS can be implemented in a language such as Self, is that, at compile-

time, it is merely the syntactical correctness of method bodies that is checked. On the one hand,

this implies that the overall correctness of a method’s body becomes only clear at call-time. Un-

fortunately, this approach of evaluation allows to write nonsensical operation bodies in the data

modelling view. On the other hand, Agile MDD advocates intensive customer collaboration, espe-

cially at the modelling level. Customers can be involved in the EER model storming, as they are

often familiar with the domain model. Therefore it is plausible to directly “implement” some use

cases in the EER model, in terms of that EER model.

In order to do so, we need a mechanism to evaluate the correctness of the implemented use cases

in the context of the EER model. An Entity checker extends Self’s method evaluation at compile-
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time, with an additional partial evaluation technique [60] that checks whether added operation are

syntactically correct and will “run” in the context of the EER model. In the remainder of this section,

we describe how ARTE EER models can be considered as Executable Models. More precisely, it is

possible to evaluate an operation in the EER view in the context of the entity it is part of.

In Executable SelfSync Models, edited operations are evaluated based on the presence of at-

tributes, operations and relationships in the entity it is part of.

Before saving an operation’s body with saveBody: (see figure 6.3) we invoke an evaluator on

the operation’s expressions, in the context of the entity that contains the operation.

The evaluator for operations checks whether the expressions in the code statements of the op-

eration are present in the entity as:

• An attribute

• An operation

• A role2 in a relationship to another entity

Crucial in our notion of Executable Models is that, if an expression is not present, it is created

interactively as one of the above items. The evaluation process requires interactions to decide to

add the missing expressions as an attribute, as an operation or as a relationship.

6.2.2 Example of an Executable SelfSync Model

We illustrate how Executable SelfSync Models can work with a specific example that is illustrated

in figure 6.6.

When the code for sell is saved, the evaluation proceeds correctly since vendor is in a rela-

tionship with supplier that has the role supplier in that relationship. Moreover, supplier

already contains an operation supply.

When, however, we save the code for operation supply in supplier, the evaluator is inter-

rupted twice. The first time the evaluator observes that supplier has no attribute or operation

with the name factory nor a relationship to another entity that has the role factory in this re-

lationship. In this case, and since it does not exist yet in the EER view, a new entity factory is

added to the EER view interactively. Next a new one-to-one relationship is established between

factory and supplier with the appropriate roles. This new setup is depicted in figure 6.7.

2The named place in the relationship, not the role modeling concept.
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Figure 6.6: Saving code for a valid sell operation (right) and for an invalid supply operation
(left).

Figure 6.7: Adding a new relationship to a new factory entity.

Next, order is evaluated in the new entity factory. Since order is not part of the entity as

attribute, method or relationship, in this case, order is added as a new operation, cfr. figure 6.8.

The two actions for adding factory and its operation order in the EER view, are synchronised

in the implementation view.

6.2.3 Implementation Scheme of an Operation Evaluator

In this section we informally discuss how an evaluator for operations in SelfSync Executable Mod-

els can be implemented.
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Figure 6.8: Adding a new operation order in factory.

Such an evaluator does not “evaluate” the Self expressions in the operations’ bodies in the orig-

inal sense of the word, but rather checks the “correctness” of these expressions in the context of the

EER view. In order to do so, the evaluator requires:

• An environment that functions as the context to evaluate an expression in. Such an environ-

ment consists of modeling elements of the EER view.

• An eval function that checks whether the elements of the evaluated expressions are visible or

“known” in a certain context. If necessary, this function can trigger the interactive creation of

new elements in an entity.

• An apply function that checks whether the message sends in the expressions of the operations’

body are valid, by evaluating the message selectors in their appropriate context.

The Environment

The environment that is used during evaluation, is in fact the set of attributes, operations and rela-

tionships of the original entity where the operation is evaluated. We also add the local variables of

the operation’s body to the environment.

The set of attributes and operations can be generated dynamically.
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A first appproach is to generate this collection from the implementation objects. This is based

on the assumption that in SelfSync, attributes are synchronised as data slots in the public part of

the prototype of the implementation object, while all operations are synchronised to method slots

in the parent part of the implementation object.

As mentioned before, the roles of the relationships in an entity are annotated in the private cate-

gory of the implementation object. For example, in the slot roleInRelation vendor supplier,

the role ’supplier’ is stored. In the slot m to n Relationship vendor supplier, the imple-

mentation object supplier is stored. Based on advanced string operations, we can find whether

the entity of the evaluated operation has a relationship, with the string in question as role.

Alternatively, the set of attributes and operations can be generated from the graphical repre-

sentation of the entity itself. By navigating the graphical morphs the entity is composed of, we

can construct a set with the names of attribute morphs, the operation morphs and the labels of the

relationship links.

The Eval Function

The eval function itself works as follows :

• For simple expressions, such as integers and strings⇒ (exp eval) =‘true’. Nothing has

to be checked, since these simple expressions are known in the globals namespace.

• For variables, such as stock ⇒ (exp eval) = (exp lookupIn:environment). We

have to look up these variables in the current environment. Due to the universal access to

data and method slots, variables can denote attibutes, relationships as well as operations.

Also assignments such as stock: are looked up as attributes. If found, ’true’ is returned.

If not found, we call createNewVariable.

The createNewVariable method interactively creates a new attribute, operation or rela-

tionship. The interactions are similar to the ones we implemented for the Interactive Pro-

totyping phase. Based on the decision of the user, the EER view is extended and SelfSync

automatically synchronises the implementation view with new code.

• For applications, such as stock + 5 or supplier factory order⇒ We consider three

kinds of messages that are evaluated with an apply function:

– Unary message: (exp1 op) eval = apply:(op exp1)

173



CHAPTER 6. EXTENDING ARTE WITH ADVANCED METHOD SYNCHRONISATION:
TOWARDS EXECUTABLE MODELS AND VISUAL AOP

– Binary message: (exp1 op exp2) eval = apply:(op exp1 exp2)

– Keyword messages: (exp1 op1 exp2 op2...opn exp(n+1) eval = apply:((op1

op2 ... opn) exp1 exp2...exp(n+1))

The Apply Function

The apply function works as follows:

• First, the arguments are evaluated one by one in the current environment.

• Second, the operator is evaluated. Therefore, the first argument is looked up in the current

environment. Depending on where in the environment it is found, the following actions are

taken:

– The first argument is created or found as an attribute: the application stops here. The

reason is that in the implementation view, all attributes are by default clones of the

simpleAttribute prototype. What the future value of the attribte will be, is only

known at run-time. Therefore, there is no use to apply the operator to the attributes. E.g.

stock + 5: this will only work when stock already contains an integer.

– The first argument is created or found as an operation: the application stops here. The

reason is, also in this case, that in the implementation view the outcome of a method is

only known at call time. Due to the late binding in the dynamically typed Self language,

we cannot always determine what the result of a method will be. Applying operators to

that unknown result has no use. E.g. doSomething size.

– The first argument is created or found as a relationship: the application is to be realised

in the new environment of the entity that is referenced by this new relationship. For

example, supplier factory order: then factory order is to be evaluated in the

context of the supplier entity. Therefore we switch the environment to the new entity.

Next the operator factory order is evaluated in the new environment.

Example of An Operation Evaluation

As a example consider the expression supplier factory order that is evaluated in a stand-

alone the vendor entity:
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• (supplier factory order) eval

⇒ First evaluate the expression. In this compound unary message, supplier is the argument and

factory order is the operator.

• apply:(((factory order) eval)(supplier eval))

⇒ First, apply starts with the argument (supplier eval).

• apply:((apply:(order eval)(factory eval)))(supplier eval)

⇒ This results in creating a new relationship: the environment switches to supplier. The operator

is evaluated in this new environment.

• apply:((apply:(order eval)(factory eval))(supplier eval))

⇒ First, apply starts with the argument (factory eval) that results in creating a new rela-

tionship: the environment switches to factory and continues.

• apply:((apply:(order eval)(factory eval))(supplier eval))

⇒Next, apply evaluates the operator argument (order eval) in the new environment factory

that results in creating a new operation order in factory.

6.3 Towards Visual Aspect-Oriented Programming

A second extension to AMS is Code Injections that implement before/after constructs in a num-

ber of scattered operations in a data modeling view. These operations can be selected graphically

as join points. Code Injections combined with the visual selection of join points can be considered

as a first step in the direction of Visual Aspect-Oriented Programming (AOP).

6.3.1 Code Injections

Code Injections involve behaviour that is “injected” before or after one or more selected operations

in the EER diagram. This is a simple visual version of Aspect-Oriented Programming [62], where

static join points are selected graphically in a diagram instead of described by a pointcut. This

new piece of code is again automatically added at the beginning or end of the method bodies of all

selected operations in the data modeling view.

These code injections maintain their identity: at any point in time the layers of different code

injections of an operation can be consulted. Each of these injections can be removed locally or in
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all operations where this specific injection was added. However, code statements that are similar

to the injections but were added outside the injection mechanism will not be deleted.

6.3.2 Code Injections in the EER View

In this section we illustrate how the EER view can be adapted to include Code Injections.

We provide a notation for an operation’s code, that clearly distinguishes between the original

body and its injections. An editable operation with two injections is illustrated in figure 6.9.

Figure 6.9: An operation’s body with two code injections.

The menu items in figure 6.1, that relate to Code Injections are:

• Show code injections: to open a window for each previously added injection containing the

code of that injection. Figure 6.9 illustrates two code injections and their menu.

Figure 6.10: An operation’s body with two code injections.

• Inject code: to open an empty editor window. The injection code in the edited window can
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then be injected locally or in every selected operation. In figure 6.11 an injection can be added

in the two selected operations.

Figure 6.11: Code injection in selected operations.

• Select method: to select a number of operations.

6.3.3 Language Constructs for Code Injections

The implementation of Code Injections demands a mechanism to graphically select operations and

mechanisms to inject and remove code locally or globally.

Language Mechanism 6.4 A Joinpoint Reification Mechanism allows different operations in the data

modelling view to be graphically selected, one after the other.

Such a Joinpoint Reification Mechanism possibly combines a Method Reification Mechanism and a

Method Absorption Mechanism with the View for Methods.

New injections can be added locally or globally (in all selected operations). The selection mech-

anism accumulates the data modelling view’s operations onto which this code injection will be

applied. It thus serves as a graphical pointcut language that gathers an extensionally defined set of

joinpoints. This requires reification of methods in order for the selection mechanism to be able to

accumulate them.

Language Mechanism 6.5 A Code Injection Mechanism merges the original method body combined

with all its injections in the data modelling view into one new method body in the implementation view.

This mechanism can be based on the Bidirectional Connection (see definition 3.1), the Method Ab-

sorption and Reification Mechanisms, and the Addition and Removal Primitives of definition 3.12.

The original method body and all the injections are kept separately in the data modelling view,

enabling them to be deleted one-by-one.
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Language Mechanism 6.6 A Code Removal Mechanism deletes previously added injections locally or

globally (everywhere they were added at the time).

Again, such a mechanism can be based on the Bidirectional Connection (see definition 3.1), the

Method Absorption and Reification Mechanisms, and the State and Behaviour Addition and Re-

moval Primitives of definition 3.12.

6.3.4 Presence of Code Injections Language Constructs In Programming Lan-
guages

In this section we discuss the possibilities to implement Code Injections in Smalltalk, Ruby and

Self.

Code Injections in Smalltalk

A special extension of Smalltalk can function as a Code Injection Mechanism and a Code Removal

Mechanism. Method Wrappers [19] support adding hidden behavior before or after a method with-

out recompiling it, used for changing a method’s behavior.

Multiple method wrappers can be nested, forming layers of added before and/or after code

around the original method. These layers can be removed one by one dynamically. The current

strategy of this approach is recompiling a method, which results in the method wrappers not being

installed on the new method, but this strategy can be changed if necessary.

A side-effect of this strategy is that when adding or removing instance variables from a class,

the method wrappers will no longer be installed since the entire class — hence also its methods —

are recompiled.

Another shortcoming of method wrappers is that the decompiled source code of a method

wrapper cannot be viewed. This is a result of the method wrapper referring to itself and thus

going into an infinite loop when decompiled source code is being generated.

Code Injections in Ruby

A Code Injection Mechanism and a Code Removal Mechanism in Ruby can be constructed with

nested singleton methods that function each as a method wrapper for the previous one. The prob-

lem here is that the method is exclusively wrapped for the run-time object containing the singleton

methods, and for its copies. Therefore implementations exist that support an override construct

for singleton methods: the wrapped method then becomes available for the super classes after

redefinition.
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A more robust method wrapping mechanism is implemented via the Cut construct [129]. A cut

is used to encapsulate advice for a single class. Cuts are self-contained units similar to classes and

have their own state, as well as private auxiliary methods. Although the Cut class is very simi-

lar to the Class class, it cannot be instantiated. Rather it is used solely as an “invisible overrider”.

Similar to Class the Cut can be defined anonymously, either through instantiation or as a special sin-

gleton. The anonymous definition can be especially convenient for internal (method) wrappings,

as illustrated below where the method m1 is wrapped.

class A

def m1; 9;

end

Cut.new(self) do

def m1

’<before code>’ + super + ’<after code>’

end

end

end

In order to be able to cut-across multiple classes a shared module can serve as a simple aspect by

its inclusion in a cut for each class.

Code Injections in Self

A Code Injection Mechanism and a Code Removal Mechanism in Self, could be partially based on

a combination of the parsing mechanism described above in order to keep the injections separated.

Previously added injections can be deleted locally or globally with removeSlot: (everywhere

they were added at the time). The changed method body is then parsed again into the method slot.

In the following section we describe how Code Injections can be implemented in SelfSync.

6.3.5 Code Injections Implementation in Self

The behavior to manage code injections is implemented in the methodAttribute parent, as illus-

trated in figure 6.12.
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Figure 6.12: The methodAttribute parent with code injection methods.

Adding Injections As mentioned before, the existing code injections of an operation are stored in

a collection codeInjections in the methodAttribute prototype. The injectCode: method

extends this collection with a new injection and composes a new body from the original one and the

new injection. Next, this new body is added in the appropriate method slot in the implementation

view.

Removing Injections The reverse method retractCode: removes the injection in question

from the code injections collection and recomposes the body from the original one and the re-

maining code injections.

Retracting injection code in a selection of operations is realised by calling the retractCode for

all the methods that are currently member of the collection selectedMethods. This collection is

180
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stored in traits methodAttributeMorphs.

Currently, we do not support code injections in the implementation view. As a result the method

synchronisation itself and managing all code injections separately are not compatible yet. We be-

lieve however that this optimisation requires minor changes to the Method Absorption and Reifi-

cation mechanisms in Self.

6.3.6 Code Injection Example

In this section we present an example of a Code Injection. The setup of this example that contains

four entities, is illustrated in figure 6.13. In this example, supplier is in a many-to-many relation-

Figure 6.13: A Code Injection example (before the injection).

ship with smallVendor. The entity factory is in a one-to-many relationship with supplier,

and in a one-to-many relationship with industrialShop.

The idea is that a smallVendor orders the one specific item he sells, via the supplier that

delegates this order to the factory. The industrialShop orders its collection of items to sell

directly in the factory.

A possible code injection in this case, is logging code to report that an item has been ordered.

We can inject this code anywhere there is some “ordering behaviour” present in the diagram.
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In the example in figure 6.13, we select the sale and putOrder methods. and provide the

injection code reportOrderedItem: myItem.

The situation after the injection is illustrated in figure 6.14.

Figure 6.14: A Code Injection example (after the injection).

We need to remark that when injecting similar logging code into the behaviour of industrialShop,

it is necessary to consider that it is an entire collection of items that is ordered instead of the one

item.

6.4 Conclusion

We summarise this chapter with the following statements:

• AMS is an ARTE characteristic that applies synchronisation between operations in the data

modeling view and methods in the implementation view.

• We defined the language constructs that are required to implement AMS and discussed their

presence in C++, Java, Smalltalk, Ruby and Self.
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• The EER view was extended with operations that correspond to method slots in the imple-

mentation view. Next, AMS was fitted in the ARTE approach.

• An AMS implementation was added to the SelSync ARTE tool.

• We have shown that it is feasible to evaluate operations in SelfSync models. In this way

SelfSync EER models can be considered as Executable Models “in embryo”. We provided an

implementation scheme for an evaluator that evaluates an operation’s code in the context of

the entities they are part of.

• We have shown how AMS can be extended into Code Injections that are considered as a

first step in the direction of Visual AOP. These Code Injections implement before/after

constructs that are added to or removed from a number of scattered operations in the data

modeling view.
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Chapter7
Validation of Our Approach

In this chapter we validate the ARTE approach. We realise a case study that is implemented in the

SelfSync ARTE tool. The case study is based on the extended and mature TELEBIB domain model

that is part of TELEBIB standard for the Belgian insurance sector (see section 7.1). We show that

the ARTE approach is suitable to model an extended and mature domain model such as TELEBIB

by modeling it in SelfSync, as explained in section 7.2. The Agile aspect of the ARTE approach

is validated for the TELEBIB domain model in section 7.3. The implementation of TELEBIB in

SelfSync benefits from the dynamic characteristic of ARTE. More precisely, the constraints that are

automatically enforced when run-time programming are applicable to the TELEBIB domain model

(see section 7.4).

We found that SelfSync allows to improve certain parts of the TELEBIB domain model such as

roles. Moreover, TELEBIB in SelfSync functions as a highly generic domain model that is applica-

ble in a wide range of insurance applications. This is partially caused by the fact that Interactive

Prototyping can be used to reduce the extended TELEBIB domain model to a tailored application.

There are many relationships in the TELEBIB domain model, that have an explicit cardinality. Also

there exists a number of entities in the original domain model that are to be considered as de-

pendents. Finally, TELEBIB includes 23 role entities and obviously benefits from role combination

enforcement.
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7.1 The TELEBIB Domain Model

7.1.1 The TELEBIB Standard

Since 1994 TELEBIB [148] is the Belgian insurance sector standard for electronic communication

and exchange of data. TELEBIB’s models are used to enable all users, standard developers and

software providers to understand the structure and dynamics of the daily business in the Belgian

insurance sector, independent of any technical solution. The models ensure that all interested par-

ties have a common understanding of the sector data and the processes. The main components of

the TELEBIB models are:

• Conceptual Models: simple models that represent knowledge on insurance contracts, claims,

premium notification, accounts and assessment.

• A Data Model: a domain model that contains insurance contracts, claims, premium notifica-

tion, accounts and assessment, represented as an Extended Entity-Relationship (EER) dia-

gram.

• A Process Model: a model that represents the collaboration between the represented compo-

nents of the data model.

7.1.2 The TELEBIB Domain Model

We will focus on the TELEBIB domain model. In its current state, the model covers the major

business needs in the areas of policy administration, claims handling and accounting, and thus can

be considered as a mature and realistic example of a domain model. The domain model contains

343 entities, 1048 attributes, and 233 relationships and generalisations.

The fragment in figure 7.1 illustrates, among others, that a Group has a GroupName attribute and

can be specialised into a Couple or a FactualGroup. Also the relationship FactualGroup-PartyRole is

depicted.

Entities and their attributes are represented by rectangles while relations between two entities

are depicted by a diamond, containing the concatenation of the two entity names as a label. Gener-

alization is represented by a white triangle, connected by a bold link to the most general entity. All

entities and relationships of the TELEBIB domain model can be found in [148].

The TELEBIB domain model can be divided into the following clusters:
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Figure 7.1: An excerpt of the TELEBIB domain model.

• Parties, their corresponding roles, and party information: e.g. a LegalPerson can fulfill the

PartyRole of Insured and can have an OfficeTelephoneNumber. Other examples include:

– a Group: (is-a Party) a collection of individuals that together have bearing on insurance,

e.g. a group of employees, group of drivers.

– InsuranceProvider: (is-a PartyRole) a party registered and controlled by the national In-

surance Control Board.

• Insureable objects: e.g. an Animal is an object that can be insured. Other examples are Insur-

anceObject: something having concrete existence, living or non-living that forms an element
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of or constitutes the subject matter of insurance. The object may be a single occurrence of

an object or a group of objects. An insurance object can be a person or an activity. E.g. the

generalization hierachy between InsuranceObject, MaterialObject, Vehicle, RoadVehicle, and Mo-

torizedRoadVehicle.

• Claims, contracts, and policies: e.g. a Claim can be based on a FireInsuranceContract. This

group also includes:

– Contract: a binding agreement between two or more parties for the doing or not doing

of certain things. A contract of insurance is embodied in a written document called the

policy.

– Policy: the printed legal document stating the terms of the insurance contract, that is

issued to the policyholder by the company.

• Incidents, accidents, damage, and losses: e.g. a FireInsuranceContract insures against Materi-

alDamage caused by the incident Fire. Other elements of this group are:

– PhysicalInjury: (is-a Damage) injury to the body as the result of an accident.

– WaterDamage: (is-an Incident) damage caused by water.

There exist various relations in and between the 4 groups: e.g. Insured-Contract

7.1.3 The TELEBIB Domain Model in SelfSync

We modeled the orginal TELEBIB domain model entirely in SelfSync. A selection of the EER view

on the TELEBIB model that corresponds to the excerpt in figure 7.1, is illustrated in figure 7.2.

7.2 Restructuring TELEBIB with Roles

In the original TELEBIB domain model, as it was modeled in SelfSync, a certain Party can fulfill

one or more PartyRoles such as Driver or PolicyHolder. To represent this role relation the Role Object

Pattern [38] was used. In this case, the object that can perform roles has a reference to a general role

object that is subtyped for each role.

More precisely the following five entities are in a one-to-many relationship with PartyRole:

• RegisteredLegalPerson

• NonRegisteredLegalPerson
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Figure 7.2: An excerpt of the TELEBIB domain model in SelfSync.

• Couple

• FactualGroup

• PhysicalPerson

PartyRole itself can be specialised into the following twenty three roles: InsuranceProvider, Claimant,

PolicyHolder, Repairer, Assessor, Hospital, InterveningAuthority, LeasingCompany, FinanceCompany, Cred-

itor, InsuredPerson, FirstAidSupplier, Driver, Notifier, Requester, Beneficiary, OpponentThirdParty, Wit-

ness, DataEntryOperator, MedicalDoctor, VehicleRegistrationPlateHolder, Owner and Representative.

An example is illustrated in figure 7.3. In this fragment, FactualGroup is in a one-to-many rela-

tionship with PartyRole, for which some of its specialised roles such as Witness and Owner can be

found.

With the built-in role relation in SelfSync we can transform this part of the TELEBIB domain

model with a real role relationship between the parties and the actual roles. Moreover it becomes
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Figure 7.3: TELEBIB’s partyRole entity in SelfSync.

possible to express certain illegal role combinations in the data model and to enforce them in the

implementation. E.g. it is likely that a party cannot be a witness and an intervening authority

at the same time. As a consequence Witness and InterveningAuthority are members of the same

role branch. Similarly some roles are more adequate for certain parties. E.g. it is not likely that a

physical person will perform the role of leasing company, as this role is more suitable for a factual

group.

Based on the fragment in figure 7.3 one possibility to remodel this part of the TELEBIB domain

model is shown in figure 7.4.

Another consequence of the expressive power of the EER modeling language in SelfSync, is that

TELEBIB can also be extended with operations. The Advanced Method Synchronisation (AMS) (see

chapter 6) in the ARTE approach synchronises the operations with methods in the code. Moreover,

code injections can be added into or removed from a set of selected operations the domain model.
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Figure 7.4: Fragment on TELEBIB’s roles remodeled in SelfSync.

7.3 Agile Development

7.3.1 TELEBIB’s Implementation

While modeling the TELEBIB domain model in SelfSync, a corresponding implementation was

automatically generated. The resulting telebib namespace that contains the corresponding im-

plementation objects is depicted in figures 7.5 to 7.8.

7.3.2 Extending the TELEBIB Implementation with Application Functionality

In this section we illustrate how functionality can be added to the resulting TELEBIB implementa-

tion for a particular application. Domain analysts can add functionality from inside the EER view,

while designers and developers might prefer to change the implementation view directly.

Changes in the EER View

In the EER view, functionality can be added with the Advanced Method Synchronisation that was

introduced in chapter 6. More precisely, the TELEBIB domain model can be extended with opera-

tions. Possibly, Self code can be added to these operations, from inside the EER view.

TELEBIB’s process model1 that is represented as a dependency graph, can be considered as an

example of application functionality for the insurance domain. A fragment of this process model

can be found in figure 7.9.

1Note that this model is merely an example: there does not exist a standardised process model for the Belgian insurance
sector yet.
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Figure 7.5: The telebib namespace in SelfSync (1/4).

In this dependency graph, the nodes with rounded edges are action states that are defined as

methods, procedures, use cases or “triggers”. The nodes with the square edges are entities of the

domain model. One action state can call another one, require an entity, or have an entity as its

outcome.

For example, the procedure issueInvoice has an outcome premiumInvoice and calls the

procedure processPremium. The processPremium procedure requires access to the entity con-

tract.

In SelfSync, we can model this by adding an operation issueInvoice in the entity netPremium-

NonIndexed (see figure 7.10). Next we can edit the operation body as contract processPremium,

as the premium that an insured has to pay, depends on the kind of insurance contract.

The operation processPremium in contract is then added manually or, in the case of an

operation evaluator for AMS (see section 6.2), semi-automatically. In the body of this operation,

premium can safely be used to access the appropriate premium object, and code to create a new
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Figure 7.6: The telebib namespace in SelfSync (2/4).

premiumInvoice object can be added.

Changes in the Implementation View

In this section we explain where in the code and in which way developers can add functionality in

the TELEBIB implementation.

Using the Self object menu in SelfSync, implementation objects can be extended, with or without

propagation to the domain model, as explained in section 5.3.3.

When propagation is desired, adding slots is always done in the prototype object while methods

are to be added in the parent object.

Attributes in the data modelling view correspond to slots in the prototypes, that are by default

clones of the simpleAttribute prototype. Therefore an assignment can be used in the imple-

mentation objects, such as x:1 in order change to their “type” and initialise their value.

For operations in the data modeling view, that were not supplied with a body already in the
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Figure 7.7: The telebib namespace in SelfSync (3/4).

EER view, it is clearly indicated in the parent object in the implementation view that code is still to

be added for that method. The default body for such empty methods is the string "Put custom

code here.".

Where to add new methods depends on the range of this new method. Adding a new method

in the parent part of the implementation object affects the prototype and all existing and future

clones. Adding the method in a run-time object’s prototype will result in a singleton method for

this one object.

Subclassing implementation objects happens via the Self menu that is invoked on the prototype

part of implementation objects. Automatically the domain model is updated with a new specialised

entity and a specialisation link.

When changing the contents of data slots in the implementation objects, SelfSync propagates

new references between implementation objects to the domain model, as new links that are drawn

automatically.
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Figure 7.8: The telebib namespace in SelfSync (4/4).

Figure 7.9: Fragment of the TELEBIB process model.

By default changes to run-time TELEBIB objects are not propagated to the domain model.

Creating run-time objects requires the execution of the copy operator and initiates an Interac-

tive Prototyping process.

7.3.3 Interference

Due to the extent of the TELEBIB domain model, we have to consider the risk that the many dif-

ferent modeling constructs, via the automated synchronisation, result in an entangled implemen-
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Figure 7.10: Adding application functionality to the TELEBIB domain model.

tation. For example, one specific entity in the EER view can, at the same time, be a specialisation

of another entity, perform different roles, be a partner entity in relationships, and be part of an

aggregation relationship.

Each of these different modeling constructs is synchronised automatically to a “pattern” in the

code that affects the same implementation object. Although we define clear mappings for the syn-

chronisation between different views and use them consistently, there exists one case where these

patterns might interfere, caused by multiple inheritance.

Consider the example with roles in figure 7.4. Suppose there is a run-time physicalPerson

object that currently performs the roles of vehicleRegistrationPlateHolder and intervening-

Authority as illustrated in figure 7.11.

Consider a method sue in the physicalPerson parent, that is overridden in the intervening-

Authority parent. Sending the sue message to the run-time physicalPerson object will result

in an ambiguity error. This is caused by the fact that there exist two “inheritance paths” via which

a corresponding implementation is found. In this case it is clear however, that it is the most spe-

cialised, overriding sue method in the interveningAuthority parent that is to be invoked.

A possible optimisation for SelfSync is to calculate the distance between the receiver object and

the one where the method is found, and execute the method that was found first. However, when

for example two roles implement the same method, it remains unclear which one to select.

However, as ambiguity is a still unsolved drawback of multiple inheritance, and implement-
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a physicalPerson

Figure 7.11: A multiple inheritance diamond in SelfSync’s population view.

ing roles gives rise to use multiple inheritance, this shortcoming of SelfSync can be considered

inevitable.

7.3.4 Highly Generic Rapid Prototyping

Modeling an extended domain model such as TELEBIB demands a significant effort. SelfSync

however provides a corresponding implementation and a semi-automatic instantiation process for

free.

The domain model itself can be cloned graphically. Each of the implementation objects is then

cloned automatically and can be installed in a new namespace.

Moreover, one and the same domain model is applicable in many cases. In its totality, it can be

used for large applications. For smaller businesses the domain model can easily be reduced during

Interactive Prototyping, by providing specific interactions for variation points. A variation point is

an element of the data model, in which the different applications that are derived from this model

differ.

An example of a variation point are the subtypes of Party. Consider for example an insurance

business that only involves individuals, and not companies or groups. Then during Interactive

Prototyping the option to specialise a Party into a FactualGroup is not to be selected. In order to

reduce the complexity of an application, when the number of references for a certain relationship

is asked during Interactive Prototyping, zero or a negative answer can be provided.
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It is also possible to quickly apply some minor changes to the domain model, before creating

a new working implementation. For example, we can replace some role combinations by others,

as in different applications different “rules” to combine roles are valid. The code is immediately

updated automatically. The Interactive Prototyping phase also immediately integrates the new

role combination constraints. The role combination constraints in this case, are enforced during the

entire lifetime of the new objects as well.

7.4 Run-Time Programming with Constraints

7.4.1 Multiplicity Constraint Enforcement in TELEBIB

The TELEBIB domain model consists of numerous relationships with a “one side”. For example

Vehicle-MotorTheft is a one-to-one relationship denoting that an insurance for motor theft covers

one vehicle. For the implementation of each entity on a “one side” of a relationship, SelfSync will

ensure that this uniqueness constraint is enforced at all times.

TELEBIB contains two relationships with an explicit cardinality larger than one. First, a Euro-

peanAccidentNotificationForm is in a one-to-two relationship2 with CircumstanceColumn3. Second, a

CircumstanceColumn is associated with at most six Circumstances. This setup is illustrated in fig-

ure 7.12. When new telebib run-time objects are created, the explicit cardinalities are enforced

Figure 7.12: Fragment on TELEBIB’s explicit cardinalities in SelfSync.

correctly at run-time.

7.4.2 Object Dependency in TELEBIB

The original TELEBIB domain model does not differentiate between strong and weak entities. In

its original form we modeled all attributes as simple attributes in SelfSync.

2This relationship could be replaced by an aggregation link in SelfSync
3A column on a European Accident Notification Form with predefined circumstances.
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Nevertheless certain entities are good candidates to become dependent to other entities that

contain a primary attribute. Since most attributes in the original TELEBIB model are optional

(e.g. OtherPolicyEndDate[0-1]), we chose to select primary attributes from the attributes that are

demanded. For example, Profession has one demanded attribute ProfessionTypeCode, that we can

consider as a primary attribute. Profession is in a one-to-one relationship with ActivityExecution-

Address as illustrated in figure 7.13 Therefore the ActivityExecutionAddress entity is remodelled as a

Figure 7.13: Fragment on a TELEBIB dependency in SelfSync.

weak entity that is dependent to Profession. Note that Victim is also in a one-to-many relationship

with ActivityExecutionAddress.

As a consequence of the dependency relation, whenever a new run-time activityExecution-

Address object is created, it is required to reference at least one run-time profession object.

When a run-time profession object is deleted all run-time activityExecution object are

deleted as well, given that they are not referenced by a run-time victim object.

7.4.3 Role Combination Enforcement in TELEBIB

The mutual exclusion of the roles that are modeled in the example in figure 7.4 is also enforced

at run-time. This ensures for example that a Party in TELEBIB can never be a Witness and an

OpponentThirdParty at the same time. SelfSync allows for the enforcement of other combination

rules that might be important for TELEBIB applications.

7.5 Conclusion

We can summarise this chapter as follows:
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• TELEBIB is an extended and mature domain model that is represented as an EER diagram

with 343 entities, 1048 attributes, and 233 relationships and generalisations.

• TELEBIB is modeled in SelfSync, resulting automatically in a corresponding implementation.

• SelfSync’s expressive power allows to restructure parts of TELEBIB such as the roles of a

Party.

• It is clear when and where extensions in the implementation view are to be realised.

• Interference problems in TELEBIB are mainly caused by multiple inheritance.

• TELEBIB in SelfSync is a highly generic domain model that is applicable in many cases. The

Interactive Prototyping phase can be used to reduce the model in certain variation points.

Moreover different kinds of application functionality can be added in the implementation

objects.

• TELEBIB in SelfSync benefits from the constraint enforcement at run-time for multiplicities,

dependencies and role combinations.
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Related Work

In this chapter we describe the related work for research domains that are discussed in this disser-

tation. For the domain of data modelling, we discuss a number of combinations between EER and

objects and briefly discuss EER and UML modelling tools (see section 8.1). Note that a comparison

between EER and UML was already presented in chapter 2. A discussion of related approaches

for implementing roles was already presented in section 4.4.4. We describe the state-of-the-art RTE

tools and focus on to which extent they implement the myARTE requirements (see section 8.2).

Next we compare our myARTE approach to MVARE, an automatic MVC engineering approach

that also considers multiple views on one underlying model (see section 8.3). In section 8.4 we

describe an model-driven approach for data base evolution. Finally, in section 8.5 we discuss one

of the first concrete examples in the domain of Executable Models.

8.1 Data Modelling

8.1.1 (Extended) Entity-Relationship Mappings

To map the (E)ER model to other domains, various mappings were defined to databases, informa-

tion systems and objects.

There exists a 1-to-1 mapping between an ER diagram and a relational database schema. A

lot of research has been done on the mapping of (E)ER diagrams onto databases [33, 89] and onto

information systems [46, 77].

Since the late eighties, the promising combination between the (E)ER model and object-orientation

[23, 83] was researched. The (E)ER model is usually mapped onto objects to be used in object-

oriented databases, and not onto “real” programming objects. However, there is no difference
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between these objects at the design level. Various approaches and techniques exist for translating

EER into object-oriented design and implementation:

• In [63] the gap between the ER and the OO model is bridged by introducing the category type

and the possibility to define relations between types.

• Both [81] and [82] apply a set of mapping rules to transform EER diagrams into OO database

schemas.

• In [79] EER schemas are transformed into OO database schemas by using a clustered form of

the EER schema to reduce complexity of conceptual schemas.

• In [36] a default mapping between EER diagrams and OMT diagrams is provided, i.e. from

entity objects to design objects. These guidelines are then used to create or re-engineer object-

oriented databases, but are also suitable to develop implementation objects.

• [70] introduces evolutionary ER schemas: the original ER schema is mapped to a version

derivation graph which is in its turn mapped onto an object-oriented data model.

• [45] provides a step-by-step description to map an EER diagram into an object model, in

order to re-engineer an existing database into an object-oriented database.

• In [44] a formal transformation scheme is provided to map ER schemas onto an object-oriented

specification language, to be used for object-oriented databases.

• In [56] a formal calculus to tranform ER schemas into object-oriented schemas is defined.

• The OOEER model [48] integrates different ER notations into an OOA notation and ensures

consistency is maintained (interactively) between the ER view, the OOA view and a corre-

sponding implementation view.

Since, in myARTE we consider mappings between entities and objects, fine-grained mappings

such as the one between EER entities and OMT objects [36] are more suitable for our approach than

rules that map entire EER diagrams to database schemas.

8.1.2 EER Tools

There exist a number of tools specifically developed for drawing EER diagrams such as Visio [151],

Dia [130] and Gershwin [133]. Development environments for UML often also support ER dia-
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grams, e.g. the Together Round-Trip Engineering environment [150] (see section 2.2). These ap-

plications do not support optimal transformations between EER diagrams and a corresponding

implementation.

Recently however, the promising Core Data application [127, 128] became part of the Mac OSX

development framework. In Core Data, an application is modeled in ER diagrams, while as much

as possible corresponding code and the interface is generated automatically.

8.1.3 UML Tools

Since UML is the defacto modelling language for software design, there exists a vast body of UML

tools. Examples are Together Designer [149] that is part of the Together Round-Trip Engineering

environment [150], the open source project ArgoUML [125] and MagicDraw [138]. For more tools

we refer to [41].

For the myARTE approach, it is more feasible to use UML tools with a direct connection to

a programming environment, e.g. Together, than to work in stand-alone modeling tools, such as

MagicDraw.

8.2 Advanced Round-Trip Engineering Tools

In this section we present the Together RTE tool [150] and the Naked Objects approach [86], and

briefly discuss other tools that provide (partial) support for one or more myARTE characteristics.

Next, we describe to which extent Together and Naked Objects support myARTE (see section 8.2.2).

8.2.1 Tool Support

In this section we discuss one of the leaders of the state-of-the-art in RTE that includes application

such as Rational XDE [144], Borland Together [150], and FUJABA [132]. We also discuss tools that

implement synchronisation techniques, that are relevant in the context of advanced RTE.

Together One of the leaders in the RTE domain is Borland Together Control Center [150]. To-

gether supports modelling, stand-alone forward or backward engineering for entire UML and ER

diagrams, and provides full RTE for UML class diagrams.

The synchronization mechanism between UML class diagrams and implementation is realized

by the LiveSource technology and is based on the Model-View-Controller (MVC) pattern [42] as

illustrated in figure 8.1. This implies that a change initiated in a view is not actually performed in
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Figure 8.1: Architecture of the Together [150] RTE application.

the view, but in the underlying implementation element, which results in the relevant views being

automatically updated. More specifically, the implementation view (i.e. the source code) is parsed

and rendered as two views: a UML class diagram and in a formatted textual form. LiveSource is

in fact a code parsing engine. The user can manipulate either view and even the implementation

model. However, all user actions are translated directly to the implementation model and then

translated back to both views.

Similar to Together, most RTE tools apply model transformations in their synchronization mech-

anisms. In the case of Together only the specific part of the view that has been changed is tran-

formed into the other views. Less advanced tools tranform the entire changed view.

Naked Objects The Naked Objects [86, 87, 139] approach is relevant for optimal transformations

and supports a very limited form of run-time RTE programming, as explained in section 8.2.2. Sim-

ilar to Together it applies the Model-View-Controller (MVC) architecture illustrated in figure 8.2.

Figure 8.2: Architecture of the Naked Objecst [86] RTE application.
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In this case, building a business system consists solely of defining the domain business objects

in Java, that are made directly visible to, and manipulatable by, the user in a business object model.

The Naked Objects Java framework represents classes as icons and uses Java interfaces to determine

the methods of any business object and render them visible on the screen by means of a generic

viewing mechanism. This happens dynamically without any code generation. All user actions such

as creating new business objects, specifying their attributes, adding associations between them, or

invoking methods on them, take place at the level of the object business model.

Other Tools Other tools that implement multiplicity constraint enforcement (see section 2.5.3) or

object dependency (see section 2.5.3) between implementation objects based on an abstract data

model, can be found in the domain of object-relational (O/R) mappers. These tools generate an

implementation from a data model and possibly support synchronization of both models. The

state-of-the-art includes LLBLGen [137], a commercial O/R mapper that generates a data layer in

C++ or Visual Basic code from Entity-Relationship diagrams (see section 2.7, NIAM [122] or ORM

[146] database schema’s. This generated (.NET) code is compiler-ready and can, being compiled by

the appropriate compiler, be used immediately by other applications.

8.2.2 ARTE Support in Together and Naked Objects

Compared to other existing tools, Together and the Naked Objects approach are two of the most

suitable tools that could partially support myARTE. Therefore, in the following section we investi-

gate to which extent they actually implement the myARTE characteristics.

Optimal transformations Together’s LiveSource provides forward RTE support when evolving

the following data modelling elements: classes, attributes, operations, relations and specializa-

tions. Similarly, it provides backward RTE support when evolving the following object-oriented

implementation elements: classes, attributes, methods, references between classes and inheritance

between classes. The transformations are minimal in both directions and happen per attribute.

Naked Objects are restricted to backward RTE. The transformations happen similarly to those

in Together, i.e. through MVC, but an additional compilation step of the changed Java code is

necessary. There is also no support for synchronizing evolving references and inheritance in the

Java code.
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Run-time object generations Neither Together nor Naked Objects supports full run-time RTE

support where the evolution of attributes, operations, relations, specializations, cardinalities and

dependencies are reflected in the run-time objects. The main reason is that a statically typed imple-

mentation language such as Java results in too little flexibility to change the data model (or even

the source code directly) and to synchronise the corresponding run-time objects, as explained in

detail in chapter 3.

In the Naked Objects approach there is only support at the level of adding associations between

instantiated business objects, which is reflected in the corresponding Java objects.

Multiplicity constraint enforcement Together’s LiveSource only translates cardinalities into com-

ments and puts them just before the variable declaration in the class definition. The only other

support offered for cardinalities is not inherent to LiveSource but a consequence of the fact that

Together supports the technology of Enterprise Java Beans (EJB) [131], the component model for

J2EE [135]. EJB 2.0’s container-managed persistence specification allows fine-grained control over

entity bean relationships.

When we add an association between two container-managed entity beans in a class diagram,

parameters such as relation name and multiplicities need to be supplied. A new container-managed

relationship is automatically created. This is realized by (1) adding a container-managed field in

both entity beans, together with an abstract getter and setter and (2) adding the relationship declar-

atively in the XML deployment descriptor. The properties such as relation name and multiplicities

are added as comments in the entity bean’s source. When an entity bean is deployed, the deploy-

ment descriptor is parsed and code is generated to implement the underlying classes.

To the best of our knowledge, the actual enforcement of these cardinalities is limited, and merely

a direct consequence of the static typing that is provided by Java. In particular, an attribute cannot

contain an object of another type than declared with the attribute. This opposed to our approach,

where any kind of run-time object can be referenced in a particular slot. We merely count the

references to a particular constrained “type” at run-time, and generate a warning if the multiplicity

is not respected.

Naked Objects do not support multiplicity constraint enforcement.

Object dependency Similarly to the enforcing of dependencies using EJB in Together, a cascade-delete

tag is added to the XML relationship descriptor: when the entity bean is deleted, all its dependents
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it is in a relationship with, are deleted as well. That part of the enforcement that ensures that a

weak object at creation time always references an object it can be dependent to, is not supported.

Naked Objects do not support object dependency.

Method synchronisation There is no support for any kind of method synchronisation in Together

or Naked Objects since the contents of methods in the implementation view are not visible in the

data modelling views.

Role modelling Role modelling is not supported in Together or Naked Objects since the data

modelling language they use in the data modelling view does not include a modelling concept for

roles in the sense of behaviour that can be performed temporarily.

8.2.3 Existing RTE Research

Other related work in RTE, is mostly concerned with characterizing RTE rather than providing

concrete tool support. In [6], RTE is described as a system with at least two views that can be

manipulated. Applying the inverse transformation f−1 on a view that is transformed using f ,

should again yield the same view.

The Automatic Roundtrip Engineering [6] approach advocates the automatic derivation of this

inverse transformation function based on the original transformation function. However, this re-

search focuses more on the formal characterisation of RTE than on the implementation.

In [95] RTE is connected to inconsistency handling. The author states that RTE is not merely a

combination of forward and backward engineering since there is not always a one-to-one mapping

between similar elements in different views. This idea justifies that part of our myARTE approach

where, for some mappings between the data modelling view and the implementation view, we

annotate implementation objects with reified information in “private” slots.

8.3 Automatic Model-View-Controller Engineering (MVARE)

[68] advocates an RTE approach where one model as core repository is considered, on which mul-

tiple views are defined that each show certain aspects of this model. They propose automatic

model view controller engineering (MVARE), a method for keeping the model and its views con-

sistent. In particular, in this method transformations from the model to each of the views should

be defined manually, and the inverse transformations should be calculated automatically. A con-
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crete implementation of the MVARE method is presented, CODEX, based on double pushout graph

transformations. Codex identifies different states and events in the model and views, and describes

the way changes to one of the views are propagated to the model and consequently to the other

views in terms of these states and events. Codex implements an infrastructure for managing this,

by giving the elements of model and views different roles, tags and colours. This infrastructure,

together with a restriction on the matching of the transformation rules, allows for the automatic

inversion of transformation rules. However, this infrastructure — and in particular the tags, which

are created for each element involved in each rule application — introduce a considerable memory

overhead. If memory is limited, the tags can be discarded but as a result the transformation rules

will be irreversible.

myARTE and the implementation SelfSync also consider a common model and two views, an

EER view and an implementation view. Self manages the consistency between the model, i.e. the

Self code, and the implementation view, which consists of Self outliners. Hence, changes to the

outliners — the implementation view — are propagated to the model. SelfSync adds a second

view, the EER view. Changes to the EER view are also first propagated to the model, after which the

outliners are automatically updated. For practical purposes, changes to the outliners are directly

propagated to the model and the EER view at the same time. The transformations that keep the

views and model consistent are implemented in SelfSync, hence no inverse transformations can be

calculated automatically.

However, SelfSync also support constraint enforcement, more specifically of multiplicities, de-

pendencies and role combinations. Although it would be possible to create a run-time view in

Codex, enforcing the aforementioned constraints is a task that cannot be realised with the current

transformations in Codex. Constraint enforcement is not represented in terms of changes to a view

that are propagated to the model and that are updated in the other views. It rather involves a

change to a view that triggers an action in the same view, based on knowledge in another view.

Moreover as the graph formalism is not suitable for counting, it becomes hard to enforce multiplic-

itiy constraints with the current Codex transformations.

8.4 Model-Based Data Migration

[16] reports on an approach that integrates model-driven software development, database access

and data migration in order to let schema evolution affect the population objects in a database.
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A UML model of a database and a corresponding implementation is considered by an extension

of the RTE tool Together. If a reorganization of the database is required and the UML model is

changed, the entire old database is cloned. An upgrader generator compares the new model with

the old model and detects changes. This generator constructs SQL code that changes the cloned

database based on the new model. Next, the data of the old database is to be migrated to the

new database. As a consequence of cloning the database, for all classes that are not affected by

the model evolution step, data migration is already completed. For each of the other classes the

upgrader generator creates an update class. All the update classes together form the upgrader API,

i.e. a data migration program with customizable hooks. This means that sometimes the developer

has to add data migration code himself.

In our approach the changes to a model are incrementally synchronised in the implementa-

tion objects. Since the derived run-time objects share the parents of these implementation objects,

they are immediately synchronised with the model. Since this approach applies Together, a more

detailed comparison of the myARTE characteristics is provided above.

8.5 An Executable Model Example

In this section we discuss the Extreme Models approach [14] that is a concrete example of an Exe-

cutable Model. In this case, UML diagrams are made executable, cfr. figure 8.3.

Figure 8.3: The eXtreme models [14] approach.

Different UML diagrams are translated into Petri-Nets and interpreted by a Petri-Net engine.
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This engine can be seen as a UML Virtual Machine and contains a Java parser. To run a simulation

(testing), the needed diagram instances are created, that are translated into the corresponding Petri-

Net instances. While the Petri-Net instances run simultaneously, they interact via method calls and

events.

The interaction language is Java, interpreted by the UML Virtual machine. Since the diagrams

are annotated in Java, they can send messages to real Java objects. In the other direction, diagrams

are represented by Java wrapper objects that can be called from Java source code. These two mech-

anisms minimize the distinction between modeled and coded objects.

An object can be modeled first, while Java code is added later. It is executable in both cases. The

Java implementation code is considered another view on the model being constructed, that can

be parsed and executed by the UML Virtual Machine. Changes to one specific model are directly

reflected in all other views.
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Chapter9
Conclusion

In this chapter we present the conclusions of this dissertation. We summarise the work and contri-

butions realised in this dissertation, followed by a description of future research directions.

9.1 Summary and Contributions

In this dissertation we propose Advanced Round-Trip Engineering as an answer to the limited

automated support for Agile Model-Driven Development.

Contribution 1: ARTE extends traditional RTE by considering an analysis view, by supporting an

Agile Development cycle, and by integrating run-time objects in the RTE process. As a response

to ARTE requirements, we propose the following characteristics for ARTE. First, ARTE considers

a data modelling view that enables advanced Role Modelling. Second, ARTE implements Optimal

Transformations that are minimal per node and change-preserving. Third, ARTE considers Run-

time Object Generations as a part of the RTE process, and constrains them with multiplicities and

dependency relationships defined in the data modelling view.

Contribution 2: Based on these three ARTE characteristics, we define a set of language characteris-

tics that are required to implement ARTE tools, and whose presence is proportional to the extent in

which languages have dynamic typing, reflective capabilities and flexible object grouping mecha-

nisms.

Contribution 3: We provide a detailed and structured analysis of the above language characteristics

in representative object-oriented programming languages C++, Java, Smalltalk, Ruby and Self.

From this analysis we observe that dynamically-typed prototype-based programming languages
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with a powerful reflection mechanism are most suitable, if they combine the high flexibility of “ev-

erything is an object” with the efficiency of explicit behaviour sharing. Statically-typed class-based

languages, such as C++ and Java, in general lack a “live” connection between classes and instances

and also reflective power. Due to the dynamic character of Smalltalk and its reflective capabilities,

it is in theory possible to simulate the Role Modelling features of ARTE, however, this introduces

an enormous management overhead for the generation of new classes and making existing objects

instances of these classes and back. Ruby takes the power of Smalltalk one step further with sin-

gleton methods and singleton classes that can function as prototypes. However, Ruby still lacks a

straightforward separation of state and behaviour so as to implement Role Modelling for Warped

Inheritance Hierarchies. Finally, it is Self that combines the high flexibility of “everything is an ob-

ject” with the efficiency of traits objects to share behaviour, and implements in this way all language

characteristics that are required to build an ARTE tool.

Contribution 4: We embed our ARTE instance in current Agile practices.

Our ARTE instance implements an Agile Development cycle that consists of two phases. During

the Active Modelling phase that can be fully automated, there is a continuous and incremental

synchronisation between the EER view and the implementation view. At any point in time during

Active Modelling, the second phase, Interactive Prototyping, can be activated. During this phase,

population objects are interactively created and constrained based on the structure of the EER view.

Contribution 5: As a proof-of-concept, an ARTE tool called SelfSync, is presented, that is entirely

written in Self and extends it with an ARTE environment.

The SelfSync UI includes a data modelling view that employs a graphical drawing editor for

EER diagrams, and is built with the Morphic framework. Entities and implementation objects are

represented with outliners that are in fact two views on one and the same underlying Self object.

Internally, SelfSync objects are represented by prototypes that combine the state of these two views

and with a double traits inheritance hierarchy that also illustrates the duality of the two views.

SelfSync’s Active Modelling phase is fully automated and applies Optimal Transformations

between the different views. In the EER view, SelfSync employs a dynamically built entity menu

whose actions result in annotations and synchronisation in the implementation view. Changes in

the implementation view are realised via the Self menu, via the Self UI, and literally via the code.

Run-time Object Generations are created during a semi-automated Interactive Prototyping phase.
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The associated behaviour is implemented in a new cloning method for SelfSync objects, that gen-

erates interactions depending on their annotations. SelfSync implements Multiplicity Constraint

Enforcement and Object Dependency on the Run-time Generations, with reflective constructs that

mainly compare implementation objects’ references with their annotated objects. Furthermore, this

ARTE tool allows for advanced Role Modelling, by implementing general role behaviour, based

on the warped hierarchy implementation scheme, and a mechanism to enforce role combination

constraints.

Contribution 6: We provide a general solution to implement roles that are modelled in the data

modelling view, with the warped hierarchies implementation scheme.

This specific mapping for roles deals with the synchronisation between roles in the EER view,

their annotations in the implementation view and their dynamic behaviour and the role combina-

tion constraints in the population view. The warped hierarchies implementation scheme merges

the viewpoints that roles can be seen as both subtypes and supertypes, and that roles are instances

that are to be adjoined to the objects that perform them. This solution enables run-time objects to

dynamically start and stop performing roles. Moreover, multiple roles can be performed simulta-

neously, taking into account that some roles are mutually exclusive.

Contribution 7: Based on Optimal Transformations and on the fact that Self does not distinguish

between data and method slots, we extend our ARTE approach with Advanced Method Synchro-

nisation (AMS). This extension allows us to explore two possible future uses of ARTE: Executable

Models and Visual AOP.

We consider operations in the data modelling view, that have their corresponding methods in

the implementation view. Methods and their bodies are visually rendered in the data modelling

view and are synchronized with the implementation and population views. We define the lan-

guage constructs that are required to implement AMS and investigate their presence in C++, Java,

Smalltalk, Ruby and Self. An AMS implementation was added to the SelfSync ARTE tool: the EER

view was extended with operations that correspond to method slots in the implementation view,

and AMS was fitted in the ARTE approach.

We show that it is feasible to evaluate operations in SelfSync models. In this way, SelfSync

EER models can be considered as Executable Models “in embryo”. We provide an implementation

scheme for an Entity Checker that evaluates an operation’s code in the context of the entities it is
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part of. Moreover, we illustrate how AMS can be extended into Code Injections that are considered

as a first step in the direction of Visual AOP. These Code Injections implement before/after con-

structs that are added to or removed from a number of scattered operations in the data modelling

view.

Contribution 8: We validate the scalability, the expressiveness and the usability of the SelfSync

tool with the extensive and mature TELEBIB domain model that defines the standard for the Bel-

gian insurance business. This domain model is represented as an EER diagram with 343 entities,

1048 attributes, and 233 relationships and generalisations. SelfSync’s Role Modelling concept al-

lows us to restructure parts of the TELEBIB domain model, such as the different roles of persons

and objects, that are involved in the insurance business, in a more expressive and concise way.

The TELEBIB implementation is continuously synchronised with the domain model and can be ex-

tended with application functionality, either in the model or the implementation. Since the SelfSync

tool generates many implementation objects, interference occurs caused by mutliple inheritance.

This shortcoming of SelfSync can be considered inevitable but we describe a possible optimisation

in section 9.2.1. Moreover, TELEBIB in SelfSync can be seen as a highly generic domain model that

is customisable for many concrete applications.

9.2 Future Research

In this section we describe possible optimisations and possible future research directions for the

work in this dissertation. First, we deal with optimisations to the mappings that are applied for

Optimal Transformations (see section 9.2.1). In section 9.2.2 we propose a number of extensions

for the SelfSync tool, while in section 9.2.3 includes a discussion on the portability of our ARTE

instance. Finally we describe how SelfSync can be combined with a relational database (see sec-

tion 9.2.4).

Note that two extensions to our ARTE instance are already discussed in chapter 6, where we

envision that AMS might one day lead to an approach for creating Executable Models, and to

support for Visual AOP.

9.2.1 Advanced Mappings for Optimal Transformations

In this section we describe how the mappings that are applied in the Optimal Transformations in

our ARTE instance for EER and Self, can be improved.
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In section 4.3 we define a set of rather naive mappings between the EER view and the imple-

mentation view. For example, a relationship with a multiplicity > 1 in an entity, automatically

maps to a data slot in the corresponding implementation object, that contains a vector. The map-

pings that involve relationships can be optimised by interactively providing the user with a choice

between different implementation patterns. These patterns can for example be based on the work

described in [84], that focusses on implementing different kinds of conceptual relationships.

Another optimisation deals with the default creation of a prototype-traits pair in the implemen-

tation view, for each entity in the EER view. Due to the convention that attributes in an entity

are mapped to data slots in the prototype, while operations in the entity map to method slots in

the traits object, we can postpone the creation of a prototype or a traits object until it is actually

required to hold a data or a method slot. More precisely, if a new entity is created, we await the

initial creation of an attribute or an operation in this entity, before creating a new prototype or a

traits object.

In section 7.3.3 we mentioned the problems with ambiguous methods caused by multiple in-

heritance. A related optimisation is to support an ad-hoc disambiguation when adding operations

in the EER view. As these operations are automatically added in the traits objects in the implemen-

tation view, it is possible to immediately detect an ambiguity, with the help of reflective constructs.

We can then generate an interaction to let the user decide which method has to be selected in the

implementation and run-time objects that correspond to the entity where the ambiguous operation

is added. A simple solution to realise such a prioritised method could for example use an aliasing

mechanism that automatically renames the operation and the corresponding method.

We can let the user decide interactively whether adding attributes in an entity has to be propa-

gated to the run-time objects that correspond to this entity. As mentioned in section 4.6, on the one

hand, it intuitively is expected that these changes in an entity view are propagated to the already

existing run-time objects. On the other hand, in order to respect a prototype-based style, the above

changes should not be propagated to existing run-time population objects that are in fact shallow

copies of the implementation objects.

Finally, as mentioned in section 4.6, we can consider mappings from run-time objects to the

other views. When a large number of (scattered) population objects created from the same proto-

type are (manually) changed in the same way, this change could be synchronised in the prototype

and thus also in the corresponding entity in the EER view (or vice versa), or, alternatively a new

protoype could be copied down from the original one in the implementation view resulting in a
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new specialised entity in the EER view (or vice versa). Therefore, we can use reflection to detect

similar changes in a group of run-time objects and interactively let the user decide on which action

to take.

9.2.2 SelfSync 2: Optimising Tool Support

Since SelfSync is a research prototype that was developed to support our ARTE instance, it can

be optimised in several ways. Besides the improved mappings described in the previous section,

we can provide SelfSync with “full RTE support”. Currently this is not supported in SelfSync

since we are convinced that it has to be possible to annotate implementation objects and to extend

them with application logic, without synchronising the EER view. Full RTE support implies that

developers cannot realise any change action in the implementation view, that is not propagated to

the EER view, unless this is explicitly mentioned. Currently, in the EER view we synchronise adding

data and methods slots in, respectively, prototypes or traits objects, extension via copy-down, and

slot references to other implementation objects. However, adding for example a method slot in a

prototype (instead of a traits object) is not synchronised in the EER view. Also, establishing slot

references to objects that are not part of the RTE process is not synchronised. An optimisation

would consider these and similar synchronisations from the implementation view to the EER view.

Another extension to SelfSync enables to “plug in” domain-specific patterns in the RTE pro-

cess. For example, in [37] a set of analysis patterns for modelling, among others, organisational

structures and accounting, are provided. Each of these patterns can be provided with a mapping

to a corresponding implementation in Self. When such patterns are plugged into SelfSync, these

patterns become available in the entity menu in the EER view: next to entities and attributes, etc.,

one then can also add an entire pattern, such as for example an Accounting Transaction, to the EER

view, that automatically results in the provided synchronisation in the implementation view.

In the other direction, it can become possible to detect recurrent configurations in the imple-

mentation objects and define an analysis pattern for them. For example, if a significant number

of implementation objects are manually extended with a data slot name, SelfSync can interactively

suggest to create a new pattern namedEntity in the EER view, that contains an entity with an

attribute name.
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9.2.3 Portability of the EER-Self ARTE Instance

In this section we discuss how ARTE can be realised with other data modelling languages such as

UML, and with other implementation languages.

We deliberately decided to define a concrete ARTE approach for EER and Self in chapter 4, as

opposed to a more generic but abstract description. Nevertheless, the analysis of the data modelling

languages EER and UML we provide, and the aforementioned analysis of language characteristics

of programming languages, make it possible to reconstruct the ARTE approach in other languages.

The fact that we extended the ER model with specialistations, operations, categorisations and

aggregations, combined with the notion that for static data modelling, UML and EER are func-

tionally equivalent, results in a straightforward transition from EER to UML in the data modelling

view. Note that the Role Modelling concept in our EER model corresponds to dynamic classifi-

cations in UML. Moreover, there exists various works that deal with mappings between EER and

UML and in general, it is accepted that when UML class diagrams are used, the transformation

from an (E)ER to a UML representation is feasible and easy to perform [33].

In order to realise our ARTE instance with another implementation language that can be used in

the implementation and population views, the language requirements we defined in chapter 3 can

be used as a kind of cookbook, while our analysis of the presence of these language requirements

in object-oriented programming languages can be seen as a feasibility study. For the studied lan-

guages we can immediately see which ARTE characteristics can or cannot be supported, as well as

the amount of effort that is required to implement the ARTE characteristics. For other implemen-

tation languages that were not discussed, we suggest to identify the available meta-programming

support, the kind of typing and the mechanisms to share behaviour.

9.2.4 Population Objects in a Relational Database Schema

In this section we discuss why it makes sense to link our ARTE instance to a relational database,

and in which way database schemas can benefit from ARTE characteristics.

An EER diagram in the data modelling view can be represented as a relational database schema.

A strong entity is mapped to a schema with the same attributes, while a weak entity becomes a table

that includes a column for the primary key of the strong entity it depends on. A many-to-many

relationship is represented as a schema with attributes for the primary keys of the two participating

entities, and the attributes of the relationship1. For more mappings between EER and a relational
1Note that we do not support attributes in relationships in our current EER model.
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database we refer to [33].

Since population objects are concrete instances of the modelled entities, a population object

corresponds to a row in a relational database schema. In this way, when we would link a rela-

tional database to SelfSync, the Interactive Prototyping phase would become a process to populate

databases with run-time objects.

Run-time Object Generations result in schema updates. In this context, it becomes especially

useful to propagate changes to a prototype in the implementation view. Adding a new attribute

in an entity in the EER view results in updating the corresponding schema with the new attribute,

since each of the rows in the schema is then automatically extended with the new attribute contain-

ing a default value.

Multiplicity Constraint Enforcement takes it one step further and enables for example detecting

the elements in a database that do not longer respect the multiplicity constraints of the database

schema. Consider for example a many-to-2 relationship between a person entity and an account

entity. As mentioned before, such a relationship is mapped to a schema that includes the enti-

ties’ primary keys as its attributes, for example, person account=(name,accountNr). This

representation allows for an optimisation of our Multiplicity Constraint Enforcement: after a mul-

tiplicity change, only those population objects (database rows) that contain the attributes in the left

(constrained) column of the relation schema are to be checked.

Object Dependency ensures that when a row in the database is deleted, all entries that depend

on the former row’s primary key value, are deleted as well.

The normalisation of a SelfSync database can be taken into account as follows:

• No repeating groups: due to reflection in Self we can determine which population objects

of the same Run-time Object Generation reference the same value in the same slots. In ex-

tremum, we can suggest to the user to (automatically) create a new object containing the

repeating slots, that is shared via copy-down by all appropriate population objects.

• Columns are homogenous: A column consist of the values for the same data slot in the pop-

ulation objects of a Run-time Object Generation. During the synchronisation of an attribute

in an entity to a data slot in a prototype, we can let the data slot reference a default object.

With the help of assignment shadowing for example, we can enforce that the argument of an

assignment of this data slot, is always cloned from the same prototype as the default object.

• Each column is assigned a distinct name: By default, Self disallows homonymous slots in
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objects. As a result, entities cannot have attributes with the same name.

• Duplicate rows are not allowed: If the modelled entities in SelfSync are enforced to include

a primary attribute that moreover has a unique value for each entity, we can avoid repeating

groups in the database schema.
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AppendixA
The SelfSync Implementation

A.1 Implementation of the checkSlotContents Method
| check. finished. names. num. other. relLabel1. relLabel2. snames. total |
names: (vector copy).
total: (vector copy).
finished: (vector copy).
"names of entities in schema"
(reflect:currentSchema) do:[|:m| names: (names copyAddLast:( m name))].

"names of slots in entity"
snames: (vector copy).
(reflect:self) do:[|:s|
((((s category == ’private’) || (s category == ’filing out’) ||
(s category == ’Strong Entity Morph State’) ||
(s category == ’Row Morph State’) ||
(s category == ’Frame Morph State’) ||
(s category == ’Basic Morph State’) ||
(s isParent)) || (s isMethod)|| (s isAssignment)))
ifFalse:[snames: (snames

copyAddLast:((reflect:(s contents reflectee))
creatorSlotHint storedName))]].

"which slots in entity contain other entities of the schema"
(reflect:self) do:[|:s| num:0.
((((s category == ’private’) || (s category == ’filing out’) ||
(s category == ’Strong Entity Morph State’) ||
(s category == ’Row Morph State’) ||
(s category == ’Frame Morph State’) ||
(s category == ’Basic Morph State’) ||
(s isParent)) || (s isMethod)||
(s isAssignment)))
ifFalse:[

(names includes: (s contents creatorSlotHint storedName)) ifTrue:[
(finished includes:((reflect:(s contents reflectee))

creatorSlotHint storedName))
ifFalse:[

"check in vectors for this entity"
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(reflect:self) do:[|:s2|
((s2 contents creatorSlotHint storedName) = ’vector’)
ifTrue:[(s2 contents reflectee) do:[|:el|
(((reflect:(s contents reflectee)) creatorSlotHint storedName) =
((reflect:el) creatorSlotHint storedName)) ifTrue:[num: (num + 1)]]]].

"#occurences in slots"
num: (num + (snames occurrencesOf:(s contents creatorSlotHint storedName))).

other: (s contents reflectee).
relLabel1: (labelMorph copy).
relLabel2:(labelMorph copy).
relLabel1 myLabel: ((self label),’_’,(other label)).
relLabel2 myLabel: ((other label),’_’,(self label)).
check: true.
finished: (finished copyAddLast: (s contents creatorSlotHint storedName)).

"check whether there exist already a link between the two entities"
(self morphs) do:[|:m|(m morphTypeName == ’relationFrameMorph’)

ifTrue:[((m relationName = (relLabel1 myLabel)) ||
(m relationName = (relLabel2 myLabel)))
ifTrue:[check
ifTrue:[
"update existing cardinalities"
m morphs do:[|:m|(m morphTypeName == ’pointerTailMorph’)
ifTrue:[(m headMorph rawOwner setCardinality: num)]].

m morphs do:[|:m|(m morphTypeName == ’pointerHeadMorph’)
ifTrue:[(m tailMorph rawOwner setCardinality: num)]].

check: false]]]].

"if not, draw a link"
check ifTrue:[num > 1 ifFalse:[
(relationshipMorph copyIntoWorld: (self world)

FromMorph: self Offset: (self pointerPoint)
ToMorph: other Offset: (other pointerPoint)) addMorph: relLabel1.]

True:[(oneToManyRelationshipMorph copyIntoWorld:
(self world) Cardinality: num
FromMorph: self Offset: (self pointerPoint)
ToMorph: other Offset: (other pointerPoint)) addMorph: relLabel1.]

]]]

False:[

"look at level 1 in vectors"

((s contents creatorSlotHint storedName) = ’vector’)
ifTrue:[(s contents reflectee) do:[|:el|

(finished includes: ((reflect:el) creatorSlotHint storedName)) ifFalse:[
num: 0. (names includes:
((reflect:el) creatorSlotHint storedName)) ifTrue:
[num: (num + ((s contents reflectee) occurrencesOf: el)).

total: (total copyAddLast: ((reflect:el) creatorSlotHint storedName)).
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total: (total copyAddLast: num).

other: el.
relLabel1: (labelMorph copy).
relLabel2:(labelMorph copy).
relLabel1 myLabel: ((self label),’_’,(other label)).
relLabel2 myLabel: ((other label),’_’,(self label)).
check: true.
finished: (finished copyAddLast: ((reflect:el) creatorSlotHint storedName)).

"check whether there exist already a link between the two entities"
(self morphs) do:[|:m|(m morphTypeName == ’relationFrameMorph’)

ifTrue:[((m relationName = (relLabel1 myLabel))
|| (m relationName = (relLabel2 myLabel)))
ifTrue:[check
ifTrue:[
"update existing cardinalities"
m morphs do:[|:m|(m morphTypeName == ’pointerTailMorph’)
ifTrue:[(m headMorph rawOwner setCardinality: num)]].

m morphs do:[|:m|(m morphTypeName == ’pointerHeadMorph’)
ifTrue:[(m tailMorph rawOwner setCardinality: num)]].

check: false]]]].

"if not, draw a link"
check ifTrue:[num > 1 ifFalse:[
(relationshipMorph copyIntoWorld: (self world)

FromMorph: self Offset: (self pointerPoint)
ToMorph: other Offset: (other pointerPoint)) addMorph: relLabel1.]

True:[(oneToManyRelationshipMorph copyIntoWorld: (self world)
Cardinality: num
FromMorph: self Offset: (self pointerPoint)
ToMorph: other Offset: (other pointerPoint)) addMorph: relLabel1.]

]].
]]]]]].
ˆfinished

A.2 The Implementation of the copy Method

A.2.1 ResolveAggregates
| aggs. children. childrenNames. clonesChildren. coll. newAssoc.
numOfAssoc. selChild. slotName. slotName2 |

aggs:(vector copy).
aggregationSets do:[|:s| children:(vector copy).
childrenNames:(vector copy).
children: s.

children do:[|:c|

numOfAssoc:
(userQuery askString:’Let this new ’,

(((new label)uncapitalizeAll) capitalize),’
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object contain how many ’,
(((c label) uncapitalizeAll)),’ aggregates?’) asInteger.

numOfAssoc do:[
coll: ((reflect:new) at:(’collection_’,(c label))) contents reflectee.
(reflect:new) at:(’collection_’,(c label)) PutContents:
(reflect:(coll copyAddLast: c))]
]].
new aggregationSets: (vector copy).

A.2.2 ResolveCategorisations
| assocs. catPar. categorizationNames. categorizationParents.
children. childrenNames. clonesChildren. newAssoc. numOfAssoc.
roleNames. rolePar. roleParents. selChild. slotName. slotName2 |

((categorizations size) == 0) ifFalse:[
categorizationParents: categorizations.
categorizationNames: (vector copy).
categorizationParents do:[|:p| categorizationNames:
(categorizationNames copyAddLast: (p label))].

"checking whether I was not categorized before,
if so by default keep the parent"
(reflect: self) copyDowns do:[|:cd| (categorizationParents includes:
(cd immutableParentMirror reflectee))
ifTrue:[userQuery report:’This object is already categorized into’,
((cd immutableParentMirror reflectee label)
uncapitalizeAll).ˆnew]].
catPar: userQuery askMultipleChoice: ’This new ’,
((self label) uncapitalizeAll),
’ object can be categorized in one of the following parents: ’

Choices: categorizationNames
Results: categorizationParents.

(reflect: catPar) createSubclassIn: new.
(reflect:new) at: (((catPar label),’Parent’) uncapitalizeAll)
PutContents: (reflect: (catPar parent)).
((reflect:new) at: (((catPar label),’Parent’)uncapitalizeAll))
isParent: true.].

A.2.3 ResolveSpecialisations
| children. childrenNames. clonesChildren. newAssoc.
numOfAssoc. selChild. slotName. slotName2 |

clonesChildren:(vector copy).
specializationSets do:[|:s| children:(vector copy).
childrenNames:(vector copy). children: s.

children do:[|:c| childrenNames:
(childrenNames copyAddLast: (c label uncapitalizeAll))].

selChild: userQuery
askMultipleChoice:’This new ’,((self label) uncapitalizeAll),
’ object can be specialized in one of the following children:
’Choices: (childrenNames copyAddLast:’None’)
Results: (children copyAddLast:nil).

clonesChildren:
(clonesChildren copyAddLast: (selChild clone)).].
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clonesChildren do:[|:child| (child isNil) ifFalse:
[((reflect:child) removeSubclassFrom:
((reflect:child) copyDowns at: 0) immutableParentMirror reflectee).
(reflect: new) at: ’as’,((child label) uncapitalizeAll capitalize)
PutContents: (reflect:child).

"createSubclassIn: child."
(reflect: (child parent)) at: ((label uncapitalizeAll),’Parent’)
PutContents: (reflect:(self parent)).
((reflect: (child parent)) at: ((label uncapitalizeAll),’Parent’))
isParent: true.
(reflect: (child parent)) parentsDo:[|:p|
((p name) == ’parent’) ifTrue:[(reflect: (child parent))
removeSlot: (p name)]].
]].
new specializationSets: (vector copy).

A.2.4 ResolveRoles
| roleNames. rolePar. roleParents. selChild. slotName. slotName2 |

"##################################################"
"constraints at creation time by roles"
"##################################################"
((roleSets size) == 0) ifFalse:[roleParents: roleSets.
roleParents do:[|:pset| roleNames: (vector copy).
pset do:[|:p| roleNames: (roleNames copyAddLast: (p label))].

"checking whether I was not performing this role before,
if so by default keep the parent"
(reflect: new) copyDowns do:[|:cd|
(roleParents includes:(cd immutableParentMirror reflectee))
ifTrue:[userQuery report:’This object is already performing the role of’,
((cd immutableParentMirror reflectee label) uncapitalizeAll).ˆnew]].

rolePar: userQuery askMultipleChoice: ’This new ’,
((self label) uncapitalizeAll),
’ object can perform the role of one of the following objects ’

Choices: (roleNames copyAddLast: ’None’)
Results: (pset copyAddLast: nil).

(rolePar isNil) ifFalse:[(reflect: rolePar) createSubclassIn: new.
new currentJobs: (new currentJobs copyAddLast: (rolePar description)).
(reflect:new) removeSlot: ’parent’ IfFail: ’’.
(reflect:new) at: (((rolePar label),’Parent’) uncapitalizeAll)
PutContents: (reflect: (rolePar parent)).
((reflect:new) at: (((rolePar label),’Parent’)uncapitalizeAll))
isParent: true.]]].

A.2.5 ResolveOneConstraints
| assocs. catPar. categorizationNames. categorizationParents. children.
childrenNames. clonesChildren. newAssoc. numOfAssoc. roleNames.
rolePar. roleParents. s. selChild. slotName. slotName2 |

constraintByOne do:[|:la | s: ((((reflect: currentSchema) at:
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(la uncapitalizeAll)) contents) reflectee).
s isEntity ifTrue:[slotName: la.

(reflect:new) do:[|:t| ((t name matchesPattern:
’roleInRelation_’,(new label),’_’,(s label)) ||
(t name matchesPattern: ’roleInRelation_’,(s label),’_’,(new label)))
ifTrue:[slotName:(t contents reflectee).
(reflect:new) removeSlot: (t name).]].

(userQuery askYesNo:’Establishing exclusive link in this new ’,
(((new label)uncapitalizeAll) capitalize),’ object to a(n) ’,
(s label uncapitalizeAll capitalize),’ object?’)

ifTrue:[
assocs:(s clone).

(reflect:assocs) do:[|:t| ((t name matchesPattern:
(’*’,’relation_’,(new label),’_’,(assocs label))) ||
(t name matchesPattern: (’*’,’relation_’,(assocs label),’_’,(new label))))
ifTrue:[(reflect:assocs) removeSlot: (t name).]].

(reflect:new) do:[|:t| ((t name matchesPattern:
(’*’,’relation_’,(new label),’_’,(assocs label))) ||
(t name matchesPattern: (’*’,’relation_’,(assocs label),’_’,(new label))))
ifTrue:[(reflect:new) removeSlot: (t name).]].

slotName2: (new label uncapitalizeAll).

(reflect:assocs) do:[|:t| ((t name matchesPattern:
’roleInRelation_’,(new label),’_’,(s label)) ||
(t name matchesPattern: ’roleInRelation_’,(s label),’_’,(new label)))
ifTrue:[slotName2:(t contents reflectee).
(reflect:assocs) removeSlot: (t name).]].

(assocs constraintByOne includes: (new label)) ifTrue:[
assocs constraintByOne: (assocs constraintByOne remove: (new label)).
(reflect:assocs) at: slotName2 PutContents:(reflect:new)].

(assocs constraintByN flatIncludes: (new label)) ifTrue:[
(reflect:assocs) at: (slotName2,’Collection’)
PutContents: (reflect:(vector copyAddLast:new)).
(assocs constraintByN) do:[|:v| (v includes:(new label))
ifTrue:[assocs constraintByN: (assocs constraintByN remove: v)]].
]
.
(reflect:new) at: slotName PutContents: (reflect:(assocs copy)).
"(reflect:new) removeSlot:(s label)."
]

False:[
isStrongEntity
ifFalse:[

(entityOwner == s)
ifTrue:[userQuery report:’This new ’,

(((new label)uncapitalizeAll) capitalize),’ object is dependent to this ’,
(s label uncapitalizeAll capitalize),’ object:
establish at least one association!’.
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ˆ(self copy)]
False:["no reference but reservate slot"(reflect:new)

at: slotName
PutContents:(reflect: nil).(reflect:new) removeSlot:(s label)]]

True: [(reflect:new) at: slotName
PutContents:(reflect: nil).(reflect:new) removeSlot:(s label)]]]].
new.

A.2.6 ResolveNConstraints
| ans. assocList. assocs. catPar. categorizationParents. children.
childrenNames. clonesChildren. constr. newAssoc. numOfAssoc.
roleNames. rolePar. roleParents. s. selChild. slotName. slotName2 |

constraintByN do:[|:la | s: ((((reflect: currentSchema) at:
(la at: 0)) contents) reflectee).
s isEntity ifTrue:[slotName: (la at:0).

(reflect:new) do:[|:t| ((t name matchesPattern:
’roleInRelation_’,(new label),’_’,(la at:0)) ||
(t name matchesPattern: ’roleInRelation_’,(la at:0),’_’,(new label)))
ifTrue:[slotName:(t contents reflectee).
(reflect:new) removeSlot: (t name).]].

(la at:1) > 0 ifTrue:[
ans:
(userQuery askString:’Establish how many links in this new ’,
(((new label)uncapitalizeAll) capitalize),’ object to a(n) ’,
(s label uncapitalizeAll capitalize),’ object?
(maximum arity is ’, ((la at: 1) asString), ’)’) ]
False:[
ans:
(userQuery askString:’Establish how many links in this new ’,
(((new label)uncapitalizeAll) capitalize),’ object to a(n) ’,
(s label uncapitalizeAll capitalize),’ object?’)
].

(ans asInteger > 0) ifTrue:[

assocs:(s clone).

(reflect:assocs) do:[|:t| ((t name matchesPattern:
(’*’,’relation_’,(new label),’_’,(assocs label))) ||
(t name matchesPattern: (’*’,’relation_’,(assocs label),’_’,(new label))))
ifTrue:[(reflect:assocs) removeSlot: (t name).]].

(reflect:new) do:[|:t| ((t name matchesPattern:
(’*’,’relation_’,(new label),’_’,(assocs label))) ||
(t name matchesPattern: (’*’,’relation_’,(assocs label),’_’,(new label))))
ifTrue:[(reflect:new) removeSlot: (t name).]].

slotName2: (new label uncapitalizeAll).

(reflect:assocs) do:[|:t| ((t name matchesPattern:
’roleInRelation_’,(new label),’_’,(assocs label)) ||
(t name matchesPattern: ’roleInRelation_’,(assocs label),’_’,(new label)))
ifTrue:[slotName2:(t contents reflectee).
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(reflect:assocs) removeSlot: (t name).]].

(assocs constraintByN flatIncludes: (new label)) ifTrue:[

(reflect:assocs) at: (slotName2,’Collection’)
PutContents: (reflect:(vector copyAddLast:new)).
(assocs constraintByN) do:[|:v| (v includes:(new label))
ifTrue:[assocs constraintByN: (assocs constraintByN remove: v)]].
]
False:[
(reflect:assocs) at: slotName2 PutContents:(reflect:new).
(assocs constraintByOne: (assocs constraintByOne remove: (new label))).
].
assocList: (vector copy).
ans asInteger do:[assocList: (assocList copyAddLast: (assocs copy))].
(reflect:new) at: (slotName,’Collection’) PutContents: (reflect: assocList).
]

False:[
isStrongEntity
ifFalse:[

(entityOwner == s)
ifTrue:[userQuery report:’This new ’,

(((new label)uncapitalizeAll) capitalize),’ object is dependent to this ’,
(s label uncapitalizeAll capitalize),’ object:
establish at least one association!’.

ˆcopy]
False:[(reflect:new) at: slotName PutContents:(reflect: nil).

(reflect:new) removeSlot:(s label)]]
True: [(reflect:new) at: slotName PutContents:(reflect: nil).

(reflect:new) removeSlot:(s label)]]]].
new.

A.3 Constraint Enforcement

A.3.1 Multiplicities: the checkConstraints method
| names1. names2 |
isPopulationMember ifTrue:[
names1: (vector copy). "of the ones I am pointing to"
names2: (vector copy). "of the ones that point to me"

checkingConstraints ifTrue:[

"For each 1-to-(1/n) relation I can only point to this one exclusive partner"
(reflect:self) do:[|:s|
((((s category == ’private’) ||
(s category == ’Basic Morph State’) ||
(s category == ’Frame Morph State’) ||
(s category == ’Row Morph State’) ||
(s category == ’Strong Entity Morph State’) ||
(s category == ’Weak Entity Morph State’) ||
(s category == ’filing out’) ||
(s isParent)) || (s isMethod)) ||(s isAssignment))
ifFalse:[
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names1: (names1 copyAddLast:
((reflect:(s contents reflectee)) creatorSlotHint storedName)).
"look in vectors"
((reflect:(s contents reflectee)) creatorSlotHint storedName) = ’vector’
ifTrue:[
(s contents reflectee)
do:[|:el| names1: (names1 copyAddLast:
((reflect:el) creatorSlotHint storedName))]
]].

constr1 do:[|:c|((names1 occurrencesOf: c) asInteger > 1) ifTrue:

[userQuery show:’Constraint of 1-to-1 relation between the
’,(self label uncapitalizeAll capitalize),’ and ’,(c capitalize),
’ objects has been violated!
I am pointing to more than one ’,(c capitalize),’ object...’ ForSecs:1]]].

"For each 1-to-(1/n) only one exclusive partner can point to me"
names2: (vector copy).
(browse referencesOfReflectee: (reflect:self)) do:[|:r| (r isFake)
ifFalse:[(names2:
names2 copyAddLast:(r mirror creatorSlotHint storedName))]].

constr1 do:[|:c|((names2 occurrencesOf: c) asInteger > 1) ifTrue:
[userQuery show:’Constraint of 1-to-1 relation between the
’,(self label uncapitalizeAll capitalize),’ and ’,(c capitalize),
’ objects has been violated!
More than one ’ ,(c capitalize),’ object is pointing at me...’ ForSecs:1]].
"--------------------------"

"For each (1/n)-to-N relation I can point to at most N partner"

constrN do:[|:c|((names1 occurrencesOf:
(c at: 0)) asInteger > ((c at:1) asInteger)) ifTrue:
[userQuery show:’Constraint of x-to-’,((c at: 1) asString),
’ relation between the
’,(self label uncapitalizeAll capitalize),’ and ’,((c at:0) capitalize),
’ objects has been violated!
I am pointing to more than ’,((c at: 1) asString),’ ’,
((c at: 0) capitalize),’ objects...’ ForSecs:1]]].

"For each (1/n)-to-N relation at most N partners can point to me"

constrN do:[|:c|((names2 occurrencesOf: (c at: 0))
asInteger > ((c at:1) asInteger)) ifTrue:
[userQuery show:’Constraint of x-to-’,((c at: 1) asString),
’ relation between the
’,(self label uncapitalizeAll capitalize),’ and ’,((c at: 0) capitalize),
’ objects has been violated!
More than ’,((c at: 1) asString),’ ’ ,((c at: 0) capitalize),
’ objects are pointing at me...’ ForSecs:1]].
]
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A.3.2 Dependencies: the deleteMe method
dependents do:[|:d|
(reflect:self) do:[|:s|
((((s category == ’private’) ||

(s category == ’filing out’)||
(s category == ’Weak Morph State’)||
(s category == ’Strong Entity Morph State’)||
(s category == ’Basic Morph State’)||
(s category == ’Row Morph State’)||
(s category == ’Frame Morph State’)
|| (s isParent)) || (s isMethod)) ||(s isAssignment))

ifFalse:[(((reflect:(s contents reflectee))
creatorSlotHint name) == ’vector’)
ifTrue:[(s contents reflectee) do:[|:e|

(((reflect:d) creatorSlotHint name) ==
((reflect:e) creatorSlotHint name))
ifTrue:[e deleteMe] False:[’’]]]

False:[(((reflect:(d )) creatorSlotHint name) ==
((reflect:(s contents reflectee))

creatorSlotHint name))
ifTrue:[(s contents reflectee) deleteMe]]]]]]

False:[(entityOwner isNil) ifFalse:[(entityOwner) dependents:
((entityOwner dependents) remove: (self label))]].

(reflect:self) do:[|:s|
((s category == ’private’) ||

(s category == ’filing out’)||
(s category == ’Weak Morph State’)||
(s category == ’Strong Entity Morph State’)||
(s category == ’Basic Morph State’)||
(s category == ’Row Morph State’)||
(s category == ’Frame Morph State’))
ifFalse:[(reflect: self) removeSlot: (s name)]].
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Glossary

B.1 Reflection Terminology
Taken from [18].

• Introspection is the ability of a program to examine its own structure.

• Self-modification is the ability of a program to change its own structure.

B.2 Prototype-Based Programming and Self Terminology
Taken mostly from the The SELF 4.1 Programmers Reference Manual [145].

• A slot is a name-value pair. The value of a slot is often called its contents.

• An object is composed of a (possibly empty) set of slots and, optionally, a series of expressions called
code.

• A data object is an object without code.

• A data slot is a slot holding a data object.

• An assignment slot is a slot containing the assignment primitive.

• An assignable data slot is a data slot for which there is a corresponding assignment slot whose name
consists of the data slots name followed by a colon. When an assignment slot is evaluated its argument
is stored in the corresponding data slot.

• An ordinary method (or simply method) is an object with code and is stored as the contents of a slot. The
methods name (also called its selector) is the name of the slot in which it is stored.

• A unary message is a message consisting of a single identifier sent to a receiver. A binary message is
a message consisting of an operator and a single argument sent to a receiver. A keyword message is a
message consisting of one or more identifiers with trailing colons, each followed by an argument, sent
to a receiver.

• Unary, binary, and keyword slots are slots with selectors that match unary, binary, and keyword messages,
respectively.

• Message lookup is the process by which objects determine how to respond to a message (which slot to
evaluate), by searching objects for slots matching the message.

• Inheritance is the mechanism by which message lookup searches objects for slots when the receivers slots
are exhausted.

• An objects parent slots contain objects that it inherits from.

• Dynamic inheritance is the modification of object behavior by setting an assignable parent slot.
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• Cloning is the primitive operation returning an exact shallow copy (a clone) of an object, i.e. a new object
containing exactly the same slots and code as the original object.

• A prototype is an object that is used as a template from which new objects are cloned.

• A traits object is a parent object containing shared behavior, playing a role somewhat similar to a class in
a class-based system. Any SELF implementation is required to provide traits objects for integers, floats,
strings, and blocks (i.e. one object which is the parent of all integers, another object for floats, etc.).

• A copy-down of a prototype is a concatenation mechanism for state inheritance that copies (some of) the
slots of the prototype into a new object, ensuring that changes (adding/removing slots) to the prototype
are propagated to all copied-down children.
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