Vrije Universiteit Brussel

Faculty of Science
Department of Computer Science
Programming Technology Lab

Environment queries:
Service Discovery For Open Mobile Systems

Thesis submitted in fulfillment of the requirements for the degree
of Master of Applied Computer Science

Frederik Geerts

Academic Year 2005-2006

Promotor: Prof. Dr. Theo D’Hondt

Supervisor: Stijn Mostinckx

August 2006

Vrije Universiteit Brussel

Faculty of Science
Department of Computer Science
Programming Technology Lab

Environment queries:
Service Discovery For Open Mobile Systems

Thesis submitted in fulfillment of the requirements for the degree
of Master of Applied Computer Science

Frederik Geerts

Academic Year 2005-2006

Promotor: Prof. Dr. Theo D’Hondt

Supervisor: Stijn Mostinckx

August 2006

You can’t use what you can’t find. — Peter Morville

Abstract

The proliferation of mobile devices and of the open mobile networks they
bring forth, complicates the advertisement and discovery of services. The
hardware characteristics of such mobile networks issue severe consequences
for software development. In response to these consequences the Ambient-
Oriented Programming paradigm was introduced. Service discovery pro-
tocols for open mobile networks must adhere to the same hardware char-
acteristics. The current state-of-the-art protocols fail to cope with these
restrictions. This led to the identification of a number of criteria to which
an Ambient-Oriented service discovery protocol must comply with. The

most crucial of those criteria is: rich service descriptions.

This dissertation attempts to resolve the absence of rich service descrip-
tions. The solution we propose, is to enrich AmbientTalk in such a way that
it can describe services in terms of logic. A logic programming language is
chosen as a service description language, because this makes reasoning about
the services easier and more expressive. This way we gain the advantages of
current protocols, without the disadvantages for resource-poor devices. Our
solution, environment queries, provide a concise way of describing services
where processing power, memory and bandwidth, are limited or vary pro-
foundly and where expressiveness is a critical factor to cope with the (future)
proliferation of services. AmbientTalks enhanced service discovery protocol

is extensively validated by using our implementation in various cases.

Samenvatting

De proliferatie van mobiele toestellen en van de open mobiele netwerken,
die ze voortbrengen, maken het aanbieden en ontdekken van bepaalde di-
ensten moeilijker. De hardware kenmerken van zulke mobiele netwerken
hebben ernstige gevolgen op de software ontwikkeling. Als een antwoord
op deze gevolgen werd het ’Ambient-Oriented Programming’ paradigma
geintroduceerd. ’Service Discovery’ protocollen voor open mobiele netwerken
moeten zich houden aan diezelfde hardware restricties. De huidige proto-
collen slagen er echter niet in om te gaan met deze beperkingen. Dit heeft
geleid tot de identificatie van een aantal criteria aan de welke het ’Ambient-
Oriented Service Discovery’ protocol moet voldoen. Het meest cruciale ken-

merk is hierbij het expressief omschrijven van bepaalde diensten.

Deze eindverhandeling moet gezien worden als een poging om de afwezigheid
van dit bovengenoemde kenmerk op te lossen. De oplossing die wij voorstellen,
is het verrijken van AmbientTalk in die zin dat het diensten logisch kan
omschrijven. We hebben gekozen voor een logische programmeertaal om-
dat dit het redeneren over de diensten vereenvoudigt en tevens expressiever
maakt. Op die manier behouden we de voordelen van de huidige protocollen
en hebben we niet te maken met de nadelen voor wat betreft toestellen
met beperkte middelen. Onze oplossing, zijnde Environment Queries, biedt
een beknopte manier aan om diensten te omschrijven waarbij de verwerk-
ingscapaciteit, het geheugen en de bandbreedte beperkt zijn of ernstig kun-
nen schommelen en waarbij de expressiviteit een kritieke rol speelt in het
omgaan met de (toekomstige) proliferatie van diensten. Het verbeterde Am-
bientTalk Service Discovery protocol wordt uitgebreid gevalideerd door onze

implementatie in verschillende scenarios aan te wenden.

ii

Acknowledgements

First of all I like to thank Prof. Dr. Theo D’Hondt for promoting this dis-
sertation.

Special thanks goes to my supervisor Stijn Mostinckx for his advice, his help
whenever I encountered problems during this research and the programming
of my proof-of-concept implementation.

I would also like to thank all the members and students of the Programming
Technology Lab for their advice and opinions on the subject, which led to
many discussions that contributed to a better understanding of the matter.
I also express my thanks to Frans Govaerts and Sofie Demeyer for proof-
reading this dissertation and correcting my spelling, grammar or other in-
consistencies.

Finally, many thanks to my parents for giving me this opportunity and to

my girlfriend and friends for their support and distraction.

iii

Contents

List of Figures viii
List of Tables X
List of Listings xi
1 Introduction 1
1.1 Proposed solution in the Dissertation 2

1.2 Roadmap to the Dissertation 3

2 Context 5
2.1 Ambient Intelligence 5
2.2 Hardware phenomena 6
2.2.1 Ambient Resources 7

2.2.2 Autonomy 7

2.2.3 Connection volatility 7

2.2.4 Natural Concurrency 8

2.3 Ambient-Oriented Programming 8
2.3.1 Non-blocking Communication Primitives 9

2.3.2 Reified Communication Traces 10

2.3.3 Ambient Acquaintance Management 11

2.3.4 Conclusion of the discussion 11

2.4 AmbientTalk, 12
2.4.1 Ambient Actor Model 13

2.4.1.1 Ambient Actor Model 14

2.4.2 The Object System 17

2.4.3 Integrating the Actor Model 18

2.4.3.1 Creating new actors 18

2.4.3.2 Messagesends 18

v

CONTENTS v of 104
2.4.3.3 Changing the state and behavior 19

2.5 Service Discovery 19
2.6 Conclusion 19
3 Service Discovery 21
3.1 What is Service Discovery 7 22
3.1.1 Discovery mechanism 23
3.1.1.1 Registry-based 25

3.1.1.2 Peer-to-peer based 25

3.1.2 Mobileand open 26
3.1.2.1 Consistency Maintenance 26

3.1.2.2 Failure Detection and Recovery 28

3.1.3 Description language 30
3.1.3.1 Ontology 30

3132 XMLo 31

3.1.3.3 Interfaces 32

3.1.3.4 Attribute-value tuples 34

3.1.3.5 Problems with the existing service descriptions 34

3.1.3.6 Environment Queries 35

3.2 Scenarios 35
3.3 Protocols 37
3.3.1 Registry-based 39
3311 UDDI.... 39

3.3.1.2 Salutation 40

3.3.1.3 Jini ... 42

3314 SLP 44

3.3.2 Peer-to-Peer based 46
3.3.2.1 M2MI 46

3322 JXTA 48

3323 UPnP 51

3324 SDP 54

3.3.2.5 AmbientTalk 57

3.4 CompariSono 57
3.4.1 Discovery mechanism 58
3.4.2 Mobileandopen, 58
3.4.3 Description language 59
3.4.4 Conclusion for AmbientTalk 60

CONTENTS vi of 104

3.5 Related Research 60
3.5.1 Personalization through the use of Meta-data, Repu-
tation and History 60
3.5.2 Caching o L 61
3.5.3 Semantic Discovery 62
3.6 Summary and Outlook 63
4 Logic Programming and Language Symbiosis 65
4.1 The declarative programming paradigm 66
4.1.1 Queries on knowledge 66
412 Factsand Rules. 66
4.1.3 Unification 67
414 Loco o 68
4.2 Language Symbiosis oo 73
4.2.1 Reason for symbiosis 74
4.2.2 Symbioco 74
4.3 Summary e e e e 75
5 Environment Queries 76
5.1 Conceptual Design L. 76
5.1.1 Service Discovery For Open Mobile Networks 7
5.1.2 Strings vs. Environment Queries 77
5.1.2.1 Phase one: Providing a service 78
5.1.2.2 Phase two: Requiring a service 79
5.2 Syntax and Examples o000 79
5.2.1 Basicexample 80
5.2.2 Logic operator example 83
523 Ruleexample L. 83
5.2.4 Recursion example 85
5.3 Technical Issues 86
5.3.1 Multiple matches 86
5.3.2 Loco processeso 86
533 Rules 86
5.3.4 Symbiosis 87
5.3.4.1 Providing a pattern 88
5.3.4.2 Requiring a pattern 88

5.4 Conclusion e 89

CONTENTS vii of 104

5.4.1 Incorporating advantages of existing alternatives . . . 89
5.4.2 Minding restrictions of open mobile networks 89
5.4.3 Introducing more expressiveness 90
5.5 Summaryo 90
6 Conclusion and Future Work 92
6.1 Summary L 92
6.2 Contributions o 93
6.3 Limitations and Future Work 94
6.3.1 Scale of network oL 94
6.3.2 Personalization through the use of Meta-data, Repu-
tation and History 95
6.3.3 Inexact Matching and Load Balancing 95

Bibliography 97

2.1
2.2
2.3

24
2.5

3.1
3.2
3.3
3.4

3.5
3.6
3.7

3.8

4.1
4.2

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8

List of Figures

A graphical presentation of what constitutes an actor.
Illustrates the communication state of an actor.
Tllustrates the discovery process with mailboxes when the pat-
terns match.
Implementation of the prototypical boolean objects in Pic% .

Implementation of a counter in AmbientTalk

Discovery architectures
Consistency maintenance by polling
Consistency maintenance by notification
An example XML query (A), matching service description

(B), and failed match (C)., .
The Salutation Architecture
The UPnP Protocol Stack
Illustrates the discovery process with mailboxes when the pat-

terns match.o L oL

Venn diagram of environment queries characteristics

A map of the London Underground

Graphical representation of the Symbioco layer

Incorporation of Loco process for every actor
Providing a serviceo
Requiring a service L L oo
Sending back providers
Basicexample Lo
Logic operator example
Ruleexample

Recursion Exampleo 000

LIST OF FIGURES ix of 104

5.9 Rule causing unexpected matches 87

5.10 Graphical representation of the Symbioco layer 88

List of Tables

3.1 Advantages and disadvantages UDDI 40
3.2 Advantages and disadvantages Salutation 42
3.3 Advantages and disadvantages Jini 44
3.4 Advantages and disadvantages SLP 46
3.5 Advantages and disadvantages M2MI 48
3.6 Advantages and disadvantages JXTA 51
3.7 Advantages and disadvantages UPnP 54
3.8 Advantages and disadvantages SDP 56
3.9 Advantages and disadvantages AmbientTalk Service Discovery 57
3.10 Summary of all protocols, 58
4.1 Basic syntax of the Loco programming language 71

List of Listings

3.1 A remote file storage facility interface 33
3.2 Example unihandle and omnihandle 47
4.3 Connections of the London Underground 69
4.4 Connections of the London Underground 69
4.5 Rules for describing nearby. oL 70
4.6 Nofreevariables oL, 71
4.7 Two free variables oo, 72
4.8 Noresult 72
4.9 Unify witharule 0oL 73
5.10 Requester transcript basic example 82
5.11 Provider transcript basic example 82

X1

Introduction

In traditional (non-ad-hoc) networks, system administration is so time-
consuming that most companies charge an entire in house department for
that task or even outsource the whole problem. In case we want to deploy
a new service on our network, we have to assign it a network address and
publish that address to all users who want to take advantage of the service
it provides. When the service fails or loses its connectivity, clients can’t
automatically be redirected to a substitute or backup service that is up
and running, nor are they informed when the component is available again.
In many cases, different services force different drivers on every client that
wants to use them. In such a network, hosting a temporary guest who might
want to utilize printers, beamers or internet connection, is so complicated

that it is usually avoided unless absolutely indispensable. [Dyr03]

So, even now one of the toughest tasks in computer maintenance is the
location and configuration of networked services such as printers, mail or
database servers. It poses a number of logistical and technical challenges
and as the number of network services increases, so does the need for a ser-

vice discovery mechanism.

1.1. Proposed solution in the Dissertation 2 of 104

Another problem is the rapid increase in numbers of mobile devices such
as cellular phones, mp3-players, palm-sized computers, UMPC’s and other
portable gadgets. These devices revolve around suitable form factors and
low power consumption instead of functionality. For this reason they are
“peripheral-poor” and need other devices in the vicinity for services like:
storage, faxing, printing, scanning and internet access. All these devices
together form open mobile (ad-hoc) networks, which are the subject of this

dissertation.

Assuming these existing trends will continue, we will have to support true
mobility of users in open networks, and focus on interactions between differ-
ent mobile devices and devices embedded in their surroundings. This vision
has been researched for a few years and is known as Ambient Intelligence
[DBS*03], which can only be supported if we change the way services are
advertised and discovered. As a result, there has recently been a consid-
erable amount of research into the service discovery field, which we will
review in chapter three. Basing ourselves on this research we will extend
the service discovery protocol of AmbientTalk with a new service description
language that incorporates the advantages of current protocols, while keep-
ing in mind the restrictions of an open mobile network and even introducing

more expressiveness in service advertisements and queries.

1.1 Proposed solution in the Dissertation

The solution proposed in this dissertation is to enrich AmbientTalk in such
a way that it can describe services in terms of logic. A logic programming
language is chosen as a service description language, because this makes
reasoning about the services easier and more expressive. Additionally, a
symbiosis will be constructed between the logic language and the base lan-
guage.

Language symbiosis between two languages [Gyb03] means that both lan-
guages can use each other’s functionality. For instance, this can enable
two object-oriented languages to send messages to one another’s objects,
or enable an object-oriented programming language to execute queries in a
declarative language.

In our approach a symbiosis between a logic service description language

1.2. Roadmap to the Dissertation 3 of 104

and a prototype-based base language is constructed, in order to provide the

base language AmbientTalk with the ability to manage service descriptions.

AmbientTalk is a prototype-based ambient-oriented programming language
developed at the Vrije Universiteit Brussel, and will be used as base lan-
guage in our experiment. AmbientTalk is based on Pic%, which itself is an
extension of Pico, a very simple and expressive language originally intended
to teach programming concepts to non-computer science students. Ambi-
entTalk strives to hold on to the expressiveness and simple syntax featured
in Pico.

Loco is the logic programming language that will be used as description lan-
guage to describe services in AmbientTalk. Like AmbientTalk, Loco is also
developed at the Vrije Universiteit Brussel. Loco syntactically resembles
Pico (and AmbientTalk), which will prove to be very useful when construct-

ing the language symbiosis.

In our experiments, Loco will be triggered when we require or provide ser-
vices in AmbientTalk. Loco will reason about them and send back the results
to AmbientTalk. This proof-of-concept implementation enables us to discuss
the benefits of using a logic programming language as a service description

language for service discovery in open mobile systems.

1.2 Roadmap to the Dissertation

In the next chapter we will describe the context of this dissertation. We will
address the hardware phenomena that become apparent in open mobile net-
works and how languages of the ambient-oriented programming paradigm
handle them. At the end of the chapter a prototype-based language, follow-
ing the paradigm, is discussed in more detail.

Chapter three will explain what service discovery is, and the concepts that
compose a service discovery protocol are defined. Different strategies and
design options will be discussed. A couple of scenarios will illustrate the
use of discovery, and they are followed by an in depth analysis of nine of
the most important service discovery protocols including AmbientTalk. A
comparison is made between them and we identify related research in the

same area. The chapter will then be concluded with a summary and outlook

1.2. Roadmap to the Dissertation 4 of 104

to the future.

Chapter four revolves around logic programming and language symbiosis.
We describe the declarative programming paradigm and take a closer look
at Loco, the logic programming language that will be used in the symbiosis.
We briefly look at language symbiosis and at a concrete implementation:
Symbioco.

In the fifth chapter we finally introduce environment queries and we put for-
ward a proof-of-concept implementation supporting the thesis. Hereafter a
more technical discussion will be presented concerning a number of practical
issues and the chapter will end by several validating examples.

The sixth and final chapter presents our conclusions and identifies areas for

future work.

Context

In this chapter an overview is given of the different concepts that shape the
context in which this dissertation is to be situated. Each of the concepts
reflects on the work presented in the remainder of this thesis as will be

indicated in this chapter.

2.1 Ambient Intelligence

Ambient Intelligence (Aml) is a vision of the future where electronic devices
are integrated into our everyday environments, surrounding users with a so
called processor cloud, that is sensitive as well as responsive to both the
presence and actions of people. Such an Aml environment is characterized
by the following key attributes: context aware, adaptive, personalized, ubig-

uitous, immersive, transparent and intelligent. [DBS*03]

In addition to the hardware embedded in the environment, the Aml vision
also foresees that people will carry around a Personal Area Network (PAN):
a network of small consumer electronics (mp3-players, mobile phones, pdas,
...) which interact with both the embedded devices as well as devices belong-

ing to the personal area networks of others in their immediate surroundings.

2.2. Hardware phenomena 6 of 104

The networks that connect these devices are dynamically defined because
devices may enter and leave at any time, usually as a result of users moving

about.

The vision on Aml seeks to integrate computing technology into everyday
life much like electricity has pervaded everyday life: it is ever-present and
widely used, but we do not think about it, and most of the time we are not
even aware of it. Aml intends to provide design criteria for establishing a
similar intelligent infrastructure of computing devices; intelligent, not only
because it can interpret our actions and intentions, but also because it can
change, more or less interactively, our environment to help us with trans-
parent solutions. [PRDIRCO5]

In the context of this dissertation, we will consider a small subset of the
problem of integrating computing power transparently into everyday life,
namely the selection of which service(s) to interact with. The motivating
example we will use throughout this dissertation: Imagine yourself walk-
ing through a computer lab, in your hand a PDA and on it a document
you would like to have a hardcopy of. You are in a hurry and just want a
quick draft, so you select a dpi ' of minimum 300. Meanwhile your PDA
has discovered all the matching nearby printers, even arranged them by your
previous preferences like speed, distance from your position, size of the print
queue and so on. The most suitable one has already been selected as default,
you just press the print-button and promptly you are shown directions to
the printer where you will find your document. But it doesn’t stop here,
the possibilities are nearly endless, and more elaborated scenarios have been
written by ISTAG. [DBST03]

2.2 Hardware phenomena

Mobile devices are becoming widely available and almost all of them can be
classified as "resource-poor”. They have limited processing power, memory
and battery capacity compared to traditional hardware. Although things

are changing in the last years, e.g. smart phones and pda’s are sharing more

! Dots Per Inch/Pixels Per Inch. The resolution of an image or how many pixels are

defined in the boundary of a square inch. From Cadmus Professional Communications

2.2. Hardware phenomena 7 of 104

and more functionality with “resource-rich” devices such as laptop. We have
come to the point were the mobile devices have enough resources (up to a
certain point) to run meaningful services for others to use. This is also the
reason why we believe the capabilities and resources of mobile devices will
keep growing. In contrast to these hardware restrictions, which will be grad-
ually resolved as technology progresses, there are more fundamental issues
in an ambient environment, that separate mobile networks from existing
technology. [DCM™05]

2.2.1 Ambient Resources

In static networks references to remote services are often obtained by en-
coding the existence of the service into the application. This technique is
no longer applicable in a context populated by mobile devices as remote
resources may appear or disappear dynamically in the environment. The
availability of a resource at that point relies solely on the location of the

requesting device.

2.2.2 Autonomy

For static networks the client-server paradigm remains the dominant strat-
egy for developing distributed applications. Generally the server coordinates
the various interactions between its clients, but in case of (ad-hoc) mobile
networks a connection to such a coordinator is not always feasible or even
possible. The connection may disconnect as the location of any device can
change at any moment. Therefore each device has to act as autonomous

computing component.

2.2.3 Connection volatility

We also have to deal with the fact that wireless communication is restricted
by a perimeter and a user can move out of range, breaking connections.
Therefore we can never assume stable connections between two collaborat-
ing devices. When a task is interrupted as result of a broken connection,
users typically expect the program to resume the job at hand, should the con-
nection be restored (within a reasonable amount of time). So users assume

their tasks to be carried out in spite of the presence of volatile connections.

2.3. Ambient-Oriented Programming 8 of 104

2.2.4 Natural Concurrency

Distribution and concurrency are not the same phenomena in theory, but
they tend to intertwine in practice. In theory a client can wait for a server
to return results before resuming its task, yielding a form of distribution
with concurrency. However, both to optimally exploit the available pro-
cessing power in the network of devices and to maximise the autonomy of
the involved devices, concurrency is a natural phenomenon for distributed
software. A testament to this is the tendency of developing more and more
multi-threaded software. Before long this will also arise on mobile devices,

as the devices evolve from single-purpose to multi-purpose devices.

In response to these characteristics the AmOP paradigm was introduced
[DCM™05]. This will be explained next and is the paradigm that will be
used for this dissertation. We will also use these criteria to evaluate the
existing service discovery protocols in section 3.3. The current service dis-
covery protocols don’t solve all the challenges of open mobile environments.
Hence we deem new solutions are necessary and they will come from a new

paradigm: Ambient-Oriented Programming.

2.3 Ambient-Oriented Programming

To be able to realize the Aml vision, advances in both hardware and ap-
propriate software support are needed. Supporting the development of such
applications, is a task for which the current generation of programming lan-
guages were not designed. Therefore it is useful to explore a new branch of
programming languages that are equipped with built-in features to handle
the volatile connections and the openness of the network.

More dedicated abstractions are needed to deal with all the consequences
of mobile hardware in order to alleviate the burden on software developers.
This observation justifies the need for a new Ambient-Oriented Program-
ming paradigm (AmOP for short) that consists of programming languages
that explicitly incorporate potential network failures in the very heart of

their basic computational steps. [OOP05]

A key characteristic of these languages is that they are based on dynam-

ically typed prototype-based programming languages that have the neces-

2.3. Ambient-Oriented Programming 9 of 104

sary built-in provisions to deal with networking, partial-failure, distribution,

mobility, persistence and so on.

The AmOP paradigm can be described more formally by a set of four charac-
teristics, which are directly inspired by the hardware phenomena described
in section 2.2. These hardware phenomena effectively issue boundary con-
ditions for the AmOP-paradigm, which we will describe in this section. Up
to the present the object-oriented paradigm has been the most successful
approach for coping with distribution and its induced concurrency, because
there is a natural alignment between encapsulated objects and concurrently
running distributed software entities. [BY87] Hence, Ambient-Oriented Pro-
gramming languages are a member of the distributed concurrent object-
oriented programming language family but they also share some other char-
acteristics that differentiate them from this group, which will be addressed

in the following sections.

2.3.1 Non-blocking Communication Primitives

There are two main reasons why non-blocking communication primitives are
necessary in an ambient environment: the first is the volatility of the em-
ployed connections and the second reason is that every hardware device is
autonomous and therefore induces natural concurrency. Blocking communi-
cation primitives often give rise to (distributed) deadlocks. [VA98] In local
networks we can deal with these (distributed) deadlocks through contempo-
rary remote debugging environments, but more harm is bound to happen
in mobile networks, where not all parties are necessarily available for com-
munication and thus vastly complicating the solution of deadlocks in these
networks.

An additional and more crucial issue for a concurrency model running on mo-
bile networks is that we should minimize the duration of locks on resources.
In these networks we have to cope with severe high latency of communication
over volatile connections, otherwise the availability of the resources will die
down. If we nonetheless choose to have blocking communication, a program
or device would block the moment it stumbles across unstable connections
or the (temporary) unavailability of a device. These reasonings have already
been mentioned in literature [MCE(02] [CNP01] [MPRO1] and reinforce the

choice for a concurrency model without blocking communication primitives

2.3. Ambient-Oriented Programming 10 of 104

for Ambient-Oriented Programming languages.

It’s also important to stress that non-blocking communication is not the
same thing as asynchronous communication. Asynchronous message send-
ing represents only half of the issue: the send operation is non-blocking,
but asynchronous communication doesn’t assert anything of the receive
operation. A typical example of asynchronous send operations combined
with blocking receive operations is found in the tuple-space based middle-
ware , which provide explicit, blocking receive operations on the tuple-space
[Gel85).

2.3.2 Reified Communication Traces

Seeing that we have non-blocking communication, both the senders and re-
ceivers will continue their execution regardless of any events after the mes-
sage send. For that reason it may lead up to an inconsistent state concerning
the task at hand, which they are trying to solve. They must be capable of
restoring their state to a consistent one, so they can decide what to do next.
Examples of the latter could be overruling one of the two computations
or could be deciding together on a new state with which both parties can
resume their computation. Hence, a programming language in the ambient-
oriented paradigm will have to provide us with reversibility provisions giving
programmers a way to manipulate their execution state based on an explicit
representation (i.e. a reification) of the communication details that led to
the inconsistent state. This explicit representation permits them to take

proper actions to reverse (part of) the computation.

We can identify various levels of delivery guarantees for non-blocking com-
munication. A first one is build into the many-to-many invocations library
[KBO02]: using asynchronous messages for all communication and no delivery
guarantees. This paradigm is very light on resources and fitting if delivery
guarantees are not mandatory. When there is no process listening, all the
messages we send will vanish. A second opposite approach, the actor model,
demands that all asynchronous messages that are send, are also received.
[Agh86] It’s apparent that this will be much more resource intensive and
not sensible or even possible in mobile networks.

We can deduce that no ideal message delivery guarantee policy exists and a

2.3. Ambient-Oriented Programming 11 of 104

trade-off will have to be made between available resources and necessary re-
quirements of the application at hand. Programming languages classified by
the Ambient-Oriented paradigm should make this trade-off possible instead
of forcing a single strategy. Explicit control over the communication traces

allows one to make the trade-off between different delivery guarantees.

2.3.3 Ambient Acquaintance Management

Contrary to the client-server communication models we have no need for a
third party to interact between hardware devices. They are autonomous and
resources are dynamically detected while they wander, which conveys that
they share the same capabilities without mediation of a server. In order to
abandon the use of explicit references to each other (whether directly or via
a server) we need what is known as distributed naming. [Gel85] One exam-
ple of an implementation can be found in tuple-based middleware, where a
process can publish data in a tuple space, which subsequently can be read
out by another process based on pattern matching basis. Another style is
incorporated by many-to-many invocations [KB02], where we can broadcast
to all objects implementing a certain interface. Distributed naming is es-
pecially important in the context of ad hoc distributed systems, because it
delivers a means to communicate when the addresses of the processes are

not known ahead of time.

Although it is totally feasible to setup a server (just) for a special appli-
cation, an Ambient-Oriented Programming language should permit applica-
tions to depend on distributed naming if the situation calls for it. In short:

the acquaintances of an object must be dynamically manageable.

2.3.4 Conclusion of the discussion

The three properties established above define what constitutes an Ambient-
Oriented Programming language. As they are derived from the hardware
phenomena introduced in 2.2, it is possible to conclude that given the scope
of applications targeted for interacting mobile devices, they are clearly nec-
essary. Furthermore we can advocate for their sufficiency by the fact that in
order to send a message, one must a) establish an acquaintance relation be-
tween communicating parties, b) have primitives to exchange the message,

and ¢) have primitives to manipulate the message in order to deal with

2.4. AmbientTalk 12 of 104

results, or failure to deliver the message. These aspects are all embraced
by the above considerations. Therefore the three properties are arguably
necessary and sufficient to support future ambient applications, although it

remains hard to prove.

The current state of the art in distributed languages does not comply with
the characteristics of AmOP. The non-blocking communication character-
istic is violated by languages for local area networks. Languages for open
networks (typically the internet) tend to fulfill the non-blocking commu-
nication characteristic. They often do not support ambient acquaintance
management and never provide a full reification of the communication as a

basis for reversibility provisions.

2.4 AmbientTalk

AmbientTalk, which is the artifact we have explored and extended for this
dissertation, is a first scion of the AmOP programming language family.
AmbientTalk is a small expressive language allowing the programmer to
deal with the conceptual problems of writing software for devices connected
by wireless networks without having to meddle with their low-level techni-
calities [Amb06]. The language is based on the actor model of concurrency
[Agh90]. Such actors (see figure 2.1) are objects with an associated thread
that communicate and synchronize by sending each other asynchronous
methods. Such incoming (respectively outgoing) messages are stored in mail-
boxes (FIFO queues) and are processed (respectively transmitted) whenever
possible. Due to these mailboxes, the sending and receiving actor can be
easily distributed (even on networks with unpredictable connections) since
messages can be sent (although not transmitted) to actors even if they are

not available.

2.4. AmbientTalk 13 of 104

peany

State

Figure 2.1: A graphical presentation of what constitutes an

actor.

2.4.1 Ambient Actor Model

The Actor Model, first proposed by Hewitt [Hew77] and expanded by Agha
[Agh90], complies with non-blocking communication characteristic of the
paradigm, because all communication is asynchronous between actors and
there is no explicit receive operation in the model. The Actor Model is thus
a potentially valuable starting point for constructing an AmOP language.
However the model has its limitations with regards to the remaining two

characteristics of an AmOP language.

Ambient Acquaintance Management is not supported since an actor
depends on other actors to acquire acquaintances. This implies that
the entire configuration of actors needs to be set up beforehand, which
is impractical in open and especially mobile networks. An extension
to the actor model, namely the ActorSpace Model [AC94] enables dis-
tributed naming by a grouping mechanism called spaces. However
these spaces are managed by centralized authorities and are there-
fore unable to cope with network partitions. The dependency on cen-
tralised authorities violates the autonomy characteristic and therefore

makes the ActorSpace Model not suitable for mobile networks.

Reified Communication Traces are not supported by actors or even Ac-

torSpaces, as a consequence of the guarantee stated by the model that

2.4. AmbientTalk 14 of 104

all messages eventually will be delivered. In response to a network par-
tition it may be necessary to retract messages that were sent, but not
yet transmitted (cf. section 2.3.2). Due to the delivery guarantees im-
posed by the actor model, such reflective access to the communication

of an actor (as prescribed by the AmOP paradigm) is impossible.

2.4.1.1 Ambient Actor Model

The AmbientTalk language in fact uses an extension to the Actor Model
called the Ambient Actor Model [Ded04], which addresses the lack of am-
bient acquaintance management and reified communication traces with the

introduction of explicit mailboxes.

MESSAGE

send

MESSAGE
MESSAGE

transmit

MESSAGE
MESSAGE

Figure 2.2: Illustrates the communication state of an actor.

Communication State: The Ambient Actor Model offers explicit control
over an actor’s communication state. If we examine the communica-
tion between two actors, we can differentiate four types of messages
and each will be put in another mailbox (shown in Figure 2.2). The
first are the messages, the actor has send, but are still waiting to be
transmitted in the mailbox "out”. A second type are the ones that

an actor has send and that are transmitted in the ”sent” mailbox.

2.4. AmbientTalk 15 of 104

Third are the messages that are received, processed and remaining in
the "rcv” mailbox. And the last kind are those that an actor has re-

ceived but still needs to process. They will end up in the mailbox ”in”.

The distinction with the regular Actor Model lies in the fact that these
four mailboxes are not implicit but reified and accessible. Whereas the
”in” and ”out "mailboxes are implicitly present in the Actor Model to
facilitate non-blocking communication primitives, their content cannot
be modified, making it impossible to define one’s own delivery guaran-
tees and reversible computing support as argued for in the Ambient-
Oriented Programming paradigm in section 2.3.2. Since they are fully
reified in the language, the ”in” and ”out” mailboxes describe the con-
tinuation of an actor, as these two mailboxes contain the messages that
will be processed and transmitted in the future. The remaining mail-
boxes "sent” and "rcv” reveal the communication history of an actor
and are essential for undoing the effects of certain messages. The com-
bination of all four produces a gateway into both the past and future

computation of the actor.

Aside from all those standard mailboxes, each actor can create cus-
tom mailboxes. A message can occupy numerous mailboxes at the
same time. Its delivery status can be monitored and altered, e.g. if
we remove a message from the mailbox ”out”, it will never be trans-
mitted. This way the ”in” and ”"out” do not only represent the future

of processing or communication, they even allow us to manipulate it.

2.4. AmbientTalk 16 of 104

PATTERN

/V

Broadcast

required required

MATCH !
string1=string2

provided provided

PATTERN

Join
Disjoin

join join

disjoin disjoin

Figure 2.3: Illustrates the discovery process with mailboxes

when the patterns match.

Ambient Acquaintance Management: The concept of mailboxes also
introduces a service discovery mechanism to allow actors to get ac-
quainted with one another (illustrated in figure 2.3). Whenever an
actor (A) requires a particular service, it will add a pattern describing
the service to its "required”-mailbox. The interpreter will then ensure
that the request is (periodically) broadcasted such that an interpreter
hosting another actor (B), which has the same pattern (a string), in
its "provided”-mailbox will match, so that the actors can be intro-
duced to one another. Whenever a match occurs the actor requiring
the service, will receive a join message and the required pattern along
with the provider will be added to the ”join”-mailbox until a disjoin-
message arrives, signaling that the service is no longer provided by the
actor or the connection failed. At the arrival of the disjoin-message
the pattern along with the provider will be moved to the ”disjoin”-
mailbox. Collectively these four mailboxes also provide us a detailed

view on all the requested and provided services and their history.

2.4. AmbientTalk 17 of 104

2.4.2 The Object System

Within the scope of a single actor, AmbientTalk introduces objects, which
appear to exist in a purely sequential language. The object model of Ambi-
entTalk is based on the one of Pic% [DMWJ03] (pronounced as Pic-oh-oh),
a small multi-paradigm (functional and object-oriented) programming lan-
guage. It’s a dynamically typed prototype-based language, which is exem-
plified below by the implementation of the prototypical boolean objects:

true: object({
new(z:: { this() 1;
ifTrue(code()):: { code() }:
not():: { false };
and(exp()):: { expO 1
orfexp(dd:: { this() }

1

false: object({
new():: { this(};
ifTrue(code()):: { void };
not():: { true };
and(exp(0):: { this() };
or(exp()):: { exp(D }

IDH
test: random(true, false);
test.ifTrue({

display("The value is true.", eoln)
b

Figure 2.4: Implementation of the prototypical boolean objects
in Pic%

Methods are invoked using the dot-operator. Names are declared using
either > or ’::” . The former declares variables, while the latter declares
constants. These two types of declarations are also aligned with the visibil-
ity rules of the slots in an object [DMWJO03].

Methods can have two kinds of parameters: normal parameters and func-
tional parameters . The actual kind, of a parameter, is syntactically visible
in the definition of the function (the use of ’()’ behind the argument). In
the case of normal parameters, the argument is evaluated and the associated
value is bound to the formal parameter before the body of the function is

evaluated. In case of functional parameters their arguments will be delayed.

One of the key features that makes AmbientTalk an extensible language is
its special call-by-name parameter passing technique [DMWJ04], but again

the details for this would lead us too far for the purpose of this dissertation.

2.4. AmbientTalk 18 of 104

2.4.3 Integrating the Actor Model

On top of the object model of Pic% we require three more pieces to make
AmbientTalk an actor based language: one construct for creation of ac-
tors, another one for message sending and last but not least a construct for

manipulation of actors. We will illustrate through the following example:

counter: actor({
n; void;
new(aNumber):: { copy(n:=alumber) };
increment(D:: { become{counter.new(n+1)) };
decrement(D:: { become{counter.new(n-1)0) }:
get{customerl):: { customer<-result{n) };
init();: { display("initialized as actor™) }
IDF

mycounter: actor{counter.new(5));
mycounter<-increment();
mycounter<-decrement{)

Figure 2.5: Implementation of a counter in AmbientTalk

2.4.3.1 Creating new actors

Creating an actor in AmbientTalk is done with the actor primitive, which
takes one argument: the actor’s behavior. The resulting actor will receive an
init-message, which we will use later on in the examples of chapter five, to
initialize an actor. The passing of the object to the primitive actor is done
by copy in order to avoid data sharing between two actors. The expression’
actor(counter.new(5))’ from the example, wraps a clone of the counter object

(instead of a reference) in an actor entity.

2.4.3.2 Message sends

Message sending to an actor is done by the operator < — (syntactic sugar for
#). For example, the expression mycounter< —increment() sends the asyn-
chronous message increment to the actor referred by the variable mycounter.
The return value of a message is void as function calls are asynchronous. If
a result is expected, this should be sent back by means of a callback method.

When passing arguments, all objects are passed by copy to avoid sharing

2.6. Conclusion 19 of 104

them between different actors which would introduce race conditions on
their internal state. Actors can be passed by reference since they are by de-
fault shielded from concurrent accesses since they process incoming messages

(which are buffered in their inbox) one by one.

2.4.3.3 Changing the state and behavior

The become statement is used in AmbientTalk to change the state and
behavior of an actor. It takes one argument: an object that will process
all future messages. In the example the state is updated via the become
primitive after an increment or decrement message. A clone of the counter,
with an updated state, is used to replace the previous one. 2

Since the 'become’-statement may be used to install new behavior inside
an actor, messages that arrive at an actor that the current behavior can’t
handle will remain in the inbox . The moment become is used to alter the
behavior (instead of the state) and the new behavior supports that message,

it will get processed.

2.5 Service Discovery

Service discovery protocols are network protocols which allow automatic
detection of devices and services offered by these devices on a computer
network. It is the goal we aimed for in section 2.1, where we wanted to find
a printer. AmbientTalk already has its ambient acquaintance management
as we explained in 2.4.1.1, but it completely relies on two patterns to be
equal. Since a pattern consists of merely a string, the protocol only permits
text-based matching. There is no support for preferences, the use of history,
logical operators or even subtype-matching, and this is exactly the demand

we are attending in this dissertation.

2.6 Conclusion

This chapter has started with an outline of the Ambient Intelligence vision

along with a concrete scenario that we will explore in the remainder of this

2 Note that when only the state needs to be updated it is not necessary to use the become
primitive since the underlying object model allows for imperative programming. In the

example become was used rather than plain assignment for didactic purposes.

2.6. Conclusion 20 of 104

thesis. Subsequently we have introduced the essential characteristics of the
involved hardware as well as their repercussion on the software side. This
has culminated in the Ambient-Oriented Programming paradigm which was

embodied in the AmbientTalk programming language.

In the remainder of this dissertation we will explore various existing mech-
anisms for service discovery. The goal of this study is to be able to enhance
the service discovery mechanism of the language AmbientTalk which is based

on a text-based matching of patterns in two mailboxes.

Service Discovery

In our present-day network environments we face two main problems: the
first is the expansion of computing environments in homes and offices through
the ever growing numbers of printers, scanners, digital cameras, and other
peripherals, integrated into networked environments. The second problem
is the proliferation of mobile devices such as laptop and palm-sized com-
puters, cellular phones and other portable gizmos. These devices all trade
functionality for suitable form factors and low power consumption; they are
therefore “peripheral-poor and as a result they must connect to proximate

machines for storage, faxing, printing, scanning and internet access. [Ric00]

Due to these changes mobility and modularity have become the modern
goals of system development to enable Ambient Intelligence (see section
2.1). The classical client server paradigm is hardly applicable to present
networks anymore and is increasingly displaced by peer-to-peer approaches,
allowing endless changes in network topology and turning the use of fixed

infrastructure in to old-fashioned customs. [SGF02]

Network resources and application software do not follow the mobile users

when they leave their offices or homes, or when they relocate to another

21

3.1. What is Service Discovery 7 22 of 104

temporary office or home. Supporting true mobility of users will therefore
require changing the way application software is advertised and discovered.
[LHO2]

To face the management of all these devices we are in need of service ad-
vertisement and discovery technologies which will enable yet richer ways of
interacting with our environments, services and devices. For that, different
consortiums and labs have developed a range of service discovery protocols
that are the subject of this thesis.

First we will give a definition and explanation of what constitutes such a pro-
tocol, then we will expand on the basics underlying the process. Thereafter
three small scenarios will illustrate the context, followed by an overview of
the most important competing protocols with a comparison. That leaves us
only to touch some issues that are being addressed in the research field, and

to end with a summary and outlook to the future.

3.1 What is Service Discovery ?

Service discovery protocols are network protocols which allow automatic
detection of devices and services offered by these devices. They are supposed

to possess the following three properties:

A Discovery Mechanism to detect services and service users, to find
each other on a network. Here we can identify two types of service discov-
ery architectures: registry-based (e.g. Jini) and peer-to-peer (e.g. UPnP). A
registry-based architecture has a third entity, called the “registry”. A “manageR”
registers its services at it and “users” discover the services through unicast
queries to the registry. In the peer-to-peer architecture there are no reg-
istries, and users discover managers through broadcast or multicast queries.
The registry-based architecture reduces network traffic and makes a network
more manageable by allowing registries to keep track of arriving and depart-
ing services. [SHAH'05] The peer-to-peer architecture avoids single point
of failures and bottleneck problems, that may surface in the registry-based

architecture, but on the other hand increases network traffic.

3.1. What is Service Discovery 7 23 of 104

Mobile and open so we have to include techniques to detect changes in
component availability and maintain a consistent view of components in a
network. This can be achieved by either monitoring periodic announcements
(a heartbeat algorithm) or by persistently resending unacknowledged mes-
sages up to some bound, issuing a remote exception if the bound is exceeded
(bounded retries). In AmbientTalk the former solution is implemented as
well as in Jini and UPnP.

Description language to provide the means to describe services, so that
the service user can determine if a discovered service matches his/her re-
quirements. There are three major approaches to describe resources: the
first is XML, which is widely used for webservices but is bandwidth inten-
sive (cf. UPnP). The second is the use of interfaces (cf. M2MI), which is
the most effortless approach but also the least expressive. The third way to
describe a service is the use of attribute-value pairs, like the functional units
in Salutation. We will combine the benefits of all three and propose a new
description language for AmbientTalk, that will enable us to write richer de-

scriptions without the performance drawbacks, in a straightforward manner.

In the following sections we will expand on the properties, we just intro-
duced.

3.1.1 Discovery mechanism

For services to be able to find each other a discovery process has to take
place, and as stated before we can differentiate between two underlying
architectures: registry based (three-party) and Peer-to-Peer based (two-
party). [DMO1] Service discovery protocols define three entities, one of which
is optional. All entities are software components that are distributed on a

network:

1. The service manager holds information about one or more services or

devices, together with their attributes and interfaces.

2. The service user queries for a certain service or device it wants to use,

and selects the most appropriate one found in the results.

3. Optionally, a service cache manager can act as a broker between ser-

vice managers and service users, in order to reduce network traffic and

3.1. What is Service Discovery 7 24 of 104

to increase performance. However, the design should ensure that all
discovery activities are possible in the absence of service cache man-
agers, because not all of the existing protocols support service cache

managers (e.g. AmbientTalk).

In two-party-architecture multicasts are necessary for every discovery pro-
cess, whereas in three-party-architecture multicasts from service users and
service managers are only necessary for initial discovery of the service cache
manager. That is why the latter case is desirable for larger networks. A
graphical presentation of the two possible architectures is given in the figure
3.1.

Service service request (multicast) > gonice
User | q——— service reply (unicasty ——{ Manager
(a) Two-party
Service Service
User Manager
service service

request ACK
(unicast) (unicast)
service service
reply registration
(multicast) (multicast)
Service
Cache
Manager

(b) Three-party

Figure 3.1: Discovery architectures

Three different kinds of discovery can be distinguished: aggressive,
lazy and directed. In aggressive discovery the service user sends out multi-
cast requests, either a fixed number in fixed intervals or until it has discov-

ered enough service managers or service cache managers.

3.1. What is Service Discovery 7 25 of 104

The service managers or service cache managers send a unicast reply to the
requestor if they can provide the requested service, with the given attributes.
Aggressive discovery is normally used when a node has just joined the net-
work, in order to discover the existing services for the first time.

In lazy discovery, service managers and service cache managers advertise
their services in fixed intervals by multicast communication. Service users
and service cache managers can store the received data for later use of the
advertised services. Lazy discovery is useful to detect changes in component
topology during operation. In directed discovery a service user contacts a
service manager or service cache manager directly in order to probe for a

previously advertised or discovered service. [Dyr03]

3.1.1.1 Registry-based

In a registry-based discovery process every service manager holds a collection
of service descriptions. Each of these descriptions must be registered with all
the discovered service cache managers (registries). The manager and cache
manager have to negotiate about the lease time, the time after which the
registration is removed if there was no renewal. From the moment a service
is registered any service user can discover it, or can register its interest
in receiving notifications about changes concerning the registered service.
The reception of these notifications is also tied to a negotiated period of
time. The registry-based architecture reduces network traffic and makes a
network more manageable by allowing registries to keep track of arriving

and departing services.

3.1.1.2 Peer-to-peer based

A two-party architecture consists of two component types: a service man-
ager, a service user (and no service cache manager). Users discover managers
either through broadcasts or multicast queries. The peer-to-peer architec-
ture avoids single point of failure problems, as may exist in registry based
architectures, but increases network traffic. It is also the preferred choice for
ambient networks composed out of resource-poor devices. A limited battery
for example favors against service cache managers, because you don’t want
to waste your own power on caching results for other people’s queries that
don’t concern you. This is also the main reason why AmbientTalk is in the

peer-to-peer based camp.

3.1. What is Service Discovery 7 26 of 104

3.1.2 Mobile and open

Since we are dealing with distributed systems, new services can be deployed,
obsolete ones can be removed, nodes and links may appear, disappear or fail.
[DM02] Thus, a consistent view of all services on the network can not be
guaranteed. It doesn’t matter if we are tackling the discovery with a registry
or a peer-to-peer based solution, consistency is an important issue, and we

also have to address failures in a volatile network.

3.1.2.1 Consistency Maintenance

After logging onto a network and the initial discovery of all available services,
a service user has to ensure that his knowledge about existing services stays
consistent with the actual distributed state. There are two basic mechanisms
for that: polling and notification. With polling, the service user initiates
receiving updates, whereas with notification the service managers propagate

changes as they occur. [Dyr03]

Polling With polling, a service user sends queries to obtain up-to-date
information about a service that was previously discovered. In a two-party-
architecture (shown in figure 3.2) it sends these queries directly to the pre-
viously discovered service managers and receives the responses via unicast.
In UPnP for example we use the "HTTP Get request” mechanism to poll
the service manager to retrieve a service description associated with a spe-
cific URL. In response, the manager provides a list of all supported services,
including their relevant attributes. In a three-party (shown in figure 3.2)
architecture polling consists of two processes. Service managers propagate
changes concerning provided services regularly to the service cache managers

and each service user queries its relevant service cache manager.

3.1. What is Service Discovery 7 27 of 104

Service Manager Service User

)
Change Poll

Service g
Poll

Poll

(a) Two-party

Service Manager Service Cache Service User
Manager

))
| |
| Change i Poll |
' Service | |
| ! |
' i Poll !
: ! |
| ! |
! | Poll !
| ' i

(b) Three-party

Figure 3.2: Consistency maintenance by polling

Notification When using the notification mechanism (illustrated in fig-
ure 3.3), changes in service descriptions are propagated from the service
managers to the service users immediately after an update occurs. In a
two-party architecture a service user has to register with the service man-
ager. This registration is only valid for a negotiated time and needs to
be renewed regularly. The service manager then subsequently announces
changes to all service users that registered with it. In UPnP this is called
event-subscription, the service user sends a subscribe request, and the ser-
vice manager responds by either accepting the subscription, or denying the
request. The subscription, if accepted, is retained for a TTL (time to live),
which may be refreshed with subsequent subscribe requests from the user.
In three-party-architecture service managers announce changes to the ser-
vice cache managers. The cache managers do not need to register for that
purpose. The service users register with the service cache manager in order

to be notified about changes as soon as the cache manager receives them.

3.1. What is Service Discovery 7 28 of 104

Service Manager Service User

Change Notification Request

Service g

Notification

(a) Two-party

Service Manager Service Cache Service User
Manager

Change Notification Request

Service

)
|
|
|
|
Notification |
|
|
|
|
|
|

(b) Three-party

Figure 3.3: Consistency maintenance by notification

3.1.2.2 Failure Detection and Recovery

Up until now we have only considered topology changes that happen con-
sciously and intentionally, and components are able to signal their sign-off.
But when we reflect on the volatility of ad-hoc networks we also have to
cope with changes due to failures. Hosts, processes and network links may
fail, packets can get lost on the network, transmission can be jammed, hosts
may move out of range and so on.

To deal with these failures correctly, a service discovery protocol must pro-
vide means to detect them and to recover after their ending. For that reason,
two basic mechanisms exist: soft state persistence by monitoring periodic
announcements and application-level persistence by bounded retries and re-

mote exceptions. [Dyr03]

Soft State Persistence with Periodic Announcements Discovery
protocols define key messages that components send out in fixed intervals

to periodically announce their current state. Monitoring these key messages

3.1. What is Service Discovery 7 29 of 104

empowers other components (listeners) to cache almost real-time states, i.e.
they can store the information and overwrite it with every update. To detect
communication failure, i.e. if a component does not receive such a heartbeat
message from a remote component within the given interval, it may assume
that the communication path or the remote component itself has failed. In
order to keep a consistent view of reachable components, the listener deletes
the cached information after non-appearance of an expected status update.
As soon as the remote component or the communication link to it is back
up and a new heartbeat message is received, the listener regards the remote

component as available again.

Application-level Persistence with Bounded Retries Another means
to detect a failure are bounded retries. This mechanism is widespread in
networking. If a component does not answer a request, the request is resent
several times. If the number of trials exceeds a given bound, the client as-
sumes that the remote component has failed and throws a remote exception
to the application layer (which is the application that wants to use a ser-
vice). This mechanism is reasonable in systems where discovery is normally
initiated by applications. It is automatically given in discovery protocols
that presume reliable network communication, since the transport layer re-

ports the inability to send data by definition.

The application has several possibilities to deal with such a remote excep-

tion:

1. It can ignore it. This is reasonable for polls and notifications since

they recur periodically.

2. Tt can retry the operation after a certain period of time and thus
recover from the failure as soon as the next communication attempt
is successful. Until then it must assume that the remote component is

not reachable.

3. It can discard knowledge about the remote component. If the remote
component is a service manager (two-party architecture or poll from
service cache manager in three-party architecture), knowledge about
its service descriptions is discarded. This corresponds to the soft state

persistence mentioned in 2.1 and expects the peer entity to send a

3.1. What is Service Discovery 7 30 of 104

notification when it is back up and reachable. If the remote component
is a service cache manager (three-party architecture), knowledge about
its existence is discarded, possibly making it necessary to discover

other cache managers.

3.1.3 Description language

To facilitate the discovery process, services are semantically described fol-
lowing a certain description language. Service requests are also expressed
using the same description language. So protocols provide a data scheme to
represent a service, this is called the service description.

A description is composed by an identity, a type and possibly more refining
attributes. The identity is mandatory, required to be unique and has to
contain a location of the service, i.e. its network address. The service type,
also mandatory, explains what type of service is being described. The de-
scription can include attributes that characterise the service more precisely,

like a user interface for example.

3.1.3.1 Ontology

A description language on itself is not enough, we also need an interpretation
for our language. Concretely this means that for a client to be able to use a
service, it expects to get a reply pointing to a suitable service after it poses
a query for that service. For example, the client who launches a query for
“printer” should get a reply that points to a printer service. This requires
that both the service and the client agree on the meaning of “printer”. As
computers can do nothing but symbol computing, this agreement is actually
one between humans who create the query and those who create the service

description.

First, a human forms a conceptual model about a real world object or an ob-
ject type (a set of objects sharing common features). Second, shared symbols
are created among humans to represent the conceptual model. We call this
set of shared symbols with agreed meanings a shared ontology. The ontology
reflects the shared conceptual model of the service, which includes what a
service is capable of doing (e.g. the functional interface of the service), the
terms in which the service is described (e.g. the data types for describing

the service) and the meanings of the terms (e.g. what they stand for and

3.1. What is Service Discovery 7 31 of 104

what operations are allowed on them). This shared ontology is passed to
software through the efforts of programmers or software users. Therefore,
the software produced will show behaviors consistent with human’s concep-
tual model. For the service discovery to work, the client of a service and the
service itself share a common ontology on the service representation, which
is ultimately shared between humans who create the service description and
the query.[YanO1]

There are three main approaches for service representation:

3.1.3.2 XML

Service descriptions and queries can be specified in eXtensible Markup Lan-
guage (XML), by which we gain the flexibility and semantic rich content of
this self-describing syntax. XML allows the encoding of arbitrary structures
of hierarchical named values; this flexibility allows service managers to cre-
ate descriptions that are made for their type of service, while additionally
enabling “subtyping” via nesting of tags.

Valid service descriptions have a few required standard parameters, while
allowing service providers to add service specific information (e.g. a printer
service might have a color tag that specifies whether or not the printer is
capable of printing in color). An important advantage of XML is the ability
to validate service descriptions against a set schema, in the form of Docu-
ment Type Definitions (DTDs). Unlike a database schema, DTDs provide
flexibility by allowing optional validation on a per tag granularity. This
allows DTDs to evolve to support new tags while maintaining backwards
compatibility with older XML documents.

Services encode their service metadata as XML documents and in a registry-
based architecture register them with the service cache manager. Typical
meta-data fields include location, required capabilities, timeout period, and
Java RMI address. Clients specify their queries using an XML template to
match against, which can include service-specific tags. A sample query for
a color postscript printer and its matching service description are presented

in figure 3.4.

3.1. What is Service Discovery 7 32 of 104

<7xml version="1.0"7>
<!doctype printcap system
“http://www/ ravenben/printer.dtd">

<printcap>
<¥xml version="1.0"7> <name>printd66; lws466</name>
<printcap> <location>466 soda</location>
<color>yes</color> <color>yes</color>
<postscript>yes</postscript> <postscript>yes</postscript>
</printcap> <duplex>no</duplex>
<rmiaddr>http://joker.cs/lwsd66</roniaddr>
</printcap>

(A) (B)

<?xml version="1.0"7>
<!doctype primtcap system
"http://www/ ravenben/printer.dtd">
<printcap>
<name>1wsT20b</name>
<location>720 soda</lecation>
<color>yes</color>
<postscript>n/a</pestscript>
<duplex>yes</duplex>
<rmiaddr>nttp://ant.cs/lws720b</rmiaddr>

</printcap>
(©)

Figure 3.4: An example XML query (A), matching service de-
scription (B), and failed match (C).

Alas XML also has some major downsides:

Need to process XML: due to the very limited processing power and re-

stricted memory of mobile devices this itself can pose a problem.

Verboseness of XML: XML and SOAP are far more verbose than some
formats in use. Their verboseness can pose a crucial problem over

mobile networks where bandwidth can be limited or vary greatly.

Lack of mature standards: some of the Web Services standards lack ma-
turity and various other needed domain-specific standards do not yet

exist.

3.1.3.3 Interfaces

A service can also be described by its interface type and possibly other at-
tributes. This is the most straightforward approach and we can structure
services with the inheritance of the programming language used to write

the interface. In M2MI for example, service discovery is done by interface

3.1. What is Service Discovery 7 33 of 104

(shown in 3.1) matching, in Jini we have Java attribute matching in addition

to its interface matching lookup protocol.

The downside of the interface approach:

Lack of expressiveness: we can only convey so much with interface. In
an environment with a substantial amount of services we need more

precise queries/advertisements, to find what we are looking for.

Communicate with java interface: that it is completely based on the
Java programming language, thus locking out all devices that are not
able to provide the power and resources required to host a virtual

machine (and the JINI application itself).

An example:

Listing 1

public interface StorageService extends Remote {

public boolean open(String username, String password, boolean newAccount)

throws RemoteException;

public boolean close(String username, String password)
throws RemoteException;

public boolean shutdown(String username, String password)

throws RemoteException;

public boolean store(String username, String password, byte[] contents,

String pathname) throws RemoteException;

public byte[] retrieve(String username, String password, String pathname)

throws RemoteException;

public boolean delete(String username, String password, String pathname)

throws RemoteException;
public String[] listFiles(String username, String password)
throws RemoteException;

public String name() throws RemoteException;

Listing 3.1: A remote file storage facility interface

3.1. What is Service Discovery 7 34 of 104

3.1.3.4 Attribute-value tuples

Attribute-value pairs are a fundamental data representation in many com-
puting systems and applications. Designers often desire an open-ended data
structure that allows for future extension without modifying existing code or
data. In such situations, all or part of the data model may be expressed as a
collection of tuples <attribute name, value> ; each element is an attribute-
value pair. Depending on the particular application and the implementation

chosen by programmers, attribute names may or may not be unique.

This system also has its limitations:

No subtyping: in the first two techniques we could have a relation be-
tween the descriptions by subtyping, but attribute-value tuples lack

this feature.

Lack of expressiveness: attribute-value descriptions also have their bound-

aries. We need a richer language to label services.

As an example we have the functional unit, a basic building block in the
Salutation [Con| architecture. It is the minimal meaningful function to
constitute a client or service. A collection of functional units defines a
service record. For example, the functional units [Print], [Scan], and [Fax
Data Send] can define a fax service. Each functional unit is composed of a
descriptive attribute record, specified in ISO 8824 ASN.1

3.1.3.5 Problems with the existing service descriptions

Absence rich descriptions: These services are defined in terms of the
their functionalities and capabilities. The functionality and capability de-
scriptions of these services are used by the service clients to discover the
desired services. Attribute matching is a very important component for
finding out the proper services in such an environment. The existing ser-
vice discovery infrastructures lack expressive languages, representations and
tools that are good at representing a broad range of service descriptions and
are good for reasoning about the functionalities and the capabilities of the

services.

Absence inexact matching: In the Jini architecture, service function-

alities and capabilities are described in Java object interface types. Service

3.2. Scenarios 35 of 104

capability matchings are processed in the object-level and syntax-level only.
[Yan01] For instance, the generic Jini Lookup and other discovery protocols
allow a service client to find a printing service that supports color printing,
but the protocols are not powerful enough to find the geographically closest
printing service that has the shortest print queue. The protocols do exact
semantic matching while finding out a service. Thus they lack the power to

give a ‘close match’ even if it was available.

3.1.3.6 Environment Queries

Environment queries, the language construct proposed in this dissertation,
address the absence of rich descriptions. By employing a logical program-
ming language to describe and query services we gain the advantages of
XML with its flexible and expressive syntax, without the disadvantages for

resource-poor devices.

No existing protocol allows both a service description with arbitrary com-
plex attribute types and a set of meaningful comparison operations based
on the semantics of those attributes. We need those capabilities to make

our printer scenario possible:

Imagine yourself walking through a computer lab, in your hand a PDA
and on it a document you would like to have a hardcopy of. You are in a
hurry and just want a quick draft, so you select a dpi ' of minimum 300.
Meanwhile your PDA has discovered all the matching nearby printers, even
arranged them by your previous preferences like speed, distance from your
position, size of the print queue and so on. The most suitable one has al-
ready been selected as default, you just press the print-button and promptly

you are shown directions to the printer where you will find your document.

3.2 Scenarios

In this section we showcase a few more scenarios to illustrate the need for

service discovery protocols.

! Dots Per Inch/Pixels Per Inch. The resolution of an image or how many pixels are

defined in the boundary of a square inch. From Cadmus Professional Communications

3.2. Scenarios 36 of 104

Scenario 1: Imagine finding yourself in a taxi cab without your wallet.
Fortunately, you have a Jini technology-enabled cellular screen phone, and
your cellular provider uses Jini technology to deliver network-based services
tailored to your community. On your phone screen, you see a service for the
City Cab Company, so you download the electronic payment application to
authorize payment of your cab fare. The cab company’s payment system
instantly recognizes the transaction and sends a receipt to the printer in the

taxi. You take the receipt and you’re on your way.

Scenario 2: Consider an insurance salesman who visits a clients office.
He wants to brief new products and their options to the client which are
stored in his Windows CE Handheld PC. Since his handheld PC has wire-
less network and supports UPnP, it automatically discovers and uses an
Ethernet-connected printer there without any network configuration and
setup. He can print whatever in his H/PC or from computers in his main

office and promote the new products.

Scenario 3: Consider an intelligent, on-line overhead projector with a li-
brary client. After identification to the system, the user may select a set of
electronically stored charts or other document(s) for viewing. Rather than
bringing foils to a meeting, the user accesses them through the LAN server

in the library.

Scenario 1 is a Jini demo scenario told by Sun and scenario 2 is a UPnP
scenario by Microsoft. The last one is from Salutation. [LH02] When we con-
sider these scenarios for the first time, they all seem to share the same plot
line: mobile devices, zero configuration and impromptu community enabled
by discovery protocols, and cooperation of the ambient resources. Without
trademarks such as Jini and UPnP, we could hardly know which scenario
is told by whom. Even though they are direct competitors , these three
rivals have different origins, underlying technologies, flavors, and audiences.
They take different approaches and see the problem from different angles,
therefore all protocols have pros and cons, especially compared to others. In
the next section we will line them up and compare them with open mobile

networks in mind.

3.3. Protocols 37 of 104

3.3 Protocols

Now that we have attained a thorough insight into the general design of a
service discovery protocol, we will have a look at the existing protocols. In
those protocols different strategies are being pursued by different people,
and none of them are widely employed so far. Examples of such platforms
include SLP, Jxta, UPnP, Jini and many more. While all these share a
number of common traits, they each have their own distinguishing features.
However, careful examination of these protocols reveal shortcomings that
we believe will inhibit the development of applications that exploit ambient

environments.

In this section we will discuss these shortcomings and propose a new solution
that brings together the advantages of current service discovery and inter-
action technologies and provide a new discovery protocol that we consider
to be better suited for the development of ambient oriented applications.
This review of protocols is specifically targeted towards mobile and open
environments, where applications will be required to interact with a wide

range of services and devices, that can disappear and reappear at any time.

A short overview:

M2MI: Makes use of a omnihandle, that enables us to send message calls
to every object implementing the interface of the call. It is not a very
demanding protocol, it also has dynamic proxy synthesis at runtime,
but only features interface matching and you have to write your own

network administration (addresses, routing). [KB02]

Jini: Jini works with a central service repository, handles requests with a
proxy object and lets you download the rest if necessary. It supports
remote events and leasing of services. The downside is that it requires a
JVM and it only gives us an interface and attribute equality matching.

[Inca]

JXTA: Jxta is a set of open protocols allowing us many choices. The
discovery can be done by broadcast, invitation, cascading or rendez-
vous. We can group peers and create a virtual network of peers. It’s

language and network independent but only supports Java for the

3.3. Protocols 38 of 104

moment. Another disadvantage, for performance reasons, remains the
use of XML for descriptions.|[Incb]

SLP: SLP divides its functionality between user agents(request), service
agents(advertise) and directory agents (cache). It can assure integrity
and authenticity of messages and supports logical operators in queries
as well as substring matching. It lacks event notification and the direc-
tory agent could impose a single point of failure if we don’t replicate.
[SLP]

UPnP: UPnP features its own HTTPMU and HTTPU protocols and pro-
vides us with self configuration (cf. Autolp, DHCP, Ipv6) and remote
notification. But it lacks a service repository and makes a lot of use
of bloated XML descriptions and SOAP calls. [UPn]

UDDI: UDDI is a web-based distributed directory made for the web and
dividing advertisements between white(basic), yellow(categorization)
and green(technical) pages. It is platform independent but is only

useful for webservices, and also utilizes xml. [UDD]

Salutation: Salutation features rerouted advertisements and makes use of
functional units instead of XML. It has a transport interface [SLM-TI]
for achieving service discovery protocol independence in applications.
There is also the ”lite” version for PDA’s and other small devices. It

lacks lifetime of services and there is no discovery event system. [Con)]

SDP: The protocol provides some consistency support, it is the only one
that supports browsing of services, but lacks expressiveness and scal-
ability. [SDP]

AmbientTalk: AmbientTalk has a lot of support for open mobile networks
(e.g. notification, the heartbeat algorithm), but in the current version

only uses strings to describe services. [Amb06]

In the following sections we will describe the nine protocols in more detail.
First up are the registry based (three-party) protocols, thereafter we will

turn to Peer-to-Peer based (two-party) protocols.

3.3. Protocols 39 of 104

3.3.1 Registry-based
3.3.1.1 UDDI

The Universal Description, Discovery and Integration (UDDI) protocol is a
cross-industry effort driven by major platform and software providers, as well
as marketplace operators and e-business leaders within the OASIS standards
consortium, including Microsoft, IBM and Ariba. It’s platform-independent,
XML-based distributed registry for businesses worldwide to list themselves
on the Internet. UDDI enables businesses to publish service listings and to
discover each other and to define how the services or software applications
interact over the Internet. A UDDI business registration consists of three

components:
1. White Pages: address, contact, and known identifiers
2. Yellow Pages: industrial categorizations based on standard taxonomies

3. Green Pages: technical information about services exposed by the busi-

ness

Discovery mechanism: UDDI is one of the most popular Web Services
standards. It is designed to be interrogated by SOAP? messages and to
provide access to Web Services Description Language (WSDL) documents
describing the protocol bindings and message formats required to interact
with the web services listed in its directory. So discovery is done by using
SOAP APT’s to query and to publish information to a UDDI registry as we

explained in section 3.1.1.1

Mobile and open: This protocol is designed for webservices and thus has
very little or no support for the problems an ambient environment poses, as

it wasn’t designed for this purpose.

Description language: The services are presented by XML and the queries
are done in SOAP, which both have the performance problems we described
earlier in section 3.1.3.2, the moment we use them on resource-poor mobile

devices.

2 Simple Object Access Protocol SOAP is a lightweight XML based protocol for exchange

of information in a decentralized, distributed environment.

3.3. Protocols 40 of 104

UDDI | Advantages Disadvantages

Platform independent | No support mobile open networks

Rich Descriptions Performance XML and SOAP

Table 3.1: Advantages and disadvantages UDDI

3.3.1.2 Salutation

Salutation was developed by a consortium of more than thirty companies,
the most important of which are IBM, HP, Sun and Cisco. Salutation fo-
cuses on platform and network independency. Therefore it does not require
TCP/IP? but works on top of any transport layer protocol. Other than
managing discovery and advertising of services, it also handles access to
components by providing a transparent communication pipe. There isn’t
that much information left about Salutation since the consortium dissolved
in 2005 and the official website is down.

Discovery mechanism Salutations service cache manager is called a
‘Salutation Manager’ and is mandatory. Other than broking requests, it
handles all communication between clients and servers, network indepen-
dently. To realize that, it relies on one or more Transport Managers, at
least one for every network protocol. So the Transport Manager is an ab-
stract communication layer and a Salutation Manager can act as a proxy
between components on different network types.

Services register with one Salutation Manager; clients request services only
from one Salutation Manager. If a Manager does not offer a requested ser-
vice by itself, it asks other Managers for the service.

The Salutation Consortium has elaborated Functional Units, which are
classes of devices and applications provided by server components, e.g. print
service or scan service. For every Functional Unit, the consortium has also
defined a fixed set of attributes.

The Salutation Manager is involved with four kinds of processes: Service

3 The Internet protocol suite is the set of communications protocols that implement the
protocol stack on which the Internet runs. It is sometimes called the TCP /IP protocol
suite, after the two most important protocols in it: the Transmission Control Protocol
(TCP) and the Internet Protocol (IP), which were also the first two defined.

3.3. Protocols 41 of 104

Registration, Discovery and Availability are familiar from the earlier de-
scription of registry based service discovery. The main difference here is
that every client and every server communicates only with one assigned
Manager. Service Session Management is the process of handling communi-
cation between one client and one server. A session can be established in one
out of three modes: In Salutation Mode, the Manager does not only forward
packets but also defines formats that are used in the session. In Emulated
Mode the Manager just forwards packets, whereas in Native Mode client
and server communicate directly (which is only possible if they operate on

the same transport protocol) over a proprietary application protocol.

Server Client || Client || Server Client
SLM-API

SLM ¢ - » Salutation Manager SLM

..... Salutation
Man: ; SLM-TI

™ anager ™ - TM ™
Protocol .

Xport Transport || Transport Xport

"

Figure 3.5: The Salutation Architecture

Mobile and open: To handle service availability, a client application can
ask the local Salutation Manager to periodically check the availability of
services. This checking is done between the local manager and the corre-
sponding manager.

Salutation-Lite is a scaled down version of the Salutation architecture tar-
geted at devices with small footprints. Salutation-Lite adapts well to low
bandwidth network such as IR and Bluetooth. The Salutation Consortium
envisioned that Salutation-Lite would have tremendous applicability to small
information appliances such as palm-size and handheld computers (i.e. Palm
and WinCE devices), but as the consortium is dissolved this is no longer the

case.

Description language: Functional units define the services being adver-

tised and discovered, such as printing ,faxing, and document storage. They

3.3. Protocols 42 of 104

specify a set of attributes which characterizes the service provided, such
as printing capabilities, faxing speeds, storagelimits, and cost of use. The
functional unit is the minimal meaningful function to constitute a client or
service. A collection of functional units defines a service record. For exam-
ple, the functional units [Print], [Scan], and [Fax Data Send] can define a fax
service. Each functional unit is composed of a descriptive attribute record,
specified in ISO 8824 ASN.1 .

Salutation | Advantages Disadvantages

Network and protocol independent | Consortium is dissolved

Rerouting advertisements No lifetime services

Lightweight descriptions Too simple descriptions

Table 3.2: Advantages and disadvantages Salutation

3.3.1.3 Jini

Jini is an extension of Java and has been developed by a consortium lead by
Sun Microsystems. Other members are AOL and many mobile equipment
vendors. It enables devices supporting Java to connect with and provide
services to each other. Jini is an open standard, the only prerequisite is a
Java Virtual Machine running on the device. Sun provides a Jini Technology

Starter Kit on its web site [Inca).

Discovery mechanism: The design is very similar to the one described
earlier in 3.1.1.1 . Although Jini does not make a difference between service
users and service managers, any component can lookup and invoke services
from any component. The Lookup Server, just another name for the service
cache manager, holds a Lookup Table and is optional. In case of absence
of the Lookup Server, components operate their own lookup table and we
retain a peer-to-peer based protocol.

The lookup table contains pointers to services and Java-based mobile pro-
gramme code. Thus, the result of a discovery process is not only a URL
to a service, but a service proxy (a Java interface) that can be accessed
directly, much like a driver in traditional architectures. The three opera-

tions supported by the Lookup Table are ‘store’, ‘match’ and ‘fetch’, which

3.3. Protocols 43 of 104

correspond to service registration, service lookup and the download of the
service proxy, respectively.

Accessing remote components is done by Java Remote Method Invocations
(RMI). This is very specific for Jini and distinguishes it from all other ser-
vice discovery protocols presented in this section. The lookup service maps
interfaces seen by clients to set of service proxy objects. A client downloads
the service proxy, which is actually RMI stub that can communicate back
with the server. This proxy object enables the client to use the service with-
out knowing anything about it. Hence, there is no need for device drivers.
Jini also introduces the concept of a group, to subdivide networks with large
numbers of components into administrative scopes. In order to avoid con-
flicts, Sun recommends using domain name style (e.g. printers.vub.ac.be).
Components can be part of zero or more groups.

The process of discovering a service cache manager is called discovery. The
registration process is called join. They do not work any differently than
described in 3.1.1.1.

Mobile and open: The protocol has a lot of support for a dynamic net-

work with volatile connections:

Leasing: a form of soft-state service registration and service usage. Here
a service must periodically advertise itself to the lookup service in
order to keep its registration alive. Likewise, when a client is using
a service, it must periodically advertise to the lookup service that it
still requires the service. This covers two forms of failure, one where
the service becomes unavailable without informing the lookup service,
or where a client using a service goes down, without first informing
the service provider and releasing the service. In the second case, the
service is released after a certain period and becomes available for use

by another client.

Remote events: These are used by both clients and services to signal a
change in their state. A simple example is a PDA and a networked
printer. When the PDA connects to the system, there may not be any
available printers. When a printer joins the Jini system, the client is
notified using a remote event, to signal that the PDA can now use a

print service.

3.3. Protocols 44 of 104

Transactions: One of the most difficult problems to address in distributed
systems, is the handling of system crashes involving non-idempotent
operations. Transactions provide a solution to this by allowing op-
erations to be grouped, where either all operations pass, or all the

operations fail.

Description language: Services in Jini are represented by serialized ob-
jects encapsulated to form an entry stored in the lookup service or JavaS-
pace. Each entry provides a simple comparison functionality to allow the
service to be matched against a search template. Attributes for the service
and search template are simply specified as object member variables.

One benefit of the Jini approach is that it permits matching against sub-
types, which is analogous to matching subtrees in XML. A disadvantage
of the model is that it requires a Java interface object to be sent over the
network to the lookup service to act as the template, such representations
cannot be stored or transported as efficiently as other approaches.

Because we compare interfaces, the discovery is liable to false negatives due
to class versioning problems. It is also an unscalable technique of using Java
and Java objects: any service that wishes to participate in the Jini system

must have an according Java-coded proxy object.

Jini | Advantages Disadvantages

Mobile and open support | Class versioning problems

No need for drivers Unscalable java

Fairly rich descriptions Not expressive enough

Table 3.3: Advantages and disadvantages Jini

3.3.1.4 SLP

The Service Location Protocol (SLP) is the widest spread and one of the
most lightweight of the presented protocols and manages not only the dis-
covery but also gives access to services. It was developed by the IETF
(Internet Engineering Task Force) SvrLoc working group, the most impor-
tant members are SUN, HP, Novell, IBM and Apple. This working group

also provides two reference implementations.

3.3. Protocols 45 of 104

SLP is vendor and platform independent, it is built on top of TCP/IP as net-
work protocol. For most communication the unreliable and packet oriented
protocol UDP* is used. TCP is only used where data does not fit in one
datagram. Protocol messages are mixed binary and string-based, whereas
binary representation is mostly used for headers and string representation
for service descriptions. SLP is a very scalable discovery protocol, intended

to serve enterprise networks.

Discovery mechanism: The protocol consists of the same entities as de-
scribed in 3.1.1 and supports both the two- and three-party-architecture.
It names the entities User Agent (UA), Service Agent (SA) and Directory
Agent (DA). The DA can be announced via DHCP (Dynamic Host Con-
figuration Protocol) or configured statically at the client side. SLP2 names
aggressive and lazy discovery: active and passive. There may be no DA in
small networks. In this case the UA’s service request message is directly
sent to SA’s. A service identity SLP2 defines a Service URL containing a
service type, host address, port number and path. For example a printer
service at the VUB: ’service:printer:lpr://prog2.vub.ac.be:515/lpr02’. The
set of service attributes is called Service Template here and also consists of
attribute-value-pairs. Service Templates have to be registered with IANA
(Internet Assigned Numbers Authority). SLP is said to be a solution to the
intranet service discovery needs, but it scales well to larger networks. The
scalability is supported by various features such as the minimal use of mul-
ticast messages, scope concept, and multiple DA’s. Services may be placed
into administratively assigned scopes. A scope is not more than a string that
groups a number of services into a collection to aid scalability. We can assign
one or more scope identifiers to each client, they will act as filters, restrict-

ing the client to detect only services within those scopes. Here is an example:

Attributes = (Name=Igore), (Description=For developers only),
(Protocol=LPR), (location-description=12th floor),
(Operator=James Dornan \3cdornan@monster\3e),

(media-size=na-letter), (resolution=res-600) ,x-0K

* A connectionless protocol that, like TCP, runs on top of IP networks. Unlike TCP/IP,
UDP/IP provides very few error recovery services, offering instead a direct way to
send and receive datagrams over an IP network. It’s used primarily for broadcasting

messages over a network.

3.3. Protocols 46 of 104

Mobile and open: This protocol also supports a simple service registra-
tion leasing mechanism: SLP includes a leasing concept with a lifetime that
defines how long DA will store a service registration.

The protocol also scales very well to larger networks, which makes it ideal

for coping with the rapid increase of numbers of (mobile) devices.

Description language: One of the most interesting aspects of SLP is
its structure for describing service information. Services are organized into
service types, and each type is associated with a service template that defines
the required attributes that a service description for that service type must
contain. The functionality and expressiveness of this framework is almost
an exact mapping onto the functionality of XML: each template in SLP
provides the same functionality as an XML DTD. Queries in SLP return
a service URL. SLP supports service browsing and string-based query for
service attributes which allow UA to select the most appropriate service
from among services on the network. The UA can request query operators
such as AND, OR, comparators (=, |, j=, {, i,=), and substring matching.
This is more powerful than all the other description languages. For example,

in Jini, service attribute matching can be done only against equality.

SLP | Advantages Disadvantages

Scalable Possible single point of failure

Rich Descriptions | No event notification

Lifetime

Table 3.4: Advantages and disadvantages SLP

3.3.2 Peer-to-Peer based

We have addressed all the registry-based protocols now and will continue
with the Peer-to-Peer alternative service discovery protocols.

3.3.2.1 M2MI

Many-to-Many Invocation (M2MI) is a paradigm devised at the Rochester
Institute of Technology. M2MI provides an object oriented-method call ab-

straction based on broadcasting: objects send multicasted messages to other

3.3. Protocols 47 of 104

listening objects.

Discovery mechanism: M2MI is an extension for Java, that allows ob-
jects to implement a particular interface. When an M2MI invocation is
called on that interface, then every object that implements the interface
will receive a broadcast message to call this method. M2MI allows for mes-
sages to be sent via handles. A handle denotes an abstract set of objects to
which a message will be broadcast. [KB02] M2MI messages are routed to
other M2MI-aware objects using M2MP (Many-To-Many Protocol) which
broadcasts the message via the wireless network. The discovery mechanism
is designed for wireless networks, in which broadcasting is more natural than
routing messages from device to device.

The M2MI layer synthesizes remote method invocation proxies dynamically
at run time, which will handle M2MI messages, eliminating the need to
compile and deploy proxies ahead of time (cf. RMI®). Objects wanting to
be exposed to external M2MI messages are exported to the M2MI layer.
Therefore we don’t need central servers, nor network administration, even
complicated resource-consuming ad-hoc routing protocols are not required,
and system development as well as deployment are simplified. There are
three varieties of handles: omnihandles, unihandles, and multihandles. We

will illustrate the use of a unihandle and a omnihandle.

Listing 2

// Exporting Player object into the M2MI layer
M2M1.export(player_1, Player.class);

// Creating handles
Player allPlayers = M2MI.getOmnihandle(Player.class);
Player aPlayer = M2Ml.getUnihandle (aPlayerObject, Player.class);

// calling the method move on all Players and once more on aPlayer
allPlayers.move();

aPlayer.move() ;

5 RMI is a mechanism that is part of the Java programming language. It allows Java

objects to invoke methods on objects from another JVM.

3.3. Protocols 48 of 104

Listing 3.2: Example unihandle and omnihandle

Mobile and open With M2MI no server must be set up, or system prop-
erties provided. Devices can come and go at any given moment and they will
become part of the ad-hoc network. But M2MI is only a low-level frame-
work, if we want consistency management or failure detection and recovery,

we have to write it ourselves.[Gup05]

Description language An M2MI-based application is built by defining
one or more interfaces, creating objects that implement those interfaces in
all the participating devices, and broadcasting method invocations to all the
objects on all the devices. We can only describe so much with interfaces,
more precise queries and descriptions are necessary when the number of

provided services expands.

M2MI | Advantages Disadvantages

No centralized server Only interface matching

No network administration

Not a very demanding protocol | Write own network administration

Table 3.5: Advantages and disadvantages M2MI

3.3.2.2 JXTA

Sun Microsystems has founded an open community-project called JXTA
(abbreviation for Juxtapose) [Incb]. The objective of the project is to try to
create a common platform that helps developers in building distributed P2P
services and applications in which every device and software component is a
peer and can easily interact with other peers. JXTA technology is basically
a framework on top of which developers can build their own applications,
without worrying about low-level details that are instead provided by the
underlying JXTA layer.

JXTA defines a set of simple, small, and flexible mechanisms that can sup-
port peer-to-peer computing on many platforms. The platform consists out

of the following entities:

3.3. Protocols 49 of 104

Peer Groups: These allow grouping of peers in any useful fashion. They
are deliberately not clearly specified, and could represent e.g. a col-

lection of services, a geographical group and so on.

Messages: These are datagram style messages, so they can be used on un-
reliable, asynchronous and unidirectional transports such as IP. They
can also be used on reliable, synchronous and bidirectional transports
such as TCP.

Pipes: These connect between peers and are used to send messages. They
can be one-to-one, many-to-many, etc. They are also bound at run-
time, allowing the possibility of being rebound if errors occur. They

are used as the only communication mechanism.

The JXTA platform is defined by the following six protocols: Peer Resolver
Protocol (PRP), Peer Discovery Protocol (PDP), Endpoint Router Protocol
(ERP), Pipe Binding Protocol (PBP), Rendezvous Protocol (RVP) and Peer
Information Protocol (PIP).

1. PRP: allows a peer to send a search query to another peer.
2. PDP: allows a peer to discover other advertisements.

3. ERP: allows a peer to query for routing information to route messages

through the network.
4. PBP: allows a peer to bind a pipe endpoint to a physical peer.

5. RVP: is the mechanism by which services are bootstrapped within the

network.
6. PIP: allows a peer to query for the current status of another peer.

JXTA advertisements are XML encoded resource descriptions. Although
several predefined types of advertisements exist, extended or new types of
arbitrarily nested advertisements may be introduced. Advertisements can be
discovered on all or certain nodes of a peer group, depending on attribute-
value pairs that must exist in matching advertisements. Peer groups are
clusters of certain JXTA services provided by network nodes. By default
only search queries using predefined attributes, like Type or ID, are possi-
ble. JXTA implements a DHT (Distributed Hash Tables) algorithm that

3.3. Protocols 50 of 104

takes effect beyond a peer’s local (multicasting based) neighbourhood. Ad-
ditionally JXTA offers relays and the ERP to increase the number of peers
efficiently. Relays can be used to bridge different physical or logical networks
by forwarding messages on behalf of peers that can not directly address each
other. The multi-hop ERP connects peers within the virtual JXTA network,

even across firewalls.

Discovery mechanism: Peer discovery can be done in a variety of ways,
first of all by multicast. This can be used to bootstrap a peer and inform it
of other local peers, an other way is by unicast connection to a repository
of peers. This can be used to bootstrap a peer and inform it of world-wide
peers. The current implementation has a hard-coded set of repositories, but
this will be fixed in later versions. There is also the possibility of requesting
peer lists that are known by another peer or offering a peer list to another
peer. All these peer discovery methods allow a dynamic set of peer relation-
ships to be built up at the expense of network traffic, particularly at startup
of a new peer.

The lowest level of searching for services is by the Peer Discovery Protocol.
Peers are distinguished by being ”ordinary” peers or by being "rendezvous”
peers. Ordinary peers keep information about the services they offer. Ren-
dezvous peers cache service adverts like service cache manager, so that they
act as proxies for service adverts (just for the adverts, not the services them-
selves). Discovery works as follows: ask all the peers one hop away if they
have the service, then ask the known rendezvous servers if they know of
the service.The rendezvous servers may ask other rendezvous servers if they
know of the service and the peer asking for the service must backoff for a

certain time before making a repeat search.

Mobile and open: A peer is assigned a network address (this is called
an Endpoint) during the initialization phase of the platform. JXTA does
not provide any means to modify that address at runtime. If the peer leaves
for a while for any reason and tries to reconnect to the network through
another access point, it will not be able to join the peer community, since
there is no way to update its Endpoint and the other peers cannot see it. As
a consequence, JXTA is not recommended in highly dynamic environments
where peers frequently log off, move and log on again.

In JXTA a Discovery Service is available in order to help peers to discover

3.3. Protocols 51 of 104

each other. This service has been designed bearing in mind that it has to deal
with fixed networks and with stable connections, available for most of the
task execution time. The JXTA Discovery Service is based on the mechanism
of publishing/discovery of advertisements containing the information that
each peer wants to share (e.g. addresses, services, etc.). The advertisements
are saved in a temporary cache and managed by a Service Cache Manager.
Each advertisement will be automatically removed from the cache when its
own lifetime has elapsed. Since JXTA relies on fixed and stable connections,
in its existing implementation the timeout is set to a high value and there is
no way for a user application to configure it. This is not acceptable in ad hoc
network environments where frequent connections cause a lot of discovery

requests.

Description language Services are described using WSDL. These can
be used to describe any resource such as nodes or services peers. These
are nodes of the JXTA network, and can speak the JXTA peer protocols.
These can be used to describe any resource such as nodes or services. The
protocol is specified as a set of XML messages. This means heterogeneous
devices with completely different software can interoperate with the JXTA
protocols. The way a service is invoked is not prescribed except that they
are invoked using JXTA pipes. The invocation mechanism through a pipe
could be by SOAP, for example. But the same disadvantages of the use of

XML remain as explained in section 3.1.3.2.

JXTA | Advantages Disadvantages

Cross platform XML

Many discovery strategies | No volatile support

Table 3.6: Advantages and disadvantages JXTA

3.3.2.3 UPnP

The consortium that developed UPnP was founded and is lead by Microsoft.
Other important members are Intel, Compaq and Cisco. UPnP is published
under a free license. It’s the most well-known commercial product with
an implementation in Windows XP. As a consequence this is currently the

widest spread service discovery protocol. Because of its simplicity and its

3.3. Protocols 52 of 104

supporters on both the software and hardware market, we can expect UPnP
to gain importance over the other service protocols in the future but only on
the wired consumer market. UPnP targets home and small office computing

environments.

UPnP is basically an extension of the existing Windows Plug and Play
mechanism where components don’t have to reside on the same host but
rather have to be reachable via a TCP/IP network. HTTP-over-UDP is
used for discovery and advertising, and SOAP is used for transactions.
The entities of the protocol are called Control Point, Device and Service.
A Service is the smallest unit of control in the UPnP system. It represents
any singular particular service being offered, for example printing. A de-
vice represents a collection of services and/or embedded devices. A control
point is a controller, which is capable of discovering and controlling other
devices. A client thus interacts with a service through their control point.
For communication between devices, it uses the protocol stack shown in
figure 3.6.

UPnP vendor
UPnP Forum
UPnP Device Architecture
HTTPMU | ggna SSDP HTTPU m SOAP GENA
T] T o — -
UDP TCP
P

Figure 3.6: The UPnP Protocol Stack

Another important feature of UPnP is the automatic configuration of IP ad-
dresses being plugged in. Being introduced for this purpose, AutoIP enables
a device to join the network without any explicit administration. When a
device is connected to the network, it tries to acquire an IP address from
a DHCP server on the network. But in the absence of a DHCP server, an
IP address is claimed automatically from a reserved range for the local net-
work use. So, named as AutolP. The device claims an address by randomly

choosing an address in the reserved range and then making an ARP request

3.3. Protocols 53 of 104

to see if anyone else has already claimed that address.

Discovery mechanism: The Simple Service Discovery Protocol (SSDP)
is the protocol used by UPnP for service discovery. This protocol is used
for announcing a device’s presence to others as well as discovering other
devices or services. Therefore, SSDP is analogous to the trio of protocols
in Jini: discovery, join, and lookup. SSDP is built on HTTP over multi-
cast (HTTPMU) and HTTP over unicast UDP. A joining device sends out
an advertisement (ssdp:alive) multicast message to advertise its services to
control points. They are the potential clients of services embedded into the
device. The other message of SSDP is search (ssdp:discover) multicast mes-
sage sent when a new control point is added to the network. Any services,
which match the request specification, will unicast a response.

The design only supports a two-party architecture, there is no caching entity
and all components have to use multicast to advertise or discover services.

That is the reason UPnP does not scale well on large networks.

Mobile and open: There are no mechanisms for consistency mainte-
nance, which limits its usage to networks with reliable network commu-

nication. Thus the protocol is not adequate for open mobile networks.

Description language: As UPnP uses XML to describe its devices and
services, it provides resource-rich description architecture, using an open,
commonly used Internet standard. It allows for both UPnP standardised
device types, along with non-standard device types. This allows for a broad
range of services. However, before the description can be used, it must first
be downloaded. While XML is the standard of choice for object description,
it is verbose; thus, the client must perform a large download before it can
view a services description set. The aforementioned messages contain a URL
that points to an XML file in the network, describing the UPnP device’s
capability. Hence other devices, by retrieving this XML file, can inspect the
features of this device and decide whether it fits their purposes. This XML

description allows complex, powerful description of device capability.

3.3. Protocols 54 of 104

UPnP | Advantages Disadvantages

Rich Descriptions | XML
AutolP Not Scalable

Table 3.7: Advantages and disadvantages UPnP

3.3.2.4 SDP

The Bluetooth specification was developed by Microsoft, Intel and the most
important mobile equipment manufacturers. The Bluetooth wireless tech-
nology is a relatively new short-range communication system designed for
robustness, low power consumption and low cost. Its architecture describes
all network layers from physical (radio transmission around 2,4 GHz) up to
application layer specific topics like defining so called profiles (e.g. data syn-
chronisation profile or telephony control profile) out of which applications
may choose.

Service discovery is part of the Bluetooth protocol stack and forms an own
sub-layer. Every device has an SDP server and an SDP client (which corre-
spond to the service user and service manager in 3.1.1). Bluetooth networks
are pico nets with a maximum of 256 devices, only eight of which can be ac-
tive, i.e. can communicate, at the same time. Several pico nets can overlap
but the core specification does not define any routing mechanism, so that
neither discovering nor using services in a neighbouring pico net is possible.
Because devices discover each other when joining the network, no service
cache manager is necessary. So we have a simple request /response discovery
in SDP, which allows searching for service type (Service Search Request)
and attributes (Service Attribute Transaction) and browsing (ServiceSer-
achAttributeTransaction) all services available. The latter application is
only reasonable in Bluetooth because of the limited number of devices in
one network.

Bluetooth was designed to operate as small area network, with distances of
approximately 10m. As a result, SDP was specifically designed to work with
this. While attempts are undertaken to extend the range of Bluetooth, it is

still far from the implementation stage.

3.3. Protocols 55 of 104

Discovery mechanism: A client searches for a particular service with a
service search request and service attribute request calls, known as SDP-
PDUs. Any device participating in service discovery assumes one of the
following roles. The first role is Local Device (service user) which implements
the service discovery application and client portion of the SDP layer. The
client also initiates SDP transactions. The second role is Remote Device
(service manager). A Local Device using SDP transactions contacts this
device. It implements the server context of the SDP layer, which replies to
the SDP transactions. Only devices in the vicinity of the Local Device are

able to participate in service discovery that are within a ten-metre radius.

Mobile and open: Notification about new devices, and thus new SDP
servers becoming available or disappearing, is provided by other means of
the Bluetooth architecture. Since Bluetooth is designed for ad-hoc use, all
consistency maintenance is delegated to lower network layers. Bluetooth
networks only support a maximum of 256 devices which is probably too low

for future ambient environments.

Description language: All of the information about a service that is
maintained by an SDP server is contained within a single service record.
The service record consists entirely of a list of service attributes. Each ser-
vice attribute describes a single characteristic of a service. Some examples
of service attributes are ServiceClassID-List and the Provider Name. Some
attribute definitions are common to all service records , but service providers
can also define their own service attributes. A service attribute itself con-
sists out of two components: an attribute ID and an attribute value.

Each service is an instance of a service class. The service class definition
provides the definitions of all attributes contained in service records that
represent instances of that class. Each attribute definition specifies the nu-
meric value of the attribute ID, the intended use of the attribute value, and
the format of the attribute value. A service record contains attributes that
are specific to a service class as well as universal attributes that are common
to all services.

Each service class is assigned a unique identifier ,this service class identifier
is contained in the attribute value for the ServiceClassIDList attribute, and
is represented as a UUID. A UUID is a universally unique identifier that is

guaranteed to be unique across all space and all time. UUIDs can be inde-

3.3. Protocols 56 of 104

pendently created in a distributed fashion. No central registry of assigned
UUIDs is required.

An example of a service record:

Service Name: OBEX Object Push

Service RecHandle: 0x10000

Service Class ID List: "OBEX Object Push" (0x1105)

Protocol Descriptor List: "L2CAP" (0x0100) "RFCOMM" (0x0003)

Channel: 9 "OBEX" (0x0008)

Language Base Attr List: code_IS0639: 0x454e encoding: Ox6a base_offset: 0x100
Profile Descriptor List: "OBEX Object Push" (0x1105) Version: 0x0100

SDP | Advantages Disadvantages

Consistency support | No expressive descriptions

Browsing services Not scalable

No advertising

Table 3.8: Advantages and disadvantages SDP

3.4. Comparison 57 of 104

3.3.2.5 AmbientTalk

The service discovery protocol of AmbientTalk has already been described

in 2.4.1.1. Figure 3.7 illustrates the protocol to refresh your memory.

Add v

- Broadcast -
MATCH !

Join
Disjoin

provided

Figure 3.7: Illustrates the discovery process with mailboxes

when the patterns match.

AmbientTalk | Advantages | Disadvantages

Heartbeat String descriptions

Notification

Table 3.9: Advantages and disadvantages AmbientTalk Service

Discovery

3.4 Comparison

All discovery protocols are fairly new and none of them has acquired exten-
sive proliferation up till now. Each one of them is supported by important
companies that are already implementing their protocol in products now.
More and more mobile phones and PDA’s support Bluetooth and Microsoft
Windows XP implements UPnP. All protocols have different strengths and
problems in different environments, so that probably not only one protocol
will survive. However, different environments will favour one or a few service

discovery architectures.

3.4. Comparison 58 of 104

A lot of comparisons have been made [Dyr03] [FDW04] [MPHS05] [Gee05]
[Liv03] [Hel02] [Ric00] [CLO2] and table 3.10 summarises the characteristics
of the nine service discovery protocols presented before. Their suitability

for mobile ad-hoc networks will be discussed subsequently.

Protocol Discovery mechanism | Mobile/open Description language
UDDI registry no support xml

Salutation | registry leasing functional unit

Jini registry/peer-to-peer leases/events/transactions | interface

SLP registry/peer-to-peer leases xml

M2MI peer-to-peer events interface

JXTA peer-to-peer leases xml

UPnP peer-to-peer no support xml

SDP peer-to-peer no support service record

AT peer-to-peer heartbeat/events string

Table 3.10: Summary of all protocols

3.4.1 Discovery mechanism

Our protocols can be divided into two main techniques: registry-based and
peer to peer based. UDDI and Salutation are the ones that only support
the first system and are consequently not suited for ambient environments.
In open mobile networks the composition of the network is too dynamic and
the registry is a potential single point of failure.

Peer-to-peer is the most applied approach and handles the constant changing
of the composition of an environment very well. We don’t need central nodes
and can form networks spontaneously. These are the same reasons why the
service discovery protocol of AmbientTalk makes use of the peer-to-peer
technique like Jini, SLP, M2MI, JXTA, SDP and UPnP.

3.4.2 Mobile and open

The three architectures that come from discovery approaches on top of tra-
ditional (hardwired) networks (TCP/IP) are SLP2, UPnP, UDDI. Since

3.4. Comparison 59 of 104

TCP/IP itself is not designed for ad-hoc networks, these two discovery pro-
tocols might not be satisfying in ambient environments, where high mobility
is likely e.g. a car network.

The other six protocols, Jini, JXTA, Salutation, AmbientTalk, M2MI and
Bluetooths SDP, were particularly developed for the purpose of ad-hoc net-
working. Characteristics necessary for consistency maintenance and failure
handling are becoming very distinctive in these protocols. Jini has the best
support with its implementation of leases, events, and transactions.

In AmbientTalk (see 2.4) we already have e.g. a heartbeat algorithm, a
notification mechanism and support for open mobile networks is growing.
There is even some recent research into conversations for handling exceptions

[MSWO05] as counter part of the transactions in Jini.

3.4.3 Description language

There are three candidate types as a means to advertise and query services:
XML, interface, attribute-value pairs. The first one brings forward the most
rich descriptions for UDDI, SLP, JXTA and UPnP, but the verboseness
of XML is not acceptable in ambient networks where bandwidth is scarce
and/or fluctuates, and processing power of the devices is limited and battery
capacity is precious.

Interfaces in Jini and M2MI provide more simple advertisements, which
limits the detail of descriptions but they make querying and providing a
service very straightforward in the programming code.

The last approach, the attribute-value tuples of SDP and Salutation, is also
the most elementary. They give us a lot of freedom and ease of use but lack
a way to structure hierarchies.

AmbientTalk originally represented a service only as a string, but in chapter
five we will justify and explain my extension to the AmbientTalk’s service

discovery protocol: Environment Queries.

3.5. Related Research 60 of 104

Failure detection and recovery Consistency management

Environment Queries

Rich Descriptions

Figure 3.8: Venn diagram of environment queries characteristics

3.4.4 Conclusion for AmbientTalk

The service discovery protocol of AmbientTalk already supports most of
the functional features that are proposed by all the other protocols, but
one major aspect is absent: rich service descriptions. The concrete goal
of my dissertation is to extend the protocol of AmbientTalk with a new
description language that incorporates the advantages of current alternatives
while keeping the restrictions of an open mobile network in mind and even
introducing more expressiveness in service advertisements and queries (see

figure 3.8).

3.5 Related Research

3.5.1 Personalization through the use of Meta-data, Repu-
tation and History

One of the essential elements in personalized service discovery [JPO04] is
the ability to augment service descriptions with additional information, i.e.
metadata. Service providers may adopt various ways of describing their
services, access polices, contract negotiation details, etc. However, many re-
source consumers also introduce their own selection policies on the services
they prefer to use, such as quality of service and reputation metrics [Ric].

It would make searching a lot more personal if we allow third parties to add

3.5. Related Research 61 of 104

metadata to service descriptions, so that information about a service can be
built up rapidly and used in discovery. Furthermore, it is useful to add such
metadata not only to service descriptions, but also to any other concept that
may influence the discovery process, such as supported operations, types of

arguments, and businesses.

If we consider the way in which many services are used in real environ-
ments, we see that people personalise their services, e.g. I find this printer
the fastest, this projector belongs to my research group and so on. These an-
notations are often personal or role based and may well change over time(e.g.
a printer will always print on a certain size of paper which is part of its ser-
vice description, but maywell move between rooms or be replaced by a faster
model). We believe that personalised, group and public metadata will be
important to the utility of service location and interaction protocols. We do
not intend that everyone should be able to modify the service description
of a device, rather that service location platforms provide hooks for link-
ing into meta-information databases. This would enable users and client
applications to search for services that have been recommended by their
colleagues. [FDWT04]

Support for attributing meta-data concerning the usage history, access pro-
file (history) and user experiences of a given service is not provided by any
of the current service discovery protocols. We believe that this is a track
that deserves more attention as it promises to help us cope with countless

services that will be provided in an environment.

3.5.2 Caching

We have to consider where information about service managers is available.
If available only at the service managers themselves, a high overhead in
searching for this information is incurred. If information is cached at other
points in the network, this raises questions regarding cache lifetime and
mechanisms for (more or less aggressively) maintaining cache consistency.
In addition, the volatility of service manager availability has to be taken
into account when designing such a system.[FK04]

Cache consistency is usually maintained either by push-based (cf. notifica-

tion) or by pull-based (cf. polling) approaches. In the former approach, the

3.5. Related Research 62 of 104

data source is responsible for updating the content cached by service users,
whereas in the latter approach, the service users must periodically ask for
updates. [CD]

We have to make sure the time during which a the network stores inconsis-
tent information is as short as possible. In the reactive case (with caching),
a node learns about a new service manager only after it has overheard or
processed a request/reply pair to this node. This happens soon at high re-
quest frequencies.

Periodic announcements, on the other hand, limit the time until the new ser-
vice manager is known to the announcement interval. To match the reactive
protocols performance in high-load cases, frequent announcements would be
necessary, which are just wasted overhead in other cases. Additionally, the
period of inconsistency for service managers that have become unavailable
remains. Hence, the benefits of periodic announcements would depend on a

careful tuning of announcement intervals.

When a service manager becomes unavailable, every cached entry on this
service manager may cause incorrect replies. Here, the disadvantages of
caching are clear, both for reactive and for periodically announcing sys-
tems. To limit incorrect answers, short cache lifetimes would be necessary,
nullifying its effectiveness. Therefore, explicitly removing cached entries by
negative announcements would allow to maintain caching benefits without,

hopefully, imposing a too large administrative burden.

3.5.3 Semantic Discovery

Existing mechanisms for service discovery are not well suited for MANET’sS,
since they either rely on central directory servers or produce a huge mes-
sage overhead. More sophisticated approaches analyze the content of the
service requests to route them semantically. Typically, they support rather
primitive service descriptions only. We believe that for an efficient usage of

services in MANET’s (as well as in any network), service discovery based on

6 A mobile ad-hoc network (MANET) is a self-configuring network of mobile routers
(and associated hosts) connected by wireless links, the union of which form an arbitrary
topology. The routers are free to move randomly and organise themselves arbitrarily;

thus, the network’s wireless topology may change rapidly and unpredictably.

3.6. Summary and Outlook 63 of 104

semantically rich, ontology based service descriptions needs to be supported.
[KoR02] [KKROO03|

To discover a service, the infrastructure should be able to describe its ca-
pabilities based on the functionalities that it provides. This description
must be well defined, machine understandable and processable with mini-
mal or no intervention from programmers, specifying not only the format
of the information (using XML) to be exchanged but also its meaning. For
example, two identical XML descriptions may mean very different things
depending on the context of their use. A client and a service manager may
use differing markups to describe the same thing. So, capability matching
between both descriptions become unrealistic to expect advertisements and
requests to be equivalent. The discovery mechanism may return a service
that doesn’t fulfill the needs of the requester or it may not return a ser-
vice although it matches the constraints of the request. This limitation of

capability matching is surpassed by performing matching at a semantic level.

Current web service technology based on UDDI and WSDL does not make
any use of semantic information failing therefore to address the problem
of locating web services. [Yu06] The solution of this problem requires a
semantically rich language to express capabilities of services based on ontol-
ogy such as DAML-S. Also in service discovery protocols designed for ad-hoc
networks no semantic information is used, but research in this area is being

done [TES05] [AT05] [CPAJO1].

3.6 Summary and Outlook

Since future networks will be much more dynamic than traditional (wired)
ones, service discovery will gain more and more importance. The goal of
service discovery mechanisms is to enable software components to find each
other on such highly dynamic networks, like mobile open networks. Other
than orchestrating advertising and discovery, consistency maintenance and

failure handling are important challenges to service discovery.

At present there exists a variety of service discovery protocols, most impor-
tant SLP, Jini, Salutation, SDP, UDDI, M2MI, JXTA, UPnP and off course

3.6. Summary and Outlook 64 of 104

our own in AmbientTalk. We have compared these approaches and listed
their advantages and disadvantages. FEach of these protocols approaches the
vision of service discovery from a different perspective and every one of them
turns out to be suitable in different environments. We expect that most of
them will continue to co-exist, and a lot more will rise up to the challenge

of open mobile networks.

Mobility is an issue that has not yet been solved in a totally satisfactory
manner in any of the protocols we described. It is thus expected that future
versions will include improvements here. Another problem that needs more
attention remains the description of services. In the time to come we will
have to deal with a myriad of services and this can only be handled with
personalization, semantic information and more expressive advertisements
and queries. Our answer to the latter is environment queries, and these will

be discussed in chapter five.

Logic Programming and Language

Symbiosis

In the previous chapter we gave an in-depth analysis of the state of the art
of service discovery protocols and we concluded that no solution tackles all
the needs of open mobile networks. We particularly emphasized the need
for a service description language that accommodates the proliferation of
devices in open mobile networks. Such a description language needs to be
equipped to cater for both expressive queries and service descriptions. In this
dissertation, we propose the use of a logic programming language to model
and query for services. The use of such a language yields shorter service
descriptions augmented with a variety of new possibilities, which we will
explain in this chapter. Loco is our logic programming language of choice
and will be briefly introduced in section 4.1.4. After this we will discuss the
symbiotic facilities of Symbioco [Leu05] , a symbiosis layer between Pic%
(introduced in section 2.4.2) and Loco, which was used as an experimental
platform to handle the link between AmbientTalk actors and Loco service

descriptions.

65

4.1. The declarative programming paradigm 66 of 104

4.1 The declarative programming paradigm

The declarative programming (also known as logic programming) is the
name of a programming paradigm which was developed in the 70’s. As an
alternative to step-by-step description of an algorithm, we design the pro-
gram as a set of logical facts and rules. Each procedure call is considered as
a theorem of which we need to determine the truth, and this way executing
a program means searching for a proof. In traditional imperative program-
ming languages, the program specifies how a problem should be solved, the
program is a list of steps to solve a problem. Contrary to the approach in
logic programming where the program is a declarative specification of what

the problem is, which is quite a different way of thinking. [PF94]

4.1.1 Queries on knowledge

In search of a proof for theorems (or procedure calls) the logic engine needs
to be presented with a certain amount of knowledge about the world the
problem is situated in. Consider the following example: suppose a logic
engine is asked to prove that 4 is greater than 2. In order to prove this,
the system needs to know what ’greater than’ means. This knowledge needs
to be specified in a rule base, which can be queried to prove theorems. As
a result the equivalent of procedure calls in an imperative programming
language are given the name ’queries’ in a logic programming language,
hence the title of my dissertation: Environment Queries. When we carry out
a query, the system will search through all its knowledge for any information
concerning the query. The result of this search may be twofold: facts and

rules.

4.1.2 Facts and Rules

Fact: A fact is an unconditional truth, for example 9 is greater than 6’.
If this fact is available in the rule base when the logic interpreter is
asked whether 9 is greater than 6, it can see straightaway that this
is the case. However if we ask if 7 is greater than 6, the rule base
provides insufficient knowledge and the system is unable to prove this
theorem. Having only facts at our disposal, we would be obliged to
put an infinite amount of facts into the system before we can do simple

number comparison. This problem is dealt with through the induction

4.1. The declarative programming paradigm 67 of 104

of another kind of knowledge, rules.

Rule: A rule is a conditional truth, a conclusion which can only be drawn
when its premises are known to be true. For example a number x is
greater than a number y if x - y is positive, only when x - y is positive
we can deduce that x is greater than y. If this rule is part of the rule
base we can compare any two numbers we desire (presuming similar
rules describing how to subtract and how to check whether a number

is positive).

Programming with rules and facts requires quite a different way of thinking
for people familiar with imperative programming. One of the differences
emerges when one looks at the concept of a program variable. In imperative
languages it is a name for a memory location which can store data of certain
types. The contents of that location may vary over time, the variable itself
forever points to the same location and is always well-defined. Contrary to
a logic program, where it is a placeholder that can change to any value (as
in the mathematical sense of a variable). For example if we ask the system
whether X is greater than 6, it will try to find a value that makes this query
true (e.g. X = 7). This procedure for finding a value for a variable is called

unification.

4.1.3 Unification

Unification essentially is a binary operation whose purpose is to attempt to
make its two operands the same. The process is similar to pattern matching
(and we will use it in this dissertation to match service descriptions and
service queries). If we carry out the query "X is greater than 6’ in a logical
programming language, the system will first look up everything it knows
about ’greater than’. If we presume it finds (or can derive) the fact ’7 is
greater than 6’, in that case it will unify the operands in our query (x and
6) with the operands (7 and 6) of the fact we found. The unification of
two values (6 and 6) means comparing them and in case they are equal
the unification is successful. To be able to unify a value with a variable,
we first have to check if it isn’t already bound (ground). If it is so we
unify the two values as described above, otherwise the unbound variable is
assigned the value we started out with. When a variable is given a value

through unification, that variable is then said to become instantiated or

4.1. The declarative programming paradigm 68 of 104

bound to that value. It will never change anymore, during the remainder
of this attempt to prove the theorem. The last case is the one where we
need to unify two variables. When the first is still free, it will be assigned
to the second variable. In the other case the value of the first variable will

be unified with the second variable.

4.1.4 Loco

Loco is a declarative logic programming language. It was developed by Prof.
Dr. Theo D”Hondt and was originally written in Pico, meant for educational
use. Syntactically Loco looks a lot like Pico and Pic% , which has proven
to be very advantageous for the symbiosis with Pic% [Leu05] and thus by
extension for AmbientTalk as well. First of all, this section shows how the
paradigm introduced in the previous section applies to Loco, while at the
same time introducing Loco’s syntax. We will therefore adapt the example
presented in [PF94], which has a small part of the London underground as

its universe of discourse (shown in figure 4.1 1).

JUBILEE BAKERLQO NORTHERN

Oxtord

Circus CENTRAL

Bong
Streel

PICCADILLY

G‘l:l"ll
Park

Piccadilly
Circus

Leicaster
Square

VICTORIA

UNDERGROUND

Figure 4.1: A map of the London Underground

This picture incorporates a lot of information including lines, stations, rel-

! Picture taken from ’Simply Logical: Intelligent Reasoning by example’, by Peter Flach

4.1. The declarative programming paradigm 69 of 104

ative distances and transit stations. Devising logic statements that capture
the knowledge in the above picture can be done in a straightforward man-
ner. The map can be represented by describing all the lines with 11 facts as

shown in listing 4.3.

Listing 3

{
connected("bondstreet", "oxfordcircus", "central");
connected("oxfordcircus", "tottenham_court_road", "central");
connected("bondstreet ", "green_park", "jubilee");
connected("green_park", "charing_ cross", "jubilee");
connected("green_park", "piccadilly_circus", "piccadilly");
connected("piccadilly_circus", "leicester_square", "piccadilly");
connected(""green_park", "oxford_circus", "victoria");

connected("oxford_circus", "piccadilly_circus", "bakerloo");

connected("piccadilly_circus", "charing_cross", "bakerloo");
connected("tottenham_court_road", "leicester_square", "northern");
connected("leicestersquare", "charing cross", "northern")

Listing 4.3: Connections of the London Underground

We can define two stations to be nearby if they are on the same line with at
most one station in between. This relation can represented by the following

additional facts in listing 4.4.

Listing 4
{

nearby("bondstreet", "oxfordcircus"");
nearby ("oxfordcircus", "tottenham_ court_road");
nearby("bondstreet", "leicester_square");

etc.

4.1. The declarative programming paradigm 70 of 104

Listing 4.4: Connections of the London Underground

In total 16 new facts can be derived. Nevertheless we can also derive these
nearby facts from the previous 11 formula in a systematic way. If two sta-
tions X and Y are directly connected via some line L, then X and Y are
nearby. Alternatively, if there is some Z in between, such that X and Z are
directly connected via L, and that same line L also connects Y. This can be

formulated in logic as follows:

Listing 5
{

nearby (X, Y) : connected(X, Y, L) ;
nearby(X, Y) : connected(X, Y, L) & connected(X, Z, L) ;

Listing 4.5: Rules for describing nearby.

In these formulas in listing 4.5, the colon (:) should be read as ’if’, and the
ampersand (&) between connected(X, Y, L) and connected(X, Z, L), should

(A RS

be read as ’and’. Other basic valid symbols are ’!" for 'not’, and I’ for ’or’.

4.1. The declarative programming paradigm 71 of 104

Native | Interpretation Native Interpretation
IF get >
& AND let <
| OR minus -
! NOT times X
plus + findall find all matches
max maximum equals test equal values
min minimum append append to end
gt > member check if member
It < elementat | return element at position

Table 4.1: Basic syntax of the Loco programming language

Now we have two definitions of the nearby-relation, one (listing 4.4) which
simply lists all pairs of stations that are nearby, and one (listing 4.5) in terms
of direct connections. Logical formulas of the first type are called facts and
the second type will be called rules. For each possible query, both give ex-
actly the same answer. As we explained previously, they both represent the
knowledge we need to handle queries. In the following listings a couple of

queries and their results are listed.

Listing 6

> connected("greenpark", ""charingcross", "jubilee");
: ok

Listing 4.6: No free variables

This first query (listing 4.6) contains no free variables and the system will try
to find a match, ultimately finding the fact ’connected(” green park”,” charing
cross”,” jubilee”)’ while searching through all the knowledge about connected.
All the terms in the query match with those of the fact we found, so unifi-

cation succeeds and ’ok’ signals the success of the query.

4.1. The declarative programming paradigm 72 of 104

Listing 7

> connected(""picadilly_circus"" , otherstation, line);
: ok

otherstation = "leiceister_square"

line = "picadilly"

> #

: ok

otherstation = "charingcross"
line = "bakerloo"

Listing 4.7: Two free variables

In the next query (listing 4.7) we have two free variables and we can inter-
pret the query as: Find all stations connected to ”picadilly circus” and the
according lines connecting them. Again the system will try to find a match
and unify the query with a fact in our knowledge base. We will find a fact
connecting ”picadilly circus”, so in this case otherstation variable will be
unified with ”leiceister square” value and line will be bound to ”picadilly”.
Again the query is successful and values for the two free variables are dis-
played.

Although there are more solutions for our query, only one will be shown.
The reason for this being that the number of solutions may be infinite (e.g.
a query asking for all the numbers greater than 3), so printing all of the
solutions is very risky. To see more solutions we can enter # as a query, and

the system will continue its search where it stopped before.

Listing 8

> connected("greenpark"", "tottenham_court_road", "unexistingline");

: No match found

4.2. Language Symbiosis 73 of 104

Listing 4.8: No result

This is the first query (listing 4.8) that isn’t successful. There is no connec-
tion between ”greenpark” and ”tottenham court road” station and certainly
not by ”unexistingline”. The system will signal a failure by displaying: ”No

match found”.

Listing 9

> nearby("oxford_circus"", nearbystation);
: ok

nearbystation = "tottenham_court_road"

Listing 4.9: Unify with a rule

This last query looks similar to the second (listing 4.7), but unlike that
second one it will unify with a rule instead of a fact. It will unify with
the first rule for nearby (listing 4.5). First ”oxford circus” will bound to
'X’, then nearbystation will bound to "Y’, following the rule we need ’con-
nected(”oxford circus”, nearbystation, L)’ to be successful and to have the
query signaling success. So the system will try to unify this new query with
a fact and it will find ’connected(” oxford circus”, ”tottenham court road”,
"central”)’ , which will match. As a result our last query also turns out to

be a success.

In this section Loco was briefly described. First of all the declarative pro-
gramming paradigm was introduced, after which Loco’s syntax has been
illustrated. Now that Loco has been introduced, we will move on to Sym-

bioco, a symbiosis between Pic% (described in section 2.4.2) and Loco.

4.2 Language Symbiosis

In biology symbiosis is defined as ” A close, prolonged association between
two or more different organisms of different species that may, but does not

necessarily, benefit each member” [LPG]. Mutualism is a symbiotic relation

4.2. Language Symbiosis 74 of 104

in which the association is advantageous to each species, and outside the
field of biology the most common symbiotic relation. Language symbiosis
is a relationship between two programming languages, that allows them to
access and use one another’s concepts in a transparent way. In practice this
means two (or more) languages are able to utilize each other’s functional-
ity. As concrete example we could have an object-oriented language which
syntactically sends a message to an object, causing it to execute a query in
a declarative language it’s symbiotically related to. To express environment
queries, we have extended Symbioco, an existing symbiosis layer between
Loco and Pic% (AmbientTalk’s object model) [Leu05].

4.2.1 Reason for symbiosis

Every so often it is easier to express a piece of program in another language
or paradigm, which is exactly the opportunity symbiosis offers. It provides
additional expressiveness, and this is precisely the same kind of richness we

want for service descriptions and queries in service discovery protocol.

4.2.2 Symbioco

Symbioco is a symbiosis between Pic% and Loco, which was developed
by Tom Leuse to explore aspect-oriented logic meta programming for a
prototype-based language [Leu05]. His implementation exploits the fact
that both the Loco-interpreter and the Pic% interpreter are written in a
common language (Java), it contains a layer that can evaluate both Loco
and Pic% expressions, using the respective interpreters. Aside from being
able to start interpreters, the Symbioco layer will also capture all errors and
output operations that arise in both interpreters. Therefore we are able to
redirect output and take appropriate actions when certain errors occur. Re-
sponding to those errors is where the real symbiosis lies: when a function or
logical formula is not found by the current interpreter, Symbioco will catch

the error and start evaluating the same expression in the other interpreter.

To allow AmbientTalk to make use of Loco to express service descriptions
and queries, the Symbioco layer needs to be extended with knowledge on
how to interact with the AmbientTalk interpreter (figure 4.2) as well as ex-
tend the AmbientTalk interpreter with the proper hooks signalling when to

switch between AmbientTalk en Loco. The precise mechanisms for doing so

4.3. Summary 75 of 104

are at present limited only to the service discovery algorithm and will be

explained in the next chapter.

AmbientTalk
Interpreter

Loco
Interpreter

Pico
Interpreter

Symbioco layer

Figure 4.2: Graphical representation of the Symbioco layer

4.3 Summary

In this chapter we gave a brief introduction to Loco and to the declarative
programming paradigm of which Loco is an example, after which we de-
scribed symbioses as it is used in Symbioco. In chapter five it will turn out
that loco is ideal for solving our need for a description language that handles
the proliferation of devices in open mobile networks. In the next chapter we
will also extend Symbioco to handle symbiosis between AmbientTalk and

Loco.

Environment Queries

Now that we know what service discovery means for open mobile networks
and we have identified the current solutions (section 3.3) for tackling this
issue, we can discuss the benefits of using a logic programming language as a
service description language for service discovery in open mobile systems. It
has already been mentioned (section 3.4) that none of the current protocols
cope sufficiently with the hardware phenomena in section 2.2, but now we
will present a new protocol for AmbientTalk following the ambient-oriented
programming paradigm (section 2.3). This new approach is based on a sym-
biosis with the logic programming language Loco (section 4.1.4) supporting

very rich service descriptions and queries.

5.1 Conceptual Design

In this section we will explain the notion of Environment Queries and how it
differs from the approach that was taken for the previous service discovery
protocol of AmbientTalk.

76

5.1. Conceptual Design 77 of 104

5.1.1 Service Discovery For Open Mobile Networks

The Discovery Mechanism in our new implementation remains the
same as in AmbientTalk’s original service discovery protocol. It’s peer-
to-peer based with aggressive device discovery: multicasts are send in fixed
intervals to all devices in range. Services are discovered through observers

on required and provided mailboxes as described in section 2.4.1.1.

Mobile and open characteristics are supported by AmbientTalk’s choice
for peer-to peer, since a limited battery for example favors against service
cache managers, and you don’t want to waste your own power on caching
results for other people’s queries, that don’t concern you. To maintain a
consistent view of components in a network we need to detect changes in
component availability, and this is achieved in AmbientTalk by monitoring

periodic announcements (heartbeat algorithm).

Description language of AmbientTalk with only basic string-matching
as explained in 2.4.1.1, is replaced by Environment Queries. These will ad-
dress the absence of rich descriptions in the description languages of current
service discovery protocols. By employing a logical programming language
to describe and query services we gain the advantages of XML with its
flexible and expressive syntax, without the disadvantages for resource-poor

devices.

5.1.2 Strings vs. Environment Queries

In the old protocol we could only describe a service with a single string and
as a consequence a query also consisted of only one string. These strings
were compared and in case they were equal (no substring matching) we
would have a match, and the requester a provider.

The new protocol on the other hand makes use of Loco syntax for service
descriptions. Each actor(A, B, C, D) has its own Loco process for interpret-

ing logic statements as shown in figure 5.1.

5.1. Conceptual Design 78 of 104

H A e

O g &

Symbioco B D Symbioco

Symbioco

(@)

Device 1 Device 2

Figure 5.1: Incorporation of Loco process for every actor

We interact with the Loco process when we provide or require service in

one of the actors. Let’s take a closer look at these two phases.

5.1.2.1 Phase one: Providing a service

Providing a service materializes in adding a fact to the knowledge base of
an actor (2). We encapsulate the fact together with an optional rule, in a
new structure called a pattern. That pattern is then added to the provided
mailbox(1), as it was done in the earlier protocol. Next all actors are noti-

fied (3) of the addition of a new pattern, so then can act accordingly.

PATTERN

\4

Erovided

Symbioco A

Device 1

Figure 5.2: Providing a service

5.2. Syntax and Examples 79 of 104

5.1.2.2 Phase two: Requiring a service

When we require a service, again we will construct a pattern, but this time
it will consist out of a rule and a query. The pattern is added to the required
mailbox (1) and its addition notified to all actors (2).

&

Symbioco

@

Broadcast

' Join
I

N

(1) Device 2

Figure 5.3: Requiring a service

There, the rule will be asserted (1) and if the query returns results, it will
forward them back to the requesting actor through a join message (2). If
a pattern is no longer provided, the pattern will be added to the disjoin

mailbox.

2
Join
¢ et > NS
D

Symbioco A Symbioco

Device 1 Device 2

Figure 5.4: Sending back providers

5.2 Syntax and Examples

The syntax of AmbientTalk is extended with three new functions: require,

provide and loco, which we will explain subsequently. Of course the full

5.2. Syntax and Examples 80 of 104

syntax of Loco is also supported at this moment, but only as an argument
for the new require and provide functions. Next we will show how the con-
cept, introduced in the previous section, applies to AmbientTalk while at

the same time introducing the new syntax.

It is time to go back to the example of the printer in section 2.1. The
challenge was not simply finding a printer, but finding one that meets all
the requirements. The concrete goal was to find a printer with a minimum
of 300 dpi for a quick draft of our document, other previous preferences
would be used to arrange the matches. In the remainder of this section we

will introduce the required functionality to implement the printer scenario.

In all the following examples an actor 'a’ and ’'b’ is created with its be-
havior as an argument. The init function is always called after creation,
triggering the provide function in (a) and the require function in (b). Call-
ing startNetwork() prompt devices to discover each-other, this is necessary
since the two pieces of code are evaluated in two separate virtual machines.
As illustration of success we have a simple test-function that displays the
string: ”The test worked!”. The join function will send the test-message to
all providers passed as an argument in the join messages, and display 'msg

sent’ to signal this event to the transcript.

5.2.1 Basic example

As a first example we will provide and require a printer with a dpi (= dots

per inch) of 800 as depicted in figure 5.5.

5.2. Syntax and Examples 81 of 104

b: actor({
initO::requireC"printer(dpi(8e0))");

startNetwork();

join()::{ joined: messages("joined");
for(i:l,i<=size(joined),i:=1+1, {

a: actor({ provider(joined[i]J#test();
initQ)::provide("printer(dpi(30@)); delete("joined", joined[i1);
printer(dpi(8@@))"); display("msg sent™, eoln)
B
startNetwork(); };
test()::display("The test worked!", eoln); disjoin()::display("Disjoin detected: ", disjoined);
loco(result): :display(“Loco:", result, eoln) loco(result): :display("Loco:", result, eoln)
B B
(a) Provider (b) Requester

Figure 5.5: Basic example

The provide function takes one or two arguments, depending on the optional
usage of rules. The first argument is string of rules written in Loco syntax,
separated by comma-dots (;). The second and mandatory argument is string
of facts, again separated by comma-dots (;). Together the rules and facts
represent all the services that will be provided.

In (a) we add no rules but two facts, representing two services: a printer
with a dpi of 300 and one of 800.

The loco function is merely a signaling function for mainly debugging pur-
poses. Its default behavior is to write events of the loco process to the

transcript, but this can be overridden by the programmer.

Require has almost the same syntax as the provide function, except for
the second argument that is not the declarative description of a fact but of
a query also written in the Loco programming language. This syntax looks
very natural to programmers as it is identical to the way SQL' is integrated
in all the common programming languages.

In (b) the query is identical to the fact in (a), because there are no free vari-
ables, and we show here that we can simulate the previous (string-matching)

service discovery protocol.

! SQL (Structured Query Language) is a standard interactive and programming language

for getting information from and updating a database.

5.2. Syntax and Examples 82 of 104

In listing 5.10 we show the transcript of the virtual machine interpreting
the behavior of the ’a’ actor. Listing 5.11 shows the output of the other vir-
tual machine for the 'b’ actor. These show the displays of the loco function,
and illustrate the success of the unification process and use of the ’test’-

service discovered though environment queries.

Listing 10

AmbientTalk initialized.
:<actor>

msg sent

Listing 5.10: Requester transcript basic example

First the provide and require functions are called after creation of both ac-
tors. Actor ’a’ will receive a message from the Loco process, signaling that
the service is added (asserted: <pattern>). On the other side (b) a pattern

> will receive this

containing the query is broadcasted to all actors. Then ’a
message and find a match, the success of unification is signaled through a
loco message (match <pattern>) and join message is send back to 'b’. On
arrival b’ will call all the services, that were discovered and for each display
a message: 'msg sent’. And finally 'a’ will display 'The test worked!” as a

result of the call.

Listing 11

AmbientTalk initialized.
:<actor>

Loco: asserted: <pattern>
Loco: match: <pattern>
The test worked!

Listing 5.11: Provider transcript basic example

5.2. Syntax and Examples 83 of 104

5.2.2 Logic operator example

The next example will show the use of logical operators, as means to describe

more accurately what service we are looking for (shown in figure 5.6).

b: actor({
init(::require("printer(dpi(X)) & gt(X,800)");

startNetwork();
join()::{ joined: messages("joined");

for{i:1l,i<=size(joined),i:=1+1, {
provider(joined[i])#test();

a: actor({ delete("joined", joined[il);
init(::provide("printer(dpi(28833"); display("msg sent™, eoln)
B
startNetwork(); };
test()::display("The test worked!", eoln); disjoin()::display("Disjoin detected: ", disjoined);
loco(result): :display("Loco:", result, eoln) loco(result): :display("Loco:", result, eoln)
1] B
(a) Provider (b) Requester

Figure 5.6: Logic operator example

This example is very similar to the basic example, but now we have another
query passed to the require function in (b). It contains one free variable X,
in both terms of the logical 'and relation’ (&). The query is true if both

ends are true.

During unification we will find all values for X that unify with the left term,
and if the same values also unify with the right term we have found a match.
As ’gt’ stands for ’greater then’ we will find all printers with a dpi of more
then 800. Some logical languages (not yet Loco) support syntactic sugar for
this common statements and our query would like ”printer(dpi(X>800))’.
This all gives us a short and more detailed query.

The use of logical operators is not restricted to the requiring side, we could

just as well employ it at the provider side with the same effect.

5.2.3 Rule example

In our third example we will illustrate the use of rules as an addition to the
logical queries and facts. The example in figure 5.7 shows us how we can

add rules to a query.

5.2. Syntax and Examples 84 of 104

b: actor({
initO:irequire("printer(dpi(X),bw): fax(bw) & equals(x,3@e)",
"printer(dpi(Z),bw) & gt(Z,288)");

startNetwork();
join()::{ joined: messages("joined");

for{i:l,i<=size(joined),i:=1+1, {
provider(joined[i])#test();

a: actor({ delete(" joined", joined[il);
init():provide(" faxCbw)"); display("msg sent”, eoln)
B
startNetwork(); ¥
test(D::display("The test worked!", eoln); disjoin()::display("Disjoin detected: ", disjoined);
loco(result)::display("Loco:", result, eoln) loco(result)::display("Loco:", result, eoln)
b B
(a) Provider (b) Requester

Figure 5.7: Rule example

The difference with the previous example is that now two arguments are
passed to the require function: a rule and almost the same query as before.
Hence, we are not limited to the use of all the logical rules that are packed

with Loco, we can create are own custom ones.

The unification process as described in section 4.1.3 does not only consider
facts but also rules. All values unifying with X in the head, will be checked
with the body of the rule. So if we have a black and white fax, and we
are looking for a black and white printer with only 300 dpi, the fax will be
offered as printer service. Again this can be simplified with syntactic sugar:
"printer(dpi(X), bw): fax(bw) & X=300".

As shown in this example we can use rules to encode arbitrary structures
of hierarchical name values, even on the fly, as an easy way to introduce

sybtyping in our descriptions.

This rule could just as well be added at the provider side with the same
effect. It would remove the necessity of typing the rule every time we re-

quire the same service.

5.2. Syntax and Examples 85 of 104

5.2.4 Recursion example

Our last example will explain how we we can use recursion as tool to write

even more expressive environment queries like in figure 5.8.

b: actor({
init()::require("reachable(X,Z): unlocked(X,Z);
reachable(X,Z): unlocked(X,Y)
& reachable(Y,Z)",
"printer(X,Y) & reachable(cafetaria,¥)");

startNetwork();
a: actor({ join()::{ joined: messages("joined");
init()::provide("unlocked{cafetaria,park) for{i:1l,i<=size(joined),i:=1+1, {
unlocked(park,hallway); provider(joined[i])#test();
unlocked(hallway,computerlab)", delete("joined", joined[i]);
"printer(printerl, computerlab™); display("msg sent”, eoln)
B
startNetwork(); ¥
test()::display("The test worked! , eoln); disjoin()::display("Disjoin detected: ", disjoined);
loco(result): :display("Loco:", result, eoln) leco(result): display("Loco:", result, eoln)
b B
(a) Provider (b) Requester

Figure 5.8: Recursion Example

Until now we have encountered two types of logical formulas: facts and
rules. There is a special kind of rule which deserves special attention: the
rule which defines a relation in terms of itself.

In (b) we define a relation of reachability in our printer example , where
a location is reachable from another location if they are connected by one
or more unlocked doors. The first rule speaks for itself: a location Z is
reachable from a location X if the connection between X and Z is unlocked.
The reading of the second rule is as follows: Z is reachable from X if Y is
connected by an unlocked door with X, and Z is reachable from Y.

We can now prove, based on the facts from (a), that the computerlab, where
printerl resides, is connected to the cafetaria without locked doors. So we

have a match and the service will be send back through a join message.

Of course this can be translated into rules without recursion but then we
would need a lot more, and much longer rules. Recursion is a much more

convenient and natural way to define such chains of arbitrary length.

5.3. Technical Issues 86 of 104

5.3 Technical Issues

As we now grasp the concept of environment queries, we will take a closer
look at some technical issues that emerge in the implementation of the ser-

vice discovery protocol.

5.3.1 Multiple matches

An actor can provide multiple services that match a certain query and in the-
ory this can lead to an infinite loop. On the level of Loco this is handled by
not returning all results at once, but one at a time. To the AmbientTalk pro-
cess we send a join message back for every match. After a certain threshold
(currently 100) of matches we stop sending join messages to prevent flooding

of the network and message buffers.

5.3.2 Loco processes

Every actor has its own Loco process to achieve the most parallelism and to
avoid having actors waiting for each other. A single process for every device
would bring forward a single point of failure if we corrupt the knowledge
base, and we would need to implement namespaces (e.g. using prefixes) to

separate the services.

5.3.3 Rules

Rules are always asserted on the side of the provider as it is there where the
matching will take place. If rules would have been asserted on the requester
side, we would be forced to transfer the rule base of the provider. The order
in which the rules are traversed during the unification process is very signif-
icant, as it is in all other logic programming languages. This becomes even
more important because both provider and requester can add rules. Rules
asserted through the provide-statement, precede those declared through the

request-statement.

We have to be careful with rules on the provider-side because they can
give rise to unexpected conflicts in interpretation. A provider could cause a
lot of false positives or false negatives by deliberate or accidental erroneous

rules that a requester can not expect as shown in figure 5.9.

5.3. Technical Issues 87 of 104

a: actor({
init():provide("printer(dpi(X),bw): fax(bw) & equals(X,3082",
"fax(bw)");
startNetwork();

test()::display("The test worked!", eoln);

locoCresult): :display("Loco:", result, eoln)
B

(a) Provider

b: actor({
init()::require("printer(dpi(X),bw): fax(bw) & equals(X,268)",
"printer(dpi(306),bw)");
startNetwork();
join()::{ joined: messages("joined");
for(i:l,i<=size(joined),i:=i+1, {
provider(joined[i])#test();
delete("joined", joined[il);
display("msg sent", eoln)
1]
iH

disjoin()::display("Disjoin detected: ", disjoined);

locoCresult)::display(“Loco:", result, eoln)
B

(b) Requester

Figure 5.9: Rule causing unexpected matches

5.3.4 Symbiosis

To allow AmbientTalk to make use of Loco to express service descriptions
and queries, the Symbioco layer was extended (figure 5.10) to support Am-
bientTalk as well by adding its interpreter (conveniently written in Java too)
to the framework and implementing a callback mechanism to return the re-
sults. The error-capturing (described in 4.2.2) functionality isn’t yet fully
supported in the implementation of our environment queries, because the
focus of this dissertation is on the service discovery and not on symbiosis,

although it would be a nice extension for future work.

5.3. Technical Issues 88 of 104

AmbientTalk
Interpreter

Loco
Interpreter

Pico
Interpreter

Symbioco layer

Figure 5.10: Graphical representation of the Symbioco layer

The hooks signaling when to switch between AmbientTalk and Loco are

situated in provide and require native functions.

5.3.4.1 Providing a pattern

When an actor provides a service, the pattern (rules + facts) describing its
properties, is added to the required-mailbox but the pattern is also passed to
the Symbioco layer along with the running AmbientTalk process. Symbioco
uses the original Process classes from both interpreters, and manipulates
the stack through them. In order to manage these processes, a wrapper is
built around them. Symbioco uses its own stack to manage these process
wrappers. Symbioco will create a new process wrapper for the AmbientTalk
process, and will push it on its process stack. Next a Loco process will be
created, also pushed on the process stack and then start this process. It will
interpret the pattern and signal the Symbioco layer when the evaluation is
done.

When the process finishes execution, Symbioco will give control back to the
wrapped AmbientTalk process to send back the results, based on the return
value. Because originally the call came from provide-statement, the only
action left to do is sending a Loco message back to the actor signaling the

successful assertion of the pattern (asserted: <pattern>).

5.3.4.2 Requiring a pattern

The other point where we enter the Symbioco layer, is when an actor re-

quires a service. The pattern is added to ”"required”-mailbox and the device

5.4. Conclusion 89 of 104

broadcasts its addition to all neighboring devices as described in section
2.4.1.1. All the receiving devices will loop over their local actors and initi-
ate a query on the actor’s corresponding rule base. The query will again be
passed to a Loco process, through the Symbioco layer.

On completion of evaluation in Loco, the Symbioco layer will capture the
results. It will send the results back to the originating actors under the form
of join messages (containing pattern and provider). A Loco message is also

send to the actors with a matching service pattern: 'match: <pattern>’ .

We minimized syntactic changes to AmbientTalk and chose a syntax that
looks very natural to programmers as it is identical to the manner SQL
is integrated in all the common programming languages. Another option
would be: making the symbiosis even more transparent by removing the
quotes from the arguments for provide and require. This would also be a

nice extension for future work.

5.4 Conclusion

Our proof-of-concept implementation lead to three key stages that we set as

our goals in section 3.4.4, and that we will evaluate now:

5.4.1 Incorporating advantages of existing alternatives

After researching current service discovery protocols we identified the strong
points of the other description languages. One of those assets were logical
operators that enhance the expressiveness and shorten the descriptions. An-
other was the ability to construct hierarchies and introducing subtyping in
our service advertisements and queries. Both of them are now supported
in AmbientTalk through symbiosis with Loco. Logical operators are part of

Loco’s syntax and hierarchies can be built with rules (see previous exam-

ples).

5.4.2 Minding restrictions of open mobile networks

One has to pay heed to the hardware restrictions and phenomena discussed
in section 2.2 and in section 3.1.3, when designing a service discovery pro-
tocol for finding services provided by ambient resources. As autonomy is

required, service cache managers are out of the question and not part of

5.5. Summary 90 of 104

environment queries. The volatility of connections demands for consistency
maintenance, failure detection and recovery. Therefore the protocol has the
same notification mechanism and heartbeat algorithm as in the original im-
plementation of AmbientTalk. For concurrency reasons we have equipped
every actor with his own Loco process to manage services and queries on
them.

XML was the most expressive description language in section 3.1.3 but its
verboseness can pose a crucial problem over mobile networks where band-
width can be limited or vary greatly. Even processing XML, due to the
very limited processing power and restricted memory of mobile devices, it-
self can pose a problem. Environment queries on the other hand are very
compact without losing expressiveness, resulting in low overhead on the net-
work. However, there is no such thing as free lunch and more computation
is needed due to recursion for unification and because of the language sym-

biosis.

5.4.3 Introducing more expressiveness

The proliferation of devices discussed in chapter three, will give rise to an
exponential growth of services in open mobile networks. As a result we need
precise service descriptions, otherwise there would be too much matches.
Users usually have specific demands as in the printer example in section 2.1
for the services they require. Environment queries provide the tool to meet

those demands: logic operators, rules and recursion.

Hence, one can argue that we reduced the complexity of finding a fitting
service, which will become paramount on a larger scale. In our conclusions
in the next chapter we will point to future work to further enrich service

descriptions.

5.5 Summary

In this chapter we have extended the original service discovery protocol
of AmbientTalk and showcased a new description language: environment
queries. It differs from the string-matching algorithm by expressing service
descriptions and queries in logic. Each actor’s knowledge base, of services, is

transparently updated and queried by it’s own Loco process. The protocol

5.5. Summary 91 of 104

supports logical operators, rules and recursion.

Though the implemented examples are rather basic, the power and prac-

tical use of environment queries was clearly shown.

Conclusion and Future Work

The objective of this dissertation was to investigate the benefits of using
a logic programming language as a service description language for service
discovery in open mobile systems. This chapter presents our conclusions on

this matter.

6.1 Summary

In our present-day network environments we face two main problems: the
first is the expansion of computing environments in homes and offices through
the ever growing numbers of printers, scanners, digital cameras, and other
peripherals, integrated into networked environments. The second problem
is the proliferation of mobile devices such as laptop and palm-sized com-
puters, cellular phones and other portable gizmos. These devices all trade
functionality for suitable form factors and low power consumption; they are
therefore ”peripheral-poor” and as a result they must connect to proximate
machines for storage, faxing, printing, scanning and internet access. [Ric00]
Due to these changes mobility and modularity have become the modern

goals of system development to enable Ambient Intelligence.

92

6.2. Contributions 93 of 104

Network resources and application software do not follow the mobile users
when they leave their offices or homes, or when they relocate to another
temporary office or home. Supporting true mobility of users will therefore

require changing the way application software is advertised and discovered.

This dissertation consists of two parts. In the first part we presented the nec-
essary background concerning ambient intelligence, service discovery, logic
programming and language symbiosis.

In the second chapter we described the context of this dissertation. We
addressed the hardware phenomena that become apparent in open mobile
networks and how languages of the ambient-oriented programming paradigm
handle them. At the end of the chapter a prototype-based language, follow-
ing the paradigm, was discussed in more detail.

Chapter three explained what service discovery is, and the concepts that
compose a service discovery protocol were defined. Different strategies and
design options were discussed. A couple of scenarios illustrated the use of
discovery, and they were followed by an in depth analysis of nine of the most
important service discovery protocols including AmbientTalk. A compari-
son was made between them and we identified related research in the same
area. A summary and outlook to the future concluded this chapter.
Chapter four revolved around logic programming and language symbiosis.
We described the declarative programming paradigm and took a closer look
at Loco, the logic programming language that was used in the symbiosis.
We briefly looked at language symbiosis and at a concrete implementation:
Symbioco.

The second part of this thesis starts with chapter five, where we finally intro-
duced a new language construct called ”environment queries” and we put
forward a proof-of-concept implementation supporting the thesis. There-
after a more technical discussion was presented concerning a number of

practical issues and the chapter ends with several validating examples.

6.2 Contributions

Chapter three of this dissertation serves as a survey of the state of the art
in service discovery protocols, and lead us to reveal shortcomings that we

believe will inhibit the development of applications that exploit open mobile

6.3. Limitations and Future Work 94 of 104

networks. We particularly focused on the absence of rich service descrip-
tions.

The main technical contribution of this thesis is the design and implementa-
tion of a new service discovery protocol for open mobile networks, based on
AmbientTalk’s previous ambient-oriented service discovery protocol. The

new protocol has a rich description language with the following properties:

e The syntax of AmbientTalk is extended with three new functions: re-
quire, provide and loco. The first two are used for querying neighbor-
ing actors for a service and providing a service, respectively. The Loco
function is merely a signaling function for mainly debugging purposes.
Its default behavior is to write events from the Loco process to the

transcript, but this can be overridden by the programmer.

e Service descriptions now support the use of logical operators like: and,

or, if, not, equal, greater than, less than.

e The addition of custom rules permits encoding arbitrary structures of
hierarchical name values, even on the fly, as an easy way to support

subtyping in service descriptions.

e The possibility to utilize recursion to reduce the size of service descrip-

tions in a natural way, through recursive rules.

We have evaluated these properties by using the environment queries con-
struct in various examples which showed that environment queries provide
a concise way of describing services where processing power, memory and
bandwidth, are limited or vary profoundly and where expressiveness is a

critical factor to cope with the (future) proliferation of services.

6.3 Limitations and Future Work

6.3.1 Scale of network

In order to evaluate our new service discovery protocol in an ambient ori-
ented context we used the environment queries in a number of basic exam-
ples. However, the full potential and possible problems following adaptation
of the protocol will, most likely, only be uncovered when it is used on a larger

scale, since one of the primary goals of our description language is to reduce

6.3. Limitations and Future Work 95 of 104

the complexity of finding a fitting service in large networks. Therefore, fu-
ture work will have to focus on the development of larger ambient oriented
applications using the protocol to fully understand its applicability in this

context.

6.3.2 Personalization through the use of Meta-data, Repu-
tation and History

If we go back to the printer example in section 2.1, we see that we solved
the main part of the problem: describing the properties of the printer. Now
the second part consists of taking the user’s (or even other users’) service
history into account. The previous preferences of a user are valuable for
his/her future requests and could help categorize or order services. Useful
data is already present in the ”require” , ”join” and ”disjoin”-mailboxes,

but more language support would be a nice extension.

Another approach for more personalization could manifest itself through
social environment queries, by enriching the service descriptions with addi-
tional information, i.e. metadata. For example, users would be able to raise
or lower the reputation score of a service, and even the reputation of the
user could be considered in the calculation. We could also be able to see all
the services a trusted friend has vowed for, or personal comments of other
users on the service to help us make decisions on what service to use.

Social data is becoming more useful and popular on the web as can be seen
by the use of the much hyped phrase Web 2.0 !, and this approach may

become valuable in organizing the large amount of services in the future.

6.3.3 Inexact Matching and Load Balancing

Our service discovery protocol does only exact semantic matching while
finding out a service. Thus it lacks the power to give a 'close match’ even
if it was available. The solution for this could lie with fuzzy logic. Fuzzy
logic is derived from fuzzy set theory dealing with reasoning that is approx-

imate rather than precisely deduced from classical predicate logic. It can

! The phrase Web 2.0, which was created by O’Reilly Media to refer to a supposed second
generation of services available on the World Wide Web that lets people collaborate
and share information online in a new way - such as social networking sites, wikis and

folksonomies. From Wikipedia, the free encyclopedia

6.3. Limitations and Future Work 96 of 104

be thought of as the application side of fuzzy set theory dealing with well

thought out real world expert values for a complex problem.

A user may not be able to specify the exact values of interested charac-
teristics of a service. For example, if a service has an attribute that specifies
its 3-dimension GPS? location, it is difficult for a client to pose a query with
the exact value of the attribute. A client usually wants to find a service
that is close to it. The notation of physical proximity is best captured by
comparing the distance between two locations, instead of syntactically com-
paring two location expressions, or comparing the values independently at

each dimension. [YanO1]

The service discovery protocol doesn’t use any performance parameters for
the existing services. They are satisfied with finding out a service only. It
doesn’t consider whether the service would be able to serve the requester.
Future work is therefore needed on load-balancing in order to more evenly
distribute the data processing across available service providers. Service

advertisements could be retracted based on the load.

2 Global Positioning System: A worldwide radio-navigation system that was developed
by the US. Department of Defense. In addition to military purposes it is widely used

in marine, terrestrial navigation and location based services.

[AC4]

[Agh86]

[Agh90]

[Amb06]

[ATO5]

[BYS7]

[CLO2]

Bibliography

G. Agha and C. J. Callsen. Open heterogeneous computing
in actorspace. Journal of Parallel and Distributed Computing,
21:289-300, 1994.

Gul Agha. Actors: a model of concurrent computation in dis-
tributed systems. MIT Press, Cambridge, MA, USA, 1986.

G. Agha. Concurrent object-oriented programming. Concur-
rent object-oriented programming, 33(9):125-140, 1990.

AmbientTalk. Ambient-oriented programming and ambi-
enttalk http://prog.vub.ac.be/amop/, 2006.

Rebecca Montanari Alessandra Toninelli, Antonio Corradi. Se-
mantic discovery for context-aware service provisioning in mo-
bile environments. Dipartimento di Elettronica, Informatica e

Sistemistica Universitat di Bologna, 2005.

Jean-Pierre Briot and Akinori Yonezawa. Inheritance and
Synchronization in Concurrent OOP. In J. Bézivin, J-M.
Hullot, P. Cointe, and H. Lieberman, editors, Proceedings of
the ECOOP 87 European Conference on Object-oriented Pro-
gramming, pages 32-40, Paris, France, 1987. Springer Verlag.

Michalis Vazirgiannis Christos Doulkeridis, Vassilis Zafeiris.
The role of caching and context-awareness in p2p service dis-

covery.

Sumi Helal Choonwah Lee. Protocols for service discovery
in dynamic and mobile networks. The International Journal
of Computer Research, Special issue on Wireless Systems and
Mobile Computing, 11(1), September 2002.

97

BIBLIOGRAPHY 98 of 104

[CNPO1]

[Con]

[CPAJO1]

[DBST03]

[DCM*05]

[Ded04]

[DMO1]

[DMO02]

[DMWJ03]

G. Cugola, E. Di Nitre, and G. Picco. Content-based dispatch-

ing in a mobile environment, 2001.

Salutation Consortium. Salutation architecture for service dis-

covery. http://www.salutation.org/.

D. Chakraborty, F. Perich, S. Avancha, and A. Joshi. Dreggie:

Semantic service discovery for m-commerce applications, 2001.

K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J. C.
Burgelman. Istag scenarios for ambient intelligence in 2010.
Technical report, ISTAG, 2003.

Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo
D’Hondt, and Wolfgang De Meuter. Ambient-oriented pro-
gramming. In OOPSLA ’05: Companion to the 20th annual
ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 31-40, New York,
NY, USA, 2005. ACM Press.

Van Belle Dedecker. Formal foundations of the ambient actor
model, 2004.

C. Dabrowski and K. Mills. Analyzing properties and behav-
ior of service discovery protocols using an architecture-based

approach, 2001.

C. Dabrowski and K. Mills. Understanding self-healing in
service-discovery systems. In WOSS ’02: Proceedings of the

first workshop on Self-healing systems, pages 15-20, New York,
NY, USA, 2002. ACM Press.

D’Hondt T. De Meuter W. and Dedecker J. Intersecting classes
and prototypes. In In Ershov Memorial Conference (2003),
M. Broy and A. V. Zamulin, Eds., vol. 2890 of Lecture Notes
in Computer Science, Springer. Perspectives of Systems In-
formatics, 5th International Andrei Ershov Memorial Confer-
ence, PSI 2003, Akademgorodok, Novosibirsk, Russia, July 9-
12 2003.

BIBLIOGRAPHY 99 of 104

[DMWJO04]

[Dyr03]

[FDW04]

[FKO4]

[Gee05]

[Gel85]

[Gup05]

[Gyb03]

[Hel02]

[Hew77]

D’Hondt T. De Meuter W. and Dedecker J. Pico: Scheme for
mere mortals. In 1st European Lisp and Scheme Workshop,
Oslo, Norway, 2004.

Michael Dyrna. Peer2peer network service discovery for ad
hoc networks. Hauptseminar im Wintersemester 2003 / 2004,
December 2003.

Adrian Friday, Nigel Davies, Nat Wallbank, Elaine Catter-
all, and Stephen Pink. Supporting service discovery, querying
and interaction in ubiquitous computing environments. Wirel.
Netw., 10(6):631-641, 2004.

Christian Frank and Holger Karl. Consistency challenges of
service discovery in mobile ad hoc networks. In Proceedings of
the 7th ACM International Symposium on Modeling, Analysis
and Simulation of Wireless and Mobile Systems (MSWiM),
pages 105-114, Venice, Italy, October 2004.

Frederik Geerts. Overview of service discovery protocols. Pre-
sentation, 2005.

David Gelernter. Generative communication in linda. ACM
Trans. Program. Lang. Syst., 7(1):80-112, 1985.

Gautam Umesh Gupta. Service discovery in ad-hoc networks.
Master’s thesis, Rochester Institute of Technology, 2005. Pro-

posal of a thesis.

Kris Gybels. Soul and smalltalk - just married: Evolution
of the interaction between a logic and an object-oriented lan-
guage towards symbiosis. In Proceedings of the Workshop on
Declarative Programming in the Context of Ob ject-Oriented

Languages, 2003.

Sumi Helal. Standards for service discovery and delivery. IEEFE
Pervasive Computing, 01(3):95-100, 2002.

C. E. Hewitt. Viewing control structures as pattern of passing
messages. Atrificial Intelligence: an International Journal, 8,
3:323-364, June 1977.

BIBLIOGRAPHY 100 of 104

[Inca] Sun Microsystems Inc. Jini network technology: an open ar-
chitecture that enables developers to create network-centric

services. http://www.sun.com/software/jini/.

[Incb] Sun Microsystems Inc. Jxta technology enables develop-
ers to create innovative distributed services and applications.

http://www.sun.com/software/jxta/.

[JP04] Micheal Luck Luc Moreau Terry Payne Juri Papay, Si-
mon Miles. Principles of personalisation of service discovery,
http://www.citebase.org/abstract?id=oai:eprints.ecs.soton.ac.uk:10221,
2004. School of Electronics and Computer Science University

of Southampton.

[KBO02] Alan Kaminsky and Hans-Peter Bischof. Many-to-many invo-
cation: a new object oriented paradigm for ad hoc collabora-
tive systems. In OOPSLA ’02: Companion of the 17th annual
ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 72—73, New York,
NY, USA, 2002. ACM Press.

[KKROO03] M. Klein, B. Konig-Ries, and P. Obreiter. Lanes — a
lightweight overlay for service discovery in mobile ad hoc net-
works, 2003.

[KoRO2] M. Klein and K. onig Ries. Multi-layer clusters in ad-hoc

networks - an approach to service discovery, 2002.

[Leu05] Tom Leuse. A symbiotic approach to aspect-oriented logic
meta programming in a prototype-based language. Master’s
thesis, Vrije Universiteit Brussel, Faculty of Sciences , Depart-
ment of Computer Science and ,Applied Computer Science,
2005.

[LHO2] Choonwa Lee and Sumi Helal. Protocols for service discovery
in dynamic and mobile networks. International Journal of
Computing Research, 22 number 1:1-12, 2002.

[Liv03] Steven R. Livingstone. Service discovery in pervasive systems.
Master’s thesis, The School of Information Technology and
Electrical Engineering The University of Queensland, 2003.

BIBLIOGRAPHY 101 of 104

[LPG]

[MCE02]

[MPHS05]

[MPRO1]

[MSWO5]

[OOP05]

[PF94]

[PRDIRCO5]

[Pro]

[Ric]

[Ric00]

[SDP]

LLC. Lexico Publishing Group. Dicitionary

http://www.dictionary.com.

C. Mascolo, L. Capra, and W. Emmerich. Mobile computing
middleware, 2002.

R. Marin-Perianu, P. H. Hartel, and J. Scholten.
A classification of service discovery protocols.
http://eprints.eemcs.utwente.nl/735/, June 2005.

A. Murphy, G. Picco, and G.-C. Roman. Lime: A middleware
for physical and logical mobility. In In Proceedings of the 21 st
International Conference on Distributed Computing Systems,
pages 524-536, May 2001.

Van Cutsem Tom Mostinckx Stijn, Dedecker Jessie and De
Meuter Wolfgang. Conversations for ambient intelligence.
Workshop on FException Handling for Object-Oriented Sys-
tems, ECOOP 2005, 2005.

OOPSLA. Ambient-oriented programming in ambienttalk,
http://oopsla.acm.org/2005/showevent.do?id=643, 2005.

The Netherlands Peter Flach, Tilburg University. Simply Logi-
cal: Intelligent Reasoning by example. Wiley Professional com-
puting, 1994.

Gian Luca Foresti Paolo Remagnino Digital Imaging Re-
search Centre, Kingston University, editor. Ambient Intelli-

gence: A Nowel Paradigm. Springer, 2005.
Prog. Programming technology lab, http://prog.vub.ac.be.

Ryan Wishart Ricky. Superstringrep: Reputation-enhanced

service discovery.

Golden G. Richard. Service advertisement and discovery: En-
abling universal device cooperation. IEEFE Internet Comput-
ing, 4(5):18-26, 2000.

SDP. The offical ~ bluetooth web site:
http://www.bluetooth.com/bluetooth/learn/works/.

BIBLIOGRAPHY 102 of 104

[SGF02]

[SHAH™*05]

[SLP]

[TES05]

[UDD]

[UPn]

[VAOS]

[Vin03]

[YanO1]

Riidiger Schollmeier, Ingo Gruber, and Michael Finkenzeller.
Routing in mobile ad hoc and peer-to-peer networks. a com-
parison. Technical report, Int. Workshop on Peer-to-Peer Com-

puting Technische Universiteit Mnchen, 2002.

V. Sundramoorthy, P. H. Hartel, J. I. den Hartog, J. Scholten,
and C. Tan. Functional principles of registry-based service
discovery. In LCN ’05: Proceedings of the The IEEE Con-
ference on Local Computer Networks 30th Anniversary, pages
209-217, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

SLP. Service location protocol project.

http://srvloc.sourceforge.net/.

Neilze Dorta Tarek Essafi and Dominique Seret. A scal-
able peer-to-peer approach to service discovery using ontology,

www.math-info.univ-parisb.fr/ seret/artgd.pdf, May 15 2005.

UDDI. Uddi technical white paper.
http://uddi.org/pubs/uddi-tech-wp.pdf.

UPnP. The upnp forum is an industry initiative de-
signed to enable simple and robust connectivity among
stand-alone devices and pcs from many different vendors.

http://www.upnp.org/.

Carlos A. Varela and Gul A. Agha. What after java? from
objects to actors. In WWW?7: Proceedings of the seventh in-
ternational conference on World Wide Web 7, pages 573-577,
Amsterdam, The Netherlands, The Netherlands, 1998. Else-

vier Science Publishers B. V.

Steve Vinoski. A steve vinoski toward integration column from
ieee internet computing. Technical report, IEEE, February
2003.

Xiaowei Yang. A framework for semantic service discovery,
2001. MIT Laboratory of Computer Science, 200 Technology
Square, Cambridge, MA 02142,, USA.

BIBLIOGRAPHY 103 of 104

[Yu06]

Xingi Wang Xueli Yu. A owl-based semantic web service
discovery framework. AICT-ICIW ’06. International Confer-
ence on Internet and Web Applications and Services/Advanced

International Conference on Telecommunications, page 125,
2006.

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Proposed solution in the Dissertation
	Roadmap to the Dissertation

	Context
	Ambient Intelligence
	Hardware phenomena
	Ambient Resources
	Autonomy
	Connection volatility
	Natural Concurrency

	Ambient-Oriented Programming
	Non-blocking Communication Primitives
	Reified Communication Traces
	Ambient Acquaintance Management
	Conclusion of the discussion

	AmbientTalk
	Ambient Actor Model
	Ambient Actor Model

	The Object System
	Integrating the Actor Model
	Creating new actors
	Message sends
	Changing the state and behavior

	Service Discovery
	Conclusion

	Service Discovery
	What is Service Discovery ?
	Discovery mechanism
	Registry-based
	Peer-to-peer based

	Mobile and open
	Consistency Maintenance
	Failure Detection and Recovery

	Description language
	Ontology
	XML
	Interfaces
	Attribute-value tuples
	Problems with the existing service descriptions
	Environment Queries

	Scenarios
	Protocols
	Registry-based
	UDDI
	Salutation
	Jini
	SLP

	Peer-to-Peer based
	M2MI
	JXTA
	UPnP
	SDP
	AmbientTalk

	Comparison
	Discovery mechanism
	Mobile and open
	Description language
	Conclusion for AmbientTalk

	Related Research
	Personalization through the use of Meta-data, Reputation and History
	Caching
	Semantic Discovery

	Summary and Outlook

	Logic Programming and Language Symbiosis
	The declarative programming paradigm
	Queries on knowledge
	Facts and Rules
	Unification
	Loco

	Language Symbiosis
	Reason for symbiosis
	Symbioco

	Summary

	Environment Queries
	Conceptual Design
	Service Discovery For Open Mobile Networks
	Strings vs. Environment Queries
	Phase one: Providing a service
	Phase two: Requiring a service

	Syntax and Examples
	Basic example
	Logic operator example
	Rule example
	Recursion example

	Technical Issues
	Multiple matches
	Loco processes
	Rules
	Symbiosis
	Providing a pattern
	Requiring a pattern

	Conclusion
	Incorporating advantages of existing alternatives
	Minding restrictions of open mobile networks
	Introducing more expressiveness

	Summary

	Conclusion and Future Work
	Summary
	Contributions
	Limitations and Future Work
	Scale of network
	Personalization through the use of Meta-data, Reputation and History
	Inexact Matching and Load Balancing

	Bibliography

