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Abstract

In current information systems, context information has an increasing influence on
the functionality of an application and on how the application should be executed.
The systems must be able to adapt their behavior to the context in which they are
running. This adds a new dimension to the complexity of these systems but current
programming languages do not offer the necessary means to modularize the context-
dependent behavior. Recent research has lead to Context-Oriented Programming, a
new programming paradigm that addresses this problem by defining a new unit of
modularization that allows to group those parts of a program that are affected when the
behavior of the program should be adapted to a different context.

However, context-oriented programming only focuses on the application logic itself
and does not yet provide means to adapt the way how the application is executed. How
a program is executed is defined in the semantics of the used programming language,
also called the meta-level. In this dissertation we present how context-oriented pro-
gramming at the meta-level can be used to express language semantics that depend on
the context in which a program is executed and illustrate the usefulness of this approach
based on our own implementation, called TinyContext.
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Chapter 1

Introduction

In this dissertation we present how context-oriented programming at the meta-level can
be used to express language semantics that depend on the context in which a program
is executed and illustrate the usefulness of this approach based on our own implemen-
tation, called TinyContext.

In current information systems, context information has an increasing influence on
the functionality of an application and on how the application should be executed.
This context information can be anything, ranging from technical information such as
battery life, bandwidth or the availability of resources such as printers to functional
information such as the geographical information of a portable device, the time of the
day or the properties of the user. The need to adapt the system to the context of the
execution adds a new dimension to the complexity of the information systems. Dealing
with this added complexity requires the right tools but current programming languages
lack the necessary support.

Indeed, developing software systems that are able to adapt their behavior based on the
context in which they are running often proves to be hard because current programming
languages do not offer the necessary means to modularize those parts of a program that
should depend on the context. This leaves the programmer no other option than to
spread out context-dependent code in the entire application or to use modularizations
that are not well-suited for context-dependent behavior.

Recent research has lead to Context-Oriented Programming (Costanza and Hirschfeld,
2005), a new programming paradigm that addresses this problem by defining a new
unit of modularization that allows to group parts of those program that are affected
when the behavior of the program should be adapted to a different context. In Chapter
2 we elaborate on context-oriented programming.

1



1.1. Organization of the Text 2

However, context-oriented programming only focuses on the application logic itself
and does not yet provide means to adapt the way how the application is executed. How
a program is executed is defined in the semantics of the used programming language,
what is also called the meta-level of a software system. This indicates that context-
oriented programming should also be available at the meta-level and a collection of
constructs is required to support meta-programming that takes into account the con-
text. Modifying or extending the semantics of a programming language can already be
achieved with metaobject protocol (Kiczales et al., 1991), but adapting the semantics
to the context of execution experiences the same problems as those for the application
logic. This will be establishes in Chapter 3.

In this dissertation we will combine context-oriented programming and meta-programming.
In order to do so, we will present TinyContext, an experimental environment that al-
lows us to use the constructs for context-oriented programming not only for base-level
programs, but for meta-programs as well.

1.1 Organization of the Text

In Chapter 2, we introduce context-oriented programming. We start with explaining the
motivation behind context-oriented programming by working out a scenario where we
need to define context-behavior and we identify the problems that occur with current
programming languages. Then we show how context-oriented programming solves
these issues and present ContextL, the first language extension that provides explicit
support for context-oriented programming.

In Chapter 3 we start with a general description of meta-programming and we con-
tinue with demonstrating how meta-programming with a metaobjects protocol allows
the programmer to modify and extend the language semantics to his own needs. How-
ever, defining context-dependent behavior at the meta-level poses the same problems
as those encountered at the base-level. This suggests to use context-oriented program-
ming at the meta-level as well.

In Chapter 4 we present our first contribution TinyContext, the experimental environ-
ment that will be used to implement our approach. TinyContext is based on TinyCLOS,
a kernelized version of CLOS, implemented in Scheme, with a simple but powerful
metaobject protocol. TinyContext is an adaptation of TinyCLOS in order to support
context-oriented programming. The language constructs for context-oriented program-
ming are based on a subset of the features found in ContextL. TinyContext is designed
in such a way that it will have the necessary ingredients to implement our approach for
context-oriented meta-programming.
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In Chapter 5 we combine Chapter 2 and Chapter 3 by using context-oriented program-
ming on the metaobject protocol of TinyCLOS. This results in a number of language
constructs for TinyContext that allow the programmer to modularize context-dependent
meta-behavior and to adapt the semantics of the programming language to the context
of execution.

In Chapter 6 we give three examples of how context-oriented programming can be
used. The show that context-oriented meta-programming is useful and effective for
adapting the semantics of the language to the context, as well as for defining new
language constructs for defining context dependencies.

In Chapter 7 we compare our approach with aspect-oriented programming because
both approaches seem to have an overlapping range of applications. This is especially
because aspect-oriented programming and meta-programming are good approaches for
expressing non-functional concerns.

In Chapter 8 we present our conclusions and we identify some areas for future work.



Chapter 2

Context-Oriented Programming

This chapter introduces Context-Oriented Programming based on the work of Costanza
and Hirschfeld (2005).

Context-Oriented Programming is a new programming paradigm that provides tech-
niques for modularizing behavior that might depend on the context in which the pro-
gram is executed.

We start in Section 2.1 with explaining the motivation behind context-oriented pro-
gramming. We work out a scenario where context-dependent behavior has to be de-
fined and we identify the problems for doing so with current programming languages.
We continue in Section 2.2 by explaining how context-oriented programming addresses
these problems. Section 2.3 presents ContextL, the first programming language exten-
sion that provides explicit support for context-oriented programming.

2.1 Motivation

In this section we introduce the motivation behind context-oriented programming. First
we introduce a simple working example (in Section 2.1.1) where we try to add some
context-dependent behavior (in Section 2.1.2). We show how the usage current pro-
gramming languages leads to several problems.

2.1.1 Scenario

One of the key ideas of object-oriented programming is that objects themselves know
how to behave. A typical example to introduce this idea is a person object that responds
to the message display (Figure 2.1). Instead of asking the person object for its name and

4



2.1. Motivation 5

class Person {
String name, address;
void dispay() {
println("Person");
println(name);
println(address);

}
}

Figure 2.1: Simple introductory class

address and then displaying that information, we just tell the person object to display
itself by sending it a message. The person object owns the knowledge of how it should
be displayed. This is called the Tell, Don’t Ask principle.

“Procedural code gets information then makes decisions. Object-oriented
code tells objects to do things.” (Sharp, 1997)

This means that you should tell objects what you want them to do and let the ob-
jects decide, based on their internal state, how they respond; you should not ask for
their internal state, make decisions based on that state and then produce some behavior
yourself. Doing so violates the encapsulation of the object.

Bock (2000) illustrates this nicely with the tale of the paperboy and the wallet. The
paperboy comes by your front door, rings the doorbell and asks for payment for a job
well done. You turn around and let the paperboy pull out your wallet out of your back
pocket. The paperboy takes two bucks from your wallet, puts them in his own wallet
and finally puts your wallet back in your back pocket.

This tale shows how procedural programming breaks the encapsulation of the customer.
In object-oriented programming, the paperboy should simply tell the customer to pay
two dollars instead of taking the wallet. In fact, the paperboy should not even have any
knowledge about the wallet of the customer. Instead, the customer should deal with his
own wallet when the paperboy tells him to pay some money.

We now extend our simple person example with students and professors that respec-
tively follow and teach courses. A class diagram for this example is shown in Figure
2.2. A student has an extra field for the year in which he is in, and a list of the courses
that he is following. A professor has a field for the faculty where he teaches, a field for
his salary, and a list of the courses that he teaches. A course has just a title.

The code for displaying people, students, professors and courses is defined in the
classes themselves. For example, displaying a student might be defined as follows.
First the person information is displayed (the super call), then the student information
(the year and the followed courses) is displayed.
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Student
year

Professor
faculty
salary

*

*

follows
*

1
teaches

Person
name
address

Course
title

Figure 2.2: Class diagram

void display() {

super.display();

println("Student");

println(year);

for (Course course : follows) {

course.display(fullInfo);

}

}

2.1.2 Context-Dependent Behavior

Now consider that we want to display a person differently depending on the context in
which the person has to be displayed. In other words, we want to define different views
on the same objects and choose a particular view based on context information. This
context information can be anything that might have an influence on the behavior of a
program. Typical examples of “context” are geographical information, time of the day,
battery life of for example a laptop, other devices that are nearby, etc.

In our person example, context information might be who is requesting the data. Sup-
pose the class hierarchy for people and courses is part of a bigger application that
provides access to the database of university for a range of possible clients. For ex-
ample, an anonymous visitor might want to have a look at the various courses that are
offered and is allowed to see the names of the professors that teach the courses, but a
visitor may not see any information about the students that follow those courses, nor
see any personal information about the professors. However, somebody who is part of
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the academic community and is logged into the system does have the right to see the
list of students that follow a particular course but personal information should still be
hidden. On the other hand, somebody working in the administration of the university
should have full access and see all the personal information as well.

With the current mainstream programming languages, there are two techniques for
realizing this.

• The context information is passed around to the objects and they use conditionals
(if or switch statements) on the context information in order to decide how
they have to behave.

• The behavior for the different contexts is factored out into separate classes and
one of these classes is chosen based on the available context information.

In the following paragraphs we investigate both options in more detail.

Conditionals If the methods use conditionals, they need information to test on, so
we have to pass some parameter(s) to display that indicate(s) something about the
context. The various method implementations for display in the different classes
can use this information to decide what should be displayed and what not. How code
for this approach looks like is demonstrated in Figure 2.3. The conditional statements
and the variable indicating the context are highlighted.

This approach has several disadvantages and shortcomings.

• First of all, if statements in order to achieve polymorphic behavior is not good
object-oriented programming style. One of the problems with if tests is that the
number of possible cases is fixed to those that are actually used in the conditional
statement. If there is suddenly some alternative case, every test in all the different
classes have to be manually modified in order to support the new case.

• Another consequence of using if tests is that all the code for a particular case is
spread out in different classes. There is no overview of the context-dependent
behavior. In the person example, finding out what changes when fullinfo is true
requires to look at all the methods for displaying. It would be better if the all the
code for a particular context situation is grouped together.

• A different problem lies in how the context information is passed around. In our
example, all clients of display must pass some arguments indicating how the
object should be displayed. This mechanism works well as long choosing the
displaying strategy and invoking display happens at the same place. If that is
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class Person {
  String name, address;

  void display(boolean personalinfo) {
    println("Person");
    println(name);
    if (personalinfo) {
      println(address);
    }
  }
}

class Professor extends Person {
  String faculty;
  double salary;

  void display(boolean personalinfo) {
    super.display(fullinfo);
    println("Professor");
    println(faculty);
    if (personalInfo) {
      println(salary);
    }
  }
}

class Course {
  Professor teacher;
  List<Student> students;

  void display(boolean studentinfo, boolean personalinfo) {
    println("Course");
    println(title);
    teacher.display(personalinfo);
    if (studentinfo) {
      for (Student student : students) {
        student.display(personalinfo);
      }
    }
  }
}

Figure 2.3: Context-dependent behavior with if statements
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Student
year

Professor
faculty
salary

*

*

follows
*

1
teaches

ProfessorView
professor

StudentView
student

PersonView
person

View

1

1

1
Person

name
address

Course
title

CourseView
course

1

Figure 2.4: Spreading out context-dependent behavior to different classes

not the case (e.g. display is invoked indirectly), the variables describing the
context must be passed along to every intermediate object, even if these objects
have no interest in this context information. This problem is already visible
in our example: how a course should be displayed does not directly depend
on whether personal information should be displayed (a course does not have
personal information). Still, the variable personalinfo must be passed to a
course, because displaying a course might display student objects as well.

• A similar problem lies in the fact a class only receives the same context infor-
mation as its superclass. In our person example, the context information that is
passed to the class Student is restricted to the context information passed to
the class Person (in this example: only one variable personalinfo). If the way
that a student is displayed can depend on some other factor, it must be passed to
every person as well, even if only Student uses it.

Separate View Objects Another approach for defining context-dependent behavior
is to factor it out to different classes. For our example, this means that the displaying
code is factored out into view objects. A class diagram of this new design is shown
in Figure 2.4. Now the person classes are no longer aware of any displaying behavior.
This allows us to define multiple views on the same object, one for each context.

This approach immediately solves the first two problems with if statements: new views
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can be defined whenever needed, without modifying any other view, and all the code for
a certain context is grouped together in one class. However, this approach introduces
new disadvantages.

• In this design, the Tell, Don’t Ask principle is no longer respected. Because the
code for displaying is no longer associated with the person objects, each class in
the person hierarchy requires a specialized view class. The person objects must
then make their internal state available to those views. In other words, instead of
telling the person objects to display themselves, the views pull out the necessary
information out of the person objects.

• The conceptual simplicity of the original design is highly complicated by the
added classes.

2.2 Context-Oriented Programming

The goal of context-oriented programming is to allow a programmer to define and
group context-dependent behavior on objects - the views - without actually remov-
ing that knowledge from the object - respecting the Tell, Don’t Ask principle. This is
achieved by factoring out the context-dependent behavior into layers instead of sepa-
rate classes. Different versions of the same operation can coexist in different layers,
but they still are associated with the same class. In our person example there might be
for example a layer that groups together all the methods that display the full info of a
person.

Once the context-dependent behavior is grouped in layers, we can activate the appro-
priate layer based on the context information. This will adapt the running program by
adding the definitions in the layer. Sending the same message to an object can now
produce different behavior.

We can summarize the concepts of context-oriented programming as follows.

Grouping in Layers Context-dependent behavior is grouped in layers. Each layer
represents a particular case and can group definitions for different classes. In our
person example, there will be a layer that groups all definitions for displaying all
the information instead of just some of it.

Dynamic Activation Layer activation should be dynamic. Once a layer is activated,
not only the code in the layer activation itself, but also the code that is called
indirectly, should be adapted. This way of layer activation solves the problem of
having to pass layer information to objects that do not use it.
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Thread Locality Activating a layer in one thread should not interfere with other threads.
Each thread has its own context of execution and activation of a layer in one
thread should not automatically activate it in any other thread.

2.2.1 Layers

Layers provide a new unit of modularization that complements classes and methods.
A layer is basically an identity with no further properties of its own. However, new
definitions can be placed in a layer by explicitly referring to one. Consider our person
example. Suppose that there are three different ways to display the objects. Each way
has its own layer that groups the methods for displaying the objects of the different
classes. Note that these method definitions are still associated with the classes as well.
Whenever we make a decision about how person objects should be displayed, we ac-
tivate the appropriate layer. Whenever a person object is sent the display message,
the one of the activated layer is used.

All normal definitions that do not specify a layer are automatically placed in an im-
plicitly predefined root layer. That way, all definitions belong to exactly one layer and
by consequence, a program is partitioned in layers. When the program starts running,
only the root layer is active. At any certain point in the execution of the program, the
actual program that is running is the combination of all active layers.

2.2.2 Layer Activation

Layers are activated dynamically in the control flow of a program. This means that a
layer is activated before execution of some piece of code and automatically deactivated
when the code has finished. The activation is dynamic because not only the code inside
the layer activation will use the definitions of the activated layer, but also all the code
that is invoked indirectly. Consider the person example. At some point in the program,
we decide to use the layer that will print all information of person objects. We activate
the layer and execute some code in the context of that layer. If the code sends display
messages to person objects, they will be displayed by using the method defined in the
activated layer. If the code in the layer activation does not display person objects,
but just invokes some other behavior that might display person objects, the methods
defined in the activated layer are still used.

Layer activation can be nested. In that case all active layers are combined and all the
definitions of the activated layers become part of the running program. If a layer is
activated when it was already active, it is only deactivated again when control flow
returns from the first time that that layer was activated. If two layers have definitions
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for the same operation, and they are both activated, the order in which the layers were
activated decides which one is used.

Layer activation has similar properties as dynamic scoping (see Appendix A for more
information about dynamic scoping). The context of execution of a program is implic-
itly defined as the combination of all active layers and behaves as a dynamically scoped

variable:

• Changes to the context of execution (layer activation) happen in the control flow
of a running program, similar to defining new bindings for a dynamically scoped
variable.

• The context of execution is restored when the control flow returns from the layer
activation. In the same way, the value of a dynamically scoped variable is re-
stored when the control flow returns from the definition of the new binding.

• Each thread has its own context of execution: activating a layer in one thread
does not activate it in other threads. Dynamically scoped variables are thread-
local as well.

2.3 ContextL

ContextL is the first language extension that provides explicit support for context-
oriented programming. We will present the most important constructs of ContextL
by using the introductory person class as an example. Since ContextL is an extension
of CLOS, we define the person again, but now in CLOS code.

(defclass person ()

((name :initarg :name

:accessor person-name)

(address :initarg :address

:accessor person-address)))

This piece of CLOS code defines the class person with no superclasses and two slots
(CLOS terminology for fields or instance variables) name and address. The slot
name can be initialized with :name and accessed with person-name. The same
goes for the slot address.

2.3.1 Layered Functions

Now we can define some behavior on this new class (CLOS is based on the notion
of generic functions). The goal is to show how we can have different views on our
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person class by defining the behavior in layers. This is achieved by defining a layered

function and then adding some layered methods to it.

(define-layered-function display-object (object))

This code defines a generic function that has support for context-oriented program-
ming. It takes one parameter object. In order to make this function to perform
something useful, we have to define methods on it. First we define the default display-
ing behavior in the root layer. In ContextL, this root layer is denoted with t. The only
parameter object is specialized on the class person.

(define-layered-method display-object

:in-layer t

((object person))

(format t "Person~%")

(format t "Name: ~A~% (person-name object)))

This method will only print the name of the person. Now we define the layer full-info-layer
and place a method in that layer that will print not only the name but also the address.

(deflayer full-info-layer)

(define-layered-method display-objects

:in-layer full-info-layer

:after ((object person))

(format t "Address: ~A~% (person-address object)))

This method adds behavior to the previous defined method for the class person that
is to be executed :after the previous one has been executed. Because this :after
method is defined in full-info-layer, it will only be executed if that layer is
active. This is demonstrated in the following transcript.

> (defvar *stijn*

(make-instance ’person

:name "Stijn Timbermont"

:address "Lokerenbaan 166, Zele"))

> (display-object *stijn*)

Person

Name: Stijn Timbermont

> (with-active-layers (full-info-layer)
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(display-object *stijn*))

Person

Name: Stijn Timbermont

Address: Lokerenbaan 166, Zele

2.3.2 Layered Classes

Not only behavior can be defined in layers. Class definitions as well can be confined to
a specific layer. For example, we might confine address information of a person to the
full-info-layer. First we define the class person without a slot for an address,
as follows.

(define-layered-class person ()

((name :initarg :name

:accessor person-name)))

Note that the class is defined by using define-layered-class in order to support
context-oriented programming (similar to define-layered-function).

Now we define a class for representing an address inside full-info-layer.

(define-layered-class address

:in-layer full-info-layer

((street :initarg :street

:layered-accessor address-street)

;; number, zip code, city, country

... )

Having this class confined to full-info-layer does not have a useful effect yet.
The class can still be instantiated from anywhere. Layered classes become interesting
when we define a class in a layer when it was already defined in another layer. In that
case, the class is not replaced, but the slot definitions of the new class definitions are
added to the original class.

(define-layered-class person ()

:in-layer full-info-layer

((address :initarg :address

:layered-accessor person-address)))

So in this example, person still has its original slot name, but additionally, it gets the
slot address in full-info-layer. Since the accessor function person-address
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and all the accessor functions of the class address are declared as :layered-accessor,
the slots are actually only visible when the full-info-layer is active. When it is
not active, an error is raised when these accessor functions are called. This allows the
programmer to restrict the view of slots to certain layers.

2.4 Summary

In this chapter we introduced Context-Oriented Programming.

We started with explaining the motivation behind context-oriented programming by
working out a scenario where context-dependent behavior had to be defined. As a
concrete example, we used a class hierarchy representing people, students, professors
and courses. The goal was to define different views on these classes in such a way that
we could choose a view based on the context in which we wanted to display the person
objects.

We observed that current programming languages lack the means to do so. Using if
statements violates one of the fundamental principles of object-oriented programming,
namely to avoid conditionals for expressing polymorphic behavior. Separating out the
views into different classes breaks the encapsulation of the objects person objects: their
internal state has to be exposed to the views.

Context-Oriented Programming addresses these problems by providing a new unit of
modularization that can group context-dependent behavior without separating it from
the different classes.

Then we presented ContextL, the first programming language extension that provides
explicit support for context-oriented programming.



Chapter 3

Engineering the Meta-Level

In this chapter we explain meta-programming and demonstrate some meta-programming
systems. We start in Section 3.1 with a general definition of meta-programming.
We continue in Section 3.2 by showing how a metaobject protocol can offer meta-
programming facilities in a language. Because especially the CLOS metaobject pro-
tocol is important for the rest of the text, we explain it in more detail in Section 3.3.
In Section 3.4 we examine how a metaobject protocol can be used to express context-
dependent behavior at the meta-level.

3.1 Meta-Programming

In this section we explain meta-programming and introduce the terminology. The fol-
lowing paragraphs are based on (Maes, 1987b) and (Maes, 1987a) and are adapted from
(Gybels, 2001).

A program describes a computational system that reasons about some kind of problem
domain. For example, the domain of a banking application consists of accounts, clients,
transactions, etc. They are called the entities of the domain and they are represented
by structures in the computational system. The program prescribes how they can be
manipulated.

A special kind of computational systems are those whose problem domain consists
of computational systems themselves. Such systems are called meta-systems. The
program of a meta-system is a meta-program. The entities of the domain are then
representations of computational systems. If only the program is manipulated, meta-

programming boils down to writing programs that manipulate programs as data. The
programming language that is used for meta-programming is called the meta-language.

16
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The programming language that the meta-program reasons about is called the base-

language. A program written in that language is a base program.

Meta-programming is much used for implementing tools for programming languages
and software development. A compiler or an interpreter are common examples of meta-
programs. Some programming languages such as C and Lisp provide support for code
generation with macros. Another example is code generation from UML models.

A reflective system is a computational system that reasons about itself: part of the do-
main of the system is the system itself. It includes structures representing (aspects of)
itself, making up its self-representation. Examples of the use of reflection are: keep-
ing performance statistics, debugging, tracing, self-optimization, self-modification, etc.
Reflection does not participate directly in solving problems in the actual domain of the
system. Instead, it provides means to organize the internals of the system.

3.2 Metaobject Protocols

Metaobject Protocols are interfaces to the language that give users the ability to incre-
mentally modify and extend the language (Kiczales et al., 1991). Most languages have
well-defined and fixed semantics and users are expected to treat them as immutable.
The idea of a metaobject protocol is to “open a language up”, allowing the users to
modify or extend the design and implementation to their needs. In addition, these
modifications and extension the the language can be expressed within the language
itself.

Languages that support meta-programming by means of a metaobject protocol, reify
metaobjects such as classes and methods and define protocols that offer the program-
mer hooks to the interpreter or compiler in order to change the semantics of the metaob-
jects. For a programmer that only uses the language, a class definition is a declaration of
the properties of a certain type of objects. and a method declaration defines the behav-
ior on the objects of his class. For the meta-programmer, both the class definition and
the method definition are creations of metaobjects as instances of two different meta-
classes. The operations defined on the metaclasses tell how the metaobjects are created
and how they behave at run-time. For example, how instances of (normal) classes
should be created are defined in their respective metaclasses. Because the metaclasses
are also just classes, they support subclassing, just as the base-level classes. By sub-
classing a metaclass and overriding the methods that are defined on them, the default
semantics can be modified or extended.

Metaobject protocols come in three categories. The difference lies in the moment when
the metaobjects are reified and made available for meta-programming (compile-time,
load-time or run-time).



3.2. Metaobject Protocols 18

• Compile-time metaobject protocols or open compilers: they reify the metaob-
jects only during the compilation phase. The meta-programmer can modify and
extend the compilation of the metaobjects (Lamping et al., 1992; Chiba, 1995;
Tatsubori et al., 1999; Rodriguez, 1991). Once compiled, no meta-level infor-
mation is available.

• Load-time metaobject protocols: the metaobject are reified right before being
loaded into the execution environment (Chiba, 2000). This is for example useful
to apply security policies to code that comes from an untrusted source (for exam-
ple over the internet) or to adapt applications that were not meant to be deployed
in the host environment.

• Run-time metaobject protocols: the metaobjects are also reified at run-time. This
kind of metaobject protocols also provide powerful reflection support. (Cointe,
1987a; Kiczales et al., 1991; Paepcke, 1993)

The distinction between a compile-time and a load-time metaobject protocol is however
less relevant in our situation because they both operate on source code. In the case of
load-time metaobject protocols, bytecode or other intermediate representations can also
be regarded as source code, especially when they contain symbolic information such
as names of classes and methods.

In the next sections we will look at three different meta-programming systems. The
first one, ObjVLisp (Cointe, 1987a), was among the first object systems where classes
and methods are available as metaobjects and where the classes of the metaobjects
are no different that base-level classes. The next one, OpenC++ (Chiba, 1995), is a
compile-time metaobject protocol for C++. The last one, the CLOS metaobject pro-
tocol (Kiczales et al., 1991), has a similar class hierarchy to ObjVLisp but provides
the programmer much more control over the semantics of the language. Because the
CLOS metaobject protocol is more important for the rest of the text than the other two,
it is discussed in a separate section (Section 3.3).

3.2.1 ObjVLisp

Cointe (1987b) presents an object model (based on Smalltalk) in which classes and
instances are unified. There is only one kind of object in the entire model. The only
thing that distinguishes a class from an object, is that a class is capable of creating new
objects (it responds to the new selector). A metaclass is simply a class that instantiates
other classes.

The ObjVLisp model is fully described by six postulates:



3.2. Metaobject Protocols 19

Figure 3.1: Architecture of the ObjVLisp model

1. Everything in the language is an object. An object represents a piece of knowl-
edge (data) and a set of potentialities (procedures)
object = < data, procedures >

2. The only control structure is message passing
(send object message args1 ... argsN)

3. Every object belongs to a class that specifies its data (instance variables) and its
behavior (methods). Objects will be dynamically created from this model and
they are called instances of the class. All instances of a class have the same
structure and shape, but they differ through the values of their instance variables.

4. A class is also an object, generated from a class, called a metaclass. Because
of postulate three, each class has an associated metaclass which describes its
behavior as an object. The initial primitive metaclass is the class Class, built
as its own instance.

5. A class can be defined as a subclass of one or many other classes. This subclass-
ing mechanism allows sharing of instance variables and methods and is called
inheritance. The class Object represents the most common behavior shared by
all objects.

6. Class variables of instances of the same class are instance variables of that class.
class variable [object] = instance variable [object’s class]

Figure 3.1 shows the basic architecture of the ObjVLisp model. There are actually only
two classes: Object and Class. The class Object is the root of the inheritance
tree. Everything in the model is an instance of Object or one of its subclasses. The
metaclass Class is the root of the instantiation tree. There are two things special
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about Class: it is a subclass of Object, what makes it a “normal” class as well -
classes and metaclasses are only different in what kind of instances they produce - and
it is an instance of itself. It must correctly describe its own structure. Class declares
five instance variables and also has five values for those instance variables:

• class = Class (the class of the instance; inherited from Object)

• name = ’Class’ (the name of the class)

• supers = (Object) (the list of superclasses)

• i_v = (name, supers, i_v, methods) (the list of instance variables)

• methods = (new ...) (the methods)

This model allows a programmer to define its own metaclasses and instantiate classes
with it that have a different semantics than the instances of Class. Metaclasses may
control:

• the algorithm used for method lookup

• the internal representation of objects by using different primitives for allocating
objects in the new operation

• the access to methods; for example caching method lookup

• access to instance variable values by distinguish between private and public vari-
ables

3.2.2 Open C++

Chiba (1995) presents a metaobject protocol for C++, called Open C++. The goal
of OpenC++ is to allow programmers to implement customized language extensions
such as persistent or distributed objects, or customized compiler optimizations such as
inlining of matrix arithmetic. These can be implemented as libraries and then used re-
peatedly. The advantage of providing control over the compilation of programs rather
than over the run-time environment in which they execute is that there is no run-time
speed or space overhead compared to ordinary C++. The design is based on the CLOS
metaobject protocol (Kiczales et al., 1991) and on some previous compile-time metaob-
ject protocol approaches (Rodriguez, 1991; Lamping et al., 1992; Chiba and Masuda,
1993).

As a motivating example, Chiba uses a simple linked list that should be made persistent.
The persistency should be implemented as a library The persistency should happen
transparently tough. A simple annotation to the class should be sufficient.
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persistent class Node {

public:

Node* next;

double value;

}

Node* get_next_of_next(Node* p) {

Node* q = p->next;

return q->next;

}

This little example defines a class Node with a value and a pointer to a next node. The
simple function get_next_of_next takes a node as an argument and returns the
node that is two places further in the linked list.

The keyword persistent in front of the class definition makes Node use the meta-
class PersistentClass. This metaclass modifies the compilation of references
to instance variables in order to verify whether the object is already loaded from the
medium on which it is stored (and if not, load it). This is achieved as follows.

Expression

PersistentClass::CompileReadDataMember(

Environment env,

String member_name,

String variable_name) {

return MakeParseTree(

"(Load(%s), %e)",

member_name,

Class::CompileReadDataMember(

...));

}

It should be noted that the code in CompileReadDataMember generates code (un-
der the form of a parse tree). Once all the code has been passed trough the OpenC++
compiler, only base-level C++ code remains.

3.3 CLOS Metaobject Protocol

Kiczales et al. (1991) define a metaobject protocol for CLOS. First they start with
explaining how a CLOS implementation is built up. To do so, they implement a subset
of CLOS (called Closette) in CLOS itself.
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Basically, a CLOS program consists of defclass, defgeneric and defmethod
forms. Behind the scenes, the execution of these forms creates internal representations
of the classes, generic functions and methods. This information is used later on during
method lookup, instantiation and initialization of objects, and so on. The execution
of the defining forms and the processing of metaobjects is divided in three layers (the
term “layer” does not refer to the layers in context-oriented programming).

• The macro-expansion layer provides the syntactic sugar that the user gets to see
(for example the defmacro)

• The glue layer maps names to the metaobjects

• The functional layer provides all the run-time support for the language and deals
directly with first-class metaobjects. This is where the behavior of classes, generic
functions and methods is implemented. The metaobject protocol concentrates on
this layer.

For example, the following definition

(defclass color-rectangle (color-mixin rectangle) (...))

macro-expands to

(ensure-class ’color-rectangle

:direct-superclasses (list (find-class ’color-mixin)

(find-class ’rectangle))

:direct-slots (list ...))

The functions ensure-class and find-class are from the glue layer. The im-
plementation of these functions may create metaobjects or invoke operations of the
lowest implementation layer.

The following example is the definition of the metaclass standard-class using
ordinary CLOS code.

(defclass standard-class ()

((name :initarg :name

:accessor class-name)

(direct-superclasses :initarg :direct-superclasses

:accessor class-direct-superclasses)

(direct-slots :accessor class-direct-slots)

(class-precedence-list :accessor class-precendence-list)

...))
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All user-defined classes (such as color-rectangle defined above) that do not
specify otherwise, will be instances of this metaclass. Those instances will contain
a name, a list of direct superclasses, a list of slots, a list of all superclasses (direct or
indirect), etc.

The first step in exposing everything behind the scenes to the user is letting him inspect
its own classes, generic functions and methods. This allows to implement for example
a class browser and other tools in standard CLOS. Using this part of the metaobject
protocol is called introspection. A program can look into its own structure, class hier-
archy, methods, etc.

The next step is however the one that allows the user to modify and extend the language,
called intercession. By using the standard object-oriented techniques of subclassing
and specialization, the user can define its own metaclasses and create (and afterward
use) a specialized language with a specialized implementation.

The following meta-program allows to define classes that monitor their slot access1.

(defclass monitored-class (standard-class) ())

(defmethod slot-value-using-class :before

((class monitored-class) instance slot-name)

(note-operation instance slot-name ’slot-value))

This meta-program defines a new metaclass by subclassing standard-class and
adds a before method to the generic function of the metaobject protocol that is respon-
sible for getting the value of a slot. Base-level classes that have monitored-class
as their metaclass will use this semantics for their slot-access.

Functional and Procedural Protocols

In order to guarantee that every slot operation of monitored-class in the previous
example is notified, it is essential that it is specified in the slot access protocol that
slot-value-using-class is called each and every time that a slot is accessed.

This requirement contrasts with another desirable property of meta-level operations:
memoizability. For example, compute-class-precedence-list should not

be invoked every time that the class precedence list is needed. Instead, it should only
be invoked the first time when the information is needed. Each subsequent time, the
same value can be reused.

1Only part of the meta-program is given. In order to modify slot access properly, three other slot opera-
tions have to be adapted, among others one for slot assignment.
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According to Kiczales et al. (1991), the first paragraph describes a procedural protocol
and the second paragraph a functional protocol.

In a functional protocol, such as compute-class-precedence-list, a func-
tion is called to compute a result, which is then used by other parts of the system in
order to produce the intended behavior. In other words, calling a functional protocol
can affect the behavior of a system, but is does not produce that behavior directly.

Because of this, certain restrictions can be placed on the result that a functional proto-
col should produce. The specification will typically place limitations or requirements
on the result of a functional protocol in order to ensure memoizability. For exam-
ple, the class precedence list of a class should not change after it is computed with
compute-class-precedence-list. This assures that when the precedence list
is needed, the previously computed list can be used again instead of recomputing it.
Moreover, because the result has to remain constant, other parts of the system can take
advantage of that knowledge. For example, the positions of all the slots (both direct
and inherited slots) can be precomputed when the class-precedence list is known.

Procedural protocols, such as slot-value-using-class, are called to perform
some action and to directly produce some part of the total system behavior. The spec-
ification of a procedural protocol will typically place fewer restrictions on the activity
of the function, but put more restrictions on when it is to be invoked.

Because the effect of a procedural protocol is direct, such protocols tend to put more
power in the hands of the programmer. Their results can however not be memoized.

3.4 Context-Dependent Meta-Behavior

Now we examine how context-dependent behavior at the meta-level can be defined by
using a metaobject protocol.

As discussed in the previous section, metaobjects form the base program and the meta-
classes define the semantics of the metaobjects. In order to choose the semantics based
on the context, there are two concepts that are important:

Association of a metaobject with its metaclass. For example, a generic function that
represents some base-level operation has its associated metaclass that defines
how the generic function invocation works.

Composition of metaclasses. Since metaclasses are built with the same language con-
structs as the base level classes, they can use the same composition techniques.
For example, combining two metaclasses in CLOS can be done by creating a
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new metaclass that inherits from both metaclasses. Metaobjects associated with
the new metaclass will then use the composition of the two superclasses.

So in order to modify the semantics of the metaobjects based on the context, there are
two options:

• Allow metaobjects to change their associated metaclass at run-time and possibly
make new compositions of metaclasses at run-time.

• Express the context dependencies in the implementation of the metaclasses and
leave the association and composition fixed.

Based on the requirements for context-oriented programming discussed in Section 2.2,
the first option can be eliminated immediately because the modifications would not be
thread-local. Changing the metaclass of a metaobject is a global operation that would
influence other threads as well. The second option however, will suffer from the same
problems as those described in Section 2.1.2. For example, the behavior of a language
extension could be wrapped in if statements that check whether some additional code
should be applied or not. This indicates that context-oriented programming should be
applied at the meta-level.

3.5 Summary

We started this chapter with a general definition of meta-programming. We continued
with demonstrating how a metaobject protocol offers meta-programming facilities to a
language in such a way that the programmer can modify and extend the language by
defining new metaclasses. Because the CLOS metaobject protocol is more important
for the rest of the text, this was explained in more detail.

Finally we considered how a metaobject protocol can be used to define context-dependent
meta-behavior. The first option to modify the association and composition of metaob-
jects at run-time was eliminated because this would fail to meet the requirement of
thread-locality. This means that context-oriented programming, presented in Chapter
2, should be used on the metaobject protocol itself. This is explored in Chapter 5. In
order to do so, we have created an experimental environment, presented in Chapter 4.



Chapter 4

TinyContext

In this chapter we present TinyContext, an experimental environment that will be used
in Chapter 5 to apply context-oriented programming at the meta-level.

TinyContext is based on TinyCLOS (Kiczales, 1992), a simple object-oriented pro-
gramming language implemented in Scheme. More information about TinyCLOS can
be found in Appendix B. In Section 4.1 we go over the basic features of TinyCLOS in
order to make the reader familiar with TinyCLOS code.

In Section 4.2 we present TinyContext, our extension of TinyCLOS with explicit sup-
port for context-oriented programming. The features of TinyContext are a subset of
those found in ContextL, presented in Section 2.3.

4.1 TinyCLOS

In this section we demonstrate TinyCLOS, the basis for TinyContext. The first subsec-
tion shows how classes can be created and used. The second subsection introduces the
concept of generic functions to define behavior on classes.

TinyCLOS is a simple object-oriented language implemented in Scheme. According
to the author (Kiczales, 1992), it is a “kernelized” version of the Common Lisp Object
System (CLOS). There are a lot of features in CLOS that are not present in Tiny-
CLOS, but the meta-programming facilities of TinyCLOS allow the programmer to
define them himself. TinyCLOS and its metaobject protocol are similar to Closette, the
language defined in (Kiczales et al., 1991) to introduce metaobject protocols.

The reason for choosing TinyCLOS over CLOS or Closette is twofold. The goal of
TinyContext is to allow to use context-oriented programming at the meta-level, that is,

26
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inside the metaobject protocol. This means that (parts of) the metaobject protocol will
have to be redefined. Using the CLOS metaobject protocol for this would introduce a
much higher degree of complexity. Much of these complexities would be of a practical
nature and would not be relevant for our work. The second reason is that working in
Common Lisp is more complex than working in Scheme. This is one of the reasons
that TinyCLOS was created in the first place.

4.1.1 Classes

Consider the following class definition in TinyCLOS.

(define <person>

(make-class (list <object>) ; Direct superclasses

’(name address))) ; Direct slots

In this example, the class <person> is defined. In TinyCLOS, the name of a class is
by convention wrapped in angle brackets: < ... >. It has one superclass (like CLOS,
TinyCLOS supports multiple inheritance), the predefined class <object>, and two
instance variables, called slots: a name and an address. The following example defines
the class <student>, a subclass of <person>.

(define <student>

(make-class (list <person>) ; Direct superclasses

’(school))) ; Direct slots

A student is a person with an extra slot for his school. The class <student> has one
direct superclass and one direct slot, but during the initialization of the class, the list of
all indirect superclasses is calculated as well. The final list of slots for <student>
will then be the combination of all the direct slots of all the superclasses.

As demonstrated in the next example, creating an instance of a class is done through
make. Its first argument is the class of which it has to create an instance. The rest of
the arguments are initialization values for the slots.

(define stijn

(make <student>

’name "Stijn Timbermont"

’address "Lokerenbaan 166, 9240 Zele"

’school "Vrije Universiteit Brussel"))
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4.1.2 Generic Functions

In TinyCLOS, classes only define state and no behavior. Methods are not associated
with classes but with generic functions. The following example demonstrates how a
generic function can be created.

(define display-person (make-generic))

Generic functions are created with make-generic, without any arguments. They
can be invoked just like ordinary Scheme functions and methods can be added to them.
When just created, invoking a generic function will produce an error message because
there are no methods to choose from.

So if we want the previously created generic function to do something useful, we have
to add methods to it. This is demonstrated in the following example.

(add-method display-person

(make-method (list <person>)

(lambda (call-next-method object)

(display "Name: ")

(display (slot-ref object ’name))

(newline))))

This examples does two things at once: create a method and then add it to the generic
function display-person. Creating a method requires two parameters: a list of
specializers and a procedure with the actual method body. When a generic function
is invoked, it will choose a method by matching the types of the arguments with the
specializers in order to find the most specific method and apply its body to the argu-
ments. In other words, the methods whose specializers match best with a list of actual
parameters will be executed when a generic function is invoked.

In the example above, the body of the method has a special parameter called call-next-method.
Invoking this procedure can be compared to a super send in an object-oriented program-
ming language that uses message passing. When a generic function is invoked, not only
the best matching, but all the applicable methods are computed. The one that matches
best is invoked first, but if that method invokes call-next-method, the second
best is invoked. If there are no more methods left, invoking call-next-method

will raise an error.

The following transcript demonstrates how the class and the generic function that we
defined above can be used.
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> (define stijn

(make <student>

’name "Stijn Timbermont"

’address "Lokerenbaan 166, 9240 Zele"

’school "Vrije Universiteit Brussel"))

> (display-person stijn)

Name: Stijn Timbermont

4.2 TinyContext

In this section we introduce TinyContext, our extension of TinyCLOS with support for
context-oriented programming. The constructs described in this section are based on
ContextL, presented in Section 2.3.

First we recapitulate the concepts of context-oriented programming that were intro-
duced in Section 2.2.

Grouping in Layers Context-dependent behavior is grouped in layers. Each layer
represents a particular case and can group definitions for different classes.

Dynamic Activation Based on context information, the programmer can activate a
layer and execute some code in the context of that layer. Both code that is called
directly and code that is called indirectly should use the definitions of the acti-
vated layer.

Thread Locality Activating a layer in one thread should not interfere with other threads.
Each thread has its own context of execution and activation of a layer in one
thread should not automatically activate it in any other threads.

4.2.1 Layers

Layers are the primary concept of context-oriented programming. A layer is basically
an identity with no further properties of its own. However, new definitions can be
placed in a layer by explicitly referring to one.

Layers can be created with make-layer, just like this.

(define full-info-layer (make-layer))

Layers can be activated in the control flow of a running program, as follows.
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(with-layer full-info-layer

... contained code ...)

This way of layer activation has the effect that the layer is only active during execution
of the contained code, including all the code that the contained code calls directly or
indirectly. During this execution, all definitions of the activated layer become part of
the running program. For example, a method defined in full-info-layer will
now be taken into account for method dispatch. When control flow returns from the
layer activation, the layer is automatically deactivated again.

Layer activation can be nested. In that case all active layers are combined and all the
definitions of the activated layers become part of the running program. The definitions
of the last layer that was activated have precedence over the definitions of previously
activated layers. For example, if two methods with the same signature, but defined in
different layers become part of the running program, method dispatch will give prece-
dence to the one defined in the layer that was activated last. In short we say that the last
activated layer has precedence over all other active layers. When an already activated
layer is activated again, it just gains precedence. The layer is only deactivated when
control flow returns from the first time that that layer was activated.

4.2.2 Layered Functions and Methods

In the previous sections we have define the classes <person> and <student>, the
generic function display-function, one method for display-function and
the layer full-info-layer. Now it is time to define some methods in that layer.
This can be achieved by defining a layered method. The only difference with a normal
method is that it names a layer where the definitions has to be placed in. In fact, normal
methods are layered methods placed in the root layer. Therefore, the term layered

method will only be used for methods defined in another layer than the root layer.

In TinyContext, layered methods can be added to any generic function (the generic
function does not have to be defined with some special construct). Therefore, we use
the term layered function to stress the fact that there are layered methods added to
the generic function, or they will be added later on, even tough there is no technical
difference between a layered function and a generic function.

The following example defines a layered method in full-info-layer and adds it
to display-person. The purpose of this method is to also print the school of a
student, but only when full-info-layer is active.

(add-method display-person
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(make-layered-method

full-info-layer

(list <student>)

(lambda (call-next-method object)

(call-next-method)

(display "School: ")

(display (slot-ref object ’school)))))

As long as full-info-layer is not active, this method definition will not be taken
into account for method dispatch and displaying a student will just display his name.
When full-info-layer is activated, this method becomes part of the running
program and displaying a student will then use this method and display not only his
name but also his school. This is demonstrated in the following transcript.

> (display-person stijn)

Name: Stijn Timbermont

> (with-layer full-info-layer

(display-person stijn))

Name: Stijn Timbermont

School: Vrije Universiteit Brussel

In the example above, the new method has a different list of specializers from the
method that was already present. When full-info-layer is active, normal method
dispatch can be used to choose between the methods. However, it is possible to add
methods in different layers with the same specializers list. In that case, method dispatch
will use the layer precedence rule to choose which method to invoke.

Consider the following example.

(add-method display-person

(make-layered-method

full-info-layer

(list <person>)

(lambda (call-next-method person)

(call-next-method)

(display "Address: ")

(display (slot-ref person ’address))

(newline))))

In this example, a layered method is defined in full-info-layer and the argument
person is specialized on <person>. There is already such a method defined in the
root layer, so layer precedence will be used in method dispatch.
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The new layered method will display not only the name of a person, but also his ad-
dress. The following transcript shows the total effect of the method in the root layer
and the two method in full-info-layer.

> (with-layer full-info-layer

(display-person stijn))

Person

Name: Stijn Timbermont

Address: Lokerenbaan 166, 9240 Zele

School: Vrije Universiteit Brussel

4.2.3 TinyContext versus ContextL

The main difference between TinyContext and ContextL is that ContextL is a language
extension while TinyContext is a modification of the default language. ContextL uses
the metaobject protocol of CLOS to define new metaclasses and override the operations
defined on them. For example, a layered function in ContextL is an instance of a new
metaclass (a subclass of the standard generic function metaclass) that changed method
lookup in order to take into account which layers are active and which are not. In
TinyCLOS, the notion of layered functions is “pushed into the language”. Now the
metaobject protocol is not used, but modified. The reason for this is that this allows
to use context-oriented programming in the metaobject protocol itself. This technique
will be used in the next chapter.

Another difference is that ContextL has more features than TinyContext. TinyContext
only supports context-dependent behavior (layered functions) and no context-dependent
state (layered classes).

4.3 Summary

In this chapter we presented TinyContext, the experimental environment that will be
used in the rest of this dissertation. The goal of TinyContext is to allow us to apply
context-oriented programming at the meta-level. TinyContext allows us to do so be-
cause the language constructs for context-oriented programming are already available
into the default language (unlike ContextL, that is an extension of CLOS).

TinyContext is based on TinyCLOS, a “kernelized” version of CLOS. TinyCLOS has a
lot less features, but the metaobject protocol of TinyCLOS is powerful enough to allow
the programmer to add them when necessary. More information about TinyCLOS can
be found in Appendix B.
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TinyContext will be used in the next chapter to apply context-oriented programming
on the metaobject protocol. This is possible because in TinyContext, every generic
function is a layered function as well. This is not the case in ContextL, where only
generic functions that are defined with a special construct can be layered.



Chapter 5

Context-Oriented
Meta-Programming

In this chapter we combine context-oriented programming presented in Chapter 2 and
meta-programming presented in Chapter 3 by applying context-oriented programming
on the metaobject protocol. TinyContext, the experimental environment presented in
Chapter 4 is used for this. TinyContext is based on TinyCLOS, so the metaobject
protocol of TinyCLOS is used.

The meta-programming facilities of the TinyCLOS metaobject protocol allow the pro-
grammer to change and extend the semantics of the base language by defining new
metaclasses and overriding the operations on them. For instance, the metaclasses de-
fine how generic functions are applied and how the slots of an object are accessed.
However, the operations defined for the metaclasses are all used during the creation

of the metaobjects and not when the metaobjects are used during the execution of the
actual base-level program. Consider slot access and generic function invocation.

• The getters and setters for the slots of an object are created when the class is
defined. Accessing or assigning a slot of an object will then use the procedures
that were created during the definition of that class.

• Each generic function has its own apply function, responsible for method dis-
patch. It is (re)computed every time a method is added to the generic function.
The metaobject protocol performs a partial evaluation by examining the available
methods. Invocation of a generic function are forwarded to its apply function.

In other words, the protocols for slot access and generic function invocation are all
functional protocols.

34
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TinyContext already provides constructs for defining context-dependent behavior at
the base-level. More concretely, layered methods can be added to existing layered
functions. If the context-dependent behavior is to be added to an ordinary function,
it has to be converted into a layered function first. This adds the extra indirection of
method dispatch.

In order to make the meta-level operations such as slot access and generic function
invocation context-dependent, they have to be converted to layered functions as well.
In order to limit the overhead of this extra indirection, only the operations that need to
be layered should be converted.

Section 5.1 shows how to define context-dependent meta-level behavior by defining
new metaclasses that use the constructs for context-oriented programming. This will
allow us to use layer activation to change slot access and generic function invocation
depending on the context of the running program.

In Section 5.2 we will use context-oriented programming on the generic functions of
the metaobject protocol itself. This allows to change the initialization of metaobjects
by changing the context in which they are defined. In combination with redefinition of
metaobjects, this allows to modify the metaobjects at run-time.

The context-dependent meta-behavior must still be anticipated by the programmer: he
has to use the right metaclasses when defining the base-level classes and methods.
Section 5.3 will show how using context-oriented programming for the operations of
the metaobject protocol itself can add the necessary hooks to the meta-objects during
the execution of the base program.

5.1 Context-Dependent Meta-Behavior

In this section we will provide constructs that allow the use of context-oriented pro-
gramming for slot access and generic function invocation. This will be accomplished
by normal meta-programming techniques with a metaobject protocol: we define new
metaclasses and override some operations defined on them.

The goal is to turn some of the procedures created by the metaobject protocol during
the definition of the classes and generic functions into layered functions. This will not
have an immediate effect on the base program, but it allows us to add layered methods
to those meta-level operations.

5.1.1 Layered Apply Function

Every generic function has its own apply function. It is an ordinary procedure that
takes all the arguments and uses their types to choose the method it has to invoke. It
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is (re)computed by the metaobject protocol every time that a method is added to the
generic function. The following meta-program defines a new metaclass and overrides
the generic function of the metaobject protocol that is responsible for creating the apply
function. The actual behavior is not changed, but is wrapped in a generic function.

(define <layered-apply-generic>

(make <entity-class>

’direct-supers (list <generic>)))

(add-method compute-apply-generic

(make-method (list <layered-apply-generic>)

(lambda (cnm generic)

;; convert the result of (cnm)

;; to a layered function

...)))

The new metaclass is called <layered-apply-generic>. Generic functions that
are created with this metaclass will have an apply function that is not a normal pro-
cedure but a layered function. The generic function of the metaobject protocol that is
responsible for creating the apply function is called compute-apply-generic. It
is overridden for the new metaclass in order to turn the actual apply function into a
layered function.

We can define a generic function with this new metaclass as follows.

(define double

(make <layered-apply-generic>))

(add-method double

(make-method (list <number>)

(lambda (cnm n)

(* n 2))))

At first sight, this generic function will behave exactly the same way as standard generic
functions. It can be invoked as a standard generic function and it has the same result.

> (double 3)

6

The difference with a standard generic function is that the meta-level operation for ap-
plying the generic function is now a layered function instead of an ordinary procedure.
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Suppose a function (log generic name) that takes two arguments: a generic
function that has to be logged and the name of the function that has to be used for log-
ging invocations. The function log will add a layered method for the logging layer
to the apply function of the generic function.

(log double ’double)

Invoking log on double has the effect that when the logging layer is not active,
double will behave as normal, but when the logging layer is active, all invocations of
double will be printed to the screen. This is demonstrated in the following transcript.

> (double 3)

6

> (with-layer logging

(double 3))

(double 3)

(double 3) => 6

6

This means that we can actually change the semantics of invoking double during the
execution of a program, by activating a layer. Logging invocations is not a very exciting
example, but it makes it easy to demonstrate the effect. Chapter 6 gives a more useful
application of these constructs.

5.1.2 Layered Slot Access

Changing slot access is in many ways similar to changing generic function invocation.
It also involves defining a new metaclass, but this time one for creating classes instead
of generic functions. When defining a class, the metaobject protocol creates getters
and setters for each slot of the new class. By overriding the generic function of the
metaobject protocol that is responsible for this, the semantics of accessing a slot can
be changed. Automatic persistency is a common application of this feature.

In order to make slot access context-dependent, the procedures have to be converted to
layered functions. This is accomplished with the following meta-program, similar to
the one for layered apply functions.

(define <layered-getters-n-setters-class>

(make-class (list <class>)

(list)))
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(add-method compute-getter-and-setter

(make-method (list <layered-getters-n-setters-class>)

(lambda (call-next-method class slot allocator)

;; convert the actual getter and setter

;; to layered functions

...)))

Classes defined with metaclass <layered-getters-n-setters-class> will
have getters and setters that are wrapped in layered functions. This has no immediate
effect, as demonstrated in the following example.

(define <point>

(make <layered-getters-n-setters-class>

’direct-supers (list <object>)

’direct-slots (list ’x ’y)))

(define p (make <point>))

> (slot-set! p ’x 3)

> (slot-ref p ’x)

3

This example defines a class <point> with one superclass <object> and two slots
x and y. Accessing and assigning a slot can be done with respectively slot-ref and
slot-set!. The operations simply invoke the right getter or setter defined in the
class of the objects.

In the previous section we described a function that adds logging support to a generic
function. In the same way, we can define a function that lets slot access be printed on
the screen if the logging layer is active. The function (log-getter-n-setter class slot)

does exactly that: it adds layered methods to the getter and setter for accessing slot
in instances of class. The following transcript demonstrates this for the slot x of the
class <point>.

> (log-getter-n-setter <point> ’x)

> (with-layer logging

(slot-ref p ’x))

getting slot ’x’ => 3

3

> (with-layer logging
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(slot-set! p ’x 4))

setting slot ’x’ to ’4’

> (slot-ref p ’x)

4

This transcript clearly shows that we can change the semantics of slot access by activat-
ing a layer. When logging is activated, every slot access of x is printed on the screen.
When logging is not active, the old slot access is used. This example demonstrates
logging, but other (more useful) changes in semantics are possible.

5.2 Layered Metaobject Protocol

If a programmer defines some classes and generic functions, without mentioning meta-
classes, the metaobject protocol is still implicitly used. Consider the following exam-
ple.

(define <point>

(make-class (list <object>)

(list ’x ’y)))

In this class definition, no metaclass is mentioned. The class <point> is intended to
use the default semantics. The definition above is equivalent to the following definition.

(define <point>

(make <class>

’direct-supers (list <object>)

’direct-slots (list ’x ’y)))

Now the metaclass is explicitly mentioned. The metaclass <class> is defined by
TinyCLOS, but is conceptually at the same level as user-defined metaclasses. In the
same way, make-generic uses the predefined <generic> and make-method

uses <method>. All the operations of the metaobject protocol that can be overridden
for user-defined metaclasses have a default implementation for these metaclasses.

In TinyCLOS, the only way to override the operations of the metaobject protocol is
by defining a new metaclass and define new methods for the generic functions of the
metaobject protocol. In TinyContext however, the generic functions of the metaobject
protocol are also layered functions. By adding layered methods to these generic func-
tions, it is possible to change the default semantics of the language, depending on the
context.
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5.2.1 Generic Function Invocation

Consider the example of implicitly forcing the arguments of an invocation. A promise
is a delayed computation. Forcing a promise will execute the actual computation.
Defining a metaclass for generic functions that automatically force their arguments
can be done in TinyCLOS as follows.

(define <forcing-generic>

(make <entity-class>

’direct-supers (list <generic>)))

(add-method compute-apply-generic

(make-method (list <forcing-generic>)

(lambda (cnm generic)

(let ((original (cnm)))

(lambda args

(apply original

(map (lambda (arg)

(if (promise? arg)

(force arg)

arg))

args)))))))

This example defines a metaclass <forcing-generic>. Instances of this metaclass
are generic functions that have a different semantics from standard generic functions.
Before method dispatch, the generic function will loop over its arguments, check for
promises among them and force them.

The following transcript shows the use of this metaclass.

(define double (make <forcing-generic>))

(add-method double

(make-method (list <number>)

(lambda (cnm n)

(* n 2))))

> (double (delay (+ 1 2)))

6

In this example, the computation of (+ 1 2) is delayed. The argument passed to
double is not 3 but a promise of a calculation that has not been executed yet. How-
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ever, because the apply function of double forces all of its arguments, double exe-
cutes as expected.

In TinyContext, implicit forcing can also be defined in a layered method that is added
to compute-apply-generic, as follows.

(define implicit-forcing (make-layer))

(add-method compute-apply-generic

(make-layered-method implicit-forcing

(list <generic>)

(lambda (cnm generic)

;; Same body

...)))

In this example, the same extension in semantics is defined. The difference is that now
it is not for a different metaclass, but for a different layer. If the implicit-forcing
layer is active, the default semantics of generic function invocation will include the
forcing of arguments.

The apply function of a generic function is computed each time a method is added. This
means that by adding a method when implicit-forcing is active, an apply func-
tion that forces the arguments will be created. This is demonstrated in the following
transcript.

(define double (make-generic))

(with-layer implicit-forcing

(add-method double

(make-method (list <number>)

(lambda (cnm n)

(* n 2)))))

> (double (delay (+ 1 2)))

6

Note that now the generic function double has the standard metaclass <generic>.
Adding a method will invoke compute-apply-generic and because the implicit-forcing
layer is active, our new definition will be used.

It is still inconvenient that we have to add a method in order to change the default se-
mantics. It would make much more sense to just recompute the apply function of a
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generic function. The reason that there is no such function defined in the TinyCLOS
metaobject protocol, is because such a function is useless if the result only depends
on the generic function and its internal state (the list of methods). However, by ap-
plying context-oriented programming on the metaobject protocol itself, the semantics
of the language can depend on the context in which the meta-objects are defined. This
makes it useful to add a function that simply recomputes the apply function of a generic
function because the computation can be context-dependent.

Based on this, we can use the full power of a layered metaobject protocol. Consider
the following function definition.

(define (implicitly-force generic)

(with-layer implicit-forcing

(recompute-apply-generic generic)))

This function will just activate the implicit-forcing and recompute the apply
function of a generic function. This function can be used on any generic function with
the effect that the old value is wrapped in an apply function that forces the arguments.

5.2.2 Slot Access

The same technique can be applied on slot access Changing the semantics for slot
access is achieved by overriding compute-getter-and-setter, a generic func-
tion defined in the metaobject protocol, that is called for each slot of a class when the
class is defined. Adding a layered method to compute-getter-and-setterwill
change the default semantics for slot access for classes that are defined when the layer
is active.

It also makes sense to provide a function that recomputes the getters and setters of a
class, similar to the function for recomputing the apply function of a generic function.
This allows us to change the slot access of any class, even after it is defined.

5.3 Unanticipated Context-Dependencies

Section 5.1 showed how metaclasses that use the constructs for context-oriented pro-
gramming can be used to define context-dependent behavior at the meta-level. Section
5.2 showed how applying context-oriented programming to the metaobject protocol
itself gives the possibility to change the semantics of meta-objects after they were cre-
ated, by recomputing the operations they define in different layers. Now we can com-
bine these two features to be able to express context-dependent meta-behavior that was
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not anticipated in the base-level program. This will result in the constructs that will
actually be used by the meta-programmer to define context-dependent meta-behavior.

5.3.1 Generic Function Invocation

Consider the log function of section 5.1.1: it has the requirement that the generic func-
tion that has to be logged must be an instance of <layered-apply-generic>.
However, as we have seen in section 5.3.1, the meta-level semantics can be changed for
any generic function by redefining the generic functions of the metaobject protocol in a
layer. Combining those two features, we can define a function (ensure-layered-apply generic)

that ensures that generic has a layered apply function. Then it is straightforward
to define the utility function specialize-apply-function also adds a layered
method to the layered apply function.

The following code shows the pattern that can be used to express unanticipated context-
dependent meta-behavior.

(define x (make-layer))

(define (y generic ...)

(specialize-apply-function generic

x

(lambda (cnm . args)

...)))

In this pattern, y is a function that will ensure that generic has a layered apply func-
tion and then add a layered method for the layer x to it. specialize-apply-function
takes three arguments: the actual generic function, the layer in which the meta-behavior
is to be defined and a procedure with the actual meta-behavior, used to create the lay-
ered method.

Now we can show the real implementation of the log function described in the previ-
ous section.

(define logging (make-layer))

(define (log generic name)

(specialize-apply-function generic

logging

(lambda (cnm . args)

(log-invocation name
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cnm

args))))

Invoking log on any generic function ensures that it has a layered apply function and
adds a layered method for logging invocations to it. The function log-invocation
will print the logging information to the screen before and after the invoking the second
parameter (which will perform the actual computation).

5.3.2 Slot Access

Similar constructs are provided to define unanticipated context-dependencies in the
access and assignment of slots. The pattern for defining semantics for getters is as
follows.

(define x (make-layer))

(define (y class slot-name ...)

(specialize-getter class

slot-name

x

(lambda (cnm object)

...)))

The pattern for defining semantics for setters is as follows.

(define x (make-layer))

(define (y class slot-name ...)

(specialize-setter class

slot-name

x

(lambda (cnm object new-value)

...)))

5.4 Summary

In this chapter we combined context-oriented programming presented in Chapter 2 and
meta-programming presented in Chapter 3 by applying context-oriented programming
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on the metaobject protocol. TinyContext, the experimental environment presented in
Chapter 4 was used for this.

We started in Section 5.1 with adding the run-time hooks that we need to adapt slot
access and generic function invocation to the context. This was done by converting the
responsible protocols from functional into procedural protocols. Instead of ordinary
procedures, they become layered functions. By adding layered methods to these lay-
ered functions, generic function invocation and slot access can effectively be modified
at run-time by activating a layer.

The next step was to use context-oriented programming directly on the generic func-
tions of the metaobject protocol. This allows to define meta-programs in layers instead
of in new metaclasses. The metaobject protocol is invoked when metaobjects are cre-
ated and initialized, so this means that their semantics can now depend on the context
in which they are defined. In combination with run-time redefinition of metaobjects,
this means that the behavior of specific metaobjects can be altered at run-time, without
actually changing their metaclass.

Section 5.3 combined Sections 5.1 and 5.2 in order to create general purpose language
constructs to define context-dependent meta-behavior.



Chapter 6

Examples

In this chapter we demonstrate the constructs presented in the previous chapter in more
detail. First we start with combining logging invocations and caching result values.
This simple example allows us to clearly see what happens, especially when combining
two layers and activating them in different order.

The next example demonstrates a change in the semantics of function application such
that algorithms that deal with lists can be adapted to deal with infinite lists as well.

The third example shows how a language construct to intercept patterns in the history of
execution of a program can benefit from context-oriented programming. By returning
a layer that contains layered methods on meta-level operations, the language construct
can directly be used to define context-dependent behavior as well.

6.1 Logging and caching

To illustrate the previous chapter we will demonstrate how the constructs can be used.
In the following paragraphs we elaborate on the logging example of the previous chap-
ter. Next to that, we will provide means to build a cache of the results of previous in-
vocations. Then we will apply and combine these two extensions to the fibonacci
function, implemented with tree-recursion, as follows.

(define (fib n)

(if (< n 2)

n

(+ (fib (- n 1))

(fib (- n 2)))))

46
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Since the constructs cannot be used for ordinary Scheme functions, we have to replace
them with an equivalent generic function. That can be achieved with ensure-generic-function:
generic functions are returned immediately, but ordinary procedures are used to create
a generic function with a default method that calls the original procedure.

(set! fib (ensure-generic-function fib))

If it is not desired to replace the original functions, it is of course possible to define a
new one.

(define new-fib (ensure-generic-function fib))

Note that this step can be compared to the redefdynfun construct (Costanza, 2003)
described in section A.2.3. Replacing an ordinary function by a generic function does
not change the behavior immediately, but it adds the hooks that are needed for context-
oriented meta-programming. For instance, now it is possible to use the log function
described in the previous chapter on fib. This is demonstrated in the following tran-
script.

> (log fib ’fib)

> (fib 4)

3

> (with-layer logging

(fib 4))

(fib 4)

| (fib 3)

| | (fib 2)

| | | (fib 1)

| | | (fib 1) => 1

| | | (fib 0)

| | | (fib 0) => 0

| | (fib 2) => 1

| | (fib 1)

| | (fib 1) => 1

| (fib 3) => 2

| (fib 2)

| | (fib 1)

| | (fib 1) => 1

| | (fib 0)

| | (fib 0) => 0
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| (fib 2) => 1

(fib 4) => 3

3

Invoking log on fib adds support for logging to fib. For the first invocation of
fib, the logging layer is not active, so the invocations are not logged. In the second
invocation, the logging layer is active. Now the logging will take place. Because
the Fibonacci function is implemented with tree-recursion, not only one invocation is
logged, but all of them. The functions responsible for the actual logging keep track
of the nesting depth of the recursion in order to represent the recursion clearly on the
screen.

The next step is to define a function that will save the arguments and the result of a
invocation into a cache, in order to look it up for later invocations. Note that the pattern
described in Section 5.3.1 is used again.

(define caching (make-layer))

(define (cache generic)

(specialize-apply-function

generic

caching

(lambda (cnm . args)

(lookup generic args

(lambda ()

(let ((result (cnm)))

(save generic args result)

result))))))

The function lookup takes three arguments: the generic function, the arguments and
a procedure that is called of there is no entry in the cache for the generic function and
the arguments. This means that the actual computation only takes place if the result is
not yet in the cache, and because it is then immediately added to the cache, subsequent
invocations with the same arguments will not be recomputed.

Adding caching support to fib goes as follows.

(cache fib)

Note that the caching only takes place when the caching layer is activated. Together
with logging, we can now clearly see what happens and also examine the effect of
nested layer activation and layer precedence.
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There are two combinations possible:

• First logging is activated, then caching is activated:

(with-layer logging

(with-layer caching

(fib 4)))

This means that caching has precedence, and only when the method for the caching
layer invokes call-next-method, the logging will take place. This results in the
following output:

(fib 4)

| (fib 3)

| | (fib 2)

| | | (fib 1)

| | | (fib 1) => 1

| | | (fib 0)

| | | (fib 0) => 0

| | (fib 2) => 1

| (fib 3) => 2

(fib 4) => 3

3

It is clear that every time fib is invoked and the result is found in the cache, the
invocation is not logged.

• First caching is activated, then logging is activated:

(with-layer caching

(with-layer logging

(fib 4)))

Now logging has precedence, so first the invocation will be logged and after that the
result is lookup up in the cache (and calculated if not found). This means that in the
output there are more invocations visible1:

1The cache was cleared before each example. Otherwise, this invocation would have returned immedi-
ately because the result was already in the cache.
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(fib 4)

| (fib 3)

| | (fib 2)

| | | (fib 1)

| | | (fib 1) => 1

| | | (fib 0)

| | | (fib 0) => 0

| | (fib 2) => 1

| | (fib 1)

| | (fib 1) => 1

| (fib 3) => 2

| (fib 2)

| (fib 2) => 1

(fib 4) => 3

3

These examples showed that the order in which the layers are activated has an effect on
the behavior, especially in this case, because caching does not always invoke the next
method.

6.2 Delay / Force

Functional languages often provide a construct for delaying a computation, resulting
in a promise that can be forced in order to obtain the actual value. Because a promise
is often forced several times, its result is only computed once. Subsequent forcing of
the promise simply returns the previously computed result. Consider the following
transcript in Scheme

> (define p (delay (begin (display "computing p")

(+ 1 2))))

> p

#<struct:promise>

> (force p)

computing p

3

> p

#<struct:promise>

> (force p)

3
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p contains a promise that, when forced, will print a message and return the sum of one
and two. After being forced, p still contains a promise, but when forced again, the
message is no longer printed: the previously computed result is returned.

In this example we will provide constructs for implicitly delaying computations and
forcing arguments, depending on the context of execution.

Implicit delaying When a function is implicitly delayed, invoking it will return a
promise instead of immediately computing the result. Note that the evaluation
of the arguments is not delayed.

Implicit forcing An implicitly forcing function looks for promises in its arguments
and forces them.

Implicit delaying is defined with specialize-apply-function as follows.

(define implicit-delaying (make-layer))

(define (implicitly-delay generic)

(specialize-apply-function generic

implicit-delaying

(lambda (cnm . args)

(delay (cnm)))))

The function implicitly-delay will add support for delaying to the generic func-
tion that is passed to it. When the generic function is then called, a promise will be re-
turned only if the implicit-delaying is active. Otherwise, the result is computed
as normal. This is demonstrated in the following transcript.

> (define double

(ensure-generic-function

(lambda (n)

(* n 2))))

> (implicitly-delay double)

> (double 5)

10

> (with-layer implicit-delaying

(force (double 5)))

10

This examples defines a function that takes a number and returns the double. ensure-generic-function
transforms it into a generic function and adds support for implicit delaying. On the
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first invocation, implicit-delaying is deactivated and (double 5) immedi-
ately returns 10. On the second invocation, the implicit-delaying is activated
so (double 5) returns a promise that has to be forced.

Along the same lines, implicit forcing of the arguments can be defined.

(define implicit-forcing (make-layer))

(define (implicitly-force generic)

(specialize-apply-function

generic

implicit-forcing

(lambda (cnm . args)

(apply cnm (map (lambda (arg)

(if (promise? arg)

(force arg)

arg))

args)))))

When implicitly forcing, invoking a generic function iterates over all the arguments,
checks for promises and forces them. The forced values are then used to invoke the
actual generic function.

Now that we have both implicit delaying and forcing, we can combine the two. Delayed
evaluation can be used to provide support for infinite data structures. By using context-
oriented meta-programming, it is possible to let an algorithm delay its computations
when dealing with infinite data structures and compute them immediately when dealing
with finite data structures.

The basic data structure in Scheme is a linked list, implemented with pairs. The two
operations to retrieve the first and the second element of a pair are respectively called
car and cdr. In terms of lists, car gives the first element and cdr gives a lists
without its first element. Finally there is a special value denoting an empty list, called
null and a predicate null? to check whether a certain value is an empty list.

The idea to support infinite lists is that an infinite list is in fact the promise of a list. The
cdr of such a list is then again a promise. This way, the actual list is only computed
as far as needed. Of course, somewhere during the application, the promises have to
be forced. The primitives can only operate on real lists, not on promises. In order
to support infinite lists, we have to redefine the primitives such that they force their
argument.

(define mycar (ensure-generic-function car))
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(define mycdr (ensure-generic-function cdr))

(define mynull? (ensure-generic-function null?))

(implicitly-force mycar)

(implicitly-force mycdr)

(implicitly-force mynull?)

Now we have our own versions of the primitives that will force their argument if the
implicit-forcing layer is active. If not, these functions behave in the exact same
way as the original primitives. Replacing the original primitives with these new ones is
not possible because of bootstrapping issues (the implementation of TinyContext itself
uses lists as well).

Now it is time to actually construct such an infinite list. The following function creates
one with increasing numbers, starting from an initial number n.

(define integers-from

(ensure-generic-function

(lambda (n)

(cons n (integers-from (+ n 1))))))

Note that there is no conditional statement to halt the recursion at some point. Under
normal circumstances, invoking integers-from would result in an infinite loop.
However, by delaying the computation of the list, integers-from will simply re-
turn a promise of a list.

(implicitly-delay integers-from)

The following transcript shows an example of an infinite list, created with integers-from.
mylist-ref is a function that will return an element of a list at a certain position (the
first element has position zero). mylist-ref is equivalent to the Scheme function
list-ref, but is uses the new definitions for the primitive list operations. This is to
make sure that the infinite list is forced when necessary.

> (with-layer implicit-delaying

(with-layer implicit-forcing

(let ((lst (integers-from 1)))

(mylist-ref lst 3))))

4
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Note that both layers are activated: implicit-delaying to make sure that the
computation infinite list is delayed and implicit-forcing to ensure that the prim-
itives force the computation of the infinite list (only as far as necessary).

A common operation on lists is map. map creates a new list by iterating over a given
list and applying a given function to each element. Those results then form the new
list. Here as well, we have to redefine this operation in order to use the new primitives.

(define mymap

(ensure-generic-function

(lambda (fun lst)

(if (mynull? lst)

null

(cons (fun (mycar lst))

(mymap fun (mycdr lst)))))))

This way of implementing map would normally not be able to deal with infinite lists. It
would never reach the end condition and never stop iterating over the list. The solution
lies again in making the computation of map delayed. Note, however, that this is
independent of the definition of map itself.

(implicitly-delay mymap)

Now we can define for example a function that increments each element of a list. The
function for incrementing a number will also print some text on the screen. This allows
us to follow what happens.

(define (increment-all lst)

(mymap (lambda (x)

(display "inrementing ")

(display x)

(newline)

(+ x 1))

lst))

This function works as expected on finite lists. As long as the layers for delaying and
forcing are not activated, no computation is delayed and nothing has to be forced.

> (increment-all (list 1 2 3 4 5))

inrementing 1
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inrementing 2

inrementing 3

inrementing 4

inrementing 5

(2 3 4 5 6)

If we want to work with infinite lists, we have to active the layers for delaying and
forcing.

> (with-layer implicit-delaying

(with-layer implicit-forcing

(let ((lst (increment-all (integers-from 1))))

(mylist-ref lst 3))))

inrementing 1

inrementing 2

inrementing 3

inrementing 4

5

In this transcript, incremente-all is applied on an infinite list, but because the
computation is delayed, this does not create an infinite loop. It is only when the number
on position 3 is asked that the four first elements of the list are computed.

This example shows clearly that we can change the semantics of the language. Opera-
tions that were not defined with infinite lists in mind could nevertheless deal with them
by changing the way they are applied on their arguments.

There is another way to support infinite lists: instead of delaying those functions that
produce an infinite list, the computation of the arguments passed to the primitive oper-
ations that construct the list could be delayed. This is called call-by-need (as opposed
to call-by-value). When using call-by-value, the arguments passed to a function are
first evaluated and only then the function is applied to the resulting values. In the case
of call-by-need, the arguments are computed at the moment when they are actually
needed. In the case of lists, this would mean that the cons operation would use call-
by-need, and thus not evaluating the two arguments. When the elements of the pair are
asked (with car or cdr) the actual values are computed. Implementing call-by-need
is not possible in TinyContext because generic function invocation relies on the func-
tion application of Scheme (the base language for TinyContext), and Scheme provides
no call-by-need semantics.
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6.3 Tracematches

Tracematches is an extension to AspectJ that allows the programmer to trigger the
execution of extra code by specifying a regular pattern of events in a computation trace
(Allan et al., 2005). The matching patterns can contain free variables so events can be
matched not only by the kind of event, but also by the value associated with the free
variables.

The following example shows a tracematch that ensures the safe use of iterators. It is
usually the case that after modifying a datasource, an iterator on that datasource that
was created before the modification should no longer be used because the iterator’s
internal state might be corrupted. By looking at the history of the usage of both the
datasource and the iterator, the tracematch can detect situations where an iterator is
used when its underlying datasource has been modified, and throw an exception.

tracematch ( I t e r a t o r i , D a t a s o u r c e ds ) {
sym c r e a t e _ i t e r a f t e r r e t u r n i n g ( i ) :

c a l l ( I t e r a t o r D a t a s o u r c e . i t e r a t o r ( ) )
&& t a r g e t ( ds ) ;

sym c a l l _ n e x t b e f or e :
c a l l ( O b j e c t I t e r a t o r . n e x t ( ) )

&& t a r g e t ( i )
sym u p d a t e _ s o u r c e a f t e r :

c a l l (∗ D a t a s o u r c e . u p d a t e ( . . ) )
&& t a r g e t ( ds ) ;

c r e a t e _ i t e r c a l l _ n e x t ∗
u p d a t e _ s o u r c e + c a l l _ n e x t

{
throw new C o n c u r r e n t M o d i f i c a t i o n E x c e p t i o n ( ) ;

}
}

The tracematch contains 4 parts:

• A set of free variables. In this example, the free variables are i for the iterator
and ds for the datasource.

• A set of symbols. They declare the events of interest. Because Tracematches is
based on AspectJ, the symbols are defined with AspectJ pointcuts.

• A regular expression describing the pattern that has to be matched with the his-
tory of the execution.
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Figure 6.1: Transition from state x to state y for symbol a.

• The code that has to be executed when there is a match. When the code is
executed, the free variables will be bound, so the code can use them.

In this example, there are three symbols of interest here: the creation of an iterator on
a particular data source (create_iter), asking the next element from the iterator
(call_next) and update operations on the datasource (update_source). When
there is a creation, followed by some iteration steps, one or more update(s) and then
another iteration step, an exception is thrown.

Not only the symbols play a role in the matching: the values of the free variables are
also taken into account. For example, consider a datasource A and an iterator B that
operates on A. If during the process of using B, some other datasource C is updated,
this should not throw an exception. In other words, all occurrences of the same variable
in the symbols must equal a single value in order to match the pattern. The semantics
of a tracematch are then defined by all the sets of consistent bindings for which the
pattern has a match in the execution trace of the program. If trying to match an event
causes symbols to bind variables to a different value, they are ignored. This means that
tracematches can not only capture traces in the control flow of the program, but can
also capture the behavior of specific objects or groups of objects.

Allan et al. (2005) also provide a reference implementation, expression in AspectJ.
Since the pattern is expressed with a regular expression, it can be converted to a finite
state automaton. Each node has a constraint, expressed in propositional logic. The
constrains of each node responds to the following rule: the execution trace can reach
a certain node if and only if the constraints evaluates to true. The bindings themselves
are also included in the constraint. For example, a constraint of a certain state might be
as follows: (and (= x 1) (not (= y 2))). This means that the execution
trace can reach that node for bindings were x is equal to 1 and y is not equal to 2..

Now we can look at how the constraints should be updated. Each event that matches
a symbol causes the nodes of the finite state automaton to update their constraints ac-
cording to the values of the free variables. Suppose two nodes x and y and a transition
from x to y for symbol a (figure 6.3). If an event matches a, the constraints of the
nodes x and y are update according to the following semantics.
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• “If x was reachable before the event, y is now reachable if the free variables
match the values of the event.” The new constraint of y becomes conjunction of
the old constraint of x and an expression that evaluates to true if all the variables
used in the symbol a are equal to the run-time values used in the event.

• “If x was reachable before the event, x is still reachable as long as the free
variables do not match the values of the event.” The new constraint of x becomes
the old constraint of x and an expression that evaluates to true if some of the
variables used in the symbol a are unequal to the run-time values used in the
event.

The only remaining question is when the code of the tracematch is actually executed.
The finite state automaton has one or more final states, each having a constraint asso-
ciated with them. Each time that they change (because of an event), they are evaluated.
For each set of bindings that can be found in such a way that the constraints evaluates
to true, the code is executed.

6.3.1 Trace matching with TinyContext

Now we will implement something similar in TinyContext. The goal of doing so is
not to have an implementation of Tracematches in TinyContext, but to show that by
using the constructs for Context-Oriented Meta-Programming to implement something
like trace matching, the resulting language construct can be used to define context-
dependent behavior.

Our implementation in TinyContext does not fully support all the functionality of
Tracematches but enough to express the same example as the one given in the pre-
vious section. The only difference is that the pattern is not a regular expression but just
a sequence of symbols.

(define conc-mod

(let ((create (make <tmAfterSymbol>

’generic create-iterator

’args (list ’datasource)

’result ’iterator))

(next (make <tmBeforeSymbol>

’generic iterator-next

’args (list ’iterator)))

(modify (make <tmAfterSymbol>

’generic modify-source

’args (list ’datasource))))



6.3. Tracematches 59

(make-tracematch (list ’datasource ’iterator) ; free variables

(list create next modify) ; symbols

(list create next modify next) ; pattern

(lambda (datasource iterator) ; code

(error "Concurrent modification exception on"

datasource)))))

First the symbols are defined. The create symbol should intercept invocations of
the generic function create-iterator after the iterator is created. The argument
passed to create-iterator - the datasource on which an iterator has to be cre-
ated - must be bound to the free variable datasource and the resulting iterator
to the free variable iterator. The next symbol should intercept invocations of
iterator-next before execution and bind the passed argument to datasource.
Finally, the third symbol modify should intercept invocations of modify-source
and bind the passed argument to datasource.

With the symbols defined, the actual tracematch can be expressed. As in the original
Tracematches, a tracematch consists of four parts: a number of free variables (in this
case datasource and iterator), a number of symbols (the objects defined ear-
lier), the pattern that has to be matched and the code that has to be executed in case
of a match. In this implementation, the pattern can only be a sequence of symbols, so
in the example given, the pattern is “the creation of an iterator, followed one iteration
step, then a modification of the datasource and finally another iteration step”. If such a
pattern is about to take place in the execution of a program, an error should be raised
before the final iteration step. This is expressed in the code. The values of the free
variables are also passed the code.

Now we are ready to see how context-oriented meta-programming complements a lan-
guage feature like tracematches. Defining a tracematch implicitly defines a new layer,
that is returned by make-tracematch. In the example above, conc-mod con-
tains the layer defined by the tracematch. If it is activated, the relevant events will be
matched, if it is not activated, the tracematch is ignored.

Consider the following sample application.

(define (application)

(let* ((source (list 1 2 3))

(other-source (list 4 5 6))

(it (create-iterator source))

(other-it (create-iterator other-source)))

(iterator-next it)

(modify-source source)
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(iterator-next other-it)

(iterator-next it)))

The application creates two datasources (two lists) and creates iterators on both of
them. There is one iteration step on the first iterator and the first datasource is modified.
Then there is an iteration step on the second iterator. This should have no influence on
the first iterator and datasource, so this should certainly not raise an error. Finally,
there is one iteration step on the first iterator. This is the moment where the tracematch
should raise an error, because the underlying datasource has been modified.

The functions create-iterator, iterator-next, etc. have been implemented
in such a way that they print some output on the screen so that we can see what happens.
Consider the following transcript.

> (application)

Creating iterator on (1 2 3)

Creating iterator on (4 5 6)

Getting next element of (1 2 3)

Modifying (1 2 3)

Getting next element of (4 5 6)

Getting next element of (1 2 3)

Currently, the tracematch is not taken into account, so the application runs as normal.
But when we activate the layer conc-mod, the last iteration results in an error.

> (with-layer conc-mod

(application))

Creating iterator on (1 2 3)

Creating iterator on (4 5 6)

Getting next element of (1 2 3)

Modifying (1 2 3)

Getting next element of (4 5 6)

Error: Concurrent modification exception on (1 2 3)

6.4 Summary

This chapter gave three examples of context-oriented meta-programming. The first
one was to demonstrate how it to use the constructs from the previous chapter. It pro-
vides also a good opportunity to show the effect of layer precedence when combining
two layers that have definitions for the same operations. The second one showed how
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algorithms that operate on finite lists could be used to operate on infinite lists when
necessary by changing the semantics of function application. The third one showed
that by using context-oriented meta-programming to implement a language feature for
matching patterns in the trace of a program, the tracematch could be activated with a
layer.



Chapter 7

Comparison with
Aspect-Oriented Programming

In this chapter we compare context-oriented meta-programming with aspect-oriented
programming because the two approaches have an overlapping range of applications.

We start by explaining aspect-oriented programming and the key concepts.

7.1 Aspect-Oriented Programming

Aspect-Oriented Programming (Masuhara and Kiczales, 2003) is a recent program-
ming paradigm that provides language constructs for better modularization of cross-
cutting concerns. Two concerns crosscut each other if they cannot be modularized with
standard language constructs such as classes, methods, modules and so on. Well-known
examples of crosscutting concerns are synchronization, transaction management, ex-
ception handling, etc. Because they cannot be modularized, they are spread out over
in the entire source code of the software system. The phenomenon of concerns be-
ing contained in several modules is called scattering. These modules then deal with
several concerns instead of just one. This is called tangled code. The goal of aspect-
oriented programming is to remove the tangled code of crosscutting concerns from the
base program and to modularize the crosscutting concerns in an aspect, a new unit of
modularity.

Aspects are then woven into the base program by an aspect weaver. An aspect consists
of two parts: the implementation of the crosscutting concern itself, and a description
of where the concern actually crosscuts the other concerns of the system. The aspect
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weaver is then responsible to add the functionality of the crosscutting concern to the
other modules of the system.

The three main concepts of aspect-oriented programming are

Joinpoint Joinpoints are reified events in the execution of a program. The aspect
weaver has a set of different types of joinpoints such as sending a message or
creating an instance of a class. It is at these joinpoints that an aspect can add or
modify the functionality.

Pointcut A pointcut is a description of the set of joinpoints where the functionality
should be added or modified. A pointcut is written in a pointcut language. Since
the domain of the pointcut is the joinpoint model, the pointcut language can be
regarded as a meta-language.

Advice The advice contains the actual implementation of the extra behavior. It also
specifies how it should be applied on a joinpoint: before, after or around the
base-program’s behavior. Before- and after-advices only add functionality to the
base program, around-advices can change the functionality of the base program

7.2 AOP and Context-Oriented Programming

Context-Oriented Programming, presented in Chapter 2, is a new programming paradigm
that provides techniques for modularizing behavior that might depend on the context
in which it is being executed. The motivating example was to have different views on
a group of objects without using conditional statements everywhere in the code and
without separating the code for displaying the objects into different classes.

As explained in section 2.2, the three main concepts of context-oriented programming
are grouping of context-dependent behavior in layers, dynamic activation and thread-
locality.

It is clear that these concepts are different from the ones that form the basis for AOP. In-
deed, AOP and context-oriented programming serve fundamentally different purposes
and apply different modularization approaches.

Aspect-oriented programming focuses on the separation of crosscutting concerns from
the rest of the system, while context-oriented programming is intended for the modu-
larization of context-dependent behavior. The most important difference is that layers
do not modularize a crosscutting concern. In the motivating example, there is already
code for displaying objects in the base program, and different layers define different
implementations for the same operations. In other words, they all deal with the same
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concern, but provide different implementations for them. This is contrary to aspects,
that capture one specific crosscutting concern.

Another important difference is that a layer does not use a pointcut or joinpoints to
define the adaptations to the behavior of the base program. It just uses layered classes
and methods, the same sort of definitions of the base-program, with the only difference
of mentioning a layer in which the definitions are active.

There are however technical similarities between aspect-oriented programming and
context-oriented programming. Some aspect-oriented approaches provide a cflow

construct in their pointcut language. This allows restrict the pointcut to those joinpoints
that are under the control flow of another joinpoint. This is similar to dynamic layer
activation, where the definitions of the layer only become part of the running program
in the control flow of the layer activation. The difference is that the cflow construct
is used in the pointcut (making it actually a meta-level construct) while layer activation
is used in the base-program (layer activation is base-level construct). This also means
that the base program is not oblivious of the fact that the behavior of the program is
modified at a certain point in the control flow of the program.

7.3 AOP and Context-Oriented Meta-Programming

For context-oriented meta-programming, the two approaches seem to be even more re-
lated. The reason for this is that meta-programming and aspect-oriented programming
can both be used to modularize non-functional concerns. Non-functional concerns do
not deal with application logic itself, but with how the application logic should be
executed. Typical examples include logging, synchronization and persistency. Meta-
programming with a metaobject protocol is a good approach for implementing these
concerns. The example of synchronization is already demonstrated in Section 3.2.2.
However, non-functional concerns are often crosscutting as well. This makes aspect-
oriented programming also a good approach to express these concerns.

Despite this overlapping applications, the two approaches are still fundamentally dif-
ferent. This is visible in the example described in Section 6.2. This example is not some
non-functional concern, but a different semantics for function application, something
that belongs entirely at the meta-level.

7.4 Summary

In this chapter we gave a short comparison with aspect-oriented programming. We
noticed that even tough there are a number of technical similarities and they have a



7.4. Summary 65

common range of applications, the approaches are fundamentally different. Aspect-
oriented programming focuses on the separation of crosscutting concerns from the base
program while both context-oriented programming an context-oriented meta-programming
focus on the modularization of context-dependent behavior.



Chapter 8

Conclusions and Future Work

In this dissertation we presented how context-oriented programming at the meta-level
can be used to express language semantics that depend on the context in which a pro-
gram is executed and illustrated the usefulness of this approach based on our own
implementation, called TinyContext.

We started out in Chapter 2 by explaining Context-Oriented Programming. We demon-
strated the motivation behind context-oriented programming by working out an exam-
ple where context information played a role in the desired behavior of the program.
We observed and identified the problems that arise when using current mainstream
programming languages for achieving a good modularization of the context-dependent
behavior. We noticed that the two techniques that can be used, namely checking the
context information with conditional statements and separating the context-dependent
behavior into different classes, are not sufficient. We showed how context-oriented
programming addresses these problems by providing a new unit of modularization that
can group context-dependent behavior and activate it in a dynamic and thread-local
manner.

In Chapter 3 we presented meta-programming and the notion of a metaobject protocol
in particular. A metaobject protocol is a principled way of offering meta-programming
facilities in a language in such a way that it allows the programmer to incrementally
modify or extend the language to his own needs. We noticed that defining context-
dependent meta-behavior would require the use of context-oriented programming at the
meta-level because making run-time modifications to the association and composition
of metaobjects would not respect the thread-locality, and because defining the context-
dependent meta-behavior in the metaclasses would introduce the same problems as
those encountered in Chapter 2.

In Chapter 4 we presented TinyContext, our experimental environment that allows us
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to use the constructs for context-oriented programming not only for base-level objects,
but for metaobjects as well. The constructs for context-oriented programming in Tiny-
Context are based on those found in ContextL. The difference is that in TinyContext,
the support is not an extension of the language, but a modification. This means that
support for context-oriented programming is pushed into the language and by conse-
quence, it can be applied on the metaobject protocol of TinyContext as well.

In Chapter 5 we presented Context-Oriented Meta-Programming. It applies context-
oriented programming at the operations of the meta-level. The focus was on the op-
erations related to slot access and generic function invocation. The semantics for slot
access and generic function invocation are determined when the class or the generic
function is defined but having true context adaptations requires run-time support as
well. Therefore, context-oriented programming is applied in two different ways. First
there is the context of definition. How a class or a generic function is defined does
not only depend on the metaclass that is chosen, but also on the context in which the
class or generic function is defined. This allows us to add the run-time hooks that are
needed. Secondly, once available, the hooks can be used to add context-dependent
meta-behavior and to activate it with layer activation.

In Chapter 6 we gave three examples of context-oriented meta-programming. They
show that context-oriented meta-programming is indeed useful for defining context-
dependent changes to the semantics of function application, and also to define language
constructs that automatically incorporate support for context adaptations.

In Chapter 7 we gave a short comparison with aspect-oriented programming. We
noticed that even tough there are a number of technical similarities and they have a
common range of applications, the approaches are fundamentally different. Aspect-
oriented programming focuses on the separation of crosscutting concerns from the base
program while both context-oriented programming an context-oriented meta-programming
focus on the modularization of context-dependent behavior.

In general, we can conclude that context-oriented meta-programming is indeed a suc-
cessfull approach for expressing context adaptation at the meta-level. To support this,
we created TinyContext, an experimental implementation where context-oriented prorgam-
ming and meta-programming are combined. To show that context-oriented meta-programming
is useful to define context-dependencies at the meta-level, we developed three different
examples. However, this work was only a first attempt to realize explicit modulariza-
tion of context-dependent meta-level behavior. Even context-oriented programming is
a quite recent research topic that still needs a lot of research, for creating the technol-
ogy, as well as for gaining more insight in the problem domain of context dependencies.
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8.1 Future work

Based on our investigations, we identified a number of potential areas for future work.

First of all, there is still lots of room for improvements to TinyContext. In the imple-
mentation of TinyContext, little attention was paid on effeciency issues. Furthermore,
in its current implementation, TinyContext does not include all the features that are
available in ContextL. Layered methods and generic functions are supported, but not
layered classes. Our experiments with context-oriented meta-programming do not re-
quire layered classes. It is a question for future research whether layered classes are
useful as well to define context-dependent meta-level adaptations.

Another possible extension of TinyContext is the addition of support for layer spe-
cific state. The tracematches example in Chapter 6 defined a language construct that,
when used, creates a layer. In the implementation of the tracematches, maintaining
the internal state of the tracematch uses the lexical scoping of Scheme. It could be
more appropriate to associate this state with the layer itself. In general, layer specific
state could allow the different definitions in a layer to communicate with each other,
even if they belong to different classes. Layer specific state might also be useful as
communication channels between multiple concurrent activations of the same layers.

Another important topic for future research is to aim explore the applicability of context-
oriented meta-programming in various areas that require context adaptations. In fact,
this is also the case for context-oriented programming. Possible candidates include
personalization and ambient intelligence.

Finally, there is a particular analogy between the motivating example of context-oriented
programming and reflective architectures based on mirrors (Bracha and Ungar, 2004).
In the motivating example, the code for displaying was separated from the objects to
be displayed in order to support different views. In a similar fashion, mirrors separate
the meta-level reflective capabilities from the base-level objects. This allows to have
different kinds of mirrors on the same objects. However, Bracha and Ungar recognize
that, depending on the problem to be solved, this separation may become problematic
instead of helpful. Context-oriented programming allows the views to remain associ-
ated with the objects, but also allows to define different views in different layers and to
active them depending on the context of use. This suggests that context-oriented meta-
programming can be used to support different ways of reflecting on objects without
separating this functionality into mirrors.



Appendix A

Lexical vs. Dynamic Scoping

In this appendix we explain and compare lexical and dynamic scoping, because layer
activation in context-oriented programming uses this concept.

Costanza (2003) says the following about lexical and dynamic scoping:

“A definition is said to be dynamically scoped if at any point in time during
the execution of a program, its binding is looked up in the current call stack
as opposed to the lexically apparent binding as seen in the source code of
that program. The latter case is referred to as lexical scoping.”

The next two sections further explore lexical and dynamic scoping and section A.3
shows how dynamic scoping can be achieved in Scheme.

A.1 Lexical Scoping

The following program demonstrates lexical scoping in Scheme (Adams et al., 1998):

(define x 1)

(define (f) x)

(define (g)

(let ((x 2))

(f)))
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In this program, the variable x is bound at two places. It has a global binding where
x has value 1 and a local binding where x has value 2. There is only one reference
to x (in f) and its lexically apparent binding is the global one. Because definitions in
Scheme are always lexically scoped, the function f will always return the value of the
global binding of x, in this case 1. The binding of x in g does not affect the behavior
of f.

Almost all programming languages in wide use offer only lexical scoping and not dy-
namic scoping. For example, the following program in C is equivalent to the Scheme
program above:

int x = 1;

int f() {

return x;

}

int g() {

int x = 2;

return f();

}

A.2 Dynamic Scoping

The definition in section ?? states that dynamically scoped variables are looked up in
the current call stack instead of their lexical environment. The decision to use lexical
or dynamic scoping can be made at two places:

• in the definition of the variable itself. Every reference to that variable is looked
up in the current call stack. We will refer to this case as dynamically scoped

variable lookup.

• in the function (or a similar construct) that contains the reference to the variable.
Each free variable is either looked up in the (static) environment of definition
(this results in lexical scoping) or in the (dynamic) environment of execution (this
results in dynamic scoping). We will refer to this case as dynamically scoped

function application.

These two cases are separately explored in the following two sections. There is how-
ever a special case: dynamically scoped variables containing functions. This is dis-
cussed in section A.2.3.
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A.2.1 Dynamically Scoped Variable Lookup

Common Lisp 1 offers dynamically scoped variables (referred to as special variables).
Consider the following program in Common Lisp, similar to the example in Scheme,
but now with a dynamically scoped variable *x*:

(defvar *x* 1)

(defun f() *x*)

(defun g()

(let ((*x* 2))

(f)))

As in the Scheme version, *x* has a global binding and a local binding in g. But even
tough the lexically apparent binding for the reference to *x* in f is still the global one,
f will use the local binding of g if (and only if) f is called from g. This is because in
Common Lisp, a global variable introduced by defvar is always dynamically scoped.
This means that the new binding of *x* in g affects the behavior of f.

To avoid confusion between lexically and dynamically scoped variables, the latter are
given names that have leading and trailing asterisks. This idiom is generally accepted
by Common Lisp programmers. This way, it is not possible to accidentally rebind a
special variable with a local variable.

A.2.2 Dynamically Scoped Function Application

D’Hondt and De Meuter (2003) introduce a prototype-based object model, called Pic%
2, that unifies the environment model and the object model. Dynamically scoped func-
tion application is used to support reentrancy and late binding for methods: functions
are not executed in the static environment of the callee, but in an environment specified
by the caller.

Environments in Pic% are first-class values and they are used to represent objects. New
objects are created by extending the current environment with new bindings and then
capturing the extended environment with the primitive function capture(). Con-
sider the following example, expressed in AmbientTalk (which is based on Pic%)(Dedecker
et al., 2005).

1More information on Common Lisp can be found in (Steele, Jr., 1990).
2Pico is a minimal functional language and Pic% is extension to support object-oriented programming

(% = o/o = object-oriented).
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makeObject()::

{ n: 1;

operator(a, b) :: a + b + n;

capture() };

o: makeObject();

o.operator(3, 4); ‘ => 8 ‘

In this program, o will contain an object with an attribute n initialized to 1 and one
method operator(a, b) . Evaluating the expression o.operator(3, 4) is
equivalent to looking up the function operator in the environment o and executing
it (with parameters 3 and 4) in the same environment o.

Inheritance and overriding can be achieved with mixin methods. Basically, they do the
same as object creation: they extend the environment and return it as a new object.

f() :: {

n: 10;

capture() };

g() :: {

operator(a, b) :: 2 * super().operator(a, b);

capture() };

By applying these mixin methods to existing objects, they can override methods. In
fact, because methods and variables are treated in the same way, variables can also be
overridden. The following code fragment demonstrates the effect of applying the mixin
methods on o. Various combinations are possible.

oF: o.f();

oF.operator(3, 4); ‘ => 17 ‘

oG: o.g();

oG.operator(3, 4); ‘ => 16 ‘

oFG: oF.g();

oFG.operator(3, 4); ‘ => 34 ‘

In this program, oF is the result of applying the mixin method f on the object o.
Invoking operator on oF will use the new binding of n. In the same way, oG will
use the new binding for operator and oFG will use both new bindings.
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A.2.3 Dynamically Scoped Functions

In languages like Common Lisp and Scheme, functions are first-class entities: they can
be passed around as arguments or returned as the result of a computation. This can lead
to confusion when talking about dynamically scoped functions. The distinction should
be made between dynamically scoped function application and dynamically scoped
variables that happen to contain a function.

The following example in Common Lisp demonstrates a dynamically scoped variable
containing a function:

(defvar *operator*

(let ((n 1))

(lambda (a b) (+ a b n))))

(defun f(a b)

(let ((n 10))

(funcall *operator* a b)))

(defun g(a b)

(let ((*operator* (lambda (a b) (* a b))))

(f a b)))

(f 3 4) ; => 8

(g 3 4) ; => 12

The variable *operator* is a dynamically scoped special variable, but now it con-
tains a function instead of a number. If f is called from g, the first binding found for

*operator* in the current call stack is the one defined in g; otherwise, when f is
directly called, it is the global one.

The value of *operator* will always be executed in the environment of defini-
tion, even tough *operator* is a dynamically scoped variable. To demonstrate
this, a free variable n has been added to the global binding of *operator*. When

*operator* is invoked in f, the first binding found for n in the current call stack is
10. However, in the environment of definition of the global binding of *operator*,
the binding for n is 1. The latter is used, so the result of (f 3 4) is 8.

In order to ease the definition of this kind of dynamically scoped function in Common
Lisp, Costanza (2003) introduces a number of language constructs. The following
code fragment demonstrates the definition of a dynamically scoped global function
with defdynfun.
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(defdynfun operator(a b) (+ a b))

Because the naming convention for special variables (based on asterisks) is less suited
for functions, defdynfun will store the body in a special variable and define a func-
tion that just forwards any call to that special variable. So the previous code fragment
is translated into the following definitions:

(defvar *operator* (lambda (a b) (+ a b)))

(defun operator (&rest args) (apply *operator* args))

Rebinding a global function with dynamic extent can be accomplished with dflet.
Additionally, there is a way to refer to the previous binding of a function by way of
an implicit local function call-next-function. This is demonstrated in the next
code fragment.

(defun f(a b) (operator a b))

(defun g(a b)

(dflet ((operator(a b) (* (call-next-function a b) 2)))

(f a b)))

If f is called directly, it will use the global binding of operator: a and b will
be added. If f is called from g, the local binding of operator in g will be used:
call-next-function will add a and b, then the result is multiplied by 2.

It is also possible to turn a function that was already defined with defun into a function
that supports dynamic scoping with redefdynfun. So the following definitions are
effectively equivalent:

• (defdynfun operator(a b) (+ a b))

• (defun operator(a b) (+ a b))

(redefdynfun operator)

A.3 Dynamically Scoped Variables in Scheme

The Scheme standard does not provide any constructs for dynamic scoping. Steele, Jr.
and Sussman (1976) present an implementation of dynamically scoped variables on top
of lexical scoping and some Scheme dialects provide some form dynamic scoping. For
example, MzScheme provides two forms: fluid variables and parameter objects (Flatt,
2005). In the following example, the variable x behaves as a dynamically scoped
variable.
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(define x 1)

(define (f) x)

(define (g)

(fluid-let ((x 2))

(f)))

A major drawback of fluid-let in MzScheme is that it is explicitly defined to assign
the new values to the variables, evaluate the body and then restore the old values. This
gives problems in the case of multi-threading: rebinding a variable with dynamic scope
should not alter the binding for that variable in other threads.

Parameter objects in MzScheme do not have this problem. They can be given a new
binding with dynamic scope in a thread-safe manner by way of the parametrize
form. The following Scheme program is equivalent to the previous example, but now
it is thread-safe:

(define x (make-parameter 1))

(define (f) (x))

(define (g)

(parameterize ((x 2))

(f)))

Note that in order to retrieve the value of a parameter, the parameter object has to
be invoked as a function. Because of this extra indirection, the correct semantics can
be implemented. In fact, MzScheme defines several standard parameter objects, for
example for the current directory and the current output port.
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TinyCLOS

In this appendix we present TinyCLOS, its metaobject protocol and its implementation
in more detail. All the information for the following paragraphs was found in the source
code and in an announcement 1.

TinyCLOS was developed at Xerox Parc by Kiczales (1992). It is a very simple CLOS-
like language, embedded in Scheme, with a simple metaobject protocol. The primary
goal was to let people play with the metaobject protocol without the relative complexity
of working in Common Lisp. Because of the pedagogical purpose, the language and the
Metaobject Protocol are very similar to Closette, the language created in “The Art of
the Metaobject Protocol” (Kiczales et al., 1991). According to Kiczales, the metaobject
protocol of TinyCLOS retains much of the power of both of those found in AMOP and
even tough the implementation of TinyCLOS is not optimized, it could be done by
using the techniques mentioned in AMOP. In fact, the slot access protocol used in this
metaobject protocol is such that it should be possible to get better performance than is
possible with the CLOS metaobject protocol.

B.1 The Base Language

The features of the default base language are:

• Classes, with instance slots, but no slot options

• Multiple inheritance

• Generic functions with multi-methods and class-specializers only

1From: ftp://ftp.parc.xerox.com/pub/mops/tiny/tiny-announce.text
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• Primary methods and call-next-method (no other method combinations, like be-
fore or after methods)

• All metaobjects are first-class citizens and are addressed by using Scheme’s lex-
ical scoping

The entry points to the default base language are:

• Calling a generic function

• Defining a class by giving a list of superclasses and a list of slot names
(make-class list-of-superclasses list-of-slot-names)

• Creating a new generic function; no parameters are needed
(make-generic)

• Defining a method by giving a list of class specializers and a Scheme procedure
(the actual method body)
(make-method list-of-specializers procedure)

• Adding a method to a generic function; typically, defining some behavior in-
volves creating a generic function, defining a number of methods and adding
them all to the generic function. When invoked, the generic function selects the
appropriate method by comparing the classes of the arguments and the special-
izers of all the methods that were added to the generic function.
(add-method generic method)

• Creating an instance of a class
(make class . initargs)

• Initializing an object. This generic function is provides by the language and
should not be called directly. It is called by make when creating an instance and
the argument initargs is passed to initialize. The user can add methods
to this generic function in order to change how instances of his own classes are
initialized.
(initialize instance initargs)

• Accessing a slot of an object
(slot-ref object slot-name)

• Assigning a new value to a slot of an object
(slot-set! object slot-name new-value)

The following is a simple example of a TinyCLOS program.
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(define <point>

(make-class (list <object>) ;; Superclass

(list ’x ’y))) ;; Slots

(add-method initialize

(make-method (list <point>)

(lambda (call-next-method point initargs)

(call-next-method)

(initialize-slots point initargs))))

(define p (make <point> ’x 1 ’y 2))

(slot-set! p ’y 5)

The class <point> is defined as subclass of <object> (this class is defined by Tiny-
CLOS). A point has two slots, an x and a y coordinate. Initializing a point should as-
sign the values for both coordinates as given in the initialization arguments. Therefore,
initialize is overridden for the class <point>. initialize-slots is a util-
ity function that, when given an object and a list of the form (slot-name value ...),
will assign the given slots of the object with the associated value. Then a point is cre-
ated with initial coordinated 1 and 2. The last line assigns the y coordinate to 5.

B.2 The Metaobject Protocol

TinyCLOS classes, generic functions and methods are objects themselves, called meta-

objects. Their classes are respectively <class>, <generic> and <method>. Defin-
ing a class, generic function or method creates an instance of one of these metaclasses.
The metaobject protocol defines several generic function that are invoked during the
definition of the meta-objects. They are responsible for defining the semantics of the
language.

First we start with an example of a meta-program in TinyCLOS.

Each generic function has an apply function. It is a procedure that is generated by the
metaobject protocol and it is responsible for method dispatch. The generic function
of the metaobject protocol that generates it is called compute-apply-generic.
Each time a method is added to a generic function, the apply function of the generic
function is computed again. Optimized implementations of a metaobject protocol can
then perform partial evaluation by looking at the methods that are available.
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The user can change the semantics of the language by defining new metaclasses and
defining methods on them. Consider the following example in TinyCLOS, a new kind
of generic function that logs all its invocations.

(define <logging-generic>

(make <entity-class>

’direct-supers (list <generic>)

’direct-slots (list ’name)))

(add-method compute-apply-generic

(make-method (list <logging-generic>)

(lambda (cnm generic)

(let ((original (cnm)))

(lambda args

(log-invocation (slot-ref generic ’name)

(lambda ()

(apply original args))

args))))))

This meta-program defines a metaclass <logging-generic> and overrides compute-apply-generic
for this metaclass. Every generic created with this metaclass will print messages before
and after the actual computation2. This is demonstrated in the following transcript:

> (define double (make <logging-generic> ’name ’double))

> (add-method double

(make-method (list <number>)

(lambda (cnm n)

(* n 2))))

> (double 3)

(double 3)

(double 3) => 6

6

The metaobject protocol of TinyCLOS is (just like the other MOPs of AMOP) divided
up in an introspective and an intercessory part. The introspective part allows to look
at the inside of the metaobjects (classes, generic functions and methods). Here is an
overview:

2The function log-invocation takes three arguments: the name of the function that is being logged, a
procedure that will perform the actual computation and the list of arguments of the invocation that is being
logged.
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• class-direct-supers: get the list of direct superclasses of a given class.
This is the same list as the one that was given in the class definition.

• class-direct-slots: get the list of direct slots of a given class. This is
also the same list as the one given in the definition.

• class-cpl: get the class precedence list of a given class. The class prece-
dence list is an ordered list of all superclasses, direct or indirect. During the
initialization of a class, the list is computed by linearizing the inheritance tree.
In the special case of single inheritance, the inheritance tree is already linear. In
the general case of multiple inheritance, the tree is linearized with a breath-first
algorithm. One of the things that can be changed with the metaobject protocol is
this linearization algorithm.

• slots: get the list of all the slots, both the direct slots and the inherited slots.
This lists describes the actual structure of the instances of the given class.

• generic-methods: get the list of all the methods that are added to the given
generic function.

• method-specializers: get the list of class specializers of the given method.

• method-procedure: get the method body of the given method.

The intercessory protocol provides a number of generic functions that are invoked dur-
ing the initialization of the metaobjects.

Instance allocation protocol:

• allocate-instance: allocate an instance of a certain class.

Class initialization protocol:

• compute-cpl: compute the class precedence list

• compute-slots: compute the list of all the slots, direct or indirect (inherited)

• compute-getter-and-setter: compute a getter and a setter (two proce-
dures) for a certain slot.

Generic invocation protocol (all these generic functions return a procedure that will be
used during method dispatch):

• compute-apply-generic: compute the apply function of the generic func-
tion. This is the procedure that is invoked when the generic function is called
and it is responsible for method dispatch.
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• compute-methods: compute a procedure that, given a list of actual argu-
ments, finds all the methods of the generic function that are applicable. More-
over, they should be sorted in such a way that the most specific method is first in
the list and the least specific is at the end.

• compute-method-more-specific?: compute a procedure that, given two
methods and a list of actual arguments, determines which method more specific.

• compute-apply-methods: compute a procedure that will apply the appro-
priate method(s) to the actual arguments. This procedure is responsible for the
call-next-method machinery.

B.3 The Implementation

In this section we will take a look at the internal class and metaclass hierarchy of
TinyCLOS. For the base-level programmer, to root class of every object is <object>
but internally, <object> is a subclass of <top>. The following code fragment shows
their definitions.

(define <top> (make <class>

’direct-supers (list)

’direct-slots (list)))

(define <object> (make <class>

’direct-supers (list <top>)

’direct-slots (list)))

Note that both classes are instances of <class>, even tough this class is not defined
yet. This is a first example of a circularity that requires bootstrapping because, as we
can see in the following definition, <class> is a subclass of <object>.

(define <class>

(make <class>

’direct-supers (list <object>)

’direct-slots

(list ’direct-supers

’direct-slots

’cpl

’slots

’nfields
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<top>

<object>

<method> <generic> <class>

<entity-class>

<procedure-class> <primitive-class>

<string>
<boolean>

<pair>
...

instance of
subclass of

Figure B.1: Class hierarchy of the TinyCLOS implementation. If there is no “instance
of” arrow, the class is an instance of <class>

’field-initializers

’getters-n-setters)))

The slot getters-n-setters contain a pair of procedures for each slot. The first
of a pair is the setter, the second is the getter.

Here we can see another circularity: <class> is an instance of itself. This will cause
infinite regression when accessing slots, so this will also need special attention during
bootstrapping.

The rest of the meta-level classes (<generic>, <method>, <entity-class>,
...) are all defined in the same way. Their definitions look the same as base-level
classes. We only call them “metaclasses” because of what they mean to us, but tech-
nically they are not different than ordinary classes. An overview is given in figure
B.1.
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