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Samenvatting

Het is moeilijk om grote, complexe softwaresystemen te dddglen en nog moeili-
jker om ze te onderhouden. In component-gebaseerde applargwikkeling, worden
applicaties gecreéerd door een aantal reeds bestaangmenten te hergebruiken.
Deze componenten worden aangepast en samengeplugd in genetoodescripting
taal. Deze taal moet een manier voorzien om componentehigesn in andere talen
te kunnen gebruiken.

Dit probleem lijkt erg op het definieren van een taalsymbiassen twee program-
meertalen, zodat de talen op een transparante manier datarkuitwisselen en func-
tionaliteit geschreven in de andere taal kunnen uitvoeren.

We beschouwen het gebruik van zo een taalsymbiose als nmanieenscripting
taal componenten geschreven in andere talen te laten gebruive vergelijken deze
aanpak dan met de aanpak van Piccola, een taal die specifrekontwikkeld om
componenten aan te passen en samen te pluggen.

We stellen ook een manier voor om een onderscheid te maksartusanpassin-
gen aan componenten die enkel een interfae@pinguitvoeren en aanpassingen die
nieuwe functionaliteit aan een component toevoegen.



Abstract

Large and complex software systems are hard to build andrareler to maintain. In
component-based development, applications are built bsimg a number of already
existing components. These components are adapted andsethin a high-level
scripting language. To be able to also use components wiittether languages, the
scripting language should provide a way for exchanging dé@taother languages.

This problem is very similar to the one of defining a symbiogiationship between
two languages, such that the languages can transparecthaege data and invoke
each other’s behaviour.

We contemplate the use of linguistic symbiosis for a sangptanguage to be able to
access components written in another language. This isastat with inter-language
bridging, the approach used by Piccola, a language spélifttesigned for adapting
components and expressing compositions.

An approach to discriminate between adaptation code thalypmaps interfaces
and adaptation code that adds new functionality to a compaséntroduced.
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Chapter 1

Introduction

Building large, complex software systems is a hard and tosuming task. The
best way to increase productivity when constructing sudtwsoe, is to reuse already
existing software. There exist various techniques to pigtittea of software reuse
into practice, one of the more dominant ones being compeln@sed development. In
this approach, the existence of a large collection of rdesstiftware components is
assumed. It will typically not be possible to reuse such apament “as is”; adaptation
of the component, by means of glue code, will be necessanakeiih compatible with
other selected components. Thus, building applicationsines a matter of selecting,
adapting and composing components.

Specifying how components are to be composed is done usiigisg languages
because they allow for fast development, are dynamic andgedigh-level abstrac-
tions. Most of these languages, however, only allow contjpsaccording to a single
compositional style. Consider Unix shell languages, famagle, which are based on
a pipes and filters approach.

The Piccola programming language [ANO1, ALSNO1] is destbespecially to adapt
components and express compositions. It does not consfi@se components to ad-
here to a certain compositional style, but rather allowgtiogrammer to specify differ-
ent styles of composition. As such, Piccola is said to be aigdipurpose composition
language.

The architecture of Piccola is based on a formal semanticeinadlled ther -
calculus [Lum99]. This is an extension of thecalculus, which was introduced by
Milner et al. [MPW92] to describe concurrent computatiopadcesses. Therefore, it
is possible to reason about component compositions spekaifieiccola.

When adapting and composing components, we do not want tothm available
components to those written in the scripting languagefitséhe language should
provide abstractions that allow accessing componentganriin other languages.

This problem is very similar to the one of defining a symbioélationship between
two languages [IMY92]. Such languages can transparentiiange data and invoke
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each other’s behaviour. Gybels et al. [GWDDO06] introduce@aceptual model that
allows implementing linguistic symbiosis between two laages.

Piccola does indeed allow components to be written in a sé@amplementation
language. It employs an approach, called bridging by Jicf&eh01], to pass data
between Piccola and other languages.

1.1 Contributions

We contemplate the use of linguistic symbiosis for a sangptanguage to be able to
access components written in other languages We contrastith the approach used
by Piccola to pass data from another language to Piccolayiaadrersa, to pass data
from Piccola to another language.

Consequently, we identify some problems in how externalmmments are accessed
when using Piccola as a composition language. We solve tireddems by using
Sic% [Gyb04], a language that implements the conceptuabgysis model, and as
such is in linguistic symbiosis with Smalltalk. This means define the properties a
composition language should possess for manipulatingreadteomponents.

We also introduce an approach to discriminate between atiaptcode that purely
maps interfaces and adaptation code that adds new funiitydisea component.

1.2 Dissertation Roadmap

In chapter 2, we first give an outline of how component-basaeibpment origi-
nated. Then some terminology and common techniques anesdisd. Finally, a con-
ceptual framework for composition [Sch99] is presentede Pliccola programming
language is designed with this framework in mind, and anoger of its syntax and
semantics is given in chapter 3. We also discuss the apptbatPiccola implemen-
tations should use for accessing components written infardiit language. Chapter
4 introduces the Pico programming language [MGD99] and lijeai-oriented vari-
ation Pic% [DMO3]. This leads to the presentation of a spedifiplementation of
Pic% called Sic%, which engages in a symbiotic relationshiip Smalltalk. An high-
level overview of this feature’s implementation and the aeptual model behind it
finishes the chapter. In chapter 5, Piccola’s bridging styais evaluated against the
linguistic symbiosis model, and we present an approachgdarage interface mapping
adaptations and behavioural adaptations. We concluddidssrtation with some final
remarks in chapter 6.



Chapter 2

Component-Based Software
Development

In this chapter we describe what is meant by component-bssihdare develop-
ment. The origin of the field is sketched in section 2.1. Whaheant exactly by the
term component is explained in section 2.2. Componentsaaptad and composed
by means of respectively glue code and scripts, which apeigé®d in sections 2.4 and
2.3. Section 2.5 presents a conceptual framework for coitipos

2.1 Origin

An ideal way of developing software, would be for the develof identify some
needed code modules, what order they should be executedaéhfiormation should
be passed between them. Freshly written modules would theonfbined with exist-
ing ones to form new applications. A similar way of workingndse seen in other fields,
like electronics engineering. Hardware components areielest units making up
an electrical circuit. They are both interchangeable ahabie.

This kind of component programming is not a recent notionrédppsed solution for
the software crisis in the late sixties was cal@inponent-oriented software construc-
tion. It introduced the idea that software should be built frorafabricated compo-
nents, which are black-box entities [Mcl68]. The goal wasetiase these components
for different applications to lower development costs amedtablish a market for soft-
ware components. This vision could not be established dirtiee Some of the reasons
being the ideas that components should be built system émdkgmtly or that a compo-
nent catalogue must be available, allowing applicatioretigers to choose the right
component for a specific problem [Sch99].
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2.2 Components and Frameworks

Today, component-oriented programming still receivesmaitention from both the
industrial and research point of view. Nevertheless, ibisalways clearly understood
what is exactly meant by the tersoftware componentSchneider [Sch99] claims it
is closely related to the tereomponent frameworéind the two cannot be defined in
isolation. Indeed, Lumpe et al. [LSNA97] define a componkistway:

A software component is aomposable element of a component frame-
work.

Although this seems to be a circular definition, Schneidsnts it does a very good job
capturing the crucial properties of components: companard designed to work to-
gether with other components. A componentthat is not parto@mponent framework
is a contradiction in terms. Furthermore, a component cafiumation outside a well-

defined framework. We will see a formal definition of the teromponent framework
later in this section.

Just as is the case in electronics engineering, a compoaaelat function by itself,
but it is of much more value when combined with other comptsmerhe whole inten-
tion of designing components is to plug them together, soautdcsay:

A software component is static abstraction with pluggND95].

By static it is meant that a component is a long-lived (i.e. stabldiethat can be
stored in a software base, independently of the applicaiidmas been used in before.
Itis anabstraction because it puts a more or less opaque boundary around thesnf
it encapsulates and provides some priorly known functipnarinally, a component
hasplugs which are not only used to provide services but also to reghem. All fea-
tures or dependencies of a component are exposed by mearchgfublic plugs; there
exist no hidden dependencies. Plugs are the most impontargquisite for composi-
tion: required services of a component are connected withtda provided services
of another component. The nature of the interface, and hegetinterfaces may be
plugged together will differ from one component framewarlahother.

Some other aspects of components are given by SzypersKi2gityrough the fol-
lowing definition:

A software componentis a unit of composition with contelfuspecified
interfacesand explicit contextiependenciesnly. A software component
can bedeployed independentlis subject tahird-party compositionand
hasno persistent state

We have already mentioned that for a component to be comfgo@abthird-parties),

it must explicitly specify the services it provides (i.etdrfaces) but also the services
it requires (i.e. dependencies). This means the compomreantichbe sufficienthself-
contained For a component to be independently deployable, it neells twell sep-
arated from its environment and other components. ThexgBbcomponengncap-
sulatesits features and can never by deployed partially. Thus, apocorent needs to
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encapsulate its implementation and interact with its @mritent through well-defined
interfaces. The last statement blurs the distinction betwstateless component fac-
tories and stateful component instances. As such it migilgeeaome confusion since
components, like buttons or windows, usually do have st are thus not working
with the abstract component classes, but with their ingsintt’'s therefore useful to
distinguish between design-time and runtime of a compaiatt02]. At design-time,
the developer chooses the properties that are set whenti@ooent is instantiated at
runtime.

We have used the term component framework a few times withimpgerly defin-
ing it, although we have seen that the definition of a compbaed the notion of a
component framework are closely related to each other. &dan[Sch99] gives the
following definition:

A component framework is aollectionof software components with a
software architectur¢hat determines the interfaces that components may
have and the rules governing their composition.

In an object-oriented language, a realization of a fram&wight be an abstract class
hierarchy, but there is no reason for components to be dasstor frameworks to
be abstract class hierarchies. In such an object-orierdmakefvork, an application is
generally built from subclassing framework classes thaeaglto certain application
requirements, a component framework on the other hand ésonmis object and class
composition (i.e. black-box reuse).

As is also the case for components, there exist more thanefivétibn of the term
component framework. Szyperski [Szy02] describes a compifinamework as a set
of interfaces and rules of interaction that govern how congmbs plugged into the
framework may interact. He points out that an overgeneaxtdin of that scheme has
to be avoided in order to keep actual use of frameworks maiuiie.

All of the above definitions no longer regard componentsalaisd parts. Compo-
nents adhere to a particular component architecture oitacttral style that defines
the plugs, the connectors and the corresponding compuosities [Sch01].

2.3 Scripting

Components and frameworks alone are not sufficient for imgldeal applications.
We need a mechanism to specify which components are to bggaitggether (i.eex-
press compositionsThink of a playscript that tells actors how to play varigakes in
a theatrical piece. The whole idea behind component-basegl@pment is that only a
small amount of such wiring code has to be written to creat@eotions between com-
ponents. Flexibility is obtained by detaching the compasé&om the specification of
their composition.

This wiring technology, also callestripting, can take various forms depending on
the nature and granularity of the components, the naturepestsiem domain of the
framework, and the composition model [Sch99]. Compositi@y occur at different
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times in the development process: at compile-time, atfiimle or at run-time. It may
be very rigid and static (e.g. the syntactic expansion thatics when C++ templates
are composed [MDSO01]) or very flexible and dynamic (e.g. thraposition supported
by Tcl [Ous94] or other scripting languages [Ous98]). Itg easy to give a generally
accepted definition of the terms scripting and scriptingleage. Nevertheless, in the
following sections, we will try to give an overview of whatég®@mmonly meant when
they are used.

2.3.1 What is Scripting?

The essence of scripting is that of performing routine ofp@ma with existing tools.
The main purpose of CGl-scripts for example, is to dynanyag@nerate web pages,
however, they do not perform all the necessary computatimmselves. Various com-
ponents, residing on the server system the scripts are rar®@nsed. Most of the code
of the CGl-scripts just sets off and coordinates computataf the components.

Sometimes scripts are describedghse between components [NTAMS91]. This is
a metaphor to emphasize that scripting is done usihmylh-levellanguage that takes
entitiesoutsidethe programming language (e.g. system facilities) to dawbtwk of an
application. Thus, the glue ishagh-level of abstractionHowever, the term glue code
is used in a much narrower sense in most references, as weewilh section 2.4.

Szyperski [Szy02] says that scripting is quite similar tplagation building. Script-
ing admits that the actual wiring may need more than just eotions: scripting allows
small programs (i.e. scripts) to be attached to connecficesconnectors). This can
be either at the source end (e.g. for events) or at the tangk(iee. hooks) of con-
nections. Scripts usually do not introduce new compondniissimply plug already
existing ones together: they introduce behaviour, but atesOr in other words:

Scripting aims atate and high-level gluing

Summarizing the main properties of scripting given above,ocould say that the
principal purpose of scripting is to build applications gnoecting a set of already
existing components. Cox [Cox86] generalizes this notigrdefining scripting as
follows:

Scripting is ahigh-level binding technologpr component-based systems.

This definition implies that there exist other binding teslngies for component-based
systems. It also doesn’t name any language features neededripting. We will
discuss and analyze these in the next paragraph.

2.3.2 What s a Scripting Language?

There are two major directions used by researchers for id@sgrscripting lan-
guages: by their usage and by their features.
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As mentioned above, the purpose of a script is to coordinptegrammable system
and to establish connections between components. Therefoe might argue that
any programming language that supports these activitiebeaalled a scripting lan-
guage. We could label any language that is used to drive ansylstem as a scripting
language, as opposed to a programming language, wherepralgeam itself is the
main action.

Of course, the way a language is used depends strongly oedhaés it supports.
By describing a language’s usage, as well as its featureslaathcteristics, we can
analyzewhyit is used in that specific way.

Kanavin [Kan02] gives the following definition of a scripgdanguage, which al-
ready includes a lot of typical features:

A scripting language eliminates the need for compilatioanages mem-
ory automatically and includes high-level data types. ti&@r is connect-
ing existing components together into a working appliaatio

One of the most important properties of scripting languagékat it should be rela-
tively easy to interconnect components not written in thigtiag language itself.

Other important aspects are covered by the following dégimit

A scripting language should i) be interpreted, not compiigdhe dynam-
ically typed (so that a variable can have different typesmdyits lifetime),
iii) offer abstractions for introspection, iv) be embeditaéind extensible,
and v) have a simple syntaBrent WelcHSch99].

Embeddability and extensibility are two important properiof scripting languages
because they make reuse a lot easier. A versatile way fottiagagnd extending an
existing component is embedding a script into this compbon&xtensibility on the
other hand is needed in order to incorporate new abstracfim components and
connectors) into the language, making it easier to intedegfacy code.

An interesting reference about scripting and scriptingleages is a paper by Ouster-
hout [Ous98]. He categorizes programming languages iik@timajor groups. Assem-
bly languages, system programming languages, and serijtiguages.

In assembly languages, virtually every aspect of the macisineflected in the pro-
gram. Each statement represents a single machine insmuatid programmers must
deal with low-level details such as register allocation pratedure calling sequences.
As a result, it is difficult to write and maintain large prograin assembly language.

System programming languages differ from assembly langgiagtwo ways: they
are higher level and they are strongly typed. The term higgherl means that many
details are handled automatically by the programming enwirent (e.g. register al-
location), so that programmers can write less code to getdinee job done. The
functionality of a single instruction in a system programmianguage, usually takes
several instructions in an assembly language. Ousterladimes typing as the degree
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to which the meaning of information is specified in advancéofise. In a strongly
typed language, the programmer declares how each piecéoofiation will be used
and the language prevents the information from being useddifferent way. In a
weakly typed language there are no a priori restrictions @n mformation can be
used: the meaning of information is determined solely bywhg it is used, not by any
initial purposes. System programming languages are degigrhandle the same tasks
as assembly languages, namely creating applications @anganents) from scratch.

Ousterhout defines a scripting language as follows:

Scripting languages are designed for gluing applicatidiey provide a
higher level of programming than assembly or system progreg lan-
guages, much weaker typing than system programming laegyagd an
interpreted development environment. Scripting langaagerifice exe-
cution efficiency to improve speed of development [Ous98].

Ousterhout claims scripting languages represent a vefgrelift style of program-
ming than system programming languages. They aren't iet ok writing applica-
tions from scratch: their primary purpose is plugging tbhgetcomponents. Scripting
languages are also rarely used for implementing complexidihgns and data structure,
as features like these are usually provided by the compsn8ntipting languages are
sometimes referred to as glue languages or system integtatiguages.

Scripting languages tend to be weakly typed, in order to Biynfhe task of con-
necting components. A weakly typed language makes it estevok together com-
ponents, even in different ways for different purposes aatgeen by the designer.

Scripting languages are higher-level than system progliamtanguages, in the
sense that a single statement does more work on average. igaltgpatement in a
scripting language executes hundreds or thousands of meicisitructions, much more
than a typical statement in a system programming languagehf this difference is
because the primitive operations in scripting languages beeater functionality than
those in system or assembly programming languages.

Since performance and resource usage will be dominatecetgotinponents and not
the scripts, the performance of the scripting languageusilially not be a problem. Itis
however much more important that high-level abstractiongénnecting components
are provided; the language should give a high-level vieweofises implemented in a
lower-level language.

Figure 2.1 shows a graphical comparison of these three gmoging language cat-
egories. Table 2.1 delivers anecdotal support for the cthim scripting languages
speed up the development process.

Above definitions already make up a list of certain charésties of scripting lan-

guages:

e The main purpose of a scripting language is to plug togetkistieg components
in order to build applications.



CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT 9

1000
Scripting
Wisnal Basic
=
o
E 100 + —
ﬁ Tel/Perl
E
c
=2
T 10 - O —
2 Java
- T+
. Assembly Systein Prograruning,
Nohe Strong
Cegroe of Typing

Figure 2.1: Comparison of programming languages, basethanlevel of abstrac-
tion (higher-level languages execute more machine instmg for a typical language
statement) and their degree of typing [Ous98].

e Scripting languages prefer high-level abstractions t@xetien speed.
e Scripting languages are interpreted and offer automatimong management.

e Scripting languages are dynamically and weakly typed afed efipport for run-
time introspection.

e Scripting languages are extensible: adding new abstrecije.g. new com-
ponents and connectors) to the language and incorporatimganents imple-
mented in other languages should be straightforward.

e Scripting languages are embeddable: they can be embeddeekisting com-
ponents, offering a versatile way for adaptation and exbens

e Scripting languages offer explicit support for architeatistyles and can there-
fore be considered as executable architectural desarifatiguages (ADLS).

Not all of the features listed above are essential for sagptConsidering only the
essential properties, Schneider defines a scripting layeguas follows:

A scripting language is a high-level language used to creatgtomize,
and assemble components into a predefined software arcingé¢Sch99].
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Application Comparison Code | Effort | Comments
(Contributor) Ra- | Ra-

tio tio
Database apr C++ version: 2 60 C++ version imple-
plication (Ken| months; Tcl ver- mented first; Tcl ver
Corey) sion: 1 day sion had more funct

tionality

Security scani C version: 3000 10 C version imple-
ner (Jim Gra- lines; Tclversion: mented first;  Tcl
ham) 300 lines version had more

functionality.

Query dis-| C version: 1204 2.5 4-8 C version imple-
patcher  (Pau| lines; Tcl version: mented first, uncomt
Healy) 500 lines mented; Tcl versior
had comments, morg
functionality.

Spreadsheet C version: 146Q 4 Tcl version imple-
tool lines; Tcl version: mented first.
380 lines

Table 2.1: Comparison of some applications implementeckywance using a scripting
language and once using a system programming languagegpus9

2.4 Compositional Mismatches and Glue

2.4.1 Whatis Glue?

In practice, it is often not possible to just select some comemts with the needed
functionality and plug them together. Many researche@3HYS97, Sam97] have
identified that “as-is” reuse is very unlikely to occur, améttin almost all cases, a
component has to be adapted in some way to fit the compoditieqairements of an
application or a system. For this adaptations, glue tectes@re required. To under-
stand in what ways a component can fail to match the compasitrequirements, first
consider the following definition:

Software compositiois the process of constructing applications by inter-
connecting software components through their plugs [ND95]

It might not always be possible to interconnect some compisnia a desired way:

their plugs could not belug-compatibl§H93]. A nice analogy is a traveller who is
unable to plug his razor he uses at home into the plugs ofwanther countries. These
kind of situations are known aachitectural mismatcheandadaptorsare needed to

bridge the different interfaces.
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Even if components can be successfully interconnecteidtieés not mean they will
be able to interoperate successfully:

Interoperabilityis the ability of software components to communicate and
cooperate with each other [Kon95].

Reconsider the example of the razor; the form of the plugsisarproblem anymore,
but different countries may use different voltages. Evermvhsing an adaptor, the
components are not compatible: composition is possiblejriveroperability is not.
We need dransformerto solve this kind of problems, known @&#eroperability mis-
matches

Architectural and interoperability mismatch both belongatproblem domain that
can be referred to asompositional mismatcfsam97]. A compositional mismatch
occurs whenever it is impossible to successfully interembnomponents with existing
connectors. As we will see in section 2.4.2, architecturdliateroperability mismatch
are not the only situations where a compositional mismatai atcur.

Schneider [Sch99] formally defines glue as follows:
Glueis the part of an application that overcomes compositionsiratches.

We use this definition of glue because it plays a role in thepmsition language Pic-
cola and the conceptual framework the language is based enwilltake a look at
Piccola in chapter 3 and at the framework in section 2.5. Otferences, however,
might use different definitions; the notion of glue ofteremsfto any kind of abstraction
that can be used to plug components together. We will diffixee between the no-
tions ofscriptingandglue the former refers to abstractions for connecting comptmen
while the latter makes mismatched components composable.

2.4.2 Glue problems

Schlapbach [Sch03] identifies different levels on which positional mismatch can
occur: at thearchitecture platform levelwhere components are not designed for the
platform they are supposed to run on. At ttress-platform levelwhere components
are running on different component platforms. At theeraction level where com-
ponents use different protocols. At thechitectural level where components make
different assumptions about the architecture on which #reysupposed to run, lead-
ing to architectural mismatchersioningconflicts can lead to compositional mismatch
as well.

There exist various techniques for adapting componentggocome compositional
mismatch. They can be categorized either as black-box devidtx techniques. White-
box techniques adapt mismatched components by changingoiding their internal
specifications while black-box techniques only adapt timérfaces.
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2.5 A Conceptual Framework for Composition

Today, the object-oriented programming paradigm is thetrdominant one. The
languages and design techniques utilizing it are nearkgl ite implementingcompo-
nents, but it seems they hinder component-based develdpmamumber of signifi-
cant ways [SN99, Ach02]:

e Reuse comes to lateobject-oriented analysis and design methods are largely
domain-driven. This leads to designs based on domain atgect non-standard
architectures. Most of these methods make the assumptoarhapplication is
being written from scratch and they incorporate the reusisting components
too late in the development process (if at all).

e Overlyrich interfaces: Instead of sticking to small, restricted and plug-comgatib
interfaces and standard interaction protocols, OOA and @D to rich inter-
faces and interaction protocols.

e Lack of explicit architecture: Fora programminglanguage to supportcomponent-
based development, it must offer a way to state both whathe tcomputed by
a component (i.e.computationgl and the way components interoperate (i.e.
compositiongdl[ND95]. Object-oriented source code exposes the inthrexéi-
erarchy instead of the object interaction. How the objegptugged together is
typically distributed amongst the objects themselves. Aerssequence, adapt-
ing an application to new requirements requires detailedyars.

e Little code reuse: Instead of providing reusable abstractions for objectatnl|
orations, object composition is often implemented acegydd design patterns.
While we can (and should) reuse design, we often cannot thesctual code.

Schneider [Sch99] claims that complex software system#areasingly required to
be open, flexible aggregations of heterogeneous and distdisoftware components
rather than monolithic heaps of code. He says this placesaim gin old-fashioned
software technology and methods that are based on the maxim

Applications = Functions + Data.

The object-oriented approach already went a step furthérdaes a fairly good job
encapsulating state and behaviour. It is based on

Applications = Objects + Messages.

However, as we have seen above, object-oriented techn@adten applied in a way
that hinders component-based development. Achermann gBaISNO1] say that
the flexibility and adaptability needed for component-loeagplications to cope with
changing requirements will be improved if we not only thinkérms of components,
but also in terms of architectures, scripts, coordinatimh glue. It is claimed that the
following paradigm should be applied for application deyshent:
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Application

[ | Scripting Language
- Component A
- Component B
|:| Component C

- Glue Code

Figure 2.2: A framework for component-based developmecti(S].

Applications = Components + Scripts.

Components act as black-box entities, encapsulatingcgertiehind well-defined in-
terfaces. Scripts on the other hand, specify how the compsraze related to each
other.

Schlapbach [Sch03] extends the equation to also contaigltieecode, needed for
overcoming compositional mismatch as we have seen in se2tib

Applications = Components + Scripts + A Drop of Glue.

Figure 2.2 illustrates this framework for component-badeeelopment.



Chapter 3

The Piccola Programming
Language

This chapter gives an overview of the language Piccola.dRtcpurpose and archi-
tecture are presented in section 3.1. Section 3.2 disctsas, which are Piccola’s
only first-class values. Section 3.3 focuses on the origap@iroach used to access
external components and the problems this approach cafigesised version of the
approach is presented in section 3.4.

3.1 An Overview of Piccola

3.1.1 Whatis Piccola?

Piccola is a scripting and composition language. It is desilgwith the conclusions
of section 2.5 in mind. It cannot only be used to express hdtwaoe components writ-
ten in a separate implementation language should be coefigout also to provide the
connectors, coordination abstractions and glue abstractd plug those components
together on a higher level [ANO1, ALSNO1].

Most of the scripting languages of the the fourth generatiawe a rich set of pro-
gramming constructs and built-in features that facilitedenposition of components
according to a predefined compositional style [ANO1]. Fatamce, Unix shell lan-
guages are designed around the pipes and filters appro&cbomtposition rules tell
us which compositions are valid (e.g. it is impossible to makcular pipes and fil-
ter chains). Another example is Perl [WS91], which providegular expressions to
work on a number of string buffers. Piccola, on the other hénd small pureand
general-purposeomposition language [Sch01]:

e Small: Piccola has only a small syntax and a limited number of piied,
needed for specifying different types of compositionalesty

14
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e Pure: Piccola is a pure composition language, because thereysagrhall set
of primitives providing the necessary composition absioas. All the other
features of the language are provided by exchangeable qoenpo Even basic
programming entities such as numbers and strings are epeesby dynami-
cally reconfigurable components.

e General-purpose: Piccola is a general-purpose composition language because
it supports composition of components corresponding fewdint kinds of com-
positional styles. This means that Piccola allows us toifpear own styles that
define a kind of component algebra. According to Achermari(a], another
example of a general-purpose scripting language is thelpolamguage Python
[VR95].

3.1.2 Language Model

In order to have the simplest possible framework to definepmsitional styles, Pic-
cola has a small set of primitives that unify various cons¢ANO0O]:

e Forms embody structure: A form is an immutable set of bindings that associate
labels with values. They can be extended with additionalibigs, which yields a
new form. Forms unify objects, services, keyword-basedmaents, namespaces
and interfaces.

e Agents embody behaviour: Agents are concurrent, communicating entities
whose behaviour is specified by a script. Agents implemeatcthnnections
between components, and they unify communication and cogracy.

e Channels embody stateChannels are the mailboxes that agents use to commu-
nicate. They unify synchronization and communication.

3.2 Forms

Forms are Piccola’s only first-class values, and consetyutsty represent all first-
class entities. We start this section by presenting theagyaftforms and the operations
defined on them. Then, we show how they are used to modelgliffeanguage aspects.
Finally, we compare them to the object-oriented model.

3.2.1 Semantics of Forms

Forms are immutable sets of bindings that associate lab#salues. Syntactically
speaking, there are two ways to define forms: using nestedimeeseparated, paren-
thesized lists of bindings or by indenting bindings, whéreindentation indicates the
nesting level. Semantically, there is no difference betwie two. Both styles are
exemplified in listing 3.1.
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# Aformwith 2 bindings: x and y
aPoint = (x=1, y=2)

# I ndentation indicates nesting |levels
aCircle =
centre =
x =3
y =4
radius = 5
# The previous definition is equivalent to this one
aCircle = (centre=(x=3, y=4), radius=5)

Listing 3.1: Defining forms in Piccola

The following operations are defined on forms [Sch01]:

Polymorphic Extension.  Polymorphic extensiofr, G of a form F with a form
Gyields a new form containing all the bindings of the fofand the bindings of
the formF whose labels are not used within the fo@nThis means that bindings of
the formG override bindings with the same label of the foFnin the resulting form.
Polymorphic extension is illustrated in listing 3.2. Wherttending a form, it is of
course also possible to use the indentation syntax thavisrsin listing 3.1.

Projection.  Projection allows us to retrieve the form bound to a certabel. This
meand-.t returns the form bound to the laltelwithin the formF. A runtime excep-
tion will be thrown if the formF does not contain a binding labeled An example of
projection is given in listing 3.3.

Application.  Services are Piccola abstractions, which represent fumgtr proce-
dures. Because everything in Piccola is a form, servicealaoerepresented as forms.
They are bound with instead of= and might introduce named arguments. The appli-
cationF Ginvokes the service represented by the férmuith the formGas argument
and yields the resulting form. An alternative syntax that ba used, i&(G) . A form

can have bindings and represent a service at the same tinpicaon is exemplified

in listing 3.4.

Restriction. Removing a binding from a formF is possible through restriction.
If no binding labeled exists within formF, an error is generated. A label (e.g. the
left side oft = 1) is a first-class value in Piccola; it can be passed to andnetu
from services. In order to get hold of a label with a certaimpathe primitive service
label can be used. This service takes a form as argument and returabitrary
label that is bound in that form. So when passed a form thaagmonly one binding,
the label of that binding will be returned. Such a label theovjules arestrict
service, that when invoked with a form as argument, will netthe argument form
minus the label. The code snippet in listing 3.5 gives an g@tarof restriction.

Inspection.  To find out whether a form contains bindings, represents dcseor
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# A nested formwi th 3 bindings:
# nane, age and si ze
F =

name = "Lieven"

age = 23

# The | abel size is bound to the
# form(m=1, ¢ = 80)
size =
m 1
c 80

# A nested formwi th 2 bindings:
# age and size

G =
age = 2
size=m =1, ¢ = 82

i

printin (F, G) # prints (nane = "Lieven",
# age = 24,
# size = (m=1, ¢ = 82))

Listing 3.2: Example of polymorphic extension in Piccola

is the empty form, inspection is used. See listing 3.6 forxameple. The primitive
serviceinspect is curried. As a first argument it takes the form that getseosgd.
The second argument should contain three services, latséladel ,isEmpty and
isService . Depending on the structure of the inspected form, the sghtice gets
invoked. If a form contains bindings, inspection can be usedktrieve an arbitrary
first-class label that is available within the inspectedrfor

There exist no syntactical structures for restriction arghéction, above mentioned
primitives have to be used. Note that iteration over the ibigsl of a form can be
accomplished by combining restriction and inspection.

3.2.2 Unification of Concepts

Since forms are the only first-class citizens in Piccolay tre used to model differ-
ent language concepts. Scharli [Sch01] gives the follgwaiverview:

e Data structures: Piccola uses (nested) forms to define data structures. These
data structures are basic objects that may consist of steuahd behaviour (ser-
vices).

e Services: Services represent functions or procedures. Internalcgnare de-
fined by Piccola scripts, external services are provideddbgreal components.
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# A nested formwi th 3 bindings:
# nane, age and si ze
F =

name = "Lieven"

age = 23

# The | abel size is bound to the
# form(m=1, ¢ = 80)
size =
m 1
c 80

F.name # Prints: Lieven

F.size # Prints: (m=1, ¢ = 80)

F.sizem # Prints: 1

F.weight # Error! (F does not contain a
# bindi ng | abel ed wei ght)

Listing 3.3: Example of projection in Piccola

# The formF gets defined as a service
# taking an argunent X

F X: # Alternative definition:
# F =\X
value = X
predecessor = X - 1

successor = X 1

printin (F 3) # Prints: (value = 3,
# predecessor = 2,
# successor = 4)

Listing 3.4: Example of application in Piccola

18
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# Aformw th two bindings | abel ed name and age
F =

name = "Lieven"

age = 23

# The service label returns an arbitrary first
# class | abel bound in the argunent form

# Here, it returns age because this is the only
# |l abel in the argument form

labelAge = label(age = ()

G = labelAge.restrict F # Formrestriction
printin F # Prints: (name = Lieven,

# age = 23)
printin G # Prints: (name = Lieven)

Listing 3.5: Example of restriction in Piccola

# Define the three services for the second
# argunent of the inspect service
Cases =
isEmpty = printin "Form is empty"
isService =
printin "Form is a service and has no bindings"
isLabel = printin "Form with label" + L.name()

inspect () Cases # Prints: "Formis enpty"

inspect (\X: X) Cases # Prints: "Formis a service
# and has no bindi ngs"

inspect (a = 5) Cases # Prints: "Formwith | abel a"

Listing 3.6: Example of inspection in Piccola

19
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Piccola

External Component
Piccola form

Figure 3.1: A Piccola form as interface to an external congmon

Both internal and external services are represented asfofims allows us to
define higher-order services.

e Keyword-based arguments:The structure of forms permits the strictly monadic
Piccola services to use keyword-based arguments withrogdtaefault values.

e NamespacesPiccola supports both static and dynamic namespaces, \ahgch
modeled as nested forms.

e Channels: As we have mentioned in section 3.1.2, channels are the oxaith
that agents use to communicate. New channels are creatéeé Ipyiinitive ser-
vice newChannel , which returns a form that gives access to a channel. This
form consists of two services for sending respectivelyixéeg.

e Labels: Piccola has the notion of first-class labels, which provide@syntactic
alternative for form extensionklind ), restriction (estrict ) and projection
(project ). They can also be used to find out whether a form containsaf&pe
label Exists ).

e External components: Piccola represents external components (respectively
their interfaces) as forms. Figure 3.1 shows an externaloRicform that rep-
resents the object 3. All the (public) methods of the objeetraapped to the
corresponding labels of the form. Thus, the external olgantbe considered an
interface or a proxy for the associated object. We will déscthe mechanisms
Piccola uses to provide external objects as Piccola forresdtions 3.3 and 3.4.

3.2.3 Forms vs. Objects

e No self: There is kept no reference to the active form (i.e. the fornengtthe
currently executed service is defined).
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printDate X:
printin X.month + "/* + X.day + "/" + X.year

# Defines a formrepresenting a date

date =
month = "6"
day = 1
year = 2006
printdate date # Prints: "6/1/2006"
# Defines a formrepresenting a date and a tine
dateAndTime =
date
hour = 7
minute = 22 # Prints: "6/1/2006"

printdate dateAndTime

Listing 3.7: Dynamic extension in Piccola

e Immutability: Forms are extensible but immutable data structures. Tisere i
no need for a copy semantics. Altering a form in any way (exjeresion or
restriction) will always yield a new form and leave the oniglione unchanged.

e Prototype-based instantiation: Forms may be built by adding bindings to or
removing bindings from an already existing form. There iseed to specify a
class to instantiate it. This approach is similar to the cgelin prototype-based
object-oriented languages.

e Dynamic extension:Polymorphic extension can be used as a primitive subclass-
ing mechanism. As is the case with traditional subclassinghject-oriented
languages, extended forms are compatible with the origoreds. This means
an extended form can play the role of the original one. Fortaresion is com-
pletely dynamic and directly applies to forms as runtimetiest

The example in listing 3.7 uses a servfmintDate  that prints the date rep-
resented by its argument form. This service expects thargsment provides
at least the bindingsonth , day andyear . First, we invoke the service with
a form that represents a date and contains only the requinechgs. Next, we
extend the form with bindings specifying the time and shoat this still com-
patible with the service.

3.3 Accessing External Components From JPiccola 2

Piccola is originally implemented on top of Java and thislenmentation is appro-
priately called JPiccola. This means the parser and virhadhine are both written
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in Java, whereas other parts (e.g. simple developmentaemaint, small library) are
built in Piccola by using Java components. Piccola is desigo be a composition
language, so using external components is a core princfplPiocola, which conse-
guently influences its implementation.

3.3.1 JPiccola’s Virtual Machine

The JPiccola virtual machine consists of a special paredathe inter-language
bridge, which reflects the fact that Piccola is a composiamiguage. It allows access-
ing external components and their methods from within Ra&zcmstead of providing
a large set of primitives to perform basic system operatiuch as integer arithmetic,
like most virtual machine implementations do; the JPicaatual machine delegates
these operations to external components via the inteukzgpgbridge.

Altogether, the JPiccola virtual machine consists out efftlowing parts:

Interpreter

Runtime data structures (forms)

Primitive services

Inter-language bridge

The interpreter directly operates on the parse trees.dretation of these parse trees
result in forms, which are the only first-class values in Biac Every form is repre-
sented by a Piccola runtime data structure that is an instaha Java class providing
the five basic form operations shown in section 3.2.1.

When a Piccola service is invoked, the interpreter exedinmesiccola code that
is associated with the service. This is not true for all ssrsihowever. Some of
them trigger the execution of a virtual machine primitiveicB primitive services are
typically used by virtual machines to perform basic operatithat cannot be performed
or can only be performed inefficiently without a primitive.uBwhile most virtual
machine implementations provide lots of primitives forttametic operations, arrays
and streams, input/output, storage management, and sggterations, Piccola only
needs the four primitives that are shown in table 3.1.

Every other basic operation of Piccola is delegated to rateromponents that are
accessed through the inter-language bridge. This parteoPtbcola virtual machine
allows passing of runtime entities across the languagedemynnot only from Java to
Piccola but also from Piccola to Java.

INote that the primitive to access external components dizpen the host language. Thus, the name
and the semantics of this service are implementation degpend



CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 23

Primitive Description

run Spawns a new asynchronous agent executing the ser-
vice that is bound to the labdb of its arguments.

newChannel Creates a blocking communication channel.

inspect Inspection is used to find out whether a form contains

bindings, represents a service or is the empty form. If
the form contains bindings, inspection returns an arbi-
trary label that is used within the form.

external Provides access to external componénts

Table 3.1: The Piccola primitives [SchO1].

3.3.2 Bridging between Two Nested Language Models

Because Piccola is implemented on top of Java, we are deaithgtwo nested
language models. The Piccola model one the one hand, whers fare the only
runtime entities. On the other hand there is the Java modayeveverything is an
object. Because Piccola is running in the Java model, eviegoR form is actually
a Java object. Java objects are, however, incompatible tiwtform-based Piccola
model and so they cannot be accessed within Piccola.

Terminology

To discuss this concrete situation at a more abstract lexelyill first define some
terminology. Thedown levelefers to the (object-oriented) implementation language,
in this case Java. The terap leveldenotes the level of the language that is imple-
mented and evaluated by the down level. A more standard nérfe @lown level
is themeta level while the up level is more commonly referred to as tiase level
The down level is assumed to supply some object-like fis¢skntities, which will be
calledobjects The first-class entities of the up level are narfadhs When an object
is passed from the down level to the up level, the object id ®abe passed upwards.
Consequently, a form is passed downwards when it is passadtfre up level to the
down level. The two language models and the terminologyllstiated in 3.2.

Passing objects upwards

The language model of the up level cannot handle the genbjécis of the down
level, so they have to be converted into forms to be of any dsesuch, the inter-
language bridge has to provide an appropriate represantédir every object that
crosses the language boundary upwards. If the passed ébmotady a down level
representation of a form, nothing has to be done and the-lemguage bridge can
simply forward the form.
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Passing Forms
objects
upwards

Up Level \
(Piccola)

Down Level O \

(Java) O Passing
forms
I/ downwards

Objects

Figure 3.2: Nested language models (up level and down IEseh01].

As a result, their exists two different kinds of forms in the level. The simplest
ones are the forms that ae nihilo created within the up level. A form of this kind
might be the empty form or one that is created by binding \&atodabels within Pic-
cola. The other forms are the ones that are automaticalitexey the inter-language
bridge whenever objects are passed upwards. Scharli {$dalls the former kind
plain formsand the latter onexternal forms External forms are actually just up level
representations of down level objects, thus every extdanal has amassociated ob-
ject

Passing forms downwards

Because a form is just an object in the down level's languag@at) a form does not
need to be converted and can be passed downwards as it isuglthhis is what we
want for plain forms, it is often not the expected behaviaisrexternal forms, which
represent down level objects. We want the down level to dpera the associated
object of the external form rather than on the form itself.e Thter-language bridge
thus has to decide which one of the two entities it has to pass d

3.3.3 JPiccola’s Bridging Approach

In this section, we look at the bridging approach that is usedPiccola [Sch01,
ALSNO1].
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Up. Passing Objects from Java to Piccola.

A. If the object already represents a form, it is passed thirée the Piccola lan-
guage.

B. Otherwise, the following happens:

B1l. The object is converted into a form that contains a labekfery public
method of the object’s class, whether it is implemented befited. Each
of these labels is than bound to a service that represestntthod for the
given object. The object servesssf when the service is called.

B2. Forms representing special objects like numbers, bosl@r strings are
extended with additional bindings to make them more apjatpfrom a
Piccola point of view.

The external forms we have discussed before are the ondsai®astefJp.Bof the
inter-language bridge. Note that a form that has been yidigextending or restricting
an external form is no longer regarded as an external form.

Down. Passing Forms from Piccola to Java.

A. Ifthe form is an external one, the associated object isgéslown to Java.

B. Otherwise the form itself (actually, the object reprasenit) is passed down to
Java.

Figure 3.3 illustrates how forms are passed down.

3.3.4 Problems with JPiccola’s Bridging Approach

As we have seen in the previous section, JPiccola’s integtlage bridge does what
it is supposed to do: making external components accedsjblaapping them up as
forms. However, Scharli [Sch01] points out that the emplbgtrategy is still not flexi-
ble enough. The external forms as provided by the bridgescanasny incompatibilities
with Piccola’s core concepts. The problems are coupleddh away that users cannot
work around some of them without running into other ones.

Incoherent Behaviour of External Forms

Because Piccola uses external components even for basatiops, the programmer
should be able to use forms transparently, whether theynégenial or represent such
an external component. This is especially important foeesion. As we have seen
in section 3.2.3, form extension can be used as a very sinupléyimamic subclassing
mechanism in Piccola. This means we can extend a form withbiedings, where
the newly created form remains compatible with the origiaah. This extended form
can play the role of the original one in a way that resemblegalass playing the role
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Figure 3.3: Passing down Piccola forms.

of its base class. Piccola’s semantics assure this is allieysase for a form, provided
it is used inside Piccola.

Unfortunately, this basic Piccola concept does not holdfdoms that are passed
to external services. Once an external form is extendedilinat be considered an
external form anymore and it will behave differently whersged to the down level.
While an external form gets converted into the associatéereal object Down.A,

a plain form is not converted, and the object representiegfdhm is passed to the
down level Down.B. It is not possible for the user to find out whether a certaimf
is external, and as such it is also impossible to know whethtanding the form will
influence the way it is dealt with by the bridge.

The code snippetin listing 3.8 demonstrates this problerst,a servicaewButton ,
which builds an external form representing a button andrelgdt with a service
setText ,is created. Then, we invoke the servicewvButton to create a new button
and set its label with theetText service. Eventually, we want to add the button to
a Java panel, but Piccola does not behave as one might egeaztuse the argument
okButton has been modified, it is not regarded an external form anyname the
inter-language bridge passes the object representingotie (Down.B and not the
associated button objed¢wn.A to the down level.
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# This service creates a new button and extends
# it with an additional interface binding

newButton:
‘button = javaClass("java.awt.Button.).new()
button
setText(S):
button.setLabel(val = "Piccola-Button: " + S)

okButton = newButton()
okButton.setText("Ok")  # Uses interface binding to
# set the label

# XPiccola.piccolaPanel.buttons is a Java panel
# of the Piccola user interface
panel = XPiccola.piccolaPanel.buttons

# Unexpected behaviour! The object representing the
# Piccola form and not the original button object is
# passed down

panel.add(val = okButton)

Listing 3.8: Problems with external Piccola forms [SchO01].

Direct Mapping

When an external component is converted into a Piccola ftrisjs done in a very
direct way. JPiccola maps the method interface of the objtitely onto the resulting
form. Consequently, Piccola almost operates on the leviiehost language. This
leads to a couple of problems:

No separation between the language levels. Most of the components used by
JPiccola are Java objects. Because of the direct bridgiatggly, handling these com-
ponents can quickly become “Java programming within PatoBecause both lan-

guages have very distinct philosophies, this results ire¢bdt does not fit the Piccola
paradigm. Moreover, such code is inherently Java deperadehtannot be used on
other Piccola hosts.

External forms are cluttered with lower level services. Due to the rich object inter-
faces Java usually provides, the corresponding Piccolag@ontain many bindings.
This makes them very complex and contradicts Piccola’opbjphy. Within Piccola,
Java objects are considered components that contain ashaflservices used to plug
them together according to a certain compositional styfeisT most of a Java object’s
public methods should not be visible on the compositionlleve

Hard to use components with incompatible interfaces. Because of the lack of
abstraction for accessing external components, it is nedipte for the programmer to
use components with incompatible interfaces. Insteadretdy using these interfaces,
the bridge should convert them according to the current awmitipnal style.
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Hardcoding

In stepUp.B2 the inter-language bridge adds some special bindinggéorexd forms
representing some of the more commonly used Java objedtoddh this provides a
solution for some of the direct-mapping problems, it is nfieaible solution, because
the extension is hardcoded in the virtual machine. Piccotiesigned to be a general-
purpose composition language, which means it should betahlse it for varying
problem domains. This domains might have very differentinenents on the used
components. When the structure is hardcoded in the virtaghine, it is completely
static, and no changes are possible without substitutiegiire virtual machine.

3.4 JPiccola’s Bridging Approach Revisited

After having analyzed the problems described in the presgaation, Scharli [Sch01]
presents a bridging strategy that adheres more closelyetptiiosophy of Piccola.
This strategy is based on two main concepts:

e Separating the various aspects of external forms.

e Moving the variable part of the inter-language bridge ontz&la’s meta level.

3.4.1 Overview of the Revised Strategy

As in the previous sections, we use the teerternal formto denote a form that
represents an external object within Piccola. All othenfsiare calleglain forms As
a first change to the bridging strategy, Scharli says arreatérm must have a nested
structure consisting out of two parts. The top level partespnts the Piccola interface
of the object and hence is called theerface formor shortlyinterface This form
contains a labebeer , which is bound to a nested form representing the identity of
the external object. This subform is called tieer formor justpeer. Only forms that
satisfy these structural conditions are considered eatédonms. A form with a label
peer thatis notbound to a peer form (i.e. a form representing sareal component),
for example, is not an external form.

To make the inter-language bridge more flexible, it is sejpdranto two parts. The
generic partis situated in Piccola’s virtual machine while tlariable partcan be
found inside Piccola. If an external object is passed up ¢odba, both of these parts
may build an interface for this object. Note that these fatas usually include glue
code. The interfaces built by the generic and the variahiegfdhe bridge are called
thegeneric interfacend thespecific interfacerespectively. Consequently, an external
form created by the generic part of the bridge is namgereeric formand one created
by the variable part is calledspecific form
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3.4.2 lllustration of the Revised Bridging Strategy

Figure 3.4 illustrates the structure of the inter-langulagege and how entities of
both levels are passed across the language boundary. Weedhat the bridge is
divided into two parts. The generic part is implemented mthitual machine, which
is part of the down level while the variable part is situate@iccola’s meta level.

On the left side of figure 3.4 is shown what happens when arcbtijat does not
represent a form is passed upwards. In the generic part ohtdelanguage bridge,
the object is converted to fulfill the requirements for emtdrforms that were set in
section 3.4.1. This external form consists of a generigfate and the peer form that
represents the identity of the object. This form is then @dss the variable part of the
inter-language bridge on Piccola’s meta level. Here, tleege interface gets replaced
by a specific one that can be declared by the programmer. @udting external form
can be used in Piccola. The variable part is not obliged twigeoa specific interface.
It can just pass an external form with a generic interfacdd¢od?a.

In the middle is illustrate how forms are passed downwardsthé first step, the
inter-language bridge picks out the nested form bound tgp#er label if it exists.
In all other cases, it takes the form itself. If the curremt&ndled form is a peer form,
the associated object is passed to the down level, otherthisdorm itself is passed
downwards. Thus, an external form is converted to its aasetiexternal object while
a plain form is passed down as it is.

On the right side, an object that represents a form is pags&drds. This is a trivial
case, and the bridge directly passes the form to Piccola.
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Figure 3.4: The revised inter-language bridge [Sch01].
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Chapter 4

The Pico Programming
Language

Sections 4.1, 4.2, and 4.3 give an overview of the languagse PR prototype-based
extension of Pico, called Pic%, is presented in sectionSedtion 4.5 introduces Sic%,
a Pic% implementation, which is in linguistic symbiosistw@malltalk. A conceptual
linguistic symbiosis model, on which Sic% is based, is dised in 4.6.

4.1 Properties and Purpose of Pico

Pico [MGD99] is a high-level programming language, featgrstrong and dynamic
typing, garbage collected tables (i.e. arrays), highdeofunctions and reflective
meta-programming. But as its name underlines, Pico is aglbvery small.

Pico was originally designed to teach computer scienceamtado students in other
sciences than computer science. Pico can be seen as aiderdfahe Scheme pro-
gramming language, combining the latter’s simple semamtind powerfulness (in the
sense that everything is first class) and the standard infatina students are used to
from ordinary calculus. De Meuter et al. [MDDO04] claim thhéte are indications that
essential programming concepts can be acquired usingPiesd than half the time it
takes using Scheme.

From a research point of view, Pico is an ideal candidate Xtersion. The com-
pactness of its implementation makes it very easy to add xgeramental language
features. It has been used in experiments related to disgdiprogramming [CMO04,
CMM*04], prototype-based inheritance [DMO03], mobility of sedire agents [BFVDO1,
Meu04], language symbiosis [Pee03, Lie05] and actor-bpsagtamming [Ded06].

31
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{
fac(n):
ifn <= 0,
1,
n * fac(n - 1));
display("fac(10) = ", fac(10), eoln)

}

Listing 4.1: A recursive implementation of the factoriahfition in Pico

4.2 Syntax and Semantics

The syntax of Pico is exemplified in listing 4.1, with an implentation of the fac-
torial function in Pico. The first expression defines a fumttalledfac , which takes
one argument. The body of this function contains only oneg&sgion, an application
of theif conditional®. The second expression calls ttae function and prints the
result to the standard output. Although it may seem likehits tode snippet does
not consist out of twastatementsince Pico does not make a distinction between ex-
pressions and statements. All Pico expressions returnue \eadd syntactically, any
expression can be nested in any other.

Pico has a small and easy to remember syntax. A key notioreisntrocation,
which is either a variable, a tabulation or an applicatiamctBan invocation is used in
three modes: reference, definition and assignment. By aunmbthe three invocation
types into the tree modes, nine different Pico expressipagyare constructed, as is
shown in the simple 3 by 3 grid in figure 4.1. Some of Pico’s laage extensions have
added additional operators. Version two of the Pico languégy example, defines a
dictionary qualification operator.

Animportant property Pico shares with Scheme is that it bothomoiconidMcl60]
programming languages. This means the primary repregamtafta program, is also
a data structure in a primitive type of the language itsetfhe®ne programs are rep-
resented aBists, whereas Pico useablesfor this purpose. Compiled languages like
C++ and Java usually lack this property since their prognaest are compiled and
translated to machine code. Because of this feature, catlelaa can be treated in
exactly the same way and this lies at the basis for reflectidtico.

4.3 Lazy Evaluation through Call-by-Function

The majority of programming languages differentiate betmverdinary expressions
and special forms. Tasks like defining a new variable or agsiga new value to one
are usually taken care of by special forms. For example, iBehmakes a difference

INote that thef conditional is syntactically expressed as a function. Alslvé shown in section 4.3,
this is also the case semantically.
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variable tabulation application
X tlil f(1, x)
variable table function reference
reference indexing call
x: 123 t[10]: 123 fix): x*x

variable table function definition
definition definition definition

o= 89| t[10]:= 321 fix):= x+x

variable table function assignment

assignment modification redefinition

Figure 4.1: The Pico semantic grid [MGD99].

betweenprocedure callsand special forms Whereas procedure calls are evaluated
using applicative-order evaluatiSnScheme does something special for special forms.
Consider for example thié control construct(if (< 1 2) x y) . Scheme will
evaluate the first argument passedfta Depending on the returned value, either the
second or the third argument will be evaluated while therahe remains unevaluated.

Contrary to Scheme, Pico does not require special formsivEigmt expressions are
in Pico defined as functions. This is possible because itibbsmrparameter binding
semantics than Scheme. When a function is defined, a formairgder can be spec-
ified as an invocation. If the parameter is specified as agréey, it will be bound by
value at application time (i.ecall-by-valug; but if it is specified as an application,
we will have an extension afall-by-namewhich is calledcall-by-functiofMDDO4].
Listing 4.2 contains an example: the functiomaps behaves like its Scheme counter-
part. In this example the call-by-value paramesdie will be bound to the value
of [1, 2, 3, 4, 5] while the call-by-function parametéunnc(val) will be
bound to the expressioral *val . This means that during the applicationroép, a
local variablefunc  will be bound to a closure consisting of the parametefliat)
the bodyval *val and the calling environment ofiap®.

Even boolean arithmetic in Pico is implemented in Pico ftasing this lazy eval-
uation mechanism. The code in listing 4.3 implementstthe , false andif
functions. As can be seen in this code snippet, Pico’s boddgstem is based on the
famousChurch booleanswhich were first introduced in Alonzo Churchiscalculus
[Chu41]. Although slightly adapted for imperative langaagthe idea remains the
same: to define booleans as functions that choose betweeasptioms supplied as ar-
guments. Théf implementation takes advantage of this model by passirthéis
andelse branches to the Church boolean representindgftheondition. Since only

2Languages using applicative-order evaluation evaluatepamator and all of its supplied arguments
before executing the operation.
SNote thatval has dynamic scope
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map(func(val), table):
{
result[size(table)]: void;
for(i: 1, i <= size(table), i:= i + 1,
resultfi]:= func(table[i]));
result

h

"Prints [1, 4, 9, 16, 25]°
display(map(val * val, [1, 2, 3, 4, 5)]))

}

Listing 4.2: Example of call-by-function in Pico

{
true(yes(), no()): yes();
false(yes(), no()): no();
if(cond, then(), else()): cond(then(), else())

}

Listing 4.3: Boolean arithmetic in Pico

one of the branches has to be evaluated, they have to be passtakzy way instead

of as an evaluated value. As we have already seen, this cachib®/ed in Pico by

declaring the parameter functional (i.e. by using (hesyntax after the parameter
name). This is a very elegant solution to a problem normallyesi by wrapping code

in lambdaexpressions (Lisp, Scheme) blocks(Smalltalk). What is more, the user
need not to perform the wrapping at the calling level sineel#éiziness of evaluation
is already specified at the definition level. This leads to a&mcleaner syntax and
semantics.

Consider the implementation of a Piadiile iterator shown in listing 4.4 as a last
example of call-by-function parameter binding.

4.4 Pic%: Adding OO to Pico

Pic% [DMO3] is the object-oriented extension of the Picogreanming language. It
is a prototype-based language, based on Agora [Ste94].
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while(predicate(), expression()):

loop(value, boolean):
boolean(loop(expression(), predicate()), value);
loop(void, predicate())

}

Listing 4.4: A while iterator in Pico

variable variable variable
env
value value value

17777

Figure 4.2: A simple environment layout.

4.4.1 A Simple Object Model

Object-orientation in Pic% is obtained by lettifigst-class dictionariesa feature
which is already present in Pico, act as objects. Pico usssttictionaries to store
variable bindings into. A typical implementation would argze them as linked lists,
as is graphically illustrated in figure 4.2. The only thingtimeeds to be added is a
native functioncapture that returns the current environment as a first-class value.

Listing 4.5 shows how an object definition in Pic% might lodkel An expression
like c: Counter(0) will now define a variable, bound to a counter object with
attributen initialized to zero and two methodscr anddecr , which change the
state of the object. These will be stored in the closure thetéated when the function
Counter is applied.

Scheme users may notice the similarity with the object systeesented by Abelson
and Sussman [ASS96]. The only difference is the absencelispatch  function.

Counter(n): {
incr(): ni=n + 1;
decr(): n:= n - 1;
capture()

}

Listing 4.5: A simple object definition in Pic%.
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(define (make-counter n)
(define (incr)
(set! n (+ n 1))
(define (decr)
(setl n (- n 1))
(define (value)
n)
(define (dispatch msg)
(cond
((eq? msg ’incr) incr)
((eq? msg ’'decr) decr)
((eq? msg ’value) value)
(else
(error "Message " msg " not understood."))))
dispatch)

Listing 4.6: A analogous object definition in Scheme [ASS96]

‘ invocation of a method in a dictionary *
object.aMethod(10, 100);

‘ variable reference in a dictionary *
object.attribute;

‘ table indexing in a dictionary *
object.collection[2]

}

Listing 4.7: Message sending in Pic% by means of Pico diatpqualifiers.

In an environment-based object model, such a functionmetan appropriate function
when a message is sent to an object, as can be seen in ligsingeheme needs this
dispatch  function because it does not support first-class dicti@sari

Since dictionaries act as objects, the dictionary quatiicaoperator serves as a
message sending mechanism in Pic%. A qualification instnu@valuates an invo-
cation (variable reference, table indexing or functionlegagion, see section 4.2) in
the given dictionary object. To follow the fashion of popudject-oriented languages
like C++, Java and Python, Pic% uses the dot-operator syotexpress qualification.
For a few examples, take a look at listing 4.7.

This simple object model, however, has a notable disadgan#&hen aonstructor
function like Counter creates a new object, this object will have bindings for its
instance variables, as well as for all the methods assacweité it. Thus, the method
bindings are duplicated in each instance. Figure 4.3 itis$ this code duplication
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Figure 4.3: Object state duplication with the simple objaodel [Lie05].

graphically.

4.4.2 A More Advanced Object Model

The problem of method entry duplication is solved in Pico%uking aprototype-
basedmodel. In such a model, some objects contain method entrieéks, other objects
contain a reference to the object holding those methodemntiithe object containing
the entries is called a prototype. The reference to the tyjeois typically called
the delegation linkor parentlink [Lie86]. In some languages, it is the responsibility
of the programmer to create this link, but in most languabpesreference is created
automatically through a process calleldning, a reuse mechanism comparable with
instance creation in class-based languages. The clonatopereates a new object,
and copies the attributes of the prototype into this newaibjelowever, as we have
seen in the previous section, not all of them need to be co@ede should remain
shared with the prototype, so prototype-based languagésisie this approach need a
mechanism to distinguish between the two types of bindings.

Pic% achieves this by differentiating betwedsrclarationanddefinitionfor binding
variables in a dictionary. The semantics of the definitiorrapor fame:value ) is
not altered; just as in Pico it adds a mutable key-value bipdd the current envi-
ronment dictionary. Dictionaries, however, are organidétkrently in this model.
Pic% dictionaries consist of @ariable and aconstantpart. As their names point
out, variable entries can be altered, whereas constan¢emtre immutable. Adding
an entry to the constant part of a dictionary is done by udiegdeclaration opera-
tor (name::value ). When a dictionary object is cloned, its variable part isplg
copied, whereas the constant part is linked using a referélrfte result of this cloning
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clone(env)

Figure 4.4: Cloning Pic% objects [DMO03].

process is illustrated in figure 4.4. To handle this changdidtionary structure, the
clone native is introduced.

To allow for object state encapsulation, Pic% also restricessage sends to vari-
ables and methods that are declared, as opposed to defimsdaltbning declara-
tion with public visibility. Aside from the zero argumentorie operator, a second
clone(object) is provided, to clone an arbitrary given object.

In the model described above, the constant part of a diayooantains function
closures, which are bound to the object that they are definethus, when an object is
cloned, these constant functions should be bound to the cRebinding the closures,
however, would require a deep copy of the constants, and wéhemce again have no
code sharing. Pic% solves this problem by removing the &Xmdings of functions
to their defining environment. An environment, upon recaptf a message, will
activate the function bound to that message with respedsédf i.e. self ). In the
case of a self-send (i.e. the absence of an explicit redeiself will be bound to
the current environment. Hence, Pic% udgsamic scopin@n contrast with thestatic
scopingof Pico.

4.4.3 Object inheritance

Inheritance in Pic% is introduced by using nesteidin methodsTo see what mixin
methods, sometimes calledodular inheritanceare, consider the example in listing
4.8.

The code snippet defines a typistdckdata structure. The parametespecifies the
maximum size of the stack, the variafieholds the stack’s contents, and the variable
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Stack(n):
{
T[n]: void;
t. 0;
empty():: t = 0O;
full):: t = n;
push(x):: T[t=t + 1]:= x;
pop()::
{
x: T[t];
t=1t - 1;
X
I3
makeProtected()::
{
push(x)::
if(full(),
error("overflow"),
-push(x));
pop()::
iflempty(),
error("underflow"),
.pop());
clone()
}.

clo'ne()

}

Listing 4.8: Inheritance in Pic% through nested scopes.
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t keeps track of the top index. The semantics of the metleousty , full , push
andpop should be obvious. At the end 8tack s body, theclone native is called
to return the object.

The stack definition also contains a mixin metmoakeProtected . WhenmakeProtected
is called, a new environment will be created, extending theksobject it is called
from. The declarations withimakeProtected  will extend the stack object with
new bindings forpush andpop, thusoverriding their implementations. At the end
of the definition ofmakeProtected , clone returns a new protected stack object.
Super sends are also possible, by usingriessage()  syntax, which starts method
lookup in the parent object.

4.5 Sic%

Sic% [Gyb04] is a Smalltalk implementation of the Pic% laage. As such, it im-
plements all the properties of Pic% we have discussed in tiiqus sections. An
additional feature of Sic% is its linguistic symbiosis witte underlying Smalltalk sys-
tem, which allows Pic% and Smalltalk objects to seamlesstgl®ach other messages.
We will discuss the conceptual model for linguistic symidam which Sic% is based
in the next section.

4.6 A Conceptual Model for Linguistic Symbiosis

As we have seen in section 3.3, it is sometimes necessaryifferetit computer
languages to interact and establish some inter-languagencaication. There exist
different techniques to accomplish this; some are bidiveat while others work in
only one direction. In all techniques, however, a mutuamnhto make the interoper-
ability between the languagestaansparentas possible, can be identified. If this need
for transparency becomes a key concern, the participatinguages can become so
closely entangled that they engage isyanbioticrelationship [Lie05].

The termlinguistic symbiosisvas originally defined by Ichisugi et al. in the work
on RbCl [IMY92], a concurrent programming language that engages sgmbiotic
relationship with its implementation language. This cqiosas further refined by
Steyaert [Ste94].

4.6.1 Overview of the Model

Gybels et al. [GWDDO06] define linguistic symbiosis betwe&n tanguages as fol-
lows:

Two languages are in linguistic symbiosis when they cansparently
exchange data and invoke each other’s behaviour.
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Language A Language B

Meta
of B

Meta
of A

Figure 4.5: Conceptual overview of linguistic symbiosisixen two languages A and
B, showing both base and meta levels [GWDDO06].

This means that through linguistic symbiosis (see figurg d&a of one language can
be represented in the other, and behaviour specified in omgridae can be invoked
from the other. They propose a model to achieve linguistiolsgsis, consisting of
two elements, aata mappingand aprotocol mappinghat is needed between the two
languages:

Data mapping. The process of passing data between programs written ierelift
languages should be as transparent as possible. Theref@important that data of
language B, when passed to language A is, syntacticallkspganot distinguishable
from native data of language A. Thus, from within a languagdould be possible to
apply operations on such passed data as if it was native Haiarequires a translation
of these operations to the language from where the data veasga

Protocol mapping. Making the data of language B accessible for programs writte
in language A is accomplished by making it possible for theammepresentations of
that data to be passed between the interpreters of the lgagu&ince the meta repre-
sentations of both languages will usually understand iffeprotocols, it is necessary
to make the passed meta representations understand thepeetdions of the inter-
preter they are passed to. The data mapping at the syntewticthus actually boils
down to a protocol mapping at the language implementatieel.le

This linguistic symbiosis model is mere a conceptual fraorévthat needs to be
instantiated. It does not say how protocol mappings for oeteclanguages can be
established; to show how this might be accomplished, we disituss the data and
protocol mapping for a concrete case.

4.6.2 Linguistic symbiosis between Pico% and Smalltalk

For Pic% and Smalltalk to participate in a symbiotic arattitiee, there should exist
transparent ways for exchanging data and invoking behavaaaording to the defini-
tion of linguistic symbiosis. Exchanging data means it $tidne possible to pass Pic%
objects to Smalltalk and the other way around to pass Srkafitgiects to Pic%. It
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Smalltalk defineClass: #NeonSign
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames:
classinstanceVariableNames:
imports: "
category: "

”

NeonSign>>receiveAdvertisement: ad
Transcript show: (ad getText)

Listing 4.9: A Smalltalk implementation ofl[deonSign component.

{
sign: NeonSign.new();
MakeAd():
{ getText():: "lieven";
clone()
2

anAd: MakeAd();
sign.receiveAdvertisement’(anAd)

}

Listing 4.10: Example of the language symbiosis betweenli&atieand Pic%
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should also be possible to send messages to Pic% objectsafithin Smalltalk and
to send messages to Smalltalk objects from within Pic% tefgahe requirement of
the definition concerning behaviour invocation. These @sses should be transparent:
within Pic%, a Smalltalk object should appear as a Pic% abjet can be sent mes-
sages in the same way native Pic% objects can be sent mestagesame should be

true for Pic% objects in Smalltalk programs.

An example

Listing 4.10 shows an example of a Pic% program that usesibtig symbiosis with

Smalltalk, using the Smalltalk class shown in listing 4.9:

e The first expression defines a variaBign to hold a newly created instance
of the Smalltalk clasdNeonSign : the referenceNeonSign will return the

Smalltalk class as a Pic% object to which the messeyeis sent.
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e The second expression defines a funcfiteke Ad which can be called to pro-
duce an object with only one methogktText

e The third expression defines a variabl®Ad to hold an instance of a new Pic%
object.

e The last expression sends the messageiveAdvertisement to the sign
with the Pic% object as argument. Since #ign variable contains a Smalltalk
object, the message and its argument are passed to Smaltalth means a
Pic% object is passed to Smalltalk.

Data Mapping

Accessing Smalltalk objects from Pic%. Smalltalk classes are accessible from
within Pic% asregular Pic% objects. To create new instances, the constructors are
invoked through Pic% methods. Listing 4.10 shows how a Salkltlass is accessed
from Pic%. When the name of a Smalltalk class is used as aerafer the variable
lookup will return this class as a Pic% object. New instargag@sthen be created by
using Pic% messages likeew() . Smalltalk objects can also appear in Pic% if they
are passed as arguments to messages to Pic% objects.

Passing Pic% objects to Smalltalk. The only possibility for Pic% objects to wind
up in Smalltalk is when they are used as arguments in messa@msalltalk objects
from within Pic%. In the last expression of the code of ligtih.10, the message
receiveAdvertisement ~() is sent to the Smalltalk objed¢deonSign , with
the Pic% objecanAd as argument.

4.6.3 Linguistic Symbiosis at the Meta Level

As we have already explained in section 4.6.1, linguistiolsipsis provides a data
mapping at the base level which is implemented as a protoaeplping at the meta
level. The interpreters of the languages should be ablethagsmeta representations
to each other, and apply their own meta operations on metageptations coming
from another interpreter. This means the protocols of tfferéint representations have
to be mapped to each other. This is graphically illustratefigiure 4.6: the meta level
contains the meta representations of data of language Asmgidge B, and on this
meta level, the protocol differences of these represemsitire to be resolved.

We will now show how this is accomplished in Pic% and Smaltathe choice of
the meta language in which this interpreter are written dbesally matter for showing
how the protocol mapping at the meta level works. We will hegreshow, in the next
section, how the conceptual model explained here is uséetiadtual implementation.
In that case one of the two languages is implemented in ther otte and there is no
clear separation between the meta level and base levele@dykhow the difference
in how the mappings occur then, we already use one of the ta®lbaaguages, namely
Smalltalk, on the meta level as well. The important poinehisrthat there is a clear
separation of the base and meta levels, and that a commaregegs used on the meta
level for the two base level languages.
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Language A Language B <> Data Mapping
41p 4---p» Protocol Mapping
|_I—_| L—F' O—10 Representation
&' |J_-| Relationship
|
G-
Meta | Meta
of A : of B

Figure 4.6: Linguistic symbiosis between two languages A Brat the meta level:
A and B have meta-level representations that have diffgyastbcols that need to be
bridged [GWDDO06].

On the meta level, there are two interpreters, one for Picélocare for Smalltalk.
As we have assumed Smalltalk to be the meta level languaghddamplementation
of these interpreters as well, these interpreters areenrds a number of cooperating
objects of different classes. Two important classes arertles that implement the base
level objects themselves: a claSmalltalkObject and a clas®icooObject
Instances of these classes are thus meta level objectefitasent base level objects.

Each of the two classes of meta objects understands a fainijas protocol that
implements the message sending of the base level. BuotalltalkObject and
PicooObject  have methods that are the implementations of base levelagess
sending. Of course, this protocol is similar but not engitek same: the clagmalltalkObject
supports the meta operatisendSelector:  withArguments: while the class
PicooObject  supports the meta operatiseandMessage:withArguments: 4,

As is shown in figure 4.7, the data mapping of the base levebeasplit inleft and
right relationships which allow base language data of one largyta@ppear in the
other language. On the meta level, there are meta repréisasttor this base data, and
theleft andright relationships of the base level require equivalent prdtmapping re-
lationships at the meta level. A clean equivalent relatigmand way of implementing
the symbiosis is to introduce wrapper classes that takeotanapping the protocol dif-
ferences: in the case of Pic% and Smalltalk, a ckmalltalkWrappedPicooObject

and a clas®ic%WrappedSmalltalkObject can be introduced. Instances of
these classes repectively wrap aroufd@oObject  instance and support ti&malltalkObject
protocol, or wrap around@malltalkObject instance and support tiécooObject

protocol. So for example in the figure, the base level Snikltiaject labeled1) is
represented by the meta object label2fland appears in Pic% as a Pic% objt
which is implemented asRic%WrappedSmalltalkObject wrapper around the
SmalltalkObject instance(2). One desirable property of theft andright rela-
tionships is that they cancel each other out: applyingitite relationship to a wrapped
meta object produced by theft relationship should yield the original meta object, and

4There is not really a protocol difference here, but the chift names will suffice to explain the concept
of the model and how the mappings should be specified.
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Figure 4.7: Linguistic symbiosis in more detail, focusingtbe left and right appear-
ance relationships and their equivalent relationshipsiemieta level [GWDDOE].

vice versa.

The protocol mappings used on the meta level between Pic%saralltalk meta
objects should have the following effect on the base levehfessages between Pic%
and Smalltalk objects:

Sending messages from Pic% to Smalltalk objects. In Pic% variables, Smalltalk
objects appear as regular Pic% objects, and can be sentgaesaahe same way as
other Pic% objects. For this to work, a mapping is neededrttegis messages sent
to Smalltalk objects in Pic% to Smalltalk messages, takimig account the different
syntax used for messages in the two languages. Smalltakages consist of multiple
keywords, whereas Pic% messages consist of a single nanféic#nmessage is thus
constructed from a Smalltalk message by concatenatingehededs. This is normally
done in Smalltalk by appending colons to each keyword. Fstairce, the message
at: index put: value is represented bgt:put: . It is however impossi-
ble to use this symbol as a message qualifier in Pic%, bechegatser cannot handle
colons in symbols, as the colon is reserved for definitionaAsplacement character,
the tilde character~) is adopted. As such the Smalltalk messdgéa at: 10

put: ’lieven’ is translated into Pic% afata.at put (10, "lieven")

The same mapping is used for invoking constructors on cdasse

Sending messages from Smalltalk to Pic% objects. When contained in Smalltalk
variables, Pic% objects can be sent messages to by Smalligkts in the same way
as the latter would send messages to other Smalltalk obje&malltalk message sent
to a Pic% object is constructed from a Pic% message in thesewegay as described
above.

A critical point in the mappings performed by the protocodppers is to ensure that
the appropriate left and right relationships are applieémimapping arguments from
one protocol to the other. WhenSmalltalkWrappedPicooObject maps a
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receiversendSelectorfname
withArguments:{argumentl, argument2, ... argumehtn

right[resulf

0

left[receivel sendMessagetname
withArguments:{leftfargument], leftfargument2, ...
leftfargumentih}

result

Figure 4.8: Semi-formal description of meta operation niaggrom Smalltalk to
Pic%

SmalltalksendSelector:withArguments: operation to the PictendMessage:withArguments:
operation, the arguments involved in the message send aadit&knmeta objects

which also need to be converted to Pic% ones. Thus, the mgdpime by this wrapper

semi-formally comes down to what is shown in figure 4.8.

The rule simply describes the same protocol mapping salditiosending Smalltalk
messages to Pic% objects as described above, but illsttaepoint of needing to
convert the receiver and arguments to Pic% objects. Applthe left relationship on
the receiver, which is in this case tBenalltalk WrappedPicooObject wrapper,
simply results in the unwrapped Pic% meta object. SimildaHg left relationship ap-
plied to the arguments either wraps them or unwraps thengrabpg on whether they
were wrapped Pic% meta objects produced by the right reistip, or plain Smalltalk
meta objects in the first place. As also illustrated, theltefthe mapped message
also needs to be mapped back usingrifglet relationship to turn in from a Pic% object
into a Smalltalk object.

The converse rule for mapping Pic% messages to Smalltalkages is very similar
and can be without further explanation as illustrated inrigL9. Note that this rule
is easily derived from the rule above using the fact thatefteandright relationships
cancel each other out (i.& ft[right[x]] = ).

4.6.4 Actual Implementation

The conceptual model for linguistic symbiosis explainedhia previous section is
readily applicable to actual implementation schemes wtheréwo languages in sym-
biosis are implemented as interpreters in a third commorementation language.
There is however a differing scheme possible, namely thatrtterpreter of one lan-
guage is written in the other language, and that a lingugstinbiosis is defined be-
tween the first language and its implementation languaderahan with a language
that is also implemented in that implementation languagehis section we will ex-
plain how to conceptual model maps to this scheme.
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receiversendMessagéiname
withArguments:{argumentl, argument2, ... argumehtn

left[resulf

0

right[receivelt sendSelectorfname
withArguments:{rightfargument], rightfargument2, ...
rightfargumenth}

result

Figure 4.9: Semi-formal description of meta operation niagprom Pic% to
Smalltalk

Language A

Language B

Meta
of A

Figure 4.10: Implementation of language symbiosis [GWDPO06

This scheme essentially means that the meta level of onadayegs made to overlap
the base level of the other language. As is illustrated inréigull, the interpreter for
the one language is written in the other language, and theiinterpreter for the other
language at this level. One reason for this variation of thatractice it is typically
easier to implement a new language in the one with which itkhbe in linguistic
symbiosis, rather than in a common language, or that suchnpleinentation already
exists. Note that while we already used one of the base |g@guas meta language as
well in the explanation of the conceptual model, we still madlistinction between the
meta level and the base level. The variation we are refetvihgre is that, as illustrated
in figure 4.11, the meta representations of one languagés Rithe figure - exist one
the same level as the values of the other language. Thistieviaf the conceptual
model has an effect on how the linguistic symbiosis is attuaiplemented , as we
will discuss in more detail in the remainder of this section.
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Figure 4.11: Folding of language symbiosis in the actuallémgntation of Pic% in
Smalltalk [GWDDO06].

Linguistic Symbiosis Implementation

One effect of the overlap is that thight relationship maps a Pic% valwairectly
to a wrapper. Contrast this with the pure conceptual modégafe 4.7, where the
right relationship allows a Pic% value to appear in Smalltalk, #isl appearance is
implemented as a wrapper around the meta object repregehtrnvalue. Here, the
right relationship maps directly to the wrapper. Furthermoris, Wrapper is a base
level Smalltalk object, rather than a meta level object ghépure conceptual model.
Thus the wrapper translateselevel Smalltalk messages tonetaoperations on the
Pic% meta object.

The important point to note about this difference in how tregpings work is that
the mappings in the conceptual model more clearly show tbtopol difference that
is being solved. This is the reason for clearly separatipgbthse level and meta level
in the conceptual model. Because in the actual implememtatirappers map be-
tween base level and meta level operations, this differeno® longer as obvious.
The mapping performed by thigght wrappers in the actual implementation for Pic%
and Smalltalk is for example the one given in figure 4.12. Nagain that thébase
level Smalltalkmessage with nanmame: is mapped to the Pic% meta operation

sendMessage:withArguments: , While previously it was the Smalltatketaop-
erationsendSelector:withArguments: that was mapped to the Pic% meta
operation.

The left operation is similarly affected. Making a Smalltalk obje@pear in Pic%
for example involves wrapping the Smalltalk object in a wrapthat maps the Pic%
meta protocol to the Smalltalk base level, instead of asarctinceptual model where
it maps it to the Smalltalk meta protocol.



CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 49

receivername:{argumentl, argument2, ... argumehtn

right[resulf

)

left[receivel sendMessagetname
withArguments:{leftfargument], leftfargument2, ...
leftfargumentih}

result

Figure 4.12: Semi-formal description of base and meta lepelration mapping in
actual implementations with overlap of base and meta levels



Chapter 5

Pic% as a Scripting Language

In chapter 3, we discussed Piccola, a programming langusigecilly designed
for adapting and composing software components writteriierdanguages. Despite
software composition being the language’s primary purpttese are a few potential
pitfalls, which might introduce unexpected behaviour @dé¢o malfunctioning com-
positions. We will discuss these problems and the situatiomhich they might occur
in the following sections. Comparable experiments as ttieetecause trouble when us-
ing Piccola are performed using Pic%, the small, prototyased language, which we
have discussed in chapter 4. More particularly, we will us&introduced in section
4.5, because it has a symbiotic relationship with the ugteglSmalltalk system.

Piccola was originally implemented in Java, but we will use same Smalltalk
components for the Piccola experiments as for their Pic%ieoparts. This is not
a problem, since there exists a Smalltalk implementatioRio€ola as well, called
SPiccola, which can access external Smalltalk componesiisad of Java ones.

5.1 Piccola Black-Box Problem

As we have seen in section 3.4, a Piccola form representirext@mnal component
has a nested structure consisting of two parts. The top parerepresents the Piccola
interface of the object. This form contains a lapekr , which is bound to a nested
form representing the identity of the external object.

The programmer can declare and implement a specific ineifeleiccola, in which
thepeer label can be used to send messages to the peer form and a® shetek-
ternal component This glue code is thus actually nothingentioan a simple wrapper
around the external component. Such a wrappermassage forwardinglso known
asconsultatiofKRC91], to interact with the object it wraps. Since mostiuwé tom-
ponents used in Piccola are exteroajects it is possible to run into the so called
self-probleniLie86].

50
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In inheritance systems, the pseudo-variadgf is automatically bound to the re-
ceiver of a message when the code of the method associatethattmessage is ex-
ecuted. During method lookup, the self variable is not relsbwhen going from a
class to its superclass. As such, self sends that occur ihaggtimplemented in su-
perclasses will go to the initial object. When a user sendessage, however, self is
always rebound.

To see why this can lead to problems, consider the SmalltabsesButton and
Juggler shown in listing 5.1. The purpose ofButton object is to attach another
object to it, which theButton object will notify when it gets clicked. Attaching
an object is possible by using the methatthch: , which assigns its argument to
Button ’s instance variablattachedObject . Since theButton class is a sub-
class ofUl.ApplicationModel , it has to specify a method that will be invoked
when a displayed instance gets clicked. Theh method is implemented for this
purpose. This method just forwards the mesgaggh to the attached object held by
theattachedObject variable.

TheJduggler class contains three methodgrtJuggling ,stopJuggling
anddropBall . To keep it clear and simple, their implementations onlyiaistring
to theTranscript . Note thatdropBall  contains a self send.

We want to attach an instance of theggler class to @Button object such that
every time the button is clicked, the juggler receives eithe messagstartjuggling
or the messagstopJuggling , depending on which one of these it received last
[Van04]. Merely passing th&uggler instance as an argumenBatton 's attach:
method will cause problems because fuggler class does not contain a method
calledpush . Furthermore, if the juggler receivestrtuggling or stopJuggling
message, it will execute the implementations of these rgessalectors even if the jug-
gler respectively has already started juggling or is nogiung). We thus want to adapt
a Juggler object such that it keeps track of the fact whether it is juggbr not,
and contains a push method that invokes eithesthgJuggling method or the
stopJuggling method according to the current state.

The Piccola code shown in listing 5.2 shows how a specifiafate is declared.
The wrapJuggler service will receive the generic form @édiy the inter-language
bridge as an argument. Note that we extend this generic fatmtive specific in-
terface form, so all the labels of the generic interface #vatnot overridden by the
specific interface can still be projected on. After registgthe wrapper service, every
Juggler component instance that is passed from Smalltalk to Pideadaapted to
contain the servicegush andalterState . The wrapper also adds the local label
state , which contains a variable that will alternately be boundrtee or false de-
pending on whether the juggler is juggling or not. The bigdistartJuggling
and stopJuggling override the equally labeled services of the generic iaterf
They first update the juggler’s state and then invoke thereateomponent’s methods
with the same name through the peer form.

Now suppose thstartJuggling service of the form contained by theggler
label has been invoked. The servitmpBall  of the generic interface was not over-
ridden, so when this service gets invoked, the mesdagigBall ~ will be forwarded
to the external component. As can be seen in listing 5.1,xbewion of the appropri-
ate method in the Smalltalk class will senstapJuggling message to the external
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Smalltalk defineClass: #Button
superclass: #{Ul.ApplicationModel}
indexedType: #none
private: false
instanceVariableNames: ’attachedObject’
classinstanceVariableNames: ”
imports: "
category: "

Button>>attach: anObject
attachedObject := anObject
Button>>push
attachedObject push

Smalltalk defineClass: #Juggler
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames:
classinstanceVariableNames: "
imports: "
category: "

Juggler>>startJuggling

Transcript show: 'Started juggling’
Juggler>>stopJuggling

Transcript show: 'Stopped juggling’
Juggler>>dropBall

Transcript show: 'Dropped my ball'.

self stopJuggling

Listing 5.1: Implementation of Smalltalk class@stton andJuggler

object itself. Consequently, tretate variable in the glue code will not reflect the
real state of the juggler any longer.

We can adapt the Smalltalkuggler component of listing 5.1 in a similar way
using Pic%, as is illustrated in listing 5.3. The native fiimic extend , introduced
by Lievens [Lie05], returns a new object that is an extensiba given object, ex-
tended with the code given as a second parameter, thus lbbasicéng as a mixin
[BC90]. As we have discussed in section 4.4.2, Pic% use®iyme-based delega-
tion as a reuse mechanism. As a consequence, the extendesd whbi delegate to
the Smalltalk object. Due to the late binding of selffrapBall message sent to the
jugglerToggle object will invoke thestopJuggling method ofugglerToggle
instead of the one of the external object. The differencevéen the Piccola mecha-
nism and the Pic% mechanism is illustrated in figure 5.1. hioiwever not possible to
let these adaptations be carried out automatically wheolfext passes the language
barrier.
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wrapJuggler Juggler:
'state = newVar()
‘state.set(false)
alterState:
state.set(state.get().not())
startJuggling:
alterState()
peer.startJuggling()
stopJuggling:
alterState()
peer.stopJuggling()
push:
if state.get()
then: stopJuggling()
else: startJuggling()

registerWrapper "Smalltalk.Juggler" wrapJuggler
juggler = Host.class("Smalltalk.Juggler").new()

button = Host.class("Smalltalk.Button").new()
button.add(juggler)

Listing 5.2: Adapting and plugging together external comgras in Piccola.

self send

T,
e N,
N,

Consultation (Piccola) y; \

7, v
L

message
Consultant F——---3 g -> Consultee

Delegation (Pic%) " e

Delegator  |----7= > Delegatee

Figure 5.1: Self-sending semantics in Piccola and Pic%.

5.2 Piccola’s Bridging Strategy vs. Linguistic Symbio-
sis Model

The bridging strategy used in Piccola is conceptually simib the linguistic sym-
biosis model. Programs written in Piccola should be ablet@ss components written
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{
juggler: Juggler.new();

jugglerToggle: extend(juggler,
{ state: false;
push():: {
if(state, stopJuggling(), startJuggling())
h

alterState():: { state:= not(state) };
startJuggling():: if(not(state),
{ alterState();
.startJuggling() },
false);
stopJuggling():: if(state),
{ alterState();
.stopJuggling() },
false);
clone()

b

button: Button.new();
button.add"(jugglerToggle)

}

Listing 5.3: Component adaptation and composition usieg®i

in Smalltalk. There still are, however, a few problems witle tevised bridging ap-
proach we have seen in section 3.4. These problems do natwbem implementing
linguistic symbiosis as proposed by the conceptual modsudised in the previous
chapter. We will therefore, in this section, compare Piasointer-language bridge
with the model, and analyze what is wrong with the Piccolarapph. These are not
mere theoretical problems, since they affect the way adagimponents can be used
or plugged together.

The Piccola bridging strategy and the linguistic symbiaszdel utilize different
terms for the processes of passing data of one language thearianguage: thap
anddownoperations we have discussed in section 3.3 are respgatiyeivalent to the
left andright operations of the linguistic symbiosis model.

Piccola has a symbiotic relationship with the language inctviit is implemented,
and as such we should compare it with the variation of the eptual model, which
we have described in section 4.6.4.



CHAPTER 5. PIC% AS A SCRIPTING LANGUAGE 55

Piccola 4+—» Smalltalk l:' B ) dat
ase language data

I__J\ @ Meta representation

s 71— Representation
right > relationship

~

b ~--p  Data Mapping

...... $ Protocol Mapping

Figure 5.2: Passing a plain Piccola form to Smalltalk in litstic symbiosis terms.

5.2.1 Passing Plain Forms to Smalltalk

Plain Piccola forms are forms that do not represent an exteamponent, and were
created inside Piccola. The process of passing down sustsftir Smalltalk is speci-
fied in the revised bridging strategy as “a plain form is pdsk®mvn as itis”. In terms of
the linguistic symbiosis model, “as is” means that when thaffis passed to Smalltalk,
its meta representation will be used on this level. Thiséppically illustrated in figure
5.2. Contrast this with the linguistic symbiosis betweetPPand Smalltalk as shown
in figure 4.11.

To understand why this can be a major problem, consider ppsatof Piccola code
shown in listing 5.4. A Piccola formerson is defined with the local lab&lame and
the servicgetName, which returns the value bound to the lahame. The Smalltalk
classVisitingCardMaker is instantiated and the servipeintCard  is invoked
with theperson form as argument. Because no specific interface is specdieithé
external form, the message will be forwarded to the extesb@ct. This means the
argument form will be passed to Smalltalk. Now suppose therpal object’s imple-
mentation ofprintCard  sends thegetName message to its argument, in this case
theperson form. While this would work in Pic%, which is based on the ligfic
symbiosis model, it does not have the expected behaviolucaoR.

When theperson form is passed to Smalltalk, it winds up there as its meta rep-
resentation. This representation can receive Piccola opeations but can neither
understand the Smalltalk messagetName nor map this message to tigetName
Piccola service.

This problem arises from the fact that Piccola exchanges @éh the same lan-
guage as it is implemented in: Smalltalk. Piccola’s metagsgntations thus exist on
the same level as the regular Smalltalk values. We have $e¢ridr this to work,
the Piccola meta representations should be wrapped by baskeSmalltalk objects
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person =
‘name = "lieven"
getName: name

vem = Host.class("Smalltalk.VisitingCardMaker").new()
vem.printCard(person)

Listing 5.4: Passing a plain Piccola form as an argument tmallfalk method.

when passed down. These wrappers are to map base level@krakissages to meta
operations on the Piccola meta object.

Because the meta representation of a passed down form israpped, it only un-
derstands Piccola meta operations. This means a Piccaladannot be sent regular
Smalltalk messages as if it was a Smalltalk object.

5.2.2 Passing an External Form back to Smalltalk

The Piccola code shown in listing 5.2, has another flaw bedige one mentioned
in the previous section. If the button generated by thatep@acode would be clicked,
no push method would be found ijuggler , which was assigned to the instance
variable of thebutton component. Although we have written code to make sure
Juggler components are adapted if they are passed to Piccola, theptatons get
lost when passing the adapted component back to Smalltalk.

The problem is that the glue code to adapt an external cormpaae&ontained in the
interface form, which is never passed to Smalltalk. If arpaeld external componentis
passed back to Smalltalk, first the interface form is strippi®, and only the peer form,
the Piccola level representation of the external compqiepassed back to Smalltalk.
This results in the original component winding up in Sméltlegain. These processes
are illustrated in terms of the linguistic symbiosis modeiigure 5.3.

Compare this illustration with figure 5.4, which shows whappens when an exter-
nal component adapted in Pic% is passed down to Smalltaik.atjée have already
seen an example of this behaviour in the Pic% code of listi8g & component is
adapted by creating a neegular Pic% object, which delegates to the Smalltalk com-
ponent. Thus, when passing this regular Pic% object to $afiglits meta representa-
tion will be wrapped to map regular Smalltalk messages téoRieta operations. If a
method cannot be found in the regular Pic% object, it wiledelte to the external com-
ponent. This means the adaptations specified in Pic% arerpesswhen the adapted
component is passed to Smalltalk again.

Arelated problem is that thepanddownoperations for respectively passing Smalltalk
objects to Piccola and passing these objects back from Rite&malltalk do not al-
ways have the property of cancelling each other out. Sccfgoh01] says that thap
operation, olleft operation from the viewpoint of the linguistic symbiosis aet can
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Figure 5.3: Passing an external component between PicadI&m@alltalk in linguistic
symbiosis terms.
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Figure 5.4: Adapting an external component in Pic% and pgssback to Smalltalk.
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Not inverses

Figure 5.5: Passing a component up and down while changaygptbperation.

be altered dynamically. Now suppose an external composgrassed up to Piccola,
back down to Smalltalk and finally up again to Piccola. If imvibeen the down process
and the last up process, the specification of the up operatidmanged, these two last
operations will not be inverses.

This problem is exemplified in figure 5.5: Thp operation is altered to add a label
bar instead of a labdbo . Passing down a form that was created with the first version
of theup operation, and then passing it up to Piccola again, aftechiamges to the
operation, will not result in the same form that was passethtalltalk.

5.3 Separation of Interface Mapping and Behavioural
Adaptations

As we have seen in section 3.4.1, Piccola provides a gengadace for compo-
nents that are passed from another language. It is howessily® to alter thaip
operation in a reflective manner, so that this generic iateris replaced by a specific
one. Such reflective control over tlup operation might also prove very valuable in
Pic%, when using the language and its linguistic symbiedéionship for component
composition.

However, despite the fact that the form created by the altepeoperation is called
the specific interface form, such a form may also adapt thepoment to contain new
functionality. We believe that when adapting componentsjght be useful to be able
to separate glue code that purely implements interface mgp@and glue code that
adds new functionality to components, like the code infiph.2.

To understand when this feature might prove valuable, denghe illustration in
figure 5.6. An external component instarftg someCollection type, is passed up
to Pic% and appears as a regular Pic% object a{®)lavel. We first extend this object
with code containing an interface mapping, resulting in & Réc% object(3). This
object will understand the messaagd , which is mapped to the methad ~put ~.
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(2] (3) €

at~put~(x.i add(x.i) addToBack~[x)
“-- *----
interface functional
mapping adaptations

Pic%
Smalltalk \

«—

(5)

- + Delegation relationship
—» Data mapping

Figure 5.6: Separation of interface mappings and behaziagiaptations.

We then again extend this new object, now with glue code ttds amew behaviour
to the component. The meth@dldToBack ~ will add its argument to the back of
the collection and is implemented in terms of #dd method. Finally, the resulting
object(4) is passed to Smalltalk again and winds up there as a wrapgét ieta
representatio(b).

We now want the regular Pic% object that contains the bebaziadaptation$t) to
understand the messages declared in the interface mappiagson for declaring such
an interface mapping might be to provide the component witinterface that suits the
used compositional style. When this object is passed to I&tka(5), however, we do
not want the object to understand the messages declared intdiface mapping. It
makes more sense, on this level, to send the Smalltalk messemm the original
component when we want to invoke that behaviour. This prisvibie interfaces on the
Smalltalk level from getting cluttered.

When sending a message to the adapted compd@befrom within Smalltalk, the
Pic% object(4) will not delegate to the object containing the interface piags(3),
but directly to the representation of the original compdn@), and as such to the
original component. When sending a message to the adaptggbrent from within
Pic%, the interface obje¢B) will be delegated to, making the methods that perform
the mappings accessible.



Chapter 6

Conclusions

6.1 Summary

The aim of this dissertation was to discuss the benefits ofgugiguistic symbio-
sis to let scripting and composition languages transprerthange data with other
languages.

In chapter 2, we discussed component-based developmentpré¥ented a brief
history of the field and clearly defined what is meant by theneecomponent and
component framework. The term scripting was defined and anvaw of the features
that a scripting language should provide was given. We alstudsed the notion of
glue code, which is different from other scripting code iattthadapts components that
do not satisfy certain requirements. Finally, a concepraahework for composition,
which specifies that applications should be defined in terfromponents, scripts,
and glue, was presented.

Chapter 3 explained Piccola, a composition language thagsgned with the con-
ceptual framework for composition in mind. We first discub#ee syntax and seman-
tics of the language, followed by a presentation of its ordjapproach to access exter-
nal components. This strategy, called bridging, was ifiedtio have some problems
and so a revised version of it was also presented.

Chapter 4 presented Pico, a high-level programming langtizat can be seen as
a derivative of Scheme. We explained its purpose, syntat,semantics. We also
introduced Pic%, a prototype-based extension of Pico, anithglementation of of
Pic%, called Sic%. A special property of Sic% is its lingiistymbiosis with the
underlying Smalltalk system, which allows Pic% and Smlabjects to seamlessly
send each other messages. This led to an explanation ofricemtoial model on which
this linguistic symbiosis implementation is based.

In chapter 5, we contemplated the use of linguistic symbitissadapt and compose
components written in an external implementation langua@fe contrast this with
the bridging strategy used by Piccola, which is another @gghr to access external
components.
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6.2 Conclusions

We have seen that, when adapting an component, the glue bod& s10t merely
forward messages to this component. If new operations aokéd in the behaviour
executed by the message forward, only the original compomiirbe aware if these
operations, rather than the whole adapted component. ke to the self-problem
and can be solved by using proper delegation. The glue cagestiould delegate to
the external component instead of consulting the latter.

When using a scripting language to compose componentswritt another lan-
guage, we do not only want to access these components frdrimwlie scripting lan-
guage. We also want to be able to pass data created in thérsgignguage to the
component’s implementation language. Typically, thisésel by using such data as
arguments to operations invoked on the external compoitieistimportant to ensure
that from within the component’s implementation langudlge behaviour specified on
the passed scripting language data can be invoked. Somedetttionality can then
be implemented in the scripting language itself, for exantplcreate a prototype of a
component, and be invoked from within the component languagen passed to it.

After we have adapted an external component, we would likenmadifications to
still be reachable when the adapted component is passedtddik original com-
ponent’s implementation language. An approach to achigigeid by combining the
features discussed in the previous paragraphs. The glweetbatladapts an external
component should be encapsulated as regular scriptingdaeglata, delegating to the
external component. Now, if the behaviour specified in thigpng language can be
invoked from within the component’s implementation langeiathe adaptations will
also be visible on that level.

Thus, when passing an adapted component back to the impletiseranguage of
the original component, the adaptations will be preserveée can, however, differen-
tiate between two types of adaptations. On the one hand thasare made purely to
map the interface of an external component to another aderffor example to bet-
ter suit the scripting language’s philosophy. On the ottardh the adaptations that
add new functionality to a component. It does not make muokes@owever, to also
maintain adaptations of the former category when an adagegbonent is passed to
the original component’s implementation language, aswiiionly result in cluttered
interfaces. We showed an approach that allows to diffeatmntietween the two cat-
egories when implementing glue code, and will disregarditberface mappings if
messages are sent from within the component’s implementkthguage.
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