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Abstract

With the democratization of wireless devices and the mobile networks they imply,
the need for a new programming paradigm especially geared towards the devel-
opment of distributed applications for such networks is becoming obvious. The
ambient-oriented programming paradigm is an attempt at incorporating the charac-
teristics of such mobile networks at the heart of a new computational model. Being
a fledgling paradigm, one wants to experiment with new language constructs in
the context of ambient-oriented environments. One way to achieve this is to use a
technique called computational reflection. Computational reflection allows one to
tailor a programming language to his specific needs. AmbientTalk is one such re-
flective language, built specifically to act as a “language laboratory” for exploring
the ambient-oriented programming paradigm. However, its reflective architecture
exhibits multiple drawbacks.

This dissertation attempts to resolve these drawbacks. To this end, it analyzes
the reflective design principles already put forward by researchers in the field of
reflection and meta-level architectures, and assesses their applicability in the con-
text of mobile networks. AmbientTalk’s reflective architecture is subsequently en-
hanced following the most applicable design principles. The resulting reflective ar-
chitecture is based on general properties, making it applicable, mutatis mutandis, to
other distributed actor-based languages as well. AmbientTalk’s enhanced reflective
architecture is extensively validated by reimplementing existing ambient-oriented
language constructs and by observing their improved characteristics.
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Samenvatting

Omwille van de democratisering van draadloze toestellen en de mobiele netwerken
die er uit voortvloeien ontstaat de nood aan een nieuw programmeerparadigma
dat specifiek gericht is op de ontwikkeling van gedistribueerde toepassingen. Het
ambient-geöriënteerd programmeerparadigma is een poging om de karakteristieken
van zulke netwerken op te nemen aan de grondslag van een nieuw computationeel
model. Om dit paradigma tot volwassenheid te brengen dient er geëxperimenteerd
te worden met nieuwe taalconstructies in de context van ambient-geöriënteerde
omgevingen. Een manier om dit te bewerkstelligen is het gebruik van een tech-
niek genaamd computationele reflectie. Computationele reflectie laat de program-
meur toe om een programmeertaal aan te passen aan zijn specifieke behoeften.
AmbientTalk is een dergelijke reflectieve taal die specifiek ontworpen is als een
“taallaboratorium” om het ambient-geöriënteerd programmeerparadigma te onder-
zoeken. De reflectieve architectuur van AmbientTalk vertoont echter verscheidene
gebreken.

Deze verhandeling probeert die gebreken aan te pakken. Om dit te bereiken
onderzoekt het de verschillende ontwerpprincipes voor reflectieve architecturen
die reeds door onderzoekers naar voren werden geschoven, en evalueert het hun
toepasbaarheid in de context van mobiele netwerken. Vervolgens wordt de reflec-
tieve architectuur van AmbientTalk verbeterd met de meest toepasbare ontwerp-
principes. Het resultaat is een reflectieve architectuur die gebaseerd is op algemene
eigenschappen, en, mutatis mutandis, ook toegepast kan worden op andere gedis-
tribueerde actor-gebaseerde talen. De verbeterde reflectieve architectuur van Am-
bientTalk wordt uitvoerig gevalideerd door bestaande ambient-geöriënteerde taal-
constructies te herimplementeren en door hun verbeterde eigenschappen waar te
nemen.
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1
Introduction

1.1 Research context

The last years have seen a swift emergence of wireless devices of various sizes
and computational power. This is mainly due to the democratization of such de-
vices and to the freedom they proffer to their users, who can carry them around
freely and almost instantly join other existing mobile networks implied by sur-
rounding devices. These mobile networks are constituted of a set of possibly very
contrasting wireless devices, such as cellular phones, PDAs, printers, “intelligent”
watches, . . . that are all in a certain range of each other and communicate by means
of well-defined protocols (e.g. Wi-fi and Bluetooth). Because of their omnipres-
ence around the user, the wireless devices in these mobile networks are sometimes
also said to form a PAN (Personal Area Network) [BGH00].

The freedom that wireless devices involve does, however, come at a cost when
one wants to develop applications to make them interact. As a matter of fact, mo-
bile networks differ significantly from traditional “stationary” networks. For in-
stance, mobile networks are characterized by a limited communication range, due
to limitations of the underlying hardware. In practice, this leads to more frequent
disconnections as devices may move out of one another’s communication range
unannounced. Compared to stationary networks, one can state that disconnections
are becoming more of a rule rather than an exception in mobile networks. In the
same vein, wireless devices cannot rely on the explicit knowledge of the availabil-
ity and location of other wireless devices, because of the strong mobility and high
failure factor in mobile networks. Hence, whereas devices in stationary networks
can rely on URLs to address other stationary devices, wireless devices often de-
pend on a service discovery protocol to discover peers. These issues, along with
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CHAPTER 1. INTRODUCTION 11

other characteristics of mobile networks, are discussed in more detail in chapter 3.

To tackle these technical difficulties and to offer the application programmer
suitable abstractions to deal with disconnections and service discovery, middle-
ware solutions were developed for existing programming languages. Examples of
such middleware solutions include data-sharing oriented middleware, which tries
to maximize the autonomy of temporarily disconnected devices using weak replica
management, and tuple space-based middleware, which uses a global tuple space
in which processes can asynchronously publish and query tuples. However, none
of these approaches addresses all problems associated with mobile networks. For
this reason, a new paradigm, called the ambient-oriented programming paradigm,
was developed [DVM+06]. The ambient-oriented paradigm tries to extend the
object-oriented paradigm in such a way that the characteristics of mobile networks
are incorporated at the very heart of the computational model.

In order to experiment with ambient-oriented environments, the AmbientTalk
language was designed at the Programming Technology Laboratory of the Vrije
Universiteit Brussel. It is based on the ambient actor model [DB04], a model
of distribution in which applications consist of a set of local and remote actors
(i.e., in essence, active objects with their own thread of execution and a number of
message queues for communication), which communicate with each other through
asynchronous message passing. AmbientTalk encompasses all the characteristics
of the ambient-oriented paradigm, and is implemented in a such a way that it can
easily be extended with new behaviour. This feature is extensively used to exper-
iment with new language constructs in the context of ambient-oriented program-
ming [DVM+06].

1.2 Objectives

As noted in the previous section, AmbientTalk features a language kernel that is
easily extensible with new behaviour. The underlying technique used to support
this high extensibility is called computational reflection [Mae87]. In a nutshell,
computational reflection allows a language to reflect on (and possibly intervene in)
its own computation by opening up (parts of) its implementation to the program-
mer through a well-defined interface.

Computational reflection was first introduced in a procedural programming
language [Smi82], but has since then evolved to be present in many languages
implementing equally many language paradigms. For instance, reflective object-
oriented languages typically support reflection by means of special meta-level ob-
jects, which are used to reflect upon base-level (“normal”) objects, as we know
them from object-oriented languages. Such meta-objects are typically bound to one
another by formally defined protocols that describe how they interact to achieve
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certains results. Knowledge of such protocols—the sum of which is called the
meta-object protocol of a language—allows the programmer to write powerful
meta-programs to e.g. dynamically adjust the behaviour of the language at run-
time.

However, meta-object protocols in their most basic form do not address the
issues of concurrency and distribution—two key concepts in ambient-oriented pro-
gramming languages. Languages like ABCL/R [WY88], based on the functional
actor model, address the former issue by introducing a meta-architecture for con-
currently running active objects. They do nonetheless fall short when it comes to
deploying them in highly volatile mobile networks. For example, ABCL/R does
not feature a service discovery protocol, but instead relies on the explicit knowl-
edge of the availability and location of other actors.

As a consequence, the objectives of this dissertation are twofold. Firstly, we
seek to gain insight in the requirements for meta-level architectures for ambient-
oriented programming languages based on the ambient actor model. For example,
a proper synchronization mechanism between the base-level and the meta-level of
a distributed reflective language is one of the requirements that readily comes to
mind.

Secondly, we attempt to adjust the current minimal meta-object protocol of
AmbientTalk to comply with these requirements by applying to it a number of solid
design principles for meta-level architectures. AmbientTalk’s meta-object protocol
is used extensively as a language laboratory for experimenting with new ambient-
oriented language constructs [DVM+06]. By applying these design principles to
its meta-object protocol, we seek to augment its power as a language laboratory
by ensuring that language constructs become more separable from the base-level,
more encapsulated and more easily composable with one another.

1.3 Methodology

As stated in the previous section, the AmbientTalk language forms the starting
point of our research, partly because of its suitability to be deployed in highly
volatile mobile networks. As we shall see, AmbientTalk does already feature a
minimal meta-object protocol. It does, however, present various limitations, the
most important of which probably being the complete lack of separation between
the base-level and meta-level of the language. We will therefore scrutinize Am-
bientTalk’s exising meta-object protocol, and point out all its limitations and dis-
advantages. Our goal is to correct these disadvantages by applying sound design
principles already put forward by researchers in the field of reflection and meta-
level architectures. As such, the resulting meta-object protocol is based on general
properties, making it applicable not only to AmbientTalk but allowing it to be ap-
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plied to other actor-based languages as well.

The validity of our changes to the meta-object protocol of AmbientTalk is
tested by reimplementing existing ambient-oriented language constructs and by ob-
serving their improved characteristics. Throughout this disseration we will there-
fore repeatedly use two such constructs to support our case, namely non-blocking
futures (a technique that reconciles asynchronous communication with classic syn-
chronous method call return values) and due-blocks (a construct that allows one to
put time constraints on outgoing asynchronous messages).

1.4 Contributions

The contributions of this dissertation are twofold with respect to the current re-
search in meta-level architectures for distributed actor-based languages. Firstly,
it provides an evaluation of the current state of the art in computational reflection
for distributed actor-based languages, focusing on the ambient-oriented aspects de-
scribed in section 1.1. It also evaluates the applicability of typical object-oriented
meta-level constructs and design principles in the context of distributed languages
based on the ambient actor model.

Secondly, it uses the lessons learned from this in-depth evaluation to design and
implement a mirror-based meta-object protocol (i.e. a meta-object protocol that
respects a set of strict design principles, which will be introduced in chapter 2) for
AmbientTalk. Ultimately, the goal of the enhanced mirror-based meta-architecture
is to experiment with new language constructs. We will extensively show how the
architecture proposed in this dissertation is more geared towards this purpose than
AmbientTalk’s current meta-object protocol.

1.5 Dissertation roadmap

This dissertation starts with an overview of computational reflection in object-
oriented and actor-based languages. The goal is to establish the necessary back-
ground on the state of the art in object-oriented reflection, such that we can reuse
this knowledge subsequently to implement a proper meta-object protocol for a dis-
tributed language based on the ambient actor model.

Chapter 3 introduces mobile networks and their main characteristics. It uses
these characteristics to derive the foundations of the ambient-oriented program-
ming paradigm. Subsequently, AmbientTalk is introduced as our experimental
platform. Particular attention is paid to its existing reflective architecture, which is
also illustrated in detail using two language constructs: non-blocking futures and
due-blocks. Chapters 2 and 3 can be read in parallel.
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Chapter 4 evaluates the shortcomings of AmbientTalk’s existing meta-object
protocol, namely the lack of stratification (i.e. separation between the base-level
and the meta-level) and encapsulation, and the absence of a high-level mechanism
to combine language constructs together. It also evaluates the concepts presented
in chapter 2 in the light of implementing a proper meta-object protocol for Ambi-
entTalk.

Chapter 5 aims to tackle the first lacuna of AmbientTalk’s meta-object proto-
col identified in chapter 4, by describing the design and implementation of a new
meta-object protocol for AmbientTalk based on the principle of mirrors, as de-
scribed in chapter 2. The mirror-based implementation is validated by rewriting
the two language constructs presented in chapter 3 to comply with the new meta-
object protocol.

The second issue associated with AmbientTalk’s existing reflective architec-
ture is for its part addressed in chapter 6, which explains how the mirror-based
meta-object protocol presented in chapter 5 can be extended to ensure that lan-
guage constructs such as e.g. non-blocking futures and due-blocks are combined
correctly.

This dissertation is concluded in chapter 7, which briefly returns to our achieve-
ments and also assesses their limitations, leaving room for future work and giving
some pointers for future research in the continuity of this field. Lastly, appendices
A and B are included for the interested reader who wishes to explore the imple-
mentation details of the designs presented in chapters 5 and 6.



2
Reflection in Object-Oriented

Programming Languages

This chapter introduces the concept of computational reflection as a mechanism to
build extensible and customizable programming languages. It concentrates mainly
on reflection in object-oriented languages, as this forms the basis for our research.
Meta-object protocols are introduced as a mechanism to adapt the behaviour of
an object-oriented language to one’s particular needs. Subsequently, the notion of
mirrors is introduced. Mirros aim to clearly separate the base-level from the meta-
level in reflective object-oriented languages. Lastly, the implications of concur-
rency in a reflective object-oriented language are assessed. Every design principle
is illustrated with a case study of an existing reflective language architecture. This
includes CLOS (a class-based object-oriented language), Self (a prototype-based
object-oriented language) and ABCL/R (an object-oriented concurrent language).

2.1 Computational reflection

Computational reflection is the activity performed by a computational system when
doing computation about (and by that possibly affecting) its own computation
[Mae87]. Whereas conventional programs manipulate data from an application-
specific problem domain (e.g. a program that computes the fixpoint of a mathemat-
ical function or a program that renders a three-dimensional drawing), a reflective
computation manipulates data that represents the state and the structure of the pro-
gram itself. Hence, the problem domain of a reflective computation is the program
itself. The former is called a base-program, while the latter is a meta-program that
manipulates its own computation. Note that not all meta-programs are reflective

15
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computations. For example, an interpreter for a language L written in a language
L′ is also a meta-level program: language L′ is used to perform computations about
language L. However, by doing so, language L does not (necessarily) perform com-
putations about itself.

To reason about computations, meta-programs need a representation of the
structures (e.g. entities, relations, . . . ) of the computation. In our language in-
terpreter example, suppose L′ is an object-oriented language and L is a procedural
language, then L′ may for example contain a Procedure class to represent proce-
dures of L. In a reflective computation, such representations symbolize their own
computation, and are called reifications of the computation. Reifications differ
from representations in that they are causally connected to the domain they repre-
sent. This means that if either the reification or the domain it reifies (i.e. represents
in a causally connected way) changes, this leads to a corresponding effect upon
the other [Mae87], or, simply put, that changes at the meta-level are reflected at the
base-level and vice versa. For example, if the programmer adds a slot to an existing
base-level object using a meta-level operation, the added slot must immediately be
visible at the base-level. Conversely, meta-level operations must always accurately
represent the base-level entities.

To sum up, a reflective system is a system that incorporates structures repre-
senting (aspects of) itself. The sum of these structures is called the self-representation
of the system [Mae87]. This self-representation allows the system to answer ques-
tions about itself and act upon itself. Because the self-representation is causally
connected to the aspects of the system it represents, the following holds:

1. The system always has an accurate representation of itself.

2. The status and computation of the system are always in compliance with this
representation. This means that a reflective system can bring modifications
to itself as a result of its own computation.

2.1.1 What to reify

The nature of what is being reified by a reflective language depends on the pro-
gramming paradigm adopted by the language. For example, a rule-based logic
programming language might reify its rule inference mechanism, thereby allowing
the progammer to explicitly invoke it or possibly even to override it with custom
behaviour. An object-oriented language, on the other hand, might reify the object
instantiation and message sending mechanisms, as well as the structure of objects
(e.g. to allow the programmer to query an object for its data slots).
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2.1.2 How much to reify

Reflective language architectures are often characterized in terms of their support
for [KP94]:

1. Introspection. Introspection is defined as the ability of a program to ex-
amine its own structure. For example, a reflective object-oriented language
architecture might provide a mechanism for returning a list of all slots of
an object, a representation of the class of an object, of the source code of
method bodies, . . .

2. Explicit invocation. A reflective language architecture supports explicit in-
vocation if it allows the programmer to explicitly invoke substrate opera-
tions, i.e. operations that are typically only called internally by the language
interpreter. Examples include the eval and apply operations of a reflec-
tive functional language, or an object instantiation operation like new in an
object-oriented language.

3. Intercession. Intercession is the ability to modify the semantics of the un-
derlying programming language from within the language itself, e.g. to ad-
d/modify state (for example, to add a new method to an already existing
class) or to add/modify meta-level behaviour (for example, to change the
way method lookup and object initialization is performed). The former is re-
ferred to as structural intercession and the latter as behavioural intercession.

Examples of reflective languages include CLOS, which supports introspection,
explicit invocation and intercession (see section 2.2.1), and Java, which supports
introspection and explicit invocation in a limited way.

2.1.3 How to reify

The form in which base-level entities are reified often depends on the program-
ming paradigm adopted by the language. For example, some logic-based lan-
guages with a reflective architecture like FOL [Wey78] adopt the concept of a
meta-theory. A meta-theory is similar to a (base-)theory except that it is used
to reason about other theories, instead of about the external problem domain. Ex-
amples of predicates used in a meta-theory are provable(Theory, Goal) and
clause(Left-hand, Right-hand) [Mae87]. In a reflective functional language,
evaluation and function application might be reified as an eval and an apply func-
tion, respectively.

An object-oriented language architecture, on the other hand, might use meta-
level objects and methods to reify (parts of) its objects’ internals as well as internal
interpreter operations. This approach to building a reflective interface that reifies
both the structure and the behaviour of an object-oriented computation is called a
meta-object protocol [KdRB91], and is discussed in more detail in section 2.2.



CHAPTER 2. REFLECTION IN OBJECT-ORIENTED LANGUAGES 18

2.1.4 Applications of reflection

Reflection is used widely for a myriad of applications. For example, the introspec-
tive capabilities of a language are typically used to create class browsers and code
inspectors. The Java Core Reflection can, for example, be used to implement a
class browser [BU04]. Structural intercession can for its part be used to create de-
bugging tools. An example of this is the Java Debug Interface (JDI) [Mic], which
can be used to debug local as well as remote Java applications [BU04].

Behavioural intercession is perhaps the most powerful form of reflection, and
has many diverging uses. In CLOS, it can amongst others be used to implement
object persistency (see section 2.2.1). Tracing method calls and profiling code also
belong to the possibilities offered by behavioural intercession (the following sec-
tion gives an example of a simple method tracer). Additionally, reflection also has
applications in the field of language extensions (as we shall see in chapter 3, the
reflective capabilities of the distributed language AmbientTalk are used extensively
to experiment with new language extensions). In concurrent environments, reflec-
tion has also been proved successful at optimizing certain programs. For example,
the n-Queens parallel search problem can be optimized at the meta-level using lo-
cality control, so that child nodes at deep level in the search tree are created at the
same processor as their parents’ in order to reduce remote communication overhead
[MMAY95].

2.2 Meta-object protocols

The idea of using meta-objects (i.e. objects that reside at the meta-level) to reify
object-oriented entities was first introduced by Maes [Mae87]. In her experimental
language 3-KRS, every entity (e.g. instances, slots, methods, messages, . . . ) is an
object. Furthermore, there exists a one to one relation between every such object
and the meta-object that describes the object’s meta-level behaviour. For example,
an object representing a person might contain methods to calculate its age, while
its associated meta-object would contain methods that handle incoming messages,
object instantiation, method lookup through the inheritance chain, etc.

Furthermore, the way in which meta-objects interact with each other can be for-
malized in a protocol. Hence, this meta-object protocol describes the responsibility
of each meta-object in the architecture [KdRB91]. For example, a protocol might
formally define how every message send from a sender base-object to a receiver
base-object is handled. Such a message send protocol might for instance be defined
as follows:

‘ MESSAGE SEND PROTOCOL ‘
‘ defines how "receiver.msg(args)" from within the context ‘
‘ of a "sender" object is executed ‘
1. call send(receiver, "msg", args) method of sender’s meta-object
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2. call receive(sender, "msg", args) method of receiver’s meta-object
3. call process("msg", args) method of receiver’s meta-object

Additionally, the splitting of base- and meta-level objects allows the program-
mer to temporarily assign another meta-object (possibly a specialized child ob-
ject of the original meta-object) to a base-level object. This, together with well-
defined responsibilities between meta-objects, allows the programmer to dynami-
cally adapt the language architecture to his specific needs. As a matter of fact, the
programmer who is aware of the meta-object protocol of the language can inter-
vene in every step of the protocol.

As a concrete example, consider a programmer who wants to trace every mes-
sage received by an object by printing an informative line of output. In a non-
reflective language architecture, there are basically two ways to achieve the desired
result: the programmer can either extend every method with print statements, or
recompile the language interpreter after adding the necessary output printing code
to the native message reception routine. Clearly, none of both approaches are sat-
isfactory. On the other hand, suppose that we have a reflective language architec-
ture with a meta-object protocol where message sends are performed as described
above. In this case, it suffices to temporarily replace the meta-object of the re-
ceiving object with a child object of its default meta-object in which the receive
method is overridden:

receive(sender, msgName, argList) {
print("Received ’", msgName, "’ from ’", sender.toString(),

"with arguments ", argList.toString());
super.receive(sender, msgName, argList);

}

Hence, the code of both the interpreter and the base-level object’s methods
remains unchanged, and only the meta-level objects are changed.

2.2.1 Case study: The CLOS meta-object protocol

Common LISP Object System (CLOS) [BDG+88] is an object-oriented extension
of LISP which features an extensive meta-object protocol (MOP) [KdRB91]. This
section describes parts of CLOS’s MOP and gives a concrete example in which the
MOP is used to transparently implement persistent objects (i.e. objects whose state
is stored in a database and retrieved when needed). The full implementation can
be found in literature [Pae93]. We begin with a short overview of the base-level of
the language.

2.2.1.1 Base-level

CLOS is a class-based object-oriented extension to LISP. This means that objects
are instantiated from classes. Classes are created using defclass, while instances
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are created using make-instance, like so:

( defclass Person ( ) ; l i s t o f superc lasses
( ; ”name” s l o t , access ib le through the a u t o m a t i c a l l y

; created ” getName ” accessor
(name : accessor getName

: i n i t a r g :name)
; ” age ” s l o t whose d e f a u l t value i s 0
( age : i n i t f o r m 0

: i n i t a r g : age
: accessor getAge ) ) )

( defclass Teacher ( Person ) ; Teacher i n h e r i t s from Person
( ( sub jec ts : accessor getSubjec ts

: i n i t f o r m ’ ( ) ) ) )

; b ind ins tances to v a r i ab l e s
( setq john (make−i ns tance ’ Person :name ” John ” : age 20) )
( setq doe (make−i ns tance ’ Teacher :name ”Doe” : age 30) )

This defines a Person class with two slots: name and age. The second defclass
statement defines a Teacher class that inherits from Person. In the example above,
instances of both classes are created using make-instance.

Methods are defined in CLOS using defmethod. Every parameter of a method
can be specialized to a particular class, by specifying an optional specializer. The
receiver has to be specified explicitly. The example below illustrates method defi-
nition:

; newSubject can be an ins tance of any c lass
( defmethod addSubject ( ( s e l f Teacher ) newSubject )

( set f ( getSubjects s e l f ) ( cons newSubject ( getSubjec ts s e l f ) ) ) )
; nYears must be an ins tance of the ” i n t e g e r ” c lass
( defmethod increaseAgeBy ( ( s e l f Person ) ( nYears i n t e g e r ) )

( set f ( getAge s e l f ) ( + ( getAge s e l f ) nYears ) ) )

Armed with this knowledge, we can now review the meta-object protocol of
the language in the following section.

2.2.1.2 Meta-object protocol

An analysis of the CLOS meta-object protocol comprises two parts:

1. An analysis of the meta-level statics, i.e. the various types of meta-objects,
each of which describes different base-level resources (e.g. classes, slots,
methods, . . . ).

2. An analysis of the meta-level dynamics, i.e. the actual protocols that describe
how meta-objects interact with one another to achieve a certain result (e.g.
the class initialization and finalization protocols).
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Meta-level statics CLOS is composed of a set of basic building blocks, each of
which is reflected upon in the meta-level class hierarchy. The main building blocks
are: classes, slots, methods, generic functions and method combination. Each of
these building blocks is reflected by a meta-object, instantiated from a meta-class.
For example, the class meta-class is used to instantiate meta-objects that reflect
upon base-level objects. The programmer can get hold of class meta-objects by
using find-class. Meta-objects can be queried for their slots and their direct
subclasses, amongst others. The code below illustrates this:

( set f personClass ( f ind−c lass ’ Person ) )
=> #<STANDARD−CLASS PERSON>
( c lass−s l o t s personClass )
=> ( #<STANDARD−EFFECTIVE−SLOT−DEFINITION NAME #x203A9C76>

#<STANDARD−EFFECTIVE−SLOT−DEFINITION AGE #x203A9CBE>)
( c lass−d i r e c t−subclasses personClass )
=> ( #<STANDARD−CLASS TEACHER>)

Meta-level dynamics Most operations in CLOS are the result of the execution
of a well-defined protocol, i.e. a set of meta-level operations that are called in a
specific order. A programmer who is aware of these protocols (the sum of which
forms the meta-object protocol of CLOS) can use this knowledge to “hook in”
at the right places to alter the default behaviour. For example, the slot reading
protocol is defined by the slot-value-using-class generic function:

(SLOT−VALUE−USING−CLASS <CLASS−METAOBJECT> <OBJECT> <SLOT−NAME>)
1 . Check f o r ex is tence of s l o t

( s l o t−e x i s t s−p <ob jec t> <s l o t−name>)
2 . Check f o r s l o t being bound

( s l o t−boundp−using−c lass <c lass−metaobject> <ob jec t> <s l o t−name>)
3 . Ret r ieve the value

Hence, the programmer can alter the default slot reading behaviour by refin-
ing the slot-value-using-class method in a custom meta-class. To use this
behaviour, it suffices to declare what meta-level class to use in association with a
base-level class, as follows:

; a meta−l e v e l c lass
( defclass MyMetaClass ( standard−c lass ) ( ) )
; a base−l e v e l c lass
( defclass Teacher ( Person )

( ( sub jec ts : i n i t f o r m ’ ( ) ) )
; use MyMetaClass ins tead of standard−c lass
( : metaclass MyMetaClass ) )

Note that standard-class is a direct subclass of class that describes “regu-
lar” classes. Another direct subclass of class is built-in-class, which is used
only as the meta-class of built-in classes such as integer, symbol, string, . . .
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2.2.1.3 Example: adding support for persistent objects

The meta-object protocol of CLOS can be used to transparently implement persis-
tent objects (i.e. objects whose state is stored in and retrieved from a database)
[Pae93]. We will not go into the details here but only outline briefly the steps
needed to extend CLOS with persistent objects. The general idea is to have a
persistent-metalevel-class meta-class that base-level classes can use instead
of the default class meta-class in order for their instances to be made persistent. A
set of methods must be overridden in persistent-metalevel-class to handle
the persistency feature of objects. For example, the slot-value-using-class
method must be refined to lookup the value of a slot in the database if it is not
cached in the object. Furthermore, the initialize-instance method of class
must be refined to add some necessary “house keeping” slots to every persistent
object, such as a persistent? slot that stores a boolean value indicating if the
base-level object is a persistent object or not. This is achieved by transparently
adding an object with the “house keeping” behaviour to the inheritance list of the
persistent object1. The complete implementation of CLOS persistent objects can
be found in literature [Pae93].

2.3 Mirror-based reflection

Although the reflection community advocates a strict separation between the base-
and meta-level of a language architecture [Mae87], most mainstream object-oriented
languages with reflective capabilities do not fully adhere to this principle. For ex-
ample, in Java one might query an instance for its class and superclass by executing
the following code [BU04]:

Class theCarsClass = aCar . getClass ( ) ;
Class theCarsSuperclass = theCarsClass . getSuperc lass ( ) ;

While getClass and getSuperclass are conceptually meta-level operations,
both methods are implemented at the base-level of the language. Indeed, getClass
is implemented as a method of the Object root class, making every base-level
class that inherits from Object exhibit meta-level behaviour and normal behaviour
side by side. The same holds for the Class class, which contains constructors
and static attributes alongside meta-level operations, such as the getMethods and
getSuperclass methods. Hence, the base- and meta-level operations of languages
like Java, CLOS, C#, Smalltalk, . . . are inextricably entangled [BU04].

To solve this entanglement, mirror-based reflection [BU04] states that the base-
and meta-level facilities of a reflective system must be separated from one another.
This design principle is called the principle of stratification. Mirror-based reflec-

1This is, in fact, a form of mixin composition [BC90]. A mixin is a modular extension that may
be “mixed” into several classes.
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tion identifies three design principles for meta-level facilities in object-oriented
languages [BU04]:

1. The principle of stratification described above. The advantage of stratifica-
tion in a reflective language is that it makes it easy to eliminate reflection
when it is not needed. One could also imagine a mechanism to dynamically
add (remove) reflection support to (from) a running computation. Addition-
ally, section 4.1.1 describes how the lack of stratification can cause name
clashes between the base-level and the meta-level of a language.

2. The principle of encapsulation, which states that meta-level facilities must
encapsulate their implementation. Hence, the clients of reflection should
only have access to the public interface of meta-level objects; the particulars
of the implementation of meta-level objects should be hidden and should
only be available (if allowed) through a public interface.

3. The principle of ontological correspondence, which states that the ontol-
ogy of meta-level facilities should correspond to the ontology of the lan-
guage they manipulate. This comprises two aspects: a structural aspect and
a temporal aspect. The former states that the structure of meta-level facilities
should correspond to the structure of the language they manipulate. Hence,
meta-object protocols should introduce meta-objects for every base-level en-
tity, such as objects, but also methods, method bodies, statements, . . . This
aspect is called structural correspondence. The latter aspect, called temporal
correpondence, states that meta-level modules should be separated based on
the moment at which they operate. For example, code (compile-time data)
and computations (run-time data) should be mirrored by separate modules
of the reflective API.

To obey these design principles, special meta-objects called mirrors are intro-
duced [BU04]. The API of a mirror-based reflective language would, for example,
be designed as follows [BU04]:

class Object {
/ / no r e f l e c t i v e methods
. . .

}
class Class {

/ / no r e f l e c t i v e methods
. . .

}
in ter face M i r r o r {

S t r i n g name ( ) ;
. . .

}
class R e f l e c t i o n {

public s t a t i c Objec tM i r ro r r e f l e c t ( Object o ) { . . . }
}
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in ter face Objec tM i r ro r extends M i r r o r {
ClassMi r ro r getClass ( ) ;
. . .

}
in ter face ClassMi r ro r extends M i r r o r {

ClassMi r ro r getSuperclass ( ) ;
. . .

}

Hence, in a mirror-based system, the above example where an object is queried
for its class and superclass would be rewritten as follows:

Objec tM i r ro r theCarsMi r ro r = R e f l e c t i o n . r e f l e c t ( aCar ) ;
C lassMi r ro r theCarsClassMir ror = theCarsMi r ro r . getClass ( ) ;
C lassMi r ro r theCarsSuperc lassMir ror = theCarsClassMir ror . getSuperc lass ( ) ;

The advantages of this mirror-based design over the previous design are three-
fold [BU04]:

• Meta-level operations are pulled out in a separable subsystem. This corre-
sponds to the principle of stratification. As stated above, this allows one
to dynamically add (remove) reflection support to (from) a running compu-
tation. Another advantage of stratification between the base-level and the
meta-level is that non-reflective applications written in reflective languages
can be deployed on platforms without a reflective implementation, thereby
reducing, amongst others, the memory footprint of the application.

• The interface to meta-level operations is divorced from a particular imple-
mentation. This embodies the principle of encapsulation. One possible ad-
vantage of encapsulation in a reflective architecture is that it makes it easier
to write debugging tools that transparently debug local and remote objects.
Indeed, if one programs the mirrors for local and remote objects to the same
interface, the rest of the debugger’s code can abstract from the different un-
derlying implementations.

• The structure of the base-level is mirrored at the meta-level. This corre-
sponds to the principle of structural correspondence. Imagine a reflective ar-
chitecture that fully implements structural correspondence, by having meta-
objects that reflect, amongst others, on statements and expressions. This
would permit the clients of reflection to use a standardized representation of
every entity in the language.

The differences between the previous design and the mirror-based design are
illustrated in figure 2.1. Section 4.3 discusses the applicability of such a mirror-
based design to our experimental distributed actor-based language AmbientTalk
(which is discussed in chapter 3).
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Figure 2.1: The differences between a traditional reflective design and a mirror-
based design [BU04]

2.3.1 Case study: Self

The Self language [US87] uses a mirror-based design to support reflection. Al-
though Self is a prototype-based language (i.e. classless: all objects are self-
sufficient—see section 3.3.1), the ideas stated above are also applicable to Self
(as a matter of fact, mirrors were first introduced in Self [BU04]). Indeed, the pres-
ence of classes at the base-level is not strictly necessary. As for CLOS, we begin
with a brief overview of the base-level of the language.

2.3.1.1 Base-level

Self is an extremely simple yet very expressive language. In Self, everything is
an object and every computation is triggered by sending a message to an object.
Self distinguishes between three kinds of objects: “plain” objects, method objects
and block objects [Meu04]. Plain objects can be created ex nihilo, by putting a
number of slot names between vertical bars, possibly with an initial value (e.g.
| age <- 0. name = ’John’ |). The <- syntax creates a mutable slot (i.e. one
whose value can be changed afterwards), while the = syntax creates an immutable
(i.e. constant) slot. Method objects (further on referred to as “methods”) can be
created like so: (| add: n = (value: value + n) |). This creates a method
that takes one argument (n) and increments the value slot of the object on which it
operates with the value of n. As a more concrete example, consider the following
code which creates a stack object in Self [TK01]:

aStack <− ( |
stack = ar ray clone .
top <− 0 .
push : obj = ( top : ( top+1) . stack a t : top Put : ob j ) .
pop = ( top : ( top−1 ) ) .
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getTop = ( s tack a t : top )
| )

The following section proceeds with an analysis of the reflective architecture
of Self, which is based on mirrors.

2.3.1.2 Mirror-based reflective architecture

To obtain the mirror of an object in Self, one uses the (reflect: base-obj)
method, where base-obj is the object to reflect upon. The returned mirror object
understands, amongst others, the following messages:

r e f l e c t e e ” Return the ob jec t being inspected ”
s ize ” Return the number o f s l o t s i n the r e f l e c t e e ”
names ” Return a vec to r o f s l o t names ”
a t : slotName PutContents : m i r r o r ” Change the contents o f SlotName

to be the r e f l e c t e e o f m i r r o r ”
addSlot : s l o t M i r r o r ”Add a s l o t ”

For example, one could reflect on the stack object defined above and call a
number of reflective methods of its mirror:

( r e f l e c t : aStack ) s ize
=> 5
aStack top
=> 1
( r e f l e c t : aStack ) a t : ’ top ’ PutContents : ( r e f l e c t : 0)
aStack top
=> 0

Hence, the Self reflective architecture supports introspection and structural in-
tercession [BU04]. Furthermore, we observe that the principle of stratification is
respected in Self: most2 of a mirror’s methods take mirror objects as arguments.

2.4 Reflection in actor-based concurrent languages

This chapter describes how object-oriented reflective architectures can be adapted
to operate in a concurrent setting. To this end, it firstly explains the actor model,
a model based on the notion of active objects. The actor model is used in e.g.
ABCL/1, which we will discuss in section 2.4.2.1. ABCL/1 forms the base of
the reflective concurrent object-oriented ABCL/R language described in section
2.4.2.2. Furthermore, the AmbientTalk language—our experimental platform for
this dissertation—is based on an extended version of the actor model (see section
3.4).

2The first argument of the at:PutContents: method is a base-level string object, while its sec-
ond argument is a (meta-level) mirror object. The reason for this is that Self’s authors admit that it
is not always clear whether a mirror method should accept a mirror or a base object as its argument
[BU04].



CHAPTER 2. REFLECTION IN OBJECT-ORIENTED LANGUAGES 27

2.4.1 The actor model

The actor model of computation [Agh86] defines a functional approach to concur-
rency. It is based on three main concepts: active objects (i.e. actors), asynchronous
message passing between active objects and behaviour replacement [CM04]. Ev-
ery actor is a self-contained unit of concurrency that has its own thread of control.
Actors communicate with one another using asynchronous messages, meaning that
nor the message send operation, nor the corresponding receive operation block.
This contrasts with regular, synchronous messages in object-oriented languages,
which block until the corresponding method returns. Instead, in the actor model,
incoming messages are stored in an actor’s message queue such that they can be
processed later. Hence, every actor consists of the following entities [Agh90]:

• A message queue that acts as a buffer for incoming messages.

• A behaviour that denotes the set of methods and state variables of the actor.

• A thread of control that dequeues incoming messages from the message
queue when approriate, and executes the behaviour corresponding to that
message (generally a method specified in the actor’s behaviour).

Additionally, the actor model is built upon three main primitives [Agh90]:

• The create primitive allows one to create an actor from a behaviour de-
scription and a set of parameters, that possibly includes existing actors.

• The send primitive allows one to send an asynchronous message to another
actor. A call to send immediately returns and does not block until the result
of the message is returned.

• The become primitive allows an actor to replace its own behaviour by a new
behaviour. Hence, the way an actor responds to a message can change over
time.

Whenever an actor receives a message, the corresponding method in its be-
haviour should specify a replacement behaviour to process the next message in the
queue. Since no state is shared between behaviours, processing of message n + 1
may start as soon as the replacement behaviour is specified by message n. Thus,
it is possible for the processing of message n + 1 to begin when the processing of
message n is still running.

Furthermore, because message passing is purely asynchronous, actors are un-
able to explicitly return results to the sender of a message. To be able to return
results, one can instead make use of consumer actors, passed as an extra argument
to messages. These actors are meant to “consume” the result of the message. This,
however, leads to event-driven applications whose code quickly becomes scattered
and unreadable [CM04].
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2.4.2 Case study: ABCL

This section analyzes the object-oriented concurrent language ABCL/1 [YBS86],
followed by its reflective extension ABCL/R [WY88]. Both take root from the
actor model described in the previous section.

2.4.2.1 Base-level: ABCL/1

ABCL/1 is a pragmatic approach to the functional actor model described in the pre-
vious section. It is based on active objects (or just objects in ABCL/1 terminology—
not to be confounded with passive objects such as in CLOS and Self). Each active
object in ABCL/1 consists of its own (autonomous) processing power and may
have local persistent state. The behaviour of each object is described by a script.
An object’s script specifies what messages it accepts and what actions it performs
in response to these messages [YBS86].

Differences with the functional actor model ABCL/1 active objects differ from
functional actors in a number of ways:

• Each object can have its own persistent, updatable state.

• Objects process messages sequentially, in the order of arrival.

• Objects are always in one of the three following states: active (processing
a message), dormant (not processing a message; empty message queue) or
waiting (waiting for a certain message to arrive. For example, to process
a get message when a buffer object is empty, the object must wait for an
incoming put message).

• ABCL/1 supports multiple message passing types, including asynchronous
but also synchronous message passing, as explained hereafter.

Message passing types ABCL/1 supports three types of message passing:

• Past type message passing. Messages are sent asynchronously, as in the func-
tional actor model. Past type messages are denoted as follows: [T <= M],
where T is an object and M represents a message. An optional consumer
object can also be specified: [T <= M @ consumer].

• Now type message passing. Messages are sent synchronously, meaning that
the sender blocks until the result of the message is returned. Now type mes-
sages are denoted as follows: [T <== M].

• Future type message passing. Futures try to take advantage of the fact that
the result of a message is not always directly needed, allowing for increased
concurrency. Blocking futures (as well as their non-blocking equivalent)
are described in more detail in section 3.5.1. Future type messages are sent
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using the following syntax: [T <= M $ x], where x is a “placeholder” for
the result of the message.

Ordinary mode and express mode messages In addition to ordinary mode mes-
sages as described above, one can also send express mode messages to an actor.
To support this, every actor has an additional express message queue besides its
ordinary message queue for ordinary mode messages. Just like ordinary mode
messages, messages in the express message queue are processed sequentially. If
an express mode message arrives while an object is processing an ordinary mode
message, the latter computation is suspended and the express mode message is im-
mediately processed. Afterwards, the processing of the ordinary mode message
is resumed (unless explicitly aborted by the express mode message). All mes-
sage passing types support the express mode by adding a second < to the message
sending statement. For example, to send an express mode now type message, one
writes: [T <<== M].

Example The following example code illustrates how a simple alarm clock ob-
ject can be implemented in ABCL/1 [YBS86].

[ object T icker
; ; p e r s i s t e n t state v a r i ab l e s o f the object
( state [ t ime : = 0] [ alarm−c locks− l i s t : = n i l ] )
; ; behaviour o f the object
( scr ip t

( => [ : s t a r t ]
( while t do

( i f alarm−c locks− l i s t
then [ alarm−c locks− l i s t <= [ : t i c k t ime ] ] )

[ t ime : = (1+ t ime ) ] ) )

; ; : add can only be sent i n express mode
( =>> [ : add AlarmClock ]

[ alarm−c locks− l i s t : = ( cons AlarmClock alarm−c locks− l i s t ) ] )

( =>> [ : s top ] ( non−resume ) ) ) ]

[ object CreateAlarmClock
( scr ip t

( => [ : new Person−to−wake ]
( temporary

; ; c rea te alarm c lock object
[ AlarmClock : = [ object

( state [ t ime−to−r i n g : = n i l ] )
( scr ip t

( => [ : t i c k Time ]
( i f ( = Time t ime−to−r i n g )
then [ Person−to−wake <<= [ : t ime− i s−up ] ] ) )

( => [ : wake−me−at T ]
[ t ime−to−r i n g : = T ] ) ) ] ]

; ; r e g i s t e r alarm c lock a t t i c k e r ( express mode message )
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[ T i cker <<= [ : add AlarmClock ] ]
; ; r e t u r n alarm c lock object
! AlarmClock ) ) ) ]

2.4.2.2 Meta-level: ABCL/R

ABCL/R [WY88] adds a powerful reflective architecture to ABCL/1. To support
reflection in ABCL/R, the structural and behavioural aspects of each object x are
reflected upon by a meta-object ↑ x. The meta-object of x contains information that
refies its denotation’s (i.e. its base-object’s) message queue, evaluation thread and
its state and behaviour. The following points are worth noting [WY88]:

• x and ↑ x are causally connected. Thus, the data stored in ↑ x represent the
current status of x at any time.

• Since ↑ x is an object, ↑↑ x also exists to reflect upon ↑ x. Hence, there is
an infinite tower of meta-objects ↑ x,↑↑ x,↑↑↑ x, ... for each base-level object
x. In the implementation, this infinite tower is “short-circuited” by creating
meta-objects only when they are accessed (i.e. lazy creation). This solution
is often adopted by object-oriented reflective languages to support an infinite
tower of meta-objects at the implementation level.

• There is a one to one correspondence between a meta-object ↑ x and its de-
notation x.

Meta-circularity of objects Like many reflective language architectures, AB-
CL/R is based on a meta-circular design [Mae87]. Indeed, the meta-object ↑ x is
used as the actual implementation of x. The following excerpt from the definition
of a default meta-object illustrates this [WY88]:

[ object ; ; a meta−object
( state [ queue : = a message queue ]

[ state : = a state object ]
[ s c r i p t s e t : = a l i s t o f s c r i p t s ]
[ eva lua to r : = an eva lua to r object ]
[ mode : = e i t h e r : dormant or : a c t i v e ] )

( scr ip t
( => [ : message Message Reply−Dest Sender ] ; ; message r ec e i v i n g

[ : queue : = ( enqueue queue [ Message Reply−Dest Sender ] ) ]
( i f ( eq mode : dormant )
then [ mode : = ’ : a c t i v e ]

[Me <= : begin ] ) ) ; ; Me po in t s to t h i s object
( => : begin ; ; message processing

( temporary mrs scr newenv [ object : = Me ] )
[ mrs : = ( f i r s t queue ) ]
[ queue : = ( dequeue queue ) ]
[ scr : = ( f i n d−scr ip t ( f i r s t mrs ) s c r i p t s e t ) ]
( i f scr
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; ; accept message
then [ newenv : = [ env−gen <== [ : new ( scr ip t−a l i s t mrs scr )

state ] ] ]
; ; process the message using the corresponding method
; ; from the denota t ions script , and ignore the value
; ; o f the eva lua t i on
[ eva lua to r <= [ : do−prg ( scr$body scr ) newenv [ den Me ] ]

@ [ cont ignore
[ object <= : end ] ] ]

; ; cannot accept message ( no behaviour found )
else ( warn ” Cannot handle message ” ( f i r s t mrs ) )

[Me <= : end ] ) )
( => : end ; ; t e rm ina t i on o f execut ion

( i f ( not ( empty? queue ) )
then [Me <= : begin ]
else [ mode : = : dormant ] ) )

. . . ) ]

As the above code indicates, the queue, evaluator, mode, state and scriptset
variables of a meta-object reify (and are used as the implementation of) its denota-
tion’s message queue, evaluator, mode, persistent state and behaviour, respectively.
Similarly, the :message, :begin, :end, . . . methods are used for implementing
message arrival, message processing, termination of message processing, . . . . For
example, the body of the :begin method reveals that messages are processed
sequentially, by dequeueing the first message and looking up the corresponding
method in the denotation’s scriptset. If the method is found, its body is executed
in a newly created environment by sending a past type message to the evaluator
object. After the execution of the body, the meta-object is sent an end: message, to
indicate that it can process the next message (if any). Because a past type message
is sent to the evaluator, ↑ x immediately returns to dormant mode while x stays in
active mode until the end of the execution of the method’s body. Hence, ↑ x can
enqueue new incoming messages for x while x is concurrently performing a com-
putation. This is called the inherent concurrency of x [WY88], and corresponds to
the semantics of message receiving and processing as described in section 2.4.2.1.

Linking the base-level to the meta-level One can query an object x for its meta-
object by executing [meta x]. Similarly, one can query a meta-object m for its
denotation by executing [den m]. This allows for structural intercession. Indeed,
x can modify itself through its meta-object ↑ x (since the base- and meta-level are
causally connected). Other objects that contain a reference to x can also obtain its
meta-object ↑ x and use it to modify x (for example to add/modify methods to/of x,
as in the example below).

To allow for behavioural intercession, one can create an object and specify a
custom meta-object as its implementation, like so:

[ object
( meta custom−meta−object )
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( scr ip t . . . ) ]

Example Suppose that a pool of objects is used to execute jobs (for the sake
of our example, each job is an expensive computation). Suppose also that there is
manager object M which deals out jobs uniformly to every worker object W1, . . . ,Wn,
by sending a [:job <job-type> :param <parameter>] message. M can now
monitor every worker object and at any time change the implementation of the
job-processing method of Wi with a more optimized method, using the following
code:

[ [ meta Wi ] <== [ : add−scr ip t
’ ( => [ : job 1 : param <parameter−var>]

<opt imized−method−body> ) ] ]

Note that the method redefinition of Wi can be done transparently while Wi is
executing its jobs, because of the inherent concurrency of Wi, as described above.
This inherent concurrency does, however, introduce possible race conditions, for
example if a method m is removed from the behaviour of x through ↑ x while x is
still executing m.

2.5 Conclusion

Throughout this chapter, we have studied computational reflection, a powerful
mechanism that allows the programmer to customize a language to his needs with-
out necessarily recompiling the code of the language interpreter. Reflection is
achieved by reifying language constructs and behaviour, so that the programmer
can hook in at certain points to add specific behaviour to the interpreter. We have
started our overview with an analysis of meta-object protocols, which are the de
facto way of supporting behavioural intercession in an object-oriented language
(as an example, we have seen that slot access in CLOS can be overridden with cus-
tom behaviour using the language’s meta-object protocol). Subsequently, we have
looked at mirrors, which define a set of sound design principles for maintainable
object-oriented meta-level architectures. Finally, we have studied how structural
and behavioural intercession can be achieved in a concurrent object-oriented lan-
guage based on the functional actor model. Every reflective design principle was
extensively illustrated using an existing reflective language architecture as a case
study, namely CLOS, Self and ABCL.

The next chapter introduces a new programming paradigm called ambient-
oriented programming, which is especially tailored to meet the stringent require-
ments imposed by the hardware characteristics of mobile networks. It also intro-
duces AmbientTalk—the experimental language used throughout this dissertation.
AmbientTalk is based on the ambient-oriented actor model, an extension of the
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functional actor model already outlined in this chapter.

All the design principles described in this chapter will prove to be important
when designing an enhanced meta-object protocol for AmbientTalk in chapter 5.



3
Ambient-Oriented Programming

This chapter describes an emerging new programming paradigm called “Ambient-
Oriented Programming”, which aims to simplify the development of applications
designed to run on mobile networks.

It starts with a definition of mobile networks and an overview of the main prop-
erties that characterize them. These properties induce a set of requirements for the
ambient-oriented paradigm. Section 3.4 introduces AmbientTalk, an experimen-
tal programming language based on the ambient-oriented paradigm. Recall from
chapter 1 that the goal of this dissertation is to design a mirror-based meta-object
protocol (see section 2.3) for an ambient-oriented programming language, namely
AmbientTalk.

This chapter ends with a review of AmbientTalk’s existing meta-object protocol—
which will be evaluated in detail in chapter 4—and various language extensions,
implemented using the meta-object protocol.

3.1 Introduction

The last years have seen a rapid emergence of wireless computational devices and
the mobile networks they imply. Due to their differences compared to stationary
networks of wired devices, existing programming paradigms are showing their lim-
itations when used for programming such mobile devices. As a result, the need for
a new programming paradigm, designed from the ground up with the main charac-
teristics of mobile networks in mind, is becoming evident. This paradigm has been
named “Ambient-Oriented Programming” [DVM+06]. The next section defines

34



CHAPTER 3. AMBIENT-ORIENTED PROGRAMMING 35

mobile networks.

3.2 Characteristics of mobile networks

We define mobile networks as the networks that surround wireless devices and that
enable them to interact with each other. The best example of mobile networks to
date is Wi-Fi (IEEE 802.11), a standard for wireless networks that allows laptops,
PDAs, printers, . . . to communicate with each other.

Mobile networks have a number of features that distinguish them from station-
ary networks (e.g. Ethernet, Token ring, . . . ). For example, due to the limited
transmission range of mobile devices, connections between two hosts in a mobile
network are very volatile. Furthermore, mobile networks are said to be open, be-
cause devices can appear or disappear at any time without prior warning. The
main differences between mobile and stationary networks are summarized below
[DVM+06]:

3.2.1 Connection persistence

Due to the very nature of wireless networks, connections between devices in a
mobile network are much more volatile than in a stationary network. Whereas
disconnections are rather rare in stationary networks, they are the rule rather than
the exception in mobile networks: every time a wireless device moves out of the
limited communication range of a transmitter, a disconnection occurs. However,
many applications expect automatic reconnections after disconnections to be han-
dled transparently.

3.2.2 Resource availability

Due to the limited transmission range of mobile devices, resources that are acquired
can go out of range at any moment without any warning whatsoever. This is in
strong contrast with stationary networks in which references to remote resources
are obtained based on the explicit knowledge of the availability and location (cfr.
URLs) of the resource. Hence, mobile devices often rely on a service discovery
protocol to discover other resources on the network. Examples of existing service
discovery protocols include Jini [Arn99] for Java objects and UDDI [Bel] for web
services.

3.2.3 Autonomy

The predominant paradigm for writing distributed applications running on station-
ary networks is based on a client-server protocol. In mobile networks, however,
devices cannot always rely on a central server with a high availability. For this
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reason, every mobile device should be able to act autonomously. Hence, ambient-
oriented applications should be based on a peer-to-peer model, in which every
device acts as a combination of a client and a server.

3.2.4 Concurrency

In distributed applications based on a client-server model, clients often use remote
procedure calls (RPC) or remote method invocation (RMI) to interact with a server.
Both mechanisms use synchronous communication. This means that every time the
client calls a procedure (resp. invokes a method) on the server, the client blocks
until the result of the procedure (resp. the method) is returned. However, blocking
is undesirable in the context of mobile networks, as both the client and the server
can go out of each other’s range anytime.

This leads to the observation that concurrency is a more natural phenomenon
in mobile networks, since the autonomy of a device is undermined every time it
blocks while waiting for a result from a remote device.

3.3 Language criteria for an ambient-oriented program-
ming language

Based on the main features of mobile networks cited above, we can define which
language criteria are suitable for an ambient-oriented programming language. For
example, due to the high volatility of connections, we cannot handle disconnections
using traditional exceptions because this would clutter the code with numerous try-
catch clauses. This cluttering would result in unreadable, difficultly maintainable
and error-prone program code.

More generally, the ambient-oriented programming paradigm embodies four
important language criteria [DVM+06]:

3.3.1 Classless object models

In class-based programming languages such as Java and C++, every object is intrin-
sically linked to its class and cannot exist without it; the class defines the behaviour
of the object and is shared by all of its instances. Although class-based languages
may perform well in non-distributed applications, problems arise in a distributed
context. Indeed, suppose that n devices host objects that are instances of a partic-
ular class C, then each host will need a local copy of the class. Consistency issues
will occur as soon as one device, say ni changes its local definition of C. Instances
of the class C which are sent back and forth between device ni and other devices
would exhibit different behaviour depending on the device on which they reside,
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because objects are not self-contained, but instead depend on a class.

An alternative to class-based models are prototype-based models [DMC92],
which shun the concept of a class. In prototype-based languages like Self [US87]
and Agora [CHDS94], objects can be made self-sufficient—they can encapsulate
all of their state and behaviour. This implies that, in prototype-based languages,
there are three modi operandi to instantiate new objects:

1. By cloning an existing object (the existing object is used as a prototype).
Cloning offers two alternatives: shallow cloning or deep cloning. However,
deep cloning is often ruled out because it is more time consuming and offers
little advantages over shallow cloning [DMC92].

2. Ex nihilo, i.e. by assembling a number of fields and methods to create a new
object.

3. By extending an existing object p. In this scenario, a new object is created
with a delegation link to its parent object p. This is comparable to class-
based inheritance: if the object does not contain a field or a method x, the
delegation links are followed until x is found in a parent. When following
the delegation chain, the pseudo-variable this always points to the initial
receiver of the message (i.e. late binding) [DMC92].

Because of the self-containment principle, classless models are more appro-
priate to the ambient-oriented paradigm. Indeed, the consistency issue described
above does not arise in classless models, because no object depends on a class.
Hence, two hosts can independently “upgrade” objects cloned from the same ob-
ject, without risking that one of these objects behaves differently depending on
where it is hosted.

3.3.2 Non-blocking communication

As we have seen in section 3.2.4, synchronous (blocking) communication between
devices of a mobile network is undesirable because it severely undermines the au-
tonomy of the blocked device, which, in the event of a network failure, could be
waiting for an answer forever (or at least until a specified timeout). Additionaly,
blocking communication is a known source of (distributed) deadlocks [VA98].

For these reasons, we conclude that ambient-oriented programming should use
non-blocking communication primitives, in which neither the sender nor the re-
ceiver block until the result is returned (resp. until a message is received). Non-
blocking communication leads to event-driven applications, responsive to incom-
ing events generated by spontaneously interacting autonomous devices [DVM+06].
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3.3.3 Reified communication traces

With non-blocking communication in place and the absence of synchronous com-
munication primitives, devices lack an implicit way to synchronize with one an-
other. However, synchronization is an essential component in distributed applica-
tions because it can, amongst others, prevent communicating devices from ending
up in inconsistent states.

When the communication traces (e.g. the list of sent and received messages)
are accessible to the programmer (i.e. reified in the language), they can be used to
revert to an older, consistent state, or to a new state agreed upon by the communi-
cating devices.

Reifying the communication traces and primitives is also important in the con-
text of allowing the programmer to alter the default message sending or delivery
policy. This allows the programmer to adapt the message delivery policy to his
needs—and to the reality of the network environment. For example, in a real-time
application the programmer might want to use “send once” semantics without any
delivery guarantees instead of trying to send a message repeatedly until it reaches
its destination.

3.3.4 Ambient acquaintance management

The volatility of connections and the unpredictable availability of resources makes
it impractical to rely on a third party (i.e. a server) to get explicit references to
other resources. Thus, devices should be able to discover other devices based on a
description (e.g. an interface that the device sought after must implement), rather
than on a fixed URL. One way to achieve this is to broadcast periodically the ser-
vices that a device offers, such that other devices can get acquainted if they need
the services offered by the device.

Hence, ambient devices should form a peer-to-peer network in which devices
can spontaneously get acquainted with previously unknown devices, based on an
intensional description of a set of required services, rather than on a fixed URL.
Such a service discovery protocol, along with a mechanism to detect and handle the
loss of acquaintance (e.g. whenever the provider and the consumer of a particular
service move out of each other’s range), should be part of every language that
implements the ambient-oriented programming paradigm [DVM+06].

3.4 AmbientTalk: an ambient-oriented programming lab-
oratory

AmbientTalk is a programming language developed at the Programming Technol-
ogy Laboratory of the Vrije Universiteit Brussel which adheres to all of the above
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language criteria. It serves as a “language laboratory” to experiment with different
language constructs, such as futures, which are described in more detail in section
3.5. Thanks to its simple yet expressive meta-object protocol, most of these lan-
guage constructs can be implemented in AmbientTalk without adapting the code
of the language interpreter. We first introduce the language and its key concepts.

3.4.1 Pic% background

The AmbientTalk language is based on Pic%, which is itself an extension to Pico
[D’Hb]. Pico is a simple procedural language that was designed to teach advanced
computer science concepts to college students [D’Ha]. Pic% grew out of Pico,
with the main difference being the addition of first-class dictionaries, which can be
used to support prototype-based object-oriented programming. Pico’s syntax and
design rationale are described below, followed by a section which illustrates the
object-oriented extensions offered by Pic%.

3.4.1.1 Pico

Below are some syntactical and semantical aspects of Pico, as explained in greater
detail in [MDD04].

Table-based Whereas Scheme [ASS85] uses lists to store most of its data struc-
tures (including program code itself), Pico uses tables (i.e. arrays) consistently
across the language: tables are used to store programs, tables are the basic data
structures of the language, variable size argument lists are implemented by table
parameter passing, the memory model and garbage collector are optimized to han-
dle variable sized tables, . . . [D’Hb]. Also noteworthy is the fact that Pico tables
are indexed in the range [1, ...,size(table)] instead of the usual [0, ...,size(table)[
range.

A Straightforward syntax Pico features a rich but nonetheless simple syntax.
A fundamental notion of Pico is the invocation, which is either a reference, a tab-
ulation or an application. An invocation is used in four modes: access, variable
definition, constant definition and assignment. Figure 3.1 depicts this structure and
illustrates how twelve different Pico program expression types are constructed by
combining the three invocation types into the four modes.

No special forms by means of call-by-function Unlike Scheme, Pico does not
require special forms in order to support block structures, recursion, condition-
als, . . . Instead, it features a parameter binding mechanism called call-by-function,
which offers the programmer the option of specifying a formal parameter as an in-
vocation. Consider the following illustrative example of a Scheme-like map func-
tion:



CHAPTER 3. AMBIENT-ORIENTED PROGRAMMING 40

Figure 3.1: Pico 3x4 syntax grid [MDD04]

map( f ( va l ) , tab ) : : {
i dx : 0;
res [ s ize ( tab ) ] : : f ( tab [ i dx : = i dx+ 1 ] )

}

A call to map(val*val, [1, 2, 5]) evaluates to [1, 4, 25]. In this partic-
ular example, the call-by-value parameter tab is bound to the result of evaluating
[1, 2, 5] in the calling scope, while the call-by-function parameter f(val) is
bound to the expression val*val. Internally, during every application of map, a
local variable f is bound to a closure consisting of the parameter list (val), the
body val*val and the calling evironment of map [MDD04].

Variable arity functions Pico features variable arity functions by means of the
@ construct. The following example illustrates its usage:

print@elements : : {
for ( i : 1 , i <= s ize ( elements ) , i : = i +1 ,

display ( elements [ i ] ) )
}

This allows the programmer to call print with any number of arguments.
Hence, print(1) and print(1, 2, 3) are both correct function calls. In both
examples, the parameter elements is bound to a table containing one and three
values, respectively.

3.4.1.2 Pic%

Pic% extends the syntax and the semantics of Pico in various ways, as explained
below.
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First-class environments for abstraction Pic% features first-class environments:
the current environment can be captured at any moment using the capture() na-
tive. Internally, an environment consists of two linked lists of (name, value)
pairs—one for the constants and one for the variables—as well as a link to a parent
environment. This structure is depicted in figure 3.2.

Figure 3.2: Structure of Pic% environments

Because of these properties, environments can be used as objects to enable
object-oriented programming in Pic%. In some aspects, this is similar to the way
objects are “simulated“ in Scheme [ASS85]. As an example, consider the follow-
ing definition of a stack in Pic% [MDD04]:

Stack ( n ) :
{ T [ n ] : void ;

t : 0;
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empty ( ) : : t = 0;
f u l l ( ) : : t = n ;
push ( x ) : : { T [ t : = t +1] : = x ; void } ;
pop ( ) : : { x : T [ t ] ; t : = t−1; x } ;
capture ( ) }

Extended syntax and native library Pic% extends Pico with new syntax: the
obj.msg() syntax is used to send messages to objects, while the .msg() syntax is
used for super sends. All constants are public and all variables are private. Hence,
only constants can be accessed using the dot notation. Additionally, the this()
native always returns the current object and the super() native returns the parent
of the current object.

Prototype-based extensions Recall from section 3.3.1 that there are three mech-
anisms for creating new objects in the prototype-based paradigm. Pic% supports
all three mechanisms:

1. By cloning an existing object. The clone(obj) native returns a clone of obj.
Cloning implies deep copying all the variables and shallow copying all the
constants of a given object. Alternatively, Pic% supports cloning methods,
i.e. methods whose body is always executed in the context of a clone of the
receiver. Every method that starts with cloning. is a cloning method.

2. Ex nihilo. The object(...) native allows the programmer to create new
objects ex nihilo. It creates an object by executing its argument expression,
typically a block of code containing a number of slot declarations.

3. By extending an existing object The obj.extend(...) construct creates a
new object from a number of slot declarations, with a delegation link to obj.

The following example illustrates various object creation mechanisms, as well
as method overriding in Pic%:

makeCol lect ion ( ) : : object ({
contents : [ ] ;
setContents ( elements ) : : { contents : = elements } ;
con ta ins ( e l ) : : {

r e s u l t : fa lse ;
for ( i : 1 , i <= s ize ( contents ) , i : = i + 1 ,

r e s u l t : = or ( r e s u l t , contents [ i ] = e l ) ) ;
r e s u l t }

})

makeSt r ingCo l lec t ion ( elements ) : : {
c : makeCol lect ion ( ) . extend ({

cmp( s1 , s2 ) : : . . . ; ‘ very expensive opera t ion ‘
conta ins ( subs t r ) : :

or ( . conta ins ( subs t r ) ,
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{ r e s u l t : fa lse ;
for ( i : 1 , i <= s ize ( contents ) , i : = i + 1 ,

r e s u l t : = or ( r e s u l t ,
cmp( contents [ i ] , subs t r ) ) ) ;

r e s u l t } ) ;
cloning . new( elements ) : : { contents : = elements }

} ) ;
c . setContents ( elements )

}

We note that, being a prototype-based language because of its Pic% roots, Am-
bientTalk already satisfies the first criterion for an ambient-oriented programming
language (see section 3.3.1).

With the knowledge of Pic% in mind, we are primed to continue with an anal-
ysis of the ambient-oriented features of AmbientTalk.

3.4.2 AmbientTalk’s object model

To support the ambient-oriented programming paradigm, AmbientTalk uses the
concept of active objects (or actors—we will use both terms interchangeably through-
out the remainder of this document). Like the ABCL/1 actor model described in
section 2.4.2.1, AmbientTalk’s actor model is based on the functional actor model
presented in section 2.4.1.

Briefly put, each actor is an “active” object, consisting of its own thread of ex-
ecution, updatable state and methods and a message queue. Actors communicate
with each other through asynchronous messages which are added to the actor’s
message queue. Messages in an actor’s incoming queue are then processed se-
quentially to avoid race conditions. The following sections focus in more detail on
the different parts of the AmbientTalk actor model.

3.4.2.1 State and behaviour

Actors are created using the actor(bhv) native, where bhv is a passive object
which dictates the state and behaviour of the newly created actor. To eliminate
possible race conditions that could occur when sharing the same passive object be-
tween different actors, AmbientTalk uses a deep copy of bhv as the behaviour of
the actor. This way, no behaviour is ever shared by the new actor and its creator.

The behaviour of an actor can also be changed at any time by sending the
actor a become(newBhv) message. Again, the argument of the become message
(the passive object describing the new behaviour) is deep copied to prevent race
conditions.
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3.4.2.2 Message processing and sending

Actors communicate with each other using asynchronous messaging: neither does
the sender block until the answer to a message is returned, nor does the receiver
block for incoming messages. This satisfies the non-blocking communication the
criterion of ambient-oriented programming languages (see section 3.3.2). Again,
to prevent race conditions, all message arguments with the exception of actors1 are
deep copied, such that a passive object is never shared by two active objects.

Thus, the functional actor model satisfies the first two criteria of the ambient-
oriented paradigm so far (classless object model and non-blocking communica-
tion). However, the last two criteria—reified communication traces and ambient
acquaintance management—are unsatisfiable in the “regular” actor model [MTM+05].
Therefore, AmbientTalk is based on an extension of Hewitt and Agha’s actor model
[Agh86], called the ambient actor model [DB04]. The ambient actor model re-
places the single message queue of the functional actor model with a number of
first-class mailboxes, as detailed below.

To support the reified communication traces criterion (see section 3.3.3), Am-
bientTalk replaces the single message queue of every actor with four first-class
mailboxes (i.e. mailboxes that are explicitly accessible to the programmer): an
inbox, an outbox, a rcvbox and a sentbox. Whenever an actor a sends a mes-
sage m to another actor b (using the b#m(arg, ...) syntax), the message m is
stored indefinitely in the outbox of a until it is successfully transmitted to b. At
that moment, the message m is moved from a’s outbox to a’s sentbox. On b’s
side, the incoming message m is kept in the inbox until it is processed. After it has
been processed, m is moved from b’s inbox to b’s rcvbox.

Together, these four mailboxes fully reify the communication traces between
actors (see section 3.3.3), as required by the ambient-oriented programming paradigm.

3.4.2.3 Service discovery

Apart from the four mailboxes used as message queues, every actor contains four
additional mailboxes that are used for service discovery. Every actor can add de-
scriptive strings to its provided mailbox to announce one or more provided ser-
vices. Similarly, an actor can put a series of descriptive strings in its required
mailbox to announce that it is seeking actors providing those services for collabo-
ration. Whenever two actors come into each other’s range, the descriptive strings of
both actors are matched against each other. If a match occurs, the joinBox mailbox
of the actor requiring the service s is updated with a resolution object containing a
reference to the actor providing service s and the matched descriptive string. Ev-
ery time two such actors go out of range, the resolution object is moved from the

1Actors process messages sequentially, thus eliminating the possibility of race conditions.
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joinBox mailbox to the disjoinBox mailbox. This is the core of AmbientTalk’s
acquaintance management mechanism (see section 3.3.4).

3.4.2.4 Mailbox observers

The programmer can register an observer for each native message mailbox (inbox,
outbox, sentbox and rcvbox) by definining in the actor’s behaviour the in(msg),
out(msg), sent(msg) and rcv(msg) methods, respectively. Mailboxes observers
are called every time a message is added to a mailbox, with the message as their
unique argument.

As a simple example of the use of mailbox observers, consider a router actor
that forwards every incoming message transparently to another actor. The router
actor also logs every forwarded message. The code is given below:

r o u t e r : actor ( object ({
t a r g e t : void ;
log : vec to r . new ( ) ;

se tTarget ( ac t ) : : { t a r g e t : = act } ;

i n (msg) : : {
i f ( not ( is void ( t a r g e t ) ) , {

‘ log the message and the cu r ren t t ime ‘
log . add ( [ t ime ( ) , msg ] ) ;
‘ forward the message t r a n s p a r e n t l y ‘
inbox . de le te (msg ) ;
msg . setTarget ( t a r g e t ) ;
outbox . add (msg)

})
}

} ) )

3.4.2.5 Meta-object protocol

AmbientTalk supports structural and behavioural intercession (see section 2.1) by
reifying parts of an actor’s internal structures and behaviour, which are imple-
mented as regular Pic% passive objects and methods. While this may have neg-
ative effects on the execution speed of AmbientTalk programs, it has the advantage
of opening up the implementation of e.g. the message creation and transmission
mechanisms to the programmer. For example, every asynchronous message is cre-
ated as the result of a call to the createMessage method of the sender’s behaviour.
This yields a passive object containing the source (the actor that sent the mes-
sage), target (the receiver of the message), name (the name of the message) and
argList (a table containing all the arguments of the message) slots and a process
method. The default implementation of createMessage is given below:

createMessage : : { ‘ MOP method to create new messages ‘
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message : object ({
source : void ; t a r g e t : void ;
name : void ; a r g L i s t : void ;

cloning . new( aSource , aTarget , aName, anArgL is t ) : :{
source : =aSource ; t a r g e t : =aTarget ;
name : =aName; a r g L i s t : =anArgL is t

} ;

getSource ( ) : : source ; setSource ( aSource ) : : source : =aSource ;
getTarget ( ) : : t a r g e t ; se tTarget ( aTarget ) : : t a r g e t : =aTarget ;
getName ( ) : :name ; setName (aName) : :name : =aName;
getArgs ( ) : : a r g L i s t ; setArgs ( anArgL is t ) : : a r g L i s t : =anArgL is t ;

process ( behaviour ) : : behaviour . execute ( th is ( ) ) ;
} ) ;

message . new
}

Similarly, an actor sends an asynchronous message by calling the send method
defined in its behaviour. The default implementation of send, as included in the
root object to which all objects delegate (either directly or indirectly), is given
below:

send ( message ) : : {
outbox . add ( message ) ;
void

}

As part of the meta-object protocol, every expression act#msg(arg, ...) is
translated internally to send(createMessage(thisActor(), act, "msg", [arg, ...])).

Processing messages that are removed from the inbox is for its part handled by
the process method, implemented by default as:

process ( message ) : : {
message . process ( th is ( ) ) ;
rcvbox . add ( message )

}

The bodies of these methods clearly map to the semantics of message sending
and processing as explained in section 3.4.2.2.

The following example illustrates the usage of the MOP, by demonstrating how
the send method can be refined for debugging purposes [DVM+06]:

send (msg) : : {
display ( ” Sending ’ ” , msg . getName ( ) , ” ’ ” , eoln ) ;
. send (msg)

}
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Please note that the built-in mailboxes and their observers are also part of Am-
bientTalk’s MOP, since they partially reify the state of the interpreter. Hence, each
stage of the message creation, sending and processing interplay is reified in the
MOP [DVM+06], allowing the programmer to intervene wherever required. As
we will see in the following section, the MOP is used extensively to reflectively
implement custom language extensions, such as futures and due-blocks.

3.5 AmbientTalk language extensions

As explained above, AmbientTalk serves primarily as a laboratory for experiment-
ing with ambient-oriented language constructs. This is usually accomplished by
using and overriding the MOP methods described in the previous section. A mixin-
based technique is used to implement the language constructs in a modular way: an
AmbientTalk language construct and its supporting MOP methods are grouped in
a language extension (or language mixin), i.e. a method that extends its argument
(a passive object describing an actor’s behaviour) with new meta-level behaviour
(e.g. by overriding send, createMessage, process and/or installing mailbox ob-
servers). The language mixins are to be applied to the passive object describing the
actor’s behaviour before it is created, such that the newly created actor can exhibit
the required additional behaviour [DVM+06]. As an example, two AmbientTalk
language extensions are analyzed below.

3.5.1 Non-blocking futures

Futures were developed to reconcile asynchronous message sends with classic syn-
chronous method call return values, and to avoid the drawbacks of event-driven
programming2 (i.e. cluttered code, race conditions, . . . ). The idea is that an asyn-
chronous message send results in a placeholder object (i.e. a “future”) which will
eventually be replaced by the actual result of the asynchronous message send (i.e.
the “resolution”). Because some operations such as assignment and parameter
passing operate only on the variables and not on the values themselves, parallelism
between caller and callee can increase significantly. Operations which do need
the result (e.g. addition) are blocked until the future is resolved3. For example,
consider the following example code in MultiLisp [RHH85] (the future construct
returns a placeholder that is replaced by the resolution as soon as it is computed):

( cons ( f u t u r e ( f i b (− n 1 ) ) ) ( f u t u r e ( f i b (− n 2 ) ) ) )
( + ( f u t u r e ( f i b (− n 1 ) ) ) ( f u t u r e ( f i b (− n 2 ) ) ) )

Clearly, the first expression (which creates a pair of values) has more potential
for parallelism than the second expression, because the + operator will immediately
need to examine its argument values (so it can add them) whereas placeholders are

2Recall from section 3.3.2 that non-blocking communication primitives give rise to event-driven
applications.

3In the optimal case, the future has already been resolved such that no blocking occurs at all.
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sufficient for the cons operator [RHH85].

AmbientTalk’s futures, however, differ from “traditional” (i.e. blocking) fu-
tures, and are instead based on the concept of non-blocking futures introduced in E
[MTS05]. The reason for this is that blocking futures can undermine the autonomy
of ambient devices, should a computation be waiting for the resolution in order to
be able to continue.

Hence, AmbientTalk features non-blocking futures which transparently for-
ward messages to their resolution, and a when(aFuture, aClosure) construct
that executes a given closure upon resolving the future. An example of Ambi-
entTalk’s implementation of non-blocking futures is given below.

3.5.1.1 Example

To enable the use of futures, the programmer extends the desired behaviour (facBhv)
with the “future-enabling” behaviour. In the following example, the asynchronous
message send facActor#fac(i-1) returns a non-blocking future (instead of void).
The when construct takes two parameters: the first is a non-blocking future, and the
second is a block of code that will be executed at the moment the future is resolved.
This block of code may be parametrized with a content parameter, which will be
bound to the value of the resolution at the moment of execution (i.e. when the
future is resolved).

{
f acAc to r : : actor ( object (

fac ( n ) : : i f ( n = 0 , 1 , n ∗ fac ( n−1 ) )
) ) ;

facBhv : : object ({
pr in tFac ( i ) : : {

when ( facAc to r # fac ( i−1) ,
display ( ” fac ( ” , i , ” ) = ” , content ∗ i , eoln ) )

}
} ) ;

ac t : actor ( extendWithFuturesBehaviour ( facBhv ) ) ;
ac t# pr in tFac (42)

}

3.5.1.2 Reflective implementation

The AmbientTalk code implementing non-blocking futures consists of three parts:
the behaviour of the future actor, the behaviour of a listener actor which gets no-
tified when the future is resolved, and the behaviour to add to “regular” actors to
make them capable of handling futures (a.o. introducing the when language con-
struct).
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Future-enabling behaviour The extendWithFuturesBehaviour(bhv) method
is used to extend the behaviour of a regular actor so that it can handle futures cor-
rectly. Firstly, createMessage is refined in order to create extended messages
which contain a reference to a future and additional behaviour to resolve this fu-
ture when the result of the computation induced by the asynchronous message is
available. Secondly, the send method is refined such that it returns the future in-
stead of void. Finally, the when method is added to an actor’s behaviour to allow
the programmer to specify a block of code to execute as soon as a future is re-
solved. Implementation-wise, this is achieved by subscribing a listener actor to the
future. The behaviour of the listener actor is explained below.

extendWithFuturesBehaviour ( bhv ) : : bhv . extend ({
whenBlocks : vec to r . new ( ) ;
newId : 1;

invokeWhen ( anId , content ) : :{
whenBlocks . get ( anId ) ( content )

} ;

when ( aFuture , code ( content ) ) : :{
whenBlocks . add ( code ) ;
aFuture#subscr ibe ( actor ( f u t u r e L i s t e n e r . new( newId , thisActor ( ) ) ) ) ;
newId : =newId+1;
void

} ;

createMessage ( aSource , aTarget , aName, a n A r g l i s t ) : :{
‘ c reate a regu la r message ‘
msg : . createMessage ( aSource , aTarget , aName, a n A r g l i s t ) ;
‘ . . . and extend i t w i th f u t u r e behaviour ‘
msg . extend ({

f u t u r e : void ;

getFuture ( ) : : f u t u r e ;
se tFuture ( aFuture ) : : f u t u r e : =aFuture ;

process ( behaviour ) : :{
value : behaviour . execute ( th is ( ) ) ;
f u t u r e # reso lve ( value ) ;
value

}
} ) ;
msg . setFuture ( actor ( f u t u r e . new ( ) ) ) ;
msg

} ;

send (msg) : :{
. send (msg ) ;
‘ r e t u r n p laceho lder ac to r ins tead of vo id ‘
msg . getFuture ( )

}
})
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Future listener behaviour The futureListener object describes the behaviour
of a listener actor, whose single purpose is to send an invokeWhen message with
the resolved value as soon as it is computed (i.e. as soon as the future is resolved).

f u t u r e L i s t e n e r : root . object ({
i d : void ;
re ference : void ;
cloning . new( anId , aReference ) : :{ i d : =anId ; re ference : =aReference } ;
n o t i f y ( content ) : : re ference # invokeWhen ( id , [ content ] )

})

Future behaviour Finally, the future object defines the behaviour of a non-
blocking future actor (i.e. a placeholder which gets resolved eventually). The
resolved slot is used to hold the computed value, with a void value indicating
that the future has not yet been resolved. The key method is resolve(content),
which is called right after the value of the computation is known. This method
notifies all listener actors (which have previously subscribed to the future actor) of
the availability of the result.

Furthermore, the placeholder actor stores every asynchronous message it re-
ceives until the future is resolved. If the resolution is also an actor, the placeholder
forwards all stored messages to the resolution, and acts as a transparent proxy for
all messages coming in afterwards (This is similar to the routing actor described in
section 3.4.2.4).

f u t u r e : root . object ({
reso lved : void ;
subscr ibers : vec to r . new ( ) ;

cloning . new ( ) : :{subscr ibers : =vec to r . new ( ) ; reso lved : =void } ;

subscr ibe ( anActor ) : :{
subscr ibers . add ( anActor ) ;
i f ( not ( is void ( reso lved ) ) , {

anActor# n o t i f y ( reso lved )
})

} ;

reso lve ( content ) : :{
‘ n o t i f y a l l subscr ibers o f the value o f the r e s o l u t i o n ‘
subscr ibers . i t e r a t e ( e l # n o t i f y ( content ) ) ;
reso lved : =content ;
‘ forward a l l s tored messages to the r e s o l u t i o n ‘
inbox . asVector ( ) . i t e r a t e ({

msg : e l ;
forward (msg)

})
} ;

forward (msg) : :{
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i f (and ( i s ac tor ( reso lved ) ,
‘ messages understood by t h i s ac to r must not be forwarded ‘
not ( th is ( ) . conta insBehaviour (msg . getName ( ) ) ) ) , {

inbox . de le te (msg ) ;
msg . setTarget ( reso lved ) ;
outbox . add (msg)

})
} ;

i n (msg) : :{
i f ( not ( is void ( reso lved ) ) , {

forward (msg)
})

}
})

3.5.2 Due-blocks

AmbientTalk’s default message sending policy guarantees eventual delivery of ev-
ery outgoing message. Undeliverable messages are kept in the outbox of the sender
until successful delivery, possibly for an unlimited amount of time. Due-blocks are
an AmbientTalk language extension that allows the programmer to alter this policy
by tagging outgoing messages with a deadline. Messages that are not sent before
their deadline are removed from the sender’s outbox and a handler message is sent
instead, with the timed out message as an argument, in order to deal with the time-
out. The use of due-blocks in AmbientTalk is illustrated by the following example:

3.5.2.1 Example

In the following example, an actor’s behaviour is extended with the due-blocks be-
haviour. The programmer uses the due construct to express that the newly created
actor is given 10 seconds to authentice to a known authentication actor. If the auth
message cannot be sent before this deadline, the actor is notified of the failure, by
sending it the timeout message with the auth message as an argument.

{
actorBhv : : object ({

a u t h e n t i c a t o r : . . . ‘ re ference to a u t h e n t i c a t i o n ac to r ‘
log inT imeout : 10000;
user : ” john ” ;
pass : ” doe ” ;

l o g i n ( ) : : { a u t h e n t i c a t o r #auth ( user , pass ) } ;

t imeout (msg) : : { display ( ” Sending message ’ ” , msg . getName ( ) ,
” ’ t imed out ” , eoln ) } ;

‘ the i n i t ( ) message i s sent a u t o m a t i c a l l y to ‘
‘ every ac to r a t i n i t i a l i z a t i o n ‘
i n i t ( ) : : {
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‘ the t h i r d argument creates a f i r s t−c lass message w i thou t ‘
‘ sending i t ‘
due ( loginTimeout , { l o g i n ( ) } , thisActor ( ) # t imeout )

}
} ) ;

extBhv : extendWithExpiryCheckingBehaviour (
extendWithDueBehaviour ( actorBhv ) ) ;

ac t : actor ( extBhv )
}

3.5.2.2 Reflective implementation

The due language construct comprises two methods:

• extendWithDueBehaviour extends a given behaviour with the due method.

• extendWithExpiryCheckingBehaviour extends the behaviour of an actor
to continuously check its inbox and outbox for expired messages. If such
messages are found, the corresponding handler message is sent.

Due-block extending behaviour extendWithDueBehaviour extends a given
actor behaviour with the due method, which takes three arguments: a deadline
relative to the current time, the block of code to execute and the handler message
to send for every message whose deadline is not met. Whenever the due method
is called, the timeout value and the handler message are stored in two data slots.
The value of these data slots is used by createMessage to tag every message
created inside the block of code of the due-block with an extra deadline and a
“complaint address”. When dueTimeout is void, createMessage knows that the
message was created outside of a due-block. Additionaly, saving and restoring the
dueTimeout and dueHandlerMsg slots inside the due method allows for nested
due-blocks.

extendWithDueBehaviour ( bhv ) : : bhv . extend ({
dueTimeout : void ;
dueHandlerMsg : void ;

due ( deadl ine , body ( ) , handlerMsg ) : : {
tmpTimeout : dueTimeout ;
tmpHandler : dueHandlerMsg ;
dueTimeout : = deadl ine ;
dueHandlerMsg : = handlerMsg ;
value : body ( ) ;
dueTimeout : = tmpTimeout ;
dueHandlerMsg : = tmpHandler ;
value

} ;

createMessage ( aSource , aTarget , aName, a n A r g l i s t ) : : {
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‘ c reate regu la r message ‘
msg : . createMessage ( aSource , aTarget , aName, a n A r g l i s t ) ;
‘ check i f message i s sent from i n s i d e a due−block ‘
i f ( ! is void ( dueTimeout ) ,

{ msg . extend ({
deadl ine : : t ime ( ) + dueTimeout ;
hand lerActor : : dueHandlerMsg . getSource ( ) ;
handlerName : : dueHandlerMsg . getName ( )

}) } ,
msg)

}
})

Expiry checking behaviour The expiry checking behaviour registers the actor
with a “ticker” actor that sends notify messages at regular time intervals. At every
notification, the actor iterates over its inbox and outbox to remove every message
that has not been sent before its deadline and to send a handler message instead.
Checking the inbox is required in case the expiry checking behaviour is added to
e.g. a future, because a future typically stores incoming messages in its inbox until
it is resolved (see section 3.5.1).

extendWithExpiryCheckingBehaviour ( bhv ) : : bhv . extend ({
p o l l I n t e r v a l : 1000; ‘ i n m i l l i seconds ‘

i n i t ( ) : : {
. i n i t ( ) ;
root . c rea teT icke rAc to r ( p o l l I n t e r v a l ) # r e g i s t e r ( thisActor ( ) # n o t i f y )

} ;

n o t i f y ( ) : : {
t imedOut (msg, mbox) : : {

i f ( h a s s l o t (msg , ” deadl ine ” ) , ‘ on ly check tagged messages ‘
i f ( t ime ( ) > msg . deadl ine ,

{ ‘ send handler message to the compla in t address ‘
‘ w i th the timed out message as unique argument ‘
send ( createMessage ( thisActor ( ) , msg . handlerActor ,

msg . handlerName , [ msg ] ) ) ;
true } ,

fa lse ) ,
fa lse )

} ;

outbox . removeIf ( t imedOut (msg , outbox ) ) ;
inbox . removeIf ( t imedOut (msg , inbox ) )

}
})
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3.5.3 Discussion

We have seen throughout this section that AmbientTalk language extensions are
typically implemented following a set of “patterns”. First, the send method is
often overridden in combination with the createMessage method; this allows the
programmer to extend “regular” messages with additional behaviour that is relevant
for the language extension. Secondly, language extensions often employ mailbox
observers to execute custom code whenever a message is added to a mailbox. Fi-
nally, most language extensions contain one or more methods that form the “public
interface” to the application programmer, such as the when construct for futures
and the due construct for due-blocks.

3.6 Conclusion

This chapter introduced a relatively new programming paradigm, called the ambient-
oriented programming paradigm. This paradigm is especially geared towards de-
vices communicating in open mobile networks. First, the characteristics of mobile
networks were analyzed, in comparison to stationary networks. Next, these char-
acteristics were used to define a set of criteria for ambient-oriented programming
languages. Subsequently, an ambient-oriented programming language called Am-
bientTalk was introduced; special attention was paid to its meta-object protocol,
which allows to implement new language constructs reflectively. Finally, two such
constructs (non-blocking futures and due-blocks) were analyzed in detail.

The next chapter returns to the AmbientTalk MOP by evaluating its weaknesses
and the problems assiociated with them. It also assesses the applicability of the
design principles presented in chapter 2 in the context of the ambient-oriented pro-
gramming paradigm.



4
Evaluating AmbientTalk’s Meta-Object

Protocol

This chapter evaluates AmbientTalk’s meta-object protocol, as described in section
3.4.2.5. It focuses on the shortcomings of the MOP, such as a lack of separa-
tion between the language’s base- and meta-level and the absence of a high-level
mechanism to compose language mixins. Next, the meta-level architectures and
design principles described in chapter 2 are evaluated in the context of ambient-
oriented programming; their applicability and shortcomings are assessed in the
light of implementing a reflective architecture for an ambient-oriented program-
ming language.

4.1 Evaluation of AmbientTalk’s meta-object protocol

While AmbientTalk provides support for reflective operations, its current meta-
object protocol (see section 3.4.2.5) exhibits a series of shortcomings, as detailed
below.

4.1.1 Lack of stratification and encapsulation

Recall from section 3.4.2.5 that the state and behaviour of AmbientTalk actors is
represented by an (internal) passive object p. The meta-object protocol consists of
a set of methods and fields defined directly in p, or ”inherited” indirectly from the
root object, which contains the default implementations of every reflective method.
Hence, there is no separation between the base- and the meta-level—both exists
side by side in the same scope. This violates the principle of stratification of a
mirror-based design, which dictates that there must be a clear separation between

55
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the base-level and the meta-level of a reflective language (see section 2.3).

We illustrate the lack of stratification in figure 4.1, which depicts the example
described in section 3.5.1.1. The root object contains base-level methods (sin(x),
display@args) and fields (facActor), as well as meta-level methods (the de-
fault implementations of process(msg), send(msg), ...) and fields (the reified
mailboxes: inbox, ...). The root object is extended with the desired base-level
behaviour (printFac(i)). Afterwards, the object that describes the actor’s be-
haviour is itself extended with the future-enabling (meta-level) state (whenBlocks,
newId) and behaviour (invokeWhen(andId, content), createMessage@args,
send(msg), when(aFuture, code(content))—the when method is special be-
cause it is a meta-level method that must be “exported” to the base-level so the pro-
grammer can use it in base-level programs). Such methods are AmbientTalk’s lan-
guage constructs (see section 3.5). Finally, the resulting passive object is “wrapped”
in an actor.

Figure 4.1: Violation of the stratification principle in AmbientTalk’s MOP

Beyond the fact that it does not respect the stratification principle, this approach
has multiple drawbacks:

1. It exposes the base-level programmer to unnecessary meta-level details.

2. The unwary programmer risks accidentally overriding/shadowing meta-level
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methods/fields by defining a base-level method/field with an identical name
as an existing meta-level method/field. For example, the programmer might
define a process(request) method to process, say, incoming HTTP re-
quests. This method would then be used by the interpreter to process every
incoming message, instead of the process(msg) method defined in the root
object. This could lead to errors that are undetectable to the programmer
who is unaware of the meta-level architecture of AmbientTalk.

3. Similarly, meta-level programmers risk accidentally overriding/shadowing
base-level methods/fields by defining a meta-level method/field with an iden-
tical name as an existing base-level method/field. For example, when we
consider the expiry checking meta-behaviour defined in section 3.5.2, the
notify() meta-method might override an actor’s base-level notify() method
which, e.g. notifies all surrounding “chat” actors of the actor’s status mes-
sage.

For the reasons stated above, we argue that the meta-level functionality should
be clearly separated from the base-level functionality, because it is impossible to
require that the base-level programmer knows the interfaces of all possible meta-
level programs, and vice versa.

Furthermore, base- and meta-level implementation details, such as private fields,
should be encapsulated in separate entities, such that both are isolated from one an-
other. This corresponds to the principle of encapsulation of a mirror-based design,
as defined in 2.3. Neither the stratification principle nor the encapsulation principle
are supported by AmbientTalk’s MOP.

4.1.2 Ad hoc composition

In AmbientTalk, language extensions such as non-blocking futures and due-blocks
(see sections 3.5.1 and 3.5.2) are typically implemented by overriding a set of meta-
methods (e.g. send, createMessage, process, ...). These meta-methods—and
possibly additional state—are then mixed in the passive object that represents the
actor’s state and behaviour. Technically, mixing in state and behaviour is achieved
by extending the current object with the code that defines the language extension
(this is done by the extendWithFuturesBehaviour, extendWithExpiryCheckingBehaviour
and extendWithDueBehaviour methods in the case of futures and due-blocks).
Extending an actor with multiple language mixins is achieved by mixing in the
code of all extensions sequentially. For example, suppose the programmer wants
to create an actor that supports non-blocking futures (and the when construct) and
failure handling using the due construct. This is achieved by the following code,
where bhv is the actor’s base-level behaviour.

bhv : object ( . . . ) ;
fu tBhv : extendWithFuturesBehaviour ( bhv ) ;
dueFutBhv : extendWithExpiryCheckingBehaviour (
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extendWithDueBehaviour ( fu tBhv ) ) ;
a : actor ( dueFutBhv )

Figure 4.2: Applying futures and failure handling mixins to an actor’s behaviour

The resulting actor is depicted in figure 4.2. This example illustrates that dif-
ferent language mixins are combined using ad hoc composition—i.e. without a
structured high-level composition mechanism; the programmer might as well have
reversed the order in which the different language extensions are mixed in. How-
ever, we claim that ad hoc composition is not sufficient and can lead to unexpected
results.

To support our claim, we must first briefly recapitulate the notion of overrid-
ing in object-oriented languages. In Pic%, a method in a child object is said to
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override a method in its parent object if the two methods have the same name1.
More precisely, there are two different ways to interpret the process of overriding
[Bud01]:

• A method replacement totally overwrites the method in the parent object
during execution; the code of the parent object is never executed when its
child object is manipulated.

• A method refinement includes, as part of its body, the execution of the method
“inherited” from the parent (through delegation). Hence, the behaviour of the
parent object is preserved and augmented.

Back to the case of ad hoc composition, suppose that two language extensions
m1 and m2 are to be mixed in an actor’s base-level object. The implementation
of m1 replaces the send and process methods, while the implementation of m2
refines the send and createMessage methods. Using ad hoc composition, the
programmer mixes in both m1’s and m2’s code. However, the order in which m1
and m2 are mixed in influences the correctness of the result:

1. If the programmer mixes in m1 before m2, the result is correct, because the
send method of both m1 and m2 is executed.

2. If the programmer mixes in m2 before m1, the result is incorrect, because the
send method refined in m2 is completely overwritten in m1.

Similarly, combining two language mixins which both replace the same meta-
level method (e.g. process) always leads to an incorrect result, because the be-
haviour of one of both methods is completely overwritten2.

Additionally, suppose a language extension m depends on another language
extension m′ for proper operation. With ad hoc composition, the responsibility of
mixing in m′ before m is left to the programmer. Therefore, we advocate the need
for a high-level mechanism for combining language extensions that performs the
necessary checks and prevents the programmer from combining language exten-
sions erroneously.

4.1.3 Partly closed service discovery protocol

In AmbientTalk, the service discovery protocol is only made partly available to the
programmer through four native mailboxes (provided, required, joinBox and

1Being a dynamically typed language, Pic% ignores the concept of type signatures, and hence
only takes the name of the method into account.

2The result can be correct in some rare cases, when the programmer intentionally replaces a
method to disable specific behaviour from the parent. However, the programmer should be fully
aware of the possible incompatibility.
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disjoinBox). It works by matching every actor a to other actors by testing the in-
terface required by a against the interfaces provided by the other actors. Interfaces
are defined as a set of strings and testing interfaces against each other is done using
string comparisons (see section 3.4.2.3).

Fully opening the implementation of the service discovery protocol would al-
low the programmer to define his own comparator methods, thereby allowing fine-
grained control over the matching process [CDMM05]. For example, the program-
mer can use custom comparator methods to solve version conflicts. Suppose an ac-
tor a requires FooService version 1 and an actor b provides FooService version 2,
then a custom comparator could still match a to b if it is known that version 2 of
FooService is compatible with version 1; if both versions are not compatible, the
comparator might still match both actors, by providing a with an in-between proxy
actor that converts messages from a in a format b understands and forwards them
transparently to b.

4.2 Evaluation of the ABCL/R meta-level architecture

This section evaluates ABCL/R’s meta-level architecture, as covered in section
2.4.2. It assesses in how far the approach taken in ABCL/R to build an open im-
plementation is applicable to the ambient actor model of AmbientTalk (see section
3.4).

ABCL/R [WY88] adds reflective capabilities to the actor-based language AB-
CL/1 [YBS86]. Every meta-object ↑ x reifies structural base-level entities of its
denotation (i.e. base-object) x such as state and behaviour, the message queue and
the sequential evaluator used to process incoming messages (see section 2.4.2.2).
The state and behaviour of a denotation x roughly corresponds to the part of an
actor’s passive object that describes base-level behaviour in AmbientTalk, while
the message queue corresponds to an actor’s inbox in AmbientTalk.

Behavioural intercession is also supported in ABCL/R: every object can spec-
ify a custom meta-object, thereby overriding default behaviour. An object x and its
meta-object ↑ x support natural concurrency (see section 2.4.2.2), meaning that ↑ x
can accept messages while x is performing a computation. Hence, as the example
code of section 2.4.2.2 shows, an object can change x’s methods through ↑ x while
x is concurrently performing a computation. One drawback of this approach is that
it introduces possible race conditions, for example if a method m is removed from
the behaviour of x through ↑ x while x is still executing m.

By separating base- and meta-level behaviour in a denotation and a meta-
object, ABCL/R supports the principles of stratification and encapsulation of a
mirror-based design (see section 2.3). However, the fact that the programmer can
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specify at object creation which meta-object to use to reflect upon the new object
partly breaks the stratification principle.

Furthermore, ABCL/R is not a distributed language: it does not support the dis-
tribution of objects among several machines. Hence—contrarily to AmbientTalk—
it does not take into account issues such as network failure, object referencing,
. . . . As a matter of fact, a distributed implementation of ABCL/1 happens to exist
[BdR88], but it is designed for stationary networks and has no reflective implemen-
tation. Also, the outbox, sentbox and rcvbox used to implement full reification
of communication traces in AmbientTalk have no counterpart in ABCL/R. Finally,
ABCL/R lacks a high-level composition mechanism to combine language exten-
sions.

4.3 Applicability of a mirror-based design

Recall from section 2.3 that mirror-based meta-level architectures must adhere to
the principles of stratification (i.e. separating base- and meta-level operations in
distinct entities to, amongst others, avoid name clashes between base- and meta-
level slots) and encapsulation (meaning that base- and meta-level implementation
details must be isolated from one another). Because of these desirable properties,
we will use a mirror-based design as a starting point for designing a proper MOP
for AmbientTalk (see chapter 5).

However, mirror-based designs do not address the issues related to actor-based
programming languages, such as, for example, concurrency between the base-level
and the meta-level of the language. Equally challenging is the fact that the question
of how to support behavioural intercession in a mirror-based architecture remains
unanswered [BU04]. However, since AmbientTalk heavily relies on behavioural
intercession for implementing language extensions (see section 3.5), this issue will
have to be addressed. Lastly, mirror-based designs offer no provisions for combin-
ing meta-level behaviour, other than ad hoc composition.

4.4 Conclusion

In this chapter we have reviewed AmbientTalk’s current meta-object protocol, mainly
focusing on its shortcomings, i.e. the total lack of stratification and encapsu-
lation, the ad hoc mixin composition and the closed service discovery protocol.
Subsequently, we have evaluated existing approaches to building reflective object-
oriented architectures, with a view to implementing a proper meta-object protocol
for AmbientTalk.

In the next chapter, we proceed with the actual implementation of a mirror-
based MOP for AmbientTalk, taking into account the various observations made
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throughout this chapter and addressing the challenges described in section 4.3. The
problem of ad hoc composition will be addressed in chapter 6.



5
A Mirror-based Meta-Object Protocol for

Active Objects

This chapter addresses the problem of the lack of stratification and encapsulation
in the AmbientTalk meta-object protocol. To this end, the mirror-based design
principles (see section 2.3) are applied to AmbientTalk’s meta-architecture, and the
feasibility of introducing the concepts of distribution and behavioural intercession
in a mirror-based design are assessed. Finally, the mirror-based MOP is evaluated
in comparison to the previous MOP, and validated by reimplementing the language
extensions presented in section 3.5, so that they comply with the new MOP.

5.1 Design of the mirror-based MOP

Recall from section 3.4.2.5 that AmbientTalk’s MOP consists of a number of fields
reifying base-level behaviour (e.g. mailboxes), and a number of protocols (i.e. or-
chestrated chains of method sends) describing the interactions between meta-level
methods to achieve a certain result (e.g. creating a message, processing a message,
acting upon the reception of a message).

Recall also from section 4 that there is no separation between the base-level
and the meta-level of the AmbientTalk meta-object protocol (i.e. no stratification
and encapsulation). This can lead to unexpected (erroneous) behaviour, such as
when the programmer who is unaware of the meta-level architecture accidentally
replaces meta-level behaviour.

Therefore we propose to implement the principle of stratification in the Ambi-
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entTalk MOP using a design based on mirrors (see section 2.3). The idea is to sepa-
rate the base-level and the meta-level of every actor in two distinct passive objects:
a base-level object describing all base-level behaviour (i.e. describing the exter-
nal problem domain, e.g. an instant messaging service1), and a meta-level object
describing all meta-level behaviour (i.e. describing the actor itself, e.g. message
sending and processing). A sketch of the current design versus our proposed design
is provided in figure 5.1. Throughout the remainder of this document, we will con-
sistently refer to the former as the flat MOP and the latter as the mirror-based MOP.

Figure 5.1: Sketch of AmbientTalk’s base- and meta-level architecture: current
versus proposed design

What is important to note is that base- and meta-level behaviour are stored in
the same actor (instead of e.g. using a design with separate base- and meta-level ac-
tors), thereby avoiding complex synchronization schemes between the base-level
and the meta-level. The possibility of race conditions, such as in ABCL/R (as
explained in section 4.2) is also avoided. This design implies that meta-level mes-
sages use the same set of mailboxes as base-level messages. Hence, a mechanism
is required to differentiate between both kinds of messages. This is described in
more detail in section 5.1.2. The following sections zoom in on specific aspects of
the design of our mirror-based MOP.

1An implementation of an AmbientTalk chat service is provided by Dedecker et al. [DVM+06].
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5.1.1 Applying the principles of stratification and encapsulation

To apply the stratification and encapsulation principles dictated by mirror-based
designs, the idea is to extract all meta-level behaviour from the root object and
separate it into a passive object that describes the default meta-behaviour of an
actor. The programmer is then given two options to create a new actor:

1. If the programmer specifies only a base-level object at actor creation time,
the object describing the default meta-level actor behaviour is used. For ex-
ample, the programmer would write actor(facBhv) to create a “fac” actor
behaving identically to the one described in section 3.5.1.

2. If the programmer specifies both a base-level and a meta-level object at cre-
ation time, the provided meta-level object is used instead of the default meta-
level object. Note that any passive object implementing the required meta-
level behaviour can be specified. For example, the programmer wishing to
create a “fac” actor that logs all sent messages, would invoke the actor na-
tive with a second argument, namely a logBhv meta-object that describes
the logging meta-behaviour. To create such a meta-object, the programmer
can call the createActorMetaBehaviour() method, which returns a clone
of the meta-object that describes the default meta-behaviour of an actor. The
following code illustrates this.

facBhv : object ( . . . ) ;
logBhv : createActorMetaBehaviour ( ) . extend ({

send (msg) : : { . send (msg ) ;
display ( ” Sent : ” , msg . getName ( ) ) }

} ) ;
ac t : actor ( facBhv , logBhv )

To prevent race conditions, a deep copy of both the base- and meta-level ob-
jects is taken in both cases (see also section 3.4). This way, no actor ever shares its
base- or meta-object with another actor.

Additionally, the fact that every actor is sent the init() message at initializa-
tion is transposed to the mirror-based MOP by sending every newly created actor
both a meta-level and base-level (in this order) init() message. The following
section explains how one can send base- and meta-level messages to an actor.

5.1.2 Sending and processing base- and meta-level messages

As a consequence of our single-actor design, base- and meta-level messages share
the same set of primitive mailboxes. Therefore, a mechanism to differentiate be-
tween both kinds is required. We achieve this by preceding the name of every
meta-level message with the µ character. The name of base-level messages is un-
changed. For example, to send an actor a the process(aMsg) meta-message, one
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writes: a#µprocess(aMsg).

The thread that sequentially processes messages in the inbox analyzes the name
of every message and dispatches to the correct behaviour accordingly:

• For meta-level messages, the method corresponding to the message’s name
is looked up in the actor’s meta-object and called with the message’s argu-
ments.

• For base-level messages, the process(msg) method of the actor’s meta-
object is looked up and called with the message as an argument.

Hence, meta-level messages are processed directly, instead of e.g. by a meta-
meta-level process(aMetaMessage) method. This is a direct consequence of the
absence of an infinite reflective tower of meta-objects in our design. Section 5.3.1
elaborates on this limitation. Meanwhile, the processing of base- and meta-level
messages is depicted and explained in pseudo-code in figure 5.2 and exemplified
by figure 5.3, which clearly depicts the differences between both message process-
ing mechanisms (the meaning of the <implicit shift> arrows in figure 5.3 will
become clear in the following section).

Figure 5.2: Processing base- and meta-level messages in AmbientTalk’s mirror-
based MOP (1)

5.1.3 Shifting between base- and meta-level

The programmer is given two ways to shift from the base-level of an actor to its
meta-level: either explicitly by requesting the corresponding object, or implicitly
by exporting meta-methods to the base-level.
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Figure 5.3: Processing base- and meta-level messages in AmbientTalk’s mirror-
based MOP (2)

5.1.3.1 Shifting explicitly

Shifting from within the base-object of an actor to its meta-object is supported
through the metaBehaviour() native, which returns the actor’s meta-object. Sim-
ilarly, every actor’s meta-object contains the baseBehaviour() native, which re-
turns the actor’s base-object. Note that neither of the natives needs to return a deep
copy of the base-/meta-object, because the resulting objects stay confined to the
actor’s boundaries.

5.1.3.2 Shifting implicitly by exporting meta-behaviour

Most AmbientTalk language extensions (see section 3.5) provide a public interface
which must be available to the base-level programmer. These interfaces consist of
one or more meta-level methods that are explicitly used at the base-level. Exam-
ples include the when construct for futures and the due construct for due-blocks.
Hence, a mechanism is needed to somehow export such methods from the meta-
level (where they are defined) to the base-level (where they are used).

While in the flat MOP this is not an issue (since the meta-level methods of the
public interface coexist side by side with the base-level methods), in the mirror-
based MOP one wants to avoid having to explicitly query an actor for its meta-
object every time a method of the public interface must be called. Hence, one
wants to avoid the following coding pattern:
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facBhv : : object ({
pr in tFac ( i ) : : {

metaBehaviour ( ) .when ( facAc to r # fac ( i−1) ,
display ( ” fac ( ” , i , ” ) = ” ,

content ∗ i , eoln ) )
}

} ) ;

Therefore, the meta-programmer must be provided with a mechanism to export
a language extension’s meta-level methods as a public interface to the base-level
object. However, such methods must still be evaluated in the context of the meta-
object. Hence, every exported method must be wrapped in a closure (i.e. a pair
containing a method and an evaluation context for the body of the method) that
contains a reference to the meta-object. This is depicted in figure 5.4. For clarity
reasons, the base-level and the meta-level are each depicted as one single object
instead of a chain of objects delegating to each other. With implicit shifting (using
exported methods), the above code is rewritten as follows:

facBhv : : object ({
pr in tFac ( i ) : : {

when ( facAc to r # fac ( i−1) , ‘ executed i n the contex t o f ‘
display ( . . . ) ) ‘ the actor ’ s meta−ob jec t ‘

}
} ) ;
fu turesBhv : : createActorMetaBehaviour ( ) . extend ({

i n i t ( ) : : {
. i n i t ( ) ;
export (when ) ‘ expor t meta−method to base−ob jec t ‘

} ;

when ( aFuture , code ( content ) ) : : { . . . }
} ) ;
ac t : actor ( facBhv , fu turesBhv )

Figure 5.4: Exporting meta-level behaviour to the base-level
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5.1.3.3 Natural synchronization

Due to the fact that an actor’s base-object and meta-object are stored in the same
actor, synchronization between the base-level and the meta-level occurs naturally.
Indeed, the base-object and the meta-object of an actor send synchronous messages
to one another, blocking until each method call returns. This coincides well with
the semantics of shifting from the base-level to the meta-level and vice versa, which
are also synchronous operations. The sequence diagram in figure 5.3 illustrates this
natural synchronization.

5.1.4 Dynamically changing an actor’s base- and meta-behaviour

The programmer can dynamically change an actor’s base- and meta-behaviour by
sending it the µbecome(aBaseObj) and µmetaBecome(aMetaObj) message, re-
spectively. All base-level (resp. meta-level) messages following a become (resp.
metaBecome) are processed using the new base-object (resp. meta-object). To pre-
vent sharing of base- or meta-objects, the arguments of become and metaBecome
are deep copied. As an example, consider the following code, which dynamically
adds support for logging every executed base-message:

a : actor ( object ({
foo ( i ) : : display ( ” Foo : ” , i , eoln )

} ) ) ;
a# foo ( 4 2 ) ;
a# foo ( 1 3 ) ;
a#µmetaBecome ( createActorMetaBehaviour ( ) . extend ({

process (msg) : :{ display ( ”−−−S t a r t processing ” , msg . getName ( ) , eoln ) ;
. process (msg ) ;
display ( ”−−−Processing f i n i s h e d ” ) }

} ) ) ;
a# foo ( 5 )

Its output is given below:

Foo: 42
Foo: 13
---Start processing foo
Foo: 5
---Processing finished

Whereas the become native resided at the base-level in AmbientTalk’s flat MOP
(see section 3.4), it is implemented as a method of the actor’s meta-object in the
mirror-based MOP—where it conceptually belongs. The metaBecome native, how-
ever, conceptually belongs to an actor’s meta-meta-object (i.e. a meta-object that
describes the actor’s meta-object). However, as already noted in section 5.1.2, one
of the limitations of our mirror-based MOP is the absence of an infinite reflective
tower. This forces us to assign the metaBecome native to the actor’s meta-object.
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5.2 Implementation of the mirror-based MOP

This section describes various details and considerations relative to the implemen-
tation of our mirror-based MOP for AmbientTalk.

5.2.1 Identifying meta-level behaviour

The first step at implementing a mirror-based MOP for AmbientTalk is to clearly
identify the meta-level behaviour that must be separated from the root object in a
distinct object. We identify four kinds of meta-level entities:

1. Meta-level natives. AmbientTalk extends Pic% through a set of native meth-
ods, e.g. execute, which executes a message in the context of a specified
passive object and become, which dynamically changes the base-level be-
haviour of an actor.

2. Meta-level methods. A number of MOP methods such as process and send
which are implemented completely in AmbientTalk code.

3. Mailbox observers. The methods that are called whenever a message is
added to their corresponding mailbox, e.g. in(msg) and sent(msg).

4. Meta-level prototypes. The prototypes for asynchronous messages and the
eight native mailboxes (inbox, outbox, sentbox, rcvbox, required, provided,
joinBox and disjoinBox) are implemented as AmbientTalk objects.

The meta-level methods and the mailbox observers implement behavioural re-
flection in AmbientTalk, while the meta-level prototypes implement structural re-
flection.

5.2.2 Moving meta-level elements to a separate meta-object

The second step of our implementation consists of moving all meta-level behaviour
identified in the previous section to a default meta-object. This object is a regular
AmbientTalk (passive) object, serving as a prototype to instantiate the meta-object
of new actors. It is bound to the constant rootActorMetaBehaviour in the root
object, and can be cloned using the createActorMetaBehaviour() method. The
interested reader can find the full source code of the default actor meta-behaviour
in appendix A.

5.2.3 Redirecting MOP message sends to the meta-object

Next, the code of the underlying evaluator must be changed to redirect MOP
method sends to the actor’s meta-object instead of the base-object. This comprises
the createMessage, process and send methods, as well as the mailbox observers
(in(msg), sent(msg), . . . ). This is (partly) depicted in figure 5.3.
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5.2.4 Exporting meta-behaviour

As explained in section 5.1.3.2, the mirror-based MOP introduces implicit shifts
between the base-level and the meta-level of an actor, by using exported meta-
methods. To export meta-level methods to the base-level, every meta-object is
provided with an export meta-method. This method accepts a variable number
of arguments, each being a method to export to the base-level. When exporting a
meta-method, the method is looked up in the meta-object and wrapped in a closure
that contains a reference to the meta-object. Next, this closure is bound in the base-
object to a constant with the same name as the method. This way, the exported
method is always executed in the context of the actor’s meta-object. As shown
in the example code of section 5.1.3.2, the export statement is typically placed
in the body of the meta-object’s init() method, such that every meta-method is
exported exactly once2.

5.2.5 Short-circuiting meta-behaviour

Conceptually, almost every reflective architecture consists of an infinite tower of
meta-objects, each one reifying the meta-object below it. Technically, this infin-
ity is achieved by short-circuiting meta-behaviour at a certain point, by imple-
menting this behaviour natively in the underlying language interpreter [Mae87].
This is similar in our mirror-based MOP, except that our design does not permit
an infinite reflective tower (see section 5.3.1): an actor’s meta-object cannot be
reflected upon by a meta-meta-object, and so on. Hence, meta-meta-behaviour
must be short-circuited in AmbientTalk’s language interpreter. For example, asyn-
chronous base-level messages are created as the result of a call to the meta-object’s
createMessage method. Likewise, meta-level messages are conceptually to be
created as the result of a call to the createMessage method of a meta-meta-object,
and so forth. In the case of meta-message creation, our mirror-based MOP short-
circuits this behaviour by creating meta-messages as the result of directly cloning
a stored prototypical object representing a message, and instantiating it with the
correct values.

As an alternative to this short-circuiting, one might consider creating meta-
messages like regular base-level messages (i.e. by calling the createMessage
method of the meta-object) and prepending their name with a µ character (see
section 5.1.2). However, this will in some cases result in infinite loops. As an
example of this, consider the case where an actor a refines the createMessage
meta-method to extend every created message with a field pointing to an actor cre-
ated in the body of the method (this is, for example, the case in the future-enabling
meta-behaviour, as explained in section 5.4.1). Suppose also that meta-messages
are created in the same manner as base-level messages, i.e. as the result of calling

2There are, however, no strict guarantees that the init() method of a meta-object will be called
only once, since an actor can send a µinit() message to another actor anytime after initialization.
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the createMessage method of the actor’s meta-object. Whenever an asynchronous
base-level message is sent from within the context of actor a, the createMessage
method of a’s meta-object is called to create the message. This results in the cre-
ation of an extended message object in which a field is bound to a newly created
actor a′. Conformably with AmbientTalk’s semantics, a sends a′ a µinit() and a
init() message (see section 5.1.1). However, to create the µinit() message, a
calls the createMessage method of its meta-object. This creates a new extended
message with a field pointing to a newly created actor a′′, which in turn, must be
sent a µinit() and a init() message by a. Hence, this results in a infinite loop
of message creations.

5.3 Evaluation of the mirror-based MOP

The mirror-based MOP described in this chapter was designed primarily to tackle
the problems caused by the lack of stratification and encapsulation in AmbientTalk’s
current MOP. As described in section 4.1.1, these problems are:

1. Exposure of the base-level programmer to unnecessary meta-level details.

2. Accidental overriding/shadowing of meta-level methods/fields by the pro-
grammer who is unaware of the meta-level naming conventions.

3. Accidental overriding/shadowing of base-level methods/fields by the meta-
level programmer.

The mirror-based MOP presented in this chapter addresses all of these prob-
lems by adhering to the principles of stratification and encapsulation. Since meta-
level operations are isolated in a separate meta-object, the base-level program-
mer is not bothered with unnecessary meta-level details such as reified mailboxes
and message processing. Also, neither the base-level programmer nor the meta-
programmer risk accidentally overriding each other’s code any more, since both
the base- and the meta-level are isolated from each other in separate objects.

Furthermore, the containment principle of AmbientTalk, which states that no
passive object is ever to be shared between two or more actors, is respected, be-
cause the actor creation native and the become/meta-become natives always take a
deep copy of their arguments.

5.3.1 Limitations

As explained in sections 5.1.2 and 5.1.4, our mirror-based MOP lacks a proper
tower of meta-objects, as is often found in reflective object-oriented architectures
[Mae87, WY88]. Hence, an actor cannot have a meta-meta-object describing its
meta-object, nor a meta-meta-meta-object describing its meta-meta-object, and so
forth. This renders the implementation of e.g. the meta-become native somewhat
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unnatural (meta-become is conceptually a meta-meta-level operation, but in our
design it has to be implemented at the meta-level). What is more, the lack of a
proper reflective tower prevents language extensions from being used in the imple-
mentation of other language extensions. For example, it would be impossible to
implement the due-blocks extension using, say, non-blocking futures, because all
meta-meta-behaviour is short-circuited in the language interpreter (as explained
in section 5.2.5). Indeed, the due mixin could not refine the meta-meta-level
createMessage method to use futures, because this behaviour is short-circuited
in the language interpreter and hence unavailable to the programmer.

Furthermore, our mirror-based MOP does at some points make small conces-
sions to the principle of stratification. For example, the fact that the programmer
can specify an actor’s base- and meta-level behaviour simultaneously at creation
time breaks the principle of stratification of mirror-based designs. It is, however,
deemed necessary to support behavioural intercession in our mirror-based MOP,
and stems from the fact that AmbientTalk’s meta-level is extensively used to ex-
periment with language extensions and is therefore not as easily separable from the
base-level as pure mirror-based designs tend to advocate. Additionally, the implicit
and explicit shifting techniques described in section 5.1.3 also break the stratifi-
cation principle. However, they do so in a controllable manner, which does not
break encapsulation. Implicit and explicit base-/meta-shifts are deemed necessary
to support the idea of language constructs available to the base-level programmer.
A final point where our design breaks the stratification principle is the fact that the
meta-object that implements the actors’ default meta-behaviour delegates to the
root object, which is a base-level object (see figure 5.1). However, this is necessary
because all AmbientTalk natives (if, +, . . . ) are located in the root object; without
this link, no (useful) behaviour could be specified in an actor’s meta-object.

5.4 Validation of the mirror-based MOP

To conclude this chapter, this section validates our mirror-based MOP by reimple-
menting the non-blocking futures (see section 3.5.1) and due-blocks (see section
3.5.2) language extensions to conform to the new MOP.

5.4.1 Non-blocking futures revisited

As explained in section 3.5.1, AmbientTalk’s implementation of non-blocking fu-
tures consists of three building blocks:

1. The “future-enabling” behaviour to mix into an existing actor’s behaviour, so
that it supports the when construct and so that every asynchronous message
send returns a future instead of void.

2. The “future listener” behaviour, used internally to signify to the calling actor
that the future is resolved.
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3. The “future” behaviour specifying the behaviour of the placeholder actor
(i.e. the future itself).

In the next sections, we implement each of these building blocks to conform to
the mirror-based MOP, and we compare our new implementation to the previous,
“flat” implementation (see section 3.5.1).

5.4.1.1 Flat implementation

The future and futureListener behaviour define “stand-alone” actors—they do
not define a block of code to be mixed in an existing behaviour—and are therefore
(partly) omitted from the code of the previous implementation given below. An
overview of this design is also presented in figure 5.5.

{
f u t u r e : root . object ({

‘ . . . par t s omi t ted f o r c l a r i t y reasons . . . ‘

forward (msg) : :{
i f (and ( i s ac tor ( reso lved ) ,

‘ messages understood by t h i s ac to r must not be forwarded ‘
not ( th is ( ) . conta insBehaviour (msg . getName ( ) ) ) ) , {

inbox . de le te (msg ) ;
msg . setTarget ( reso lved ) ;
outbox . add (msg)

})
} ;

} ) ;

f u t u r e L i s t e n e r : root . object ({
‘ . . . omi t ted f o r c l a r i t y reasons . . . ‘

} ) ;

extendWithFuturesBehaviour ( bhv ) : : bhv . extend ({
whenBlocks : vec to r . new ( ) ;
newId : 1;

invokeWhen ( anId , content ) : :{
whenBlocks . get ( anId ) ( content )

} ;

when ( aFuture , code ( content ) ) : :{
whenBlocks . add ( code ) ;
aFuture#subscr ibe ( actor ( f u t u r e L i s t e n e r . new( newId ,

thisActor ( ) ) ) ) ;
newId : =newId+1;
void

} ;

createMessage ( aSource , aTarget , aName, a n A r g l i s t ) : :{
‘ c reate a regu la r message ‘
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msg : . createMessage ( aSource , aTarget , aName, a n A r g l i s t ) ;
‘ . . . and extend i t w i th f u t u r e behaviour ‘
msg . extend ({

f u t u r e : void ;

getFuture ( ) : : f u t u r e ;
se tFuture ( aFuture ) : : f u t u r e : =aFuture ;

process ( behaviour ) : :{
value : behaviour . execute ( th is ( ) ) ;
f u t u r e # reso lve ( value ) ;
value

}
} ) ;
msg . setFuture ( actor ( f u t u r e . new ( ) ) ) ;
msg

} ;

send (msg) : :{
. send (msg ) ;
‘ r e t u r n p laceho lder ac to r ins tead of vo id ‘
msg . getFuture ( )

}
})
}

Figure 5.5: “Flat” design of non-blocking futures in AmbientTalk

Due to the lack of stratification, the above implementation presents multiple
drawbacks:
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1. The meta-level programmer risks accidentally overriding/shadowing base-
level methods/fields. For example, if the base-level behaviour in which the
future-enabling behaviour is mixed in contains an invokeWhen(aCodeBlock(), aTimestamp)
base-level method that invokes a block of code at a specific timestamp, it will
be unconditionally replaced by the invokeWhen(anId, content) meta-
level method of the futures implementation.

2. The meta-level programmer assumes that the base-level programmer has not
replaced default meta-level methods (e.g. send, createMessage, . . . ) with
equally named base-level methods. For example, the future-enabling be-
haviour refines createMessage and therefore expects the super send (.createMessage(...))
to return an object representing an asynchronous message (see also section
3.4.2.5).

3. The forward(msg) method of the futures behaviour requires an (inelegant)
ad hoc solution to check if a message is a base- or a meta-level message (and
should or should not be forwarded). Even worse, suppose the base-level
actor to which the future forwards messages also understands the forward
message, then forward messages sent to the future will never be forwarded
to that base-level actor. The following example illustrates this:

‘ i n the contex t o f a f u t u r e−enabled ac to r . . . ‘
emai l : mailApp# getMa i l ( ma i l I d ) ;
‘ emai l i s a f u t u r e ( i . e . a p laceho lder f o r a ‘
‘ base− l e v e l ac to r represen t ing an e−mai l ) ‘
emai l# forward ( toAddress )
‘ the base− l e v e l ac to r to which the f u t u r e ‘
‘ forwards messages never gets the ” forward ” message ‘

5.4.1.2 Mirror-based implementation

In this section, we reimplement AmbientTalk’s non-blocking futures in order to
conform to the mirror-based MOP presented in this chapter. A sketch of our mirror-
based design of non-blocking futures is given in figure 5.6, while the next para-
graphs detail every aspect of the mirror-based implementation.

A first observation to be made is that the code of the futures implementation be-
longs at the meta-level. Hence, because of the separation of base- and meta-level in
the mirror-based MOP, the future-enabling code now extends a meta-object instead
of a base-object. The init() meta-method—which, as explained in section 5.1.1,
is called at actor creation time—includes the necessary export(when) statement
to export the when language construct to the actor’s base-level object.

Furthermore, as the behaviours of the “future listener” actor and the place-
holder actor are moved to the meta-level, they now both extend the default actor
meta-object (created with createActorMetaBehaviour()). In both cases, the
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Figure 5.6: Mirror-based design of non-blocking futures in AmbientTalk

root object is used to describe the base-level of the actors. Meta-level message
sends between the actors are now explicitly distinguished from base-level sends
and are preceded accordingly with the µ character.

{
extendWithFutureMetaBehaviour ( metaBhv ) : : metaBhv . extend ({

whenBlocks : vec to r . new ( ) ;
newId : 1;

cloning . new ( ) : : {
. new ( ) ;
whenBlocks : = vec to r . new ( )

} ;

i n i t ( ) : : {
. i n i t ( ) ;
export (when )

} ;

invokeWhen ( anId , content ) : : whenBlocks . get ( anId ) ( content ) ;

when ( aFuture , code ( content ) ) : : {
whenBlocks . add ( code ) ;
aFuture#µsubscr ibe ( actor ( root , f u t u r e L i s t e n e r . new( newId ,

thisActor ( ) ) ) ) ;
newId : = newId + 1;
void

} ;

createMessage ( aSource , aTarget , aName, a n A r g l i s t ) : : {
aFuture : actor ( root , fu turesMetaBehaviour . new ( ) ) ;
msg : . createMessage ( aSource , aTarget , aName, a n A r g l i s t ) ;
msg . extend ({
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f u t u r e : void ;

getFuture ( ) : : f u t u r e ;
se tFuture ( aFuture ) : : f u t u r e : =aFuture ;

process ( behaviour ) : :{
value : behaviour . execute ( th is ( ) ) ;
‘ send e x p l i c i t meta−message ‘
f u t u r e #µ reso lve ( value ) ;
value

}
} ) ;
msg . setFuture ( aFuture ) ;
msg

} ;

send (msg) : : {
. send (msg ) ;
msg . getFuture ( )

}

} ) ;

f u t u r e L i s t e n e r : createActorMetaBehaviour ( ) . extend ({
i d : void ;
re ference : void ;

cloning . new( anId , aReference ) : : {
i d : = anId ;
re ference : = aReference

} ;

n o t i f y ( content ) : : re ference #µinvokeWhen ( id , content )

} ) ;

futuresMetaBehaviour : : createActorMetaBehaviour ( ) . extend ({
reso lved : void ;
subscr ibers : vec to r . new ( ) ;

cloning . new ( ) : : {
. new ( ) ;
subscr ibers : = vec to r . new ( ) ;
reso lved : = void

} ;

subscr ibe ( anFutureL is tenerAc to r ) : : {
subscr ibers . add ( anFutureL is tenerAc to r ) ;
i f ( not ( is void ( reso lved ) ) ,

anFutu reL is tenerAc to r #µ n o t i f y ( reso lved )
)

} ;

reso lve ( content ) : : {
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subscr ibers . i t e r a t e ( e l #µ n o t i f y ( content ) ) ;
reso lved : = content ;
inbox . asVector ( ) . i t e r a t e ({

msg : e l ;
forward (msg)

})
} ;

forward (msg) : : {
‘ no need to t e s t msg , i t w i l l always be ‘
‘ a base− l e v e l message ‘
i f ( i s ac tor ( reso lved ) , {

inbox . de le te (msg ) ;
msg . setTarget ( reso lved ) ;
outbox . add (msg)

})
} ;

i n (msg) : : i f ( not ( is void ( reso lved ) ) , forward (msg ) )

})
}

The example given in 3.5.1 is now rewritten as follows:

{
f acAc to r : : actor ( object (

fac ( n ) : : i f ( n = 0 , 1 , n ∗ fac ( n−1 ) )
) ) ; ‘ No custom meta−behaviour requ i red ‘

facBhv : : object ({
pr in tFac ( i ) : : {

when ( facAc to r # fac ( i−1) ,
display ( ” fac ( ” , i , ” ) = ” , content ∗ i , eoln ) )

}
} ) ;

ac t : actor ( facBhv ,
extendWithFutureMetaBehaviour (

createActorMetaBehaviour ( ) ) ) ;
ac t# pr in tFac (42)

}

As a result of our new design, the drawbacks of the “flat” implementation (see
section 5.4.1.1) are avoided in our mirror-based MOP:

1. The meta-level programmer no longer risks accidentally overriding/shadow-
ing base-level methods/fields, because base- and meta-level behaviour and
implementation details are now separated in different objects (i.e. the strati-
fication and encapsulation principles of mirror-based designs). For example,
a base-method send(aGreeting) and the meta-method send(msg) can now
exist side by side, each in their respective object.
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2. Similarly, the meta-programmer can be sure that super sends in refined meta-
methods always call meta-level methods.

3. Finally, the forward(msg) meta-method no longer requires an ad hoc solu-
tion to differentiate messages that are intended for the future from messages
that are to be forwarded to the base-level actor the future resolves to. Indeed,
messages addressed to the future itself are meta-messages and must therefore
begin with a µ character, while messages intended for the base-actor (i.e. the
resolution of the future) are base-message with no special prefix.

5.4.2 Due-blocks revisited

Recall from section 3.5.2 that AmbientTalk’s due-block language extension con-
sists of two behaviours:

1. The “due-block” behaviour extends the behaviour of an actor with the due
language construct, allowing the programmer to put time restrictions on the
validity of asynchronous messages sent in a block of code.

2. The “expiry checking” behaviour extends the behaviour of an actor so that
it monitors its inbox and outbox continuously in order to remove timed out
messages.

In the next sections, we implement each of these building blocks to conform
to the mirror-based MOP, and we compare our new implementation to the “flat”
implementation from section 3.5.2.

5.4.2.1 Flat implementation

The extendWithDueBehaviour and extendWithExpiryCheckingBehaviour de-
fine the “due-block” behaviour and the “expiry checking” behaviour, and can be
mixed in an actor’s behaviour jointly or separately. A recapitulation of the previ-
ous implementation is presented below.

{
extendWithDueBehaviour ( bhv ) : : bhv . extend ({

dueTimeout : void ;
dueHandlerMsg : void ;

due ( deadl ine , body ( ) , handlerMsg ) : : {
tmpTimeout : dueTimeout ;
tmpHandler : dueHandlerMsg ;
dueTimeout : = deadl ine ;
dueHandlerMsg : = handlerMsg ;
value : body ( ) ;
dueTimeout : = tmpTimeout ;
dueHandlerMsg : = tmpHandler ;
value

} ;
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createMessage ( aSource , aTarget , aName, a n A r g l i s t ) : : {
‘ . . . omi t ted f o r c l a r i t y reasons . . . ‘

}
} ) ;

extendWithExpiryCheckingBehaviour ( bhv ) : : bhv . extend ({
p o l l I n t e r v a l : 1000; ‘ i n m i l l i seconds ‘

i n i t ( ) : : {
. i n i t ( ) ;
root . c rea teT icke rAc to r ( p o l l I n t e r v a l ) # r e g i s t e r ( thisActor ( ) # n o t i f y )

} ;

n o t i f y ( ) : : {
‘ . . . omi t ted f o r c l a r i t y reasons . . . ‘

}
})
}

Similarly to the futures example, the lack of stratification can lead to accidental
overriding of base-level methods. For example, the actor’s behaviour might contain
a notify() base-level method to broadcast a status message over the network. If
extended with the “expiry checking” behaviour, the base-level notify() method
would be unconditionally replaced by the meta-level method with the same name.

Additionally, due to the lack of encapsulation, the base-level programmer can
freely access and/or modify meta-level fields such as dueHandlerMsg and dueTimeout.

5.4.2.2 Mirror-based implementation

Similarly to futures, the extendWithDueBehaviour and extendWithExpiryCheckingBehaviour
methods specify meta-level behaviour, and should therefore extend meta-objects
instead of base-objects.

Furthermore, the init() meta-level method of the “due-block extending” be-
haviour refines the init() method from its parent to export the due language con-
struct to the base-object.

Finally, on a sidenote, the createMessage method is created by the higher or-
der method createCreateMessage(timeout, handlerMsg), which creates createMessage
methods for a fixed pair of timeout/handler message values.

{
extendWithDueBehaviour ( metaBhv ) : : metaBhv . extend ({

i n i t ( ) : : {
. i n i t ( ) ;
export (due )

}



CHAPTER 5. A MIRROR-BASED MOP FOR ACTIVE OBJECTS 82

due ( deadl ine , body ( ) , handlerMsg ) : : {
tmpCreateMessage : createMessage ;
createMessageMethod : = createCreateMessage ( deadl ine , handlerMsg ) ;

value : body ( ) ;
createMessageMethod : = tmpCreateMessage ;
value

} ;

‘ h igher order method r e t u r n i n g a ” createMessage ” method ‘
createCreateMessage ( t imeout , handlerMsg ) : : {

createMessage ( aSource , aTarget , aName, a n A r g l i s t ) : : {
‘ c reate regu la r message ‘
msg : . createMessage ( aSource , aTarget , aName, a n A r g l i s t ) ;
msg . extend ({

deadl ine : : t ime ( ) + t imeout ;
hand lerActor : : handlerMsg . getSource ( ) ;
handlerName : : handlerMsg . getName ( )

})
}

}

createMessageMethod@args : . createMessage@args ;
createMessage@args : : createMessageMethod@args

} ) ;

extendWithExpiryCheckingBehaviour ( metaBhv ) : : metaBhv . extend ({
p o l l I n t e r v a l : 1000; ‘ i n m i l l i seconds ‘

i n i t ( ) : : {
. i n i t ( ) ;
root . c rea teT icke rAc to r ( p o l l I n t e r v a l ) # r e g i s t e r ( thisActor ( ) #µ n o t i f y )

} ;

n o t i f y ( ) : : {
t imedOut (msg, mbox) : : {

i f ( h a s s l o t (msg , ” deadl ine ” ) , ‘ on ly check tagged messages ‘
i f ( t ime ( ) > msg . deadl ine ,

{ ‘ send handler message to the compla in t address ‘
‘ w i th the timed out message as unique argument ‘
send ( createMessage ( thisActor ( ) , msg . handlerActor ,

msg . handlerName , [ msg ] ) ) ;
true } ,

fa lse ) ,
fa lse )

} ;

outbox . removeIf ( t imedOut (msg , outbox ) ) ;
inbox . removeIf ( t imedOut (msg , inbox ) )

}
})
}
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The “log in” example given in 3.5.2 can be rewritten as follows in the mirror-
based MOP:

{
baseBhv : : object ({

a u t h e n t i c a t o r : . . . ‘ re ference to a u t h e n t i c a t i o n ac to r ‘
log inT imeout : 10000;
user : ” john ” ;
pass : ” doe ” ;

l o g i n ( ) : : { a u t h e n t i c a t o r #auth ( user , pass ) } ;

t imeout (msg) : : { display ( ” Sending message ’ ” ,
msg . getName ( ) , ” ’ t imed out ” , eoln ) } ;

i n i t ( ) : : {
due ( loginTimeout , { l o g i n ( ) } , thisActor ( ) # t imeout )

}
} ) ;

metaBhv : extendWithExpiryCheckingBehaviour (
extendWithDueBehaviour (

createActorMetaBehaviour ( ) ) ) ;

ac t : actor ( baseBhv , metaBhv )
}

As it was also the case with the futures implementation, the application of
the stratification and encapsulation principles to our mirror-based MOP solves the
issues associated with the “flat” implementation (see section 5.4.2.1). Indeed, base-
and meta-level methods/fields can no longer override/shadow one another (as a
result of the principle of stratification), nor can they freely access each other’s
private fields (as a result of the principle of encapsulation).

5.5 Conclusion

This chapter presented the results of the design and implementation of a mirror-
based MOP for AmbientTalk, a distributed actor-based programming language.
This mirror-based MOP addresses some of the lacunae of the previous MOP, namely
the lack of stratification and encapsulation. The lack of stratification was respon-
sible for the possible accidental overriding of base-level behaviour by meta-level
behaviour and vice versa. The lack of encapsulation, for its part, resulted in unnec-
essary and potentially harmful exposure of the base-level programmer to meta-level
implementation details. To validate the mirror-based MOP, the implementations of
non-blocking futures and due-blocks were rewritten, in compliance with the new
MOP. As expected, the mirror-based MOP eliminates the issues related to the lack
of stratification and encapsulation.
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However, composition of meta-level behaviour is still performed in an ad hoc
manner, which—as explained in section 4.1.2—can lead to erroneous behaviour
when meta-behaviour is combined incorrectly. Therefore, the following chapter
explores a possible solution to the ad hoc composition problem.



6
Language Mixin Composition

As explained in chapter 4, AmbientTalk’s “flat” meta-object protocol has three
major drawbacks: the lack of stratification and encapsulation, the ad hoc language
mixin composition and the (partly) closed service discovery protocol. Chapter 5
addressed the first drawback by introducing a mirror-based MOP for AmbientTalk.
However, as stated in section 4.1.2, mirror-based designs do not address the prob-
lem of incorrect meta-level behaviour composition. On that account, this chapter
aims to implement a high-level language mixin composition mechanism to aid in
creating proper meta-level mixin compositions in AmbientTalk.

6.1 Limitations of ad hoc composition

As indicated in section 4.1.2, ad hoc composition presents various limitations. This
section briefly recapitulates the main disadvantages associated with ad hoc com-
position. Please note that throughout the remainder of this chapter, “MOP” con-
sistently refers to the mirror-based MOP described in the previous chapter, unless
stated otherwise.

6.1.1 Composition as a mere “side-effect”

In AmbientTalk’s flat MOP as well as in the mirror-based MOP, language mixins
are defined as regular methods that take, respectively, a base-object (see section
3.5) or a meta-object (see section 5.4) as an argument and extend it with additional
behaviour—typically a combination of overridden methods, mailbox observers and
private fields. Examples of such methods include the extendWithDueBehaviour
and extendWithFutureMetaBehaviour methods explained in section 5.4. Hence,
there is no structured way of representing language mixins in AmbientTalk and

85
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thus there is now way to discriminate between a language mixin and an ordinary
method; language mixins are no more than blocks of code that extend actors’ meta-
objects or other language mixins.

6.1.2 Erroneous composition

As explained in section 4.1.2, ad hoc composition of language mixins can lead to
incorrect results, for multiple reasons:

• A language mixin m1 can accidentally replace one or more methods of an-
other mixin m2, with the effect that parts of m2’s meta-behaviour are no
longer executed.

• The programmer risks inadvertently applying a mixin m more than once to
the same behaviour.

• The programmer must manually examine and enforce the requirements be-
tween language mixins. If a mixin m1 requires another mixin m2, it is the
programmer’s responsibility to mix in m2 before m1.

• Multiple language mixins risk exporting meta-methods with identical names
to an actor’s base-object, such that either one of the exported methods be-
comes inaccessible.

6.2 Design of the mixin composition mechanism

This section describes the requirements and the design of a high-level language
mixin composition mechanism for AmbientTalk.

6.2.1 Requirements

The observations made in section 6.1 result in a set of requirements for a high-level
language mixin composition mechanism:

1. A structured mixin annotation mechanism. Language mixins should be pro-
moted from unstructured methods to structured objects with a rich annota-
tion mechanism to specify e.g. what other mixins a mixin requires and what
meta-methods a mixin overrides.

2. Automatic inclusion of required mixins. The application of a language mixin
m to a meta-object should trigger the automatic application of all mixins
required by m, before m is applied.

3. Automatic ordering of mixin applications. Given a set M of mixins, the mixin
composition mechanism should find an order for the mixins m1, ...,mn ∈ M
such that:
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• ∀mi,m j ∈M, if mi requires m j, then m j is to be applied before mi.

• ∀mi,m j ∈ M, if mi replaces a method of m j, then mi is to be applied
before m j.

If such an order cannot be found, the composition mechanism should fail and
report which mixins prevented the mechanism from determining a correct
order.

4. Composition checks. The composition mechanism should prevent mixins
from being applied more than once to the same behaviour, and prevent two
mixins m1 and m2 from being applied to the same passive object if both m1
and m2 export meta-methods with identical names.

6.2.2 Design

Based on the above requirements, we elaborate a domain-specific language for a
high-level language mixin composition mechanism for AmbientTalk. The design
is detailed below.

6.2.2.1 A structured mixin annotation mechanism

We solve the first requirement by introducing a proper mixin object to represent
language mixins. Mixin objects are created using the languageMixin method,
and contain the following information:

• A name field containing the name of the mixin.

• An exported field containing a table of names of exported methods.

• A required field that holds a table of other mixin objects required for proper
operation.

• A replaced field holding a table of names of meta-methods replaced by the
mixin.

• A refined fields that contains a table of names of meta-methods refined by
the mixin.

• An implementation field which points to a method that will extend a given
object with the behaviour of the language mixin.

For example, a simple send tracer mixin that refines the send meta-method to
log all messages sent by an actor (see section 3.4.2.5 for a similar example), and
requires another mixin object fooMixin, may be created as follows:
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languageMixin ( ” send t r a c e r ” ,
expor ts ( ) ,
requ i res ( fooMix in ) ,
rep laces ( ) ,
r e f i n e s ( send ) ,
implements ( bhv . extend ({

send (msg) : : { display ( ” Sending : ” , msg . getName ( ) , eoln ) ;
. send (msg) }

} ) ) )

The result of this method call is a proper, distinguishable language mixin ob-
ject.

6.2.2.2 Composing meta-behaviour

To combine different language mixin objects together, we introduce a ++ compo-
sition operator. It takes a default meta-behaviour or a composer object (see next
section) as a first argument and a language mixin object as a second argument.
The idea is that the programmer declares a set of mixins to combine and calls a
compose method at the end. This is illustrated in the following example:

baseBehaviour : object ( . . . ) ;
dueMixin : languageMixin ( . . . ) ;
f u t u resM ix i n : languageMixin ( . . . ) ;
actor ( baseBehaviour , compose ( createActorMetaBehaviour ( ) ++

dueMixin ++
f u t u resM ix i n ) )

6.2.2.3 Meta-behaviour composers

To support the above idea of composition, we introduce meta-behaviour composer
objects in which we wrap a meta-object, together with a list of mixin objects to
apply to it and already applied to it, and a list of methods already exported by the
meta-object. Specific implementation details are described in section 6.3.

6.2.2.4 Ordering language mixins

Conceptually, mixins requiring other mixins form a direct acyclic graph in which
the nodes represent the mixins and the (directed) edges represent the requirements;
an edge A → B expresses the fact that mixin A requires mixin B. As an example,
consider the mixin dependency graph depicted in figure 6.1.

We can apply the same principle to method replacement. Recall from sec-
tion 4.1.2 that if a mixin m1 replaces a meta-method x, and if another mixin m2
refines the same method x, m2 should be mixed in before m1. Hence, we can rep-
resent method replacement as a directed graph in which the nodes correspond to
the mixins and the (directed) edges represent method replacement; an edge A→ B
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Figure 6.1: Mixin requirements as a directed acyclic graph

indicates that at least one method of mixin A is replaced by a method of mixin B.
Note that such a graph can be cyclic if both A and B replace the same method.
Figure 6.2 extends figure 6.1 with such new edges.

Figure 6.2: Mixin requirements and method replacement as a directed (possibly
cyclic) graph

As explained in section 6.2.2.2, the programmer only needs to declare what
mixins he wants to combine; the composition mechanism takes care of finding how
they must be combined. Indeed, by creating a directed graph to which we add the
mixins as nodes as well as the automatically inferred “requirement” and “replace-
ments” edges between the nodes, we obtain a graph such as depicted in figure 6.2.
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By topologically sorting this graph1 (treating the “requirement” and “replacement”
edges equally), we obtain a valid order in which to apply the mixins. It then suffices
to apply the mixins in the reverse order of the result. For example, a possible result
of topologically sorting the graph depicted in figure 6.2 is the list A,C,B,D,E,F .
Hence, applying the mixins in the reverse order (F,E,D,B,C,A) yields a correct re-
sult. If the graph contains cycles, the topological sort—and hence the composition
mechanism—will fail due to the mixins which form the cycles. This information
can be used to report the list of conflicting mixins to the programmer. Cycles can
occur e.g. if a mixin m1 requires a mixin m2 and at the same time m1 replaces a
method of m2, or if both m1 and m2 replace the same method.

6.3 Implementation of the mixin composition mechanism

This section describes some important implementation details of our language
mixin composition mechanism. The interested reader can find the full implemen-
tation in appendix B.

6.3.1 Meta-behaviour composers

Meta-behaviour composer objects are created internally using the makeMixinComposer
method. They contain the necessary information to keep track of mixin composi-
tions in progress, as well as the key operations of the composition mechanism.

• The applyMixin(aMixin) private method takes a mixin object as an ar-
gument and applies it to the wrapped meta-object after verification that the
mixin has not yet been applied to the meta-object, and that the mixin does
not export meta-methods with names identical to meta-methods exported by
previously applied mixins. This corresponds to the fourth requirement of
section 6.2.1.

• The addMixin(aMixin) public method “enqueues” a mixin for composi-
tion. The actual composition of all queued mixins is triggered by the compose()
public method.

• The compose() public method triggers the actual composition mechanism.
It computes the composition graph (see section 6.2.2.4) and topologically
sorts it to find an order in which to apply the mixins. If an order is found, the
mixins are applied in that order. If no order is found, no mixin is applied and
an explanatory error message is produced. This corresponds to the second
and third requirement.

1i.e. finding an order such that each node comes before all nodes to which it has edges.
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6.4 Evaluation of the mixin composition mechanism

The high-level mixin composition mechanism presented in this chapter fulfills all
the requirements presented in section 6.2.1.

1. It offers a structured mixin annotation mechanism to annotate the methods
exported and overridden by a mixin as well as the mixins required by a mixin
for proper operation.

2. Automatic inclusion of required mixins. The mixin composition mechanism
automatically applies the mixins m1, ...,mn required by a mixin m before
applying m.

3. The composition mechanism automatically orders mixin applications such
that mixins replacing methods of other mixins are applied beforehand. If
such an order cannot be found, the composition mechanism fails and reports
which mixins prevented the mechanism from determining a correct order.

4. The composition mechanism performs composition checks to prevent mixins
from being applied more than once to the same behaviour, and to prevent two
mixins m1 and m2 from being applied to the same passive object if both m1
and m2 export meta-methods with identical names.

6.4.1 Limitations

A first limitation of our composition mechanism is that it relies exclusively on the
mixins’ annotations made by the programmer. Hence, methods that are not de-
clared in a mixin’s annotation can still be replaced without a warning. However,
due to the highly dynamic nature of AmbientTalk, it is doubtful if the mechanism
can be extend to e.g. automatically extract this information from the mixins’ im-
plementation code.

Another limitation of our composition mechanism is its linearity. If the topo-
logical sort cannot find a linear order that satisfies every constraint, the composi-
tion mechanism will simply fail. For example, no suitable composition order can
be found for a mixin A that refines send and replaces createMessage, and a mixin
B that replaces send and refines createMessage. Hence, compose(A ++ B) will
fail. To support non-linear composition, our mechanism could be extended with
the possibility to explicitly resolve such conflicts. For example, writing something
like

compose (A ++ B) wi th { send (msg) : : { A . send (msg ) ; B . send (msg) } ;
createMessage@args : : B . createMessage@args }

would permit a valid composition of A and B by explicitly resolving the conflicts
created by the send and createMessage methods. This is the approach taken by
traits [SDNB02].
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6.5 Validation of the mixin composition mechanism

We now focus on the validation of our composition mechanism by reimplementing
the futures and due language extensions to take advantage of the new provisions.
The following code illustrates this. Note that the behaviour that maps unique IDs to
closures, as required by the futures mixin, is moved to a separate mixin, such that
it can also be used by other mixins that require the encoding of closures as unique
integer IDs. The reason for transmitting IDs of closures instead of the closures
themselves is to be found in the fact that the containment principle of AmbientTalk
dictates that all arguments of asynchronous messages are to be deep copied (see
section 3.4.2.2). Because of this, the lexical scope of every closure would also
be deep copied, and side-effects such as assignments would go unnoticed in the
original actor.

idMapperMixin : : languageMixin (
” Closure to ID mapper ” ,
expor ts ( ) ,
requ i res ( ) ,
rep laces ( ) ,
r e f i n e s ( ) ,
implements ( bhv . extend ({

i d : 0;
c losures : smallmap . new ( ) ;

r eg i s t e rC losu re ( c lo ) : : {
i d : = i d + 1;
c losures . put ( id , c lo ) ;
i d

} ;

invokeClosure ( id , args ) : : {
c lo : c losures . get ( i d ) ;
i f ( not ( is void ( c lo ) ) ,

clo@args )
} ;

invokeClosureOnce ( id , args ) : : {
invokeClosure ( id , args ) ;
c losures . de le te ( i d )

}
} ) )

) ;

f u t u resM ix i n : : languageMixin (
” Futures ” ,
expor ts (when ) ,
r equ i res ( idMapperMixin ) ,
rep laces ( ) ,
r e f i n e s ( i n i t , createMessage , send ) ,
implements ( bhv . extend ({
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f u t u r e L i s t e n e r : createActorMetaBehaviour ( ) . extend ({
i d : void ;
re ference : void ;

cloning . new( anId , aReference ) : : ‘ . . . ‘

n o t i f y ( content ) : : re ference #µ invokeClosure ( id , [ content ] )
} ) ;

futuresMetaBehaviour : : createActorMetaBehaviour ( ) . extend ({
‘ . . . ‘

} ) ;

cloning . new ( ) : : ‘ . . . ‘

i n i t ( ) : : ‘ . . . ‘

when ( aFuture , code ( content ) ) : : {
c l o I d : r eg i s t e rC losu re ( code ) ;
aFuture#µsubscr ibe ( actor ( root , f u t u r e L i s t e n e r . new( c lo Id ,

thisActor ( ) ) ) ) ;
void

} ;

createMessage ( aSource , aTarget , aName, a n A r g l i s t ) : : ‘ . . . ‘

send (msg) : : ‘ . . . ‘
} ) )

) ;

dueMixin : : languageMixin (
”Due” ,
expor ts ( due ) ,
r equ i res ( ) ,
rep laces ( ) ,
r e f i n e s ( i n i t , createMessage ) ,
implements ( bhv . extend ({

i n i t ( ) : : ‘ . . . ‘
due ( deadl ine , body ( ) , handlerMsg ) : : ‘ . . . ‘
createCreateMessage ( t imeout , handlerMsg ) : : ‘ . . . ‘

createMessageMethod@args : . createMessage@args ;
createMessage@args : : createMessageMethod@args

} ) )
) ;

exp i r yM ix in : : languageMixin (
” Exp i ry Checking ” ,
expor ts ( ) ,
requ i res ( ) ,
rep laces ( ) ,
r e f i n e s ( ) ,
implements ( bhv . extend ({
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p o l l I n t e r v a l : 1000; ‘ i n m i l l i seconds ‘

i n i t ( ) : : ‘ . . . ‘
n o t i f y ( ) : : ‘ . . . ‘

} ) )
) ;

ac t : actor ( root , compose ( createActorMetaBehaviour ( ) ++
f u t u res M ix i n ++
dueMixin ++
exp i r yM ix in ) )

The output of the program is:

Applying mixins in order: Closure to ID mapper, Expiry Checking, Due, Futures,

This is, as expected, a correct result. Note that, in the above example, the
futuresMetaBehaviour and futureListener objects must be encapsulated in-
side the extend block of the futures mixin, such that they are available in the scope
of when and createMessage. Also note that the programmer can still create actors
using ad hoc composition, e.g. when only one mixin needs to be applied.

6.6 Conclusion

This chapter tackles the second problem of AmbientTalk’s “flat” MOP, namely the
ad hoc composition problem. It does so by introducing a high-level language mixin
composition mechanism in the form of a small domain-specific language, that is
able to prevent the problems associated with ad hoc composition. The proposed
solution aims to create a declarative layer in which the programmer only declares
which language mixins to apply to a meta-object. Subsequently, the composition
mechanism automatically performs the necessary checks and calculates a correct
order in which to apply the mixins.

The next chapter ends this dissertation with a set of concluding remarks and
pointers for future research.



7
Conclusions

As explained in chapter 1, the context of this dissertation is situated in the area of
distributed actor-based languages for mobile networks. Such networks are char-
acterized mainly by the high volatility of their participants’ connections (abrupt
disconnections being the rule rather than the exception in mobile networks). The
observation that mobile networks are significantly different from stationary net-
works has led researchers to design a new paradigm for programming applications
running in mobile networks. This ambient-oriented programming paradigm incor-
porates the most important characteristics of mobile networks at the very heart of
its computational model [DVM+06].

Being a relatively new programming paradigm, there is also a need to exper-
iment with language constructs in ambient-oriented settings. Examples of such
constructs include non-blocking futures and due-blocks. Both were presented in
section 3.5. The technique chosen to implement such language constructs in Am-
bientTalk (our experimental language platform) is computational reflection. Com-
putational reflection, and more particularly behavioural intercession, allows the
programmer to tailor a particular reflective language to his specific needs, as we
have extensively discussed in chapter 2.

This brings us to the goal of our research, namely the study of reflective archi-
tectures and design principles for ambient-oriented languages, and the incorpora-
tion of these reflective architectures and design principles in AmbientTalk’s current
meta-object protocol with the purpose of making AmbientTalk more suitable for
experimenting with ambient-oriented language constructs.
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7.1 Reflections on our methodology

This section reflects on the methodology adopted in our dissertation. It explains,
amongst others, why we have turned ourselves to AmbientTalk to conduct our
experiments, and how our contributions could be appropriate for other distributed
actor-based languages.

7.1.1 Why AmbientTalk?

We have turned ourselves to AmbientTalk as the language platform to conduct our
experiments because of the adequacy of the ambient-oriented paradigm to address
the characteristics of mobile networks. AmbientTalk is an experimental language
that is built around the ambient-oriented programming paradigm.

Furthermore, AmbientTalk is already conceived as a reflective kernel. This
allows the programmer to easily adapt the language in order to experiment with
new language constructs (non-blocking futures and due-blocks being two of them
used extensively throughout this dissertation). Hence, because AmbientTalk is an
ambient-oriented language designed as a reflective kernel, it proved to be an ideal
starting point for our research.

7.1.2 Contributions

When studying AmbientTalk, we observed that its meta-level architecture lacks a
number of important software engineering properties. Its most important draw-
backs include the lack of stratification and encapsulation of the base-level and
the meta-level of the language, and the absence of a high-level language mixin
composition mechanism to combine experimental language constructs. The first
limitation raises the question of how to protect the base-level and the meta-level
of a language from accidentally overriding each other’s behaviour, while the sec-
ond limitation requires the meta-level programmer to manually ensure that multi-
ple language extensions do not accidentally override each other’s behaviour when
combined together.

This dissertation endeavours to address these limitations. Therefore, we started
with an analysis of current state of the art object-oriented reflective techniques (e.g.
meta-object protocols) and design principles (e.g. mirrors) and assessed their ap-
plicability in the context of distributed actor-based programming languages. We
found that mirrors were a good solution to address the lack of stratification and
encapsulation. As a matter of fact, every actor now has its base- and meta-level
behaviour separated in distinct objects with their own scope. Additionally, meta-
methods can be exported to the base-object while their body is still evaluated in
the scope of the meta-object, and the programmer can address an actor’s meta-
behaviour directly through the µ-notation described in section 5.1.2.



CHAPTER 7. CONCLUSIONS 97

However, mirrors do not directly address the concurrency issues typically asso-
ciated with distributed environments. To deal with them, we opted for a model in
which the base-level and the meta-level of every actor are wrapped in the same
actor shell. This design differs significantly from meta-architectures found in
other actor-based languages, such as ABCL/R [WY88], which typically use differ-
ent base- and meta-level actors to implement reflection. This single-actor design
proved to be a simple and effective solution to tackle the issues of concurrency
and synchronization between the base- and meta-level. The reason for this is that
the passive base- and meta-objects inherently communicate with one another using
synchronous message passing and that this coincides well with the semantics of
shifting from the base-level to the meta-level and vice versa, which are also syn-
chronous operations.

Furthermore, mirror-based designs do not directly provide an answer to the ad
hoc composition problem. This is an especially important problem in the context
of AmbientTalk, which modularizes meta-level behaviour in so-called language
extensions. Therefore, a mechanism was required to prevent language extensions
(also called language mixins) that are combined together from accidentally overrid-
ing each other’s behaviour. To this end, we extended our mirror-based meta-object
protocol for AmbientTalk with a high-level language mixin composition mecha-
nism in the form of a domain-specific language. This allows the programmer to
represent language extensions in a structured way and to annotate them with infor-
mation about e.g. which methods they override and which other language exten-
sions they require. This domain-specific language also allows the programmer to
specify in a declarative way a set of language extensions to combine together, such
that the system automatically determines if these extensions can be combined and
how they can be combined.

7.1.3 Applicability to other languages

Although we primarily used AmbientTalk as a case study in this dissertation, we
claim that the contributions of our research transcend AmbientTalk and should be
applicable to other distributed actor-based languages as well. Indeed, the single-
actor design presented in chapter 5 has many “conceptual” benefits. For example, it
naturally supports synchronization when switching between the base-level and the
meta-level of an actor. While this reduces concurrency in the system, it is well in
line with AmbientTalk’s policy that forbids more than one thread from accessing
an actor’s internal data at the same time. Furthermore, the stratification and en-
capsulation principles draw a clear line between base- and meta-level operations,
protecting each one from accidental changes and overriding from the other. Sim-
ilarly, the composition mechanism presented in chapter 6 is based on the general
principle of annotating possibly conflicting language extensions such that these
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conflicts can be automatically inferred by the composition mechanism. Hence, al-
though it is most likely that another actor-based reflective language will require a
different domain-specific composition language, the general architecture should be
reusable.

7.2 Limitations

This section explains some of the technical and conceptual limitations of our pro-
posal.

7.2.1 No infinite reflective tower

As explained in section 5.3.1, our mirror-based meta-object protocol lacks a proper
tower of meta-levels, as is often found in other reflective architectures [Mae87,
WY88]. This limitation stems from the fact that the existing language constructs
we considered are designed to influence the base-level only and do not require
higher meta-level operations. However, we have seen that the absence of a tower
of meta-objects renders the definition of certain operations, such as meta-become,
difficult and unnatural. What is more, the lack of an infinite reflective tower makes
it impossible for language extensions to be used in the implementation of other
language extensions in our design. For example, the due-blocks extension cannot
be implemented using, e.g. non-blocking futures, because all meta-meta-behaviour
is short-circuited in the language interpreter (see also section 5.3.1).

We state that the question of how to implement an infinite reflective tower in
our mirror-based design is a challenging one and certainly deserves some further
attention.

7.2.2 Extensible language mixin composition

The language mixin composition mechanism described in chapter 6 is still rela-
tively rudimentary. For instance, it relies on the programmer to specify all the in-
formation about exported methods, method replacements and refinements, . . . An
interesting extension would be to automatically deduce this information from the
source code of the mixin itself. However, it is doubtful if this can even be achieved
at all, considering the extremely dynamic nature of AmbientTalk.

Perhaps more feasible would be the implementation of an extended require-
ment system based e.g. on a mixin’s public interfaces. For instance, a mixin could
simply require any mixin that provides the when language construct, instead of ex-
plicitly requiring the futures mixin. This would result in less coupling between
language mixins, because one would couple mixins based on their interface rather
than on their implementation.
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Also worthwhile would be to relate our work to existing approaches for meta-
behaviour composition, such as found in e.g. MOOSTRAP [MMC95]. Addition-
ally, it would be valuable to examine the alternatives to mixin-based composition
in AmbientTalk. Because mixin composition is implemented using inheritance,
mixins are composed linearly. This causes several problems, one of them being the
fact that a suitable total ordering of mixin applications may sometimes be impossi-
ble to find (see section 6.4.1). Traits [DNS+06] are a possible way of tackling the
limitations of mixin-based composition. In a nutshell, a trait is a (stateless) set of
methods, divorced from any object delegation hierarchy. Traits can be composed
in any order, and leave the composite entity complete control over the composi-
tion. Furthermore, the composite entity can resolve conflicts explicitly, without
resorting to linearization [DNS+06].

7.2.3 No strict stratification of the base- and meta-levels

Recall from section 5.3.1 that our mirror-based meta-object protocol makes some
small concessions to the stratification principle of mirror-based designs. Indeed,
in languages that follow the mirror-based design principles to the letter (e.g. Self),
adherence to the stratification principle allows the programmer to dynamically add
(remove) reflection support to (from) the language. However, the question of how
to support behavioural intercession in such settings remains an open one [BU04].
Nevertheless, because AmbientTalk serves mainly as an exploratory platform for
experimenting with new language constructs and because AmbientTalk’s meta-
level architecture is therefore not meant to be oblivious from the base-level (i.e.
the base-level actively makes use of the language constructs applied to it via the
meta-level), we judged it acceptable to somewhat loosen the requirements of the
stratification principle to allow for more powerful intercession. Nonetheless, by
doing so we took care never to break the encapsulation principle in our mirror-
based meta-object protocol.

7.3 Pointers for future research

The future work stated in the previous section covers the most “conceptual” lim-
itations of this dissertation. This section proposes some pointers for more “prag-
matic” future research in the area of open implementations for ambient-oriented
applications.

Recall that we briefly raised some arguments in favour of wholly opening up
AmbientTalk’s service discovery protocol to the programmer in section 4.1.3. This
would, for example, make it possible to define custom comparator methods to com-
pare an actor’s list of requirements with other actors’ lists of provided services. For
instance, such comparators could take into account the state of the actor in their
matching process.
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Apart from the service discovery protocol, one could also experiment with
opening up other aspects of the language, such as the message delivery protocol.
Recall from section 3.4 that the default policy of the languages is to guarantee
eventual delivery of every message. Reifying the transmission protocol could, for
example, allow the programmer to use “send once” semantics for sending messages
[CDMM05], e.g. when the available bandwidth is low.



A
Default Actor Meta-object Implementation

The AmbientTalk source code of the default actor meta-object in the mirror-based
meta-object protocol is presented below.

createActorMetaBehaviour : : {

actorMetaBehaviour : object ({

mailbox : : object ({
name : ” i n ” ;

cloning . new(aName) : :name : =aName;
add ( e l ) : : . add (name, e l ) ;
get ( nr ) : : messages (name ) [ nr ] ;
addTable ( t b l ) : : . addAl l (name, t b l ) ;
de le te ( e l ) : : . de le te (name, e l ) ;
l eng th ( ) : : s ize ( messages (name ) ) ;
i n i t ( contents ) : : . i n i t M a i l b o x (name, contents ) ;

removeIf ( co n d i t i o n (msg ) ) : : {
newContents : vec to r . new ( ) ;
th is ( ) . asVector ( ) . i t e r a t e ({

i f ( not ( c o n d i t i o n ( e l ) ) , newContents . add ( e l ) )
} ) ;
i n i t ( newContents . asTable ( ) )

} ;

asVector ( ) : :{
t b l : messages (name ) ;
vec to r . newWithTable ( t b l )

}

} ) ;
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inbox : mailbox . new( ” i n ” ) ;
outbox : mailbox . new( ” out ” ) ;
sentbox : mailbox . new( ” sent ” ) ;
rcvbox : mailbox . new( ” rcv ” ) ;
required : mailbox . new( ” requ i red ” ) ;
provided : mailbox . new( ” prov ided ” ) ;
joinBox : mailbox . new( ” j o i ned ” ) ;
disjoinBox : mailbox . new( ” d i s j o i n e d ” ) ;

cloning . new ( ) : :{
inbox : = mailbox . new( ” i n ” ) ;
outbox : = mailbox . new( ” out ” ) ;
sentbox : = mailbox . new( ” sent ” ) ;
rcvbox : = mailbox . new( ” rcv ” ) ;
required : = mailbox . new( ” requ i red ” ) ;
provided : = mailbox . new( ” prov ided ” ) ;
joinBox : = mailbox . new( ” j o i ned ” ) ;
disjoinBox : = mailbox . new( ” d i s j o i n e d ” )

} ;

i n i t ( ) : : void ;

i n (msg) : : void ;
rcv (msg) : : void ;
out (msg) : : void ;
sent (msg) : : void ;
j o i n ( ) : : void ;
d i s j o i n ( ) : : void ;
j o i ned ( aResolut ion ) : : void ;
d i s j o i n e d ( aResolut ion ) : : void ;

process ( message ) : :{
message . process ( th is ( ) ) ;
rcvbox . add ( message )

} ;

createMessage : : { ‘ MOP method to create new messages ‘
message : object ({

source : void ; t a r g e t : void ;
name : void ; a r g L i s t : void ;

cloning . new( aSource , aTarget , aName, anArgL is t ) : :{
source : =aSource ; t a r g e t : =aTarget ;
name : =aName; a r g L i s t : =anArgL is t

} ;

getSource ( ) : : source ; setSource ( aSource ) : : source : =aSource ;
getTarget ( ) : : t a r g e t ; se tTarget ( aTarget ) : : t a r g e t : =aTarget ;
getName ( ) : :name ; setName (aName) : :name : =aName;
getArgs ( ) : : a r g L i s t ; setArgs ( anArgL is t ) : : a r g L i s t : =anArgL is t ;

process ( behaviour ) : : behaviour . execute ( th is ( ) )
} ) ;
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message . new
} ;

send (msg) : :{
outbox . add (msg ) ;
void

}

} ) ;

actorMetaBehaviour . new

} ;

rootActorMetaBehaviour : : createActorMetaBehaviour ( ) ;
defaultMetaMessage : : rootActorMetaBehaviour . createMessage ( void , void ,

void , void )



B
Source Code of the Mixin Composition

Mechanism

The complete source code of the language mixin composition mechanism for Am-
bientTalk is presented below. It is explained in greater detail in chapter 6.

‘ ############# Simple set ############# ‘
sma l l se t : : vec to r . extend ({

add ( e l ) : : i f ( not ( con ta ins ( e l ) ) , . add ( e l ) )
} ) ;

‘ ############# Direc ted graph ############# ‘

directedGraph : : object ({
nodes : smallmap . new ( ) ;

cloning . new( aNodesTable ) : : map( addNode ( e l ) , aNodesTable ) ;

cloning . clone ( aDag ) : : {
nodes : = smallmap . new ( ) ;
aDag . getNodes ( ) . i t e r a t e ({

addNode ( e l ) ;
from : e l ;
aDag . edges ( from ) . i t e r a t e ( addEdge ( from , e l ) )

})
} ;

containsNode ( aNode ) : : nodes . containsKey ( aNode ) ;

addNode ( aNode ) : : i f ( not ( containsNode ( aNode ) ) ,
nodes . put ( aNode , sma l l se t . new ( ) ) ) ;

getNodes ( ) : : nodes . getKeysVector ( ) ;
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edges ( aNode ) : : nodes . get ( aNode ) ;

addEdge ( from , to ) : : {
addNode ( from ) ;
addNode ( to ) ;
edges ( from ) . add ( to )

} ;

removeEdge ( from , to ) : : edges ( from ) . remove ( to ) ;

nEdges ( ) : : {
n : 0;
nodes . i t e r a t e ( n : = n + value . l eng th ( ) ) ;
n

} ;

nEdgesTo ( aNode ) : : {
n : 0;
i t e r a t e ( i f ( edges . conta ins ( aNode ) , n : = n+ 1 ) ) ;
n

} ;

i t e r a t e ( i t ( node , edges ) ) : : nodes . i t e r a t e ( i t ( key , value ) ) ;

p r i n t ( ) : : i t e r a t e ({
display ( ”Node ” , node , ” : ” ) ;
edges . p r i n t ( )

} ) ;

t o p o l o g i c a l S o r t ( error ( graph ) ) : : {
g : clone ( th is ( ) ) ;
nodesWithNoIncomingEdges ( ) : : {

resNodes : vec to r . newWithVector ( g . getNodes ( ) ) ;
g . i t e r a t e ( edges . i t e r a t e ( resNodes . remove ( e l ) ) ) ;
resNodes

} ;
q : nodesWithNoIncomingEdges ( ) ;
r e s u l t : vec to r . new ( ) ;
n : void ;
adjNodes : void ;
while ( or ( g . nEdges ( ) > 0 , q . l eng th ( ) > 0) , {

i f ( q . l eng th ( ) = 0 , error ( g ) ) ;
n : = q . de le te ( 1 ) ;
r e s u l t . add ( n ) ;
‘ take a copy because the i t e r a t o r removes ‘
‘ elements from the con ta ine r ‘
adjNodes : = vec to r . newWithVector ( g . edges ( n ) ) ;
adjNodes . i t e r a t e ({

g . removeEdge ( n , e l ) ;
i f ( g . nEdgesTo ( e l ) = 0 , q . add ( e l ) )

})
} ) ;
r e s u l t
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}

} ) ;

‘ ############# Composer con ta in ing a meta−behaviour and a ############# ‘
‘ ############# l i s t o f mix ins a l ready app l ied to i t ############# ‘

makeMixinComposer : : {

composerP : : object ({
behaviour : void ;
app l iedMix ins : void ;
exportedMethods : void ;
pendingMixins : void ;

cloning . new( aBehaviour ) : : {
behaviour : = aBehaviour ;
app l iedMix ins : = vec to r . new ( ) ;
exportedMethods : = vec to r . new ( ) ;
pendingMixins : = sma l l se t . new ( )

} ;

i sA l readyApp l ied ( aMixin ) : app l iedMix ins . conta ins ( aMixin ) ;
c o n f l i c t i n g E x p o r t s ( aMixin ) : containsAny ( aMixin . getExported ( ) ,

exportedMethods ) ;

app lyMix in ( aMixin ) : {
i f ( not ( i sA l readyApp l ied ( aMixin ) ) ,

i f ( c o n f l i c t i n g E x p o r t s ( aMixin ) ,
error ( ” Try ing to expor t same method tw ice . Cannot cont inue ” ) ,
{ behaviour : = aMixin . applyTo ( behaviour ) ;

exportedMethods . addTable ( aMixin . getExported ( ) ) ;
app l iedMix ins . add ( aMixin ) } ) )

} ;

computeRequired ( aMixinsTable ) : {
required : directedGraph . new( aMixinsTable ) ;
‘ we add a d i r ec ted edge A−>B f o r each mix in A t h a t requ i res B ‘
loopRequired ( aMixin ) : : {

map({ required . addEdge ( aMixin , e l ) ;
loopRequired ( e l ) } ,

aMixin . getRequired ( ) )
} ;
‘ Compute requirements f o r each mix in provided ‘

map( loopRequired ( e l ) , aMixinsTable ) ;
required

} ;

computeMixinGraph ( aMixinsTable ) : {
required : computeRequired ( aMixinsTable ) ;
‘ take a copy because the i t e r a t o r adds elements to the graph ‘
a l l M i x i n s : vec to r . newWithVector ( required . getNodes ( ) ) ;
a l l M i x i n s . i t e r a t e ({

mixinA : e l ;
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a l l M i x i n s . i t e r a t e ({
mixinB : e l ;
‘ I f a mix in A rep laces a method replaced or r e f i n e d by B, ‘
‘ we add a d i r ec ted edge B−>A ‘
i f ( mixinB . rep laces ( mixinA ) ,

required . addEdge ( mixinA , mixinB ) ) ;
i f ( mixinA . rep laces ( mixinB ) ,

required . addEdge ( mixinB , mixinA ) )
})

} ) ;
con f l i c t sGraph : void ;
mix ins InOrder : required . t o p o l o g i c a l S o r t ( con f l i c t sGraph : = graph ) ;
i f ( is void ( con f l i c t sGraph ) ,

{ mix insInOrder : = mix insInOrder . reverse ( ) ;
display ( ” Apply ing mix ins i n order : ” ) ;
mix ins InOrder . i t e r a t e ( display ( e l . getName ( ) , ” , ” ) ) ;
mix ins InOrder } ,

‘ A cyc le has occured (A−>B, B−>A) . The mix ins t h a t ‘
‘ are s t i l l i n the graph are the c o n f l i c t i n g mix ins . ‘
{ display ( ” C o n f l i c t s due to mix ins : ” ) ;

con f l i c t sGraph . i t e r a t e ( display ( node . getName ( ) , ” , ” ) ) ;
display ( eoln ) ;
error ( ” C o n f l i c t s i n mix in composi t ion . ” ) })

} ;

‘ Apply a tab l e o f mix ins ob jec ts ‘
applyMix ins ( aMixinsTable ) : {

graph : computeMixinGraph ( aMixinsTable ) ;
graph . i t e r a t e ( app lyMix in ( e l ) )

} ;

addMixin ( aMixin ) : : pendingMixins . add ( aMixin ) ;

compose ( ) : : {
graph : computeMixinGraph ( pendingMixins . asTable ( ) ) ;
graph . i t e r a t e ( app lyMix in ( e l ) ) ;
pendingMixins : = sma l l se t . new ( ) ;
th is ( )

} ;

isComposer ( ) : : true ;

getBehaviour ( ) : : behaviour

} ) ;

composerP . new

} ;

languageMixin (name,
expor ts c lause ( expor ts ) ,
r equ i res c lause ( requ i res ) ,
rep laces c lause ( rep laces ) ,
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r e f i n e s c l a u s e ( r e f i n e s ) ,
implements clause ( implements ( fun ( bhv ) ) ) ) : : {

‘ ############# St ruc tu red mix in pro to type ############# ‘
mixinP : : object ({

name : void ;
exported : void ;
required : void ;
rep laced : void ;
r e f i n e d : void ;
implementat ion : void ;

cloning . new(aName, anExports , aRequired ,
aReplaces , aRefines , anImplementor ) : : {

name : = aName;
exported : = anExports ;
required : = aRequired ;
replaced : = aReplaces ;
r e f i n e d : = aRefines ;
implementat ion : = anImplementor

} ;

getName ( ) : : name ;
getRequired ( ) : : required ;
r equ i res ( aMixin ) : : c o n t a i n s A l l ( [ aMixin ] , required ) ;
getMetaMethods ( ) : : append ( replaced , r e f i n e d ) ;
getReplaced ( ) : : replaced ;
rep laces ( aMixin ) : : containsAny ( replaced ,

aMixin . getMetaMethods ( ) ) ;
getRef ined ( ) : : r e f i n e d ;
r e f i n e s ( aMixin ) : : containsAny ( re f ined ,

aMixin . getMetaMethods ( ) ) ;
getExported ( ) : : exported ;
expor ts (aMethodName) : : c o n t a i n s A l l ( [ aMethodName ] , exported ) ;

applyTo ( behaviour ) : : implementat ion ( behaviour )

} ) ;

‘ use p ico r e f l e c t i o n to e x t r a c t the name of the method ‘
methodName( method ) : : method [ 1 ] [ 3 ] [ 1 ] ;
exports fun@args ( ) : : map(methodName( e l ) , args ) ;
requires fun@args : : args ;
replaces fun@args ( ) : : map(methodName( e l ) , args ) ;
re f ines fun@args ( ) : : map(methodName( e l ) , args ) ;

mixinP . new(name,
expor ts c lause ( expor t s fun ) ,
requ i res c lause ( r e q u i r e s f u n ) ,
rep laces c lause ( rep laces fun ) ,
r e f i n e s c l a u s e ( r e f i n e s f u n ) ,
{ extender ( beh ) : : implements clause ( fun ( beh ) ) })

} ;
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composer ++ mix in : : {
c : void ;
i f (and ( h a s s l o t ( composer , ” isComposer ” ) ,

composer . isComposer ( ) ) ,
c : = composer ,
‘ Assume t h a t ” composer ” i s a meta−behaviour passive ob j ‘
c : = makeMixinComposer ( composer ) ) ;

c . addMixin ( mix in ) ;
c

} ;

compose ( composer ) : : composer . compose ( ) . getBehaviour ( )
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[SDNB02] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew
Black. Traits: Composable units of behavior. Technical report, 2002.

[Smi82] B. Smith. Reflection and Semantics in a Procedural Language. Tech-
nical Report MIT-TR-272, Massachusetts Institute of Technology.
Laboratory for Computer Science, Cambridge, Massachusetts, 1982.

[TK01] R. Tolksdorf and K. Knubben. dself - a distributed self. Technical
Report KIT-Report 144, TU Berlin, 2001.

[US87] David Ungar and Randall B. Smith. Self: The power of simplicity.
In OOPSLA ’87: Conference proceedings on Object-oriented pro-
gramming systems, languages and applications, pages 227–242, New
York, NY, USA, 1987. ACM Press.

[VA98] Carlos A. Varela and Gul A. Agha. What after java? from objects to
actors. Comput. Netw. ISDN Syst., 30(1-7):573–577, 1998.

[Wey78] Richard W. Weyhrauch. Prolegomena to a theory of formal reasoning.
Technical report, Stanford, CA, USA, 1978.

[WY88] Takuo Watanabe and Akinori Yonezawa. Reflection in an object-
oriented concurrent language. In OOPSLA ’88: Conference proceed-
ings on Object-oriented programming systems, languages and appli-
cations, pages 306–315, New York, NY, USA, 1988. ACM Press.

[YBS86] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-
oriented concurrent programming in ABCL/1. In OOPLSA ’86: Con-
ference proceedings on Object-oriented programming systems, lan-
guages and applications, pages 258–268, New York, NY, USA, 1986.
ACM Press.


