
Declarative User Interfaces : specifying UI variabilities

Sofie Goderis Dirk Deridder
sgoderis@vub.ac.be dderidder@vub.ac.be

Programming Technology Lab
Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium

1 Introduction

In our research we apply the principle of separation of concerns onto User Interfaces. The
goal is to get a clean separation in the source code between code responsible for UI logic and
code responsible for the application logic. Since both are tightly coupled (i.e. the application
logic needs to interact closely with UI logic and vice versa), this results in code entanglement
which reduces the evolvability of the software. Therefore it is difficult to vary the way a user
interface is layed out (e.g. using a tabbed, multi-column, or multi-windows strategy) or how
it should be handled on different platforms (e.g. PDA , internet based).

In our approach we use SOUL, a declarative meta programming environment, to describe
the different UI concerns. This declarative specification is taken as input by our SoGUI
reasoner, that transforms it into a working user interface (where application logic and UI
logic are once again woven together).

This way it is possible to vary the UI visualisation and behaviour by merely changing the
declarative specifications (facts and rules) that describe these UI concerns.

Each variability is captured by a set of rules. The reasoning mechanism combines the
different sets to generate the UI variant emerging from the chosen variabilities.

For specifying the UI we anticipate the use of visual tools. Once the UI is modelled
visually, the tool translates the specification into a declarative specification for this is the
base modelling language in our approach. Next the reasoning mechanism transforms this
model into the actual working UI (i.e. the actual code).

2 Separating UI concerns with a declarative approach

As said before, we use a declarative environment for describing the different UI concerns.
For now we focus on the UI concerns related to the UI visualisation and the UI behaviour.
Visualisation is what the UI looks like and what widgets are provided. Behaviour specifies
how widgets relate to and influence each other.

Furthermore we distinguish different levels of abstractions within these concerns, going
from high level to lower level to low level output (i.e. device or platform) dependent spec-
ifications. For example the high level specification gives an abstract description of the UI
using ’questions’. The lower level indicates that a ’question’ is a combination of a label, some
radio-buttons and an action button while the low level output refers to the actual label and
button widgets of a Java GUI.

1



A reasoning mechanism is responsible to compose the different sets of rules and generate
the actual UI, which is the UI code woven together with the application code.

3 UI variabilities

Since we have a high level declarative specification that describes the abstract UI and a low
level specification that describes the actual implementation details, it is possible to vary the
UI visualisation and UI behaviour and therefore create several variants for a certain UI.

Consider a common application to be deployed to different devices. The high level UI
specification (e.g. the different components) for this application does not change. The low
level implementation however is different for the different devices (e.g. what a component
actually looks like). When replacing the set of rules responsible for transforming the high
level specification into a certain low level implementation with another set, a variant of the
same high level UI is created and the variabilities are captured within the rule sets.
The same methodology of replacing one rule set by another applies for other UI variabilities.
For instance when varying the UI visualisation by replacing one layout strategy (e.g. one-
column) with another one (e.g. two-column).

4 Composition of UI variabilities

Since we use a transformation step that combines different sets of rules together into an actual
UI, one can combine different sets to achieve different UIs.

For instance UI components or UI behaviour are grouped together by means of rules
and facts. Such as a save-edit-cancel buttons group that combines three buttons with a
certain enable/disable behaviour. This behavioural group can be used throughout different
UIs because of the possibility to compose UI variabilities. A user selects all necessary elements
and variabilities of the UI, the reasoning mechanism combines then into the actual UI variant.

5 Model to SOUL to Code

Currently we are implementing tool support for visualising parts of the UI specifications. For
a programmer it is easier to specify a UI graphically, nevertheless we do not want to loose any
of the declarative expressiveness. These visualisations are transformed into the declarative
facts and rules to be used by the declarative reasoning engine. Together with the more general
set of rules (such as the device specific rules) the reasoning engine then creates the final UI,
and therefore the UI code and the linking code with the application.

6 Conclusion

User Interfaces can vary in different ways. In our research we use a declarative approach
to specify UIs, which provides us with a way to specify and combine UI variabilities. Fur-
thermore, because of the use of a declarative reasoner we can combine several variabilities.
Finally the declarative UI specification is a way of modelling a UI and is used in model to
model and model to code transformations.

2


