

Influence of type systems on dynamic software evolution

Vrije Universiteit Brussel

Yves Vandewoude¹, Peter Ebraert², Yolande Berbers¹, Theo D'Hondt²

- Department of Computer Science, KULeuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium
- ² Programming Technology Lab, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium {yvesv, yolande}@cs.kuleuven.ac.be, {pebraert, tjdhondt}@vub.ac.be

Type Systems

Type Binding is the process of assigning a type to a variable. A distinction is made between *static and dynamic binding* depending on whether the binding occurs at compile-time or at run-time respectively.

Type Checking is the process that verifies whether the operands of an operator have compatible types. Depending on when the type checks occur, the term *static type check* or *dynamic type check* are used.

Type Strength refers to the effectiveness with which a type system prevents type errors. A *strongly typed* language prevents any operation on the wrong type of data. In *weakly typed* languages there are ways to escape this restriction: coercion.

A Type Error is an error which occurs when an operation is performed on the wrong kind of data.

Coercion: is an implicit conversion of a variable from one type to another.

Evolution Taxonomy

Type impact on dynamic software evolution

Group	Dimension	Static		Both		Dynamic	
		Weak	Strong	Weak	Strong	Weak	Strong
Temporal (when)	Time of change						
	Offline changes	++	++	++	++	+	+
	Online changes			+/-	-	++	+
	Change history	++	+	++	+	+	+/-
	Change frequency	_		-		++	+
Object of change (where)	Anticipation	-	-	+/-	+/-	+	+
	Granularity						
	Coarse grained	++	++	++	++	+	+
	Fine grained	_	-	_	-	++	++
	Impact	+	++	+/-	+		-
	Change propagation	+/-	+/-	+/-	+/-	++	+
System properties (what)	Availability	-	-	+/-	+/-	+	+
	Openness	+/-	-	+	+/-	++	+
	Safety	+/-	+	+/-	+		-
Change support (how)	Degree of automation	-	-	+/-	+/-	+/-	+/-
	Degree of formality	+	++	+	++	_	+/-
	Change type	+	+	+	+	+/-	+/-

References:

- J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel.
 Towards a taxonomy of software change. Journal of Software Maintenance and Evolution: Research and Practice, 2003.
- Y. Vandewoude, P. Ebraert, Y. Berbers and T. D'Hondt Influence of type systems on dynamic software evolution. Technical Report CW410, KULeuven, Belgium